Site Loader

Содержание

Принципиальная схема генератора-пробника с использованием пьезофильтра

Пробник предназначен для проверки УЗЧ и настройке трактов промежуточной частоты, а также других высокочастотных или широкополосных (апериодических) каскадов радиоприемников.

Этот генератор-пробник отличается от ранее описанного отсутствием в схеме катушки индуктивности. Использование в схеме пробника пьезофильтра позволило значительно упростить его конструкцию и, что важно для любительских условий, налаживание.

Пробник вырабатывает два сигнала: звукочастотный I кГц и высокочастотный модулированный сигнал промежуточной частоты 465 кГц. Один из каскадов пробника вырабатывает низкочастотный сигнал прямоугольной формы, который кроме проверки УЗЧ используется еще для модуляции высокочастотного сигнала, вырабатываемого другим его каскадом.

Принципиальная схема

Подключение сигналов ПЧ или НЧ к щупу пробника осуществляется переключателем SA2. Выключатель SA1 служит для включения питания прибора. Для питания пробника используется гальванический элемент типа 316.

Генератор-пробник состоит из генератора прямоугольных импульсов, выполненного на транзисторах ѴТ1 и VT2 по схеме симметричного мультивибратора. Частота низкочастотного генератора задается цепями R2, С1 и R3, С2. Выбор схемы мультивибратора обусловлен тем, что он устойчиво работает при использовании низкоомной нагрузки/к примеру, динамической головки.

Принципиальная схема генератора-пробника для усилителей и приемников

Рис. 1. Принципиальная схема генератора-пробника с использованием пьезофильтра.

Печатная плата и монтаж на ней деталей генератора-пробника с использованием  пьезофильтра

Рис. 2. Печатная плата и монтаж на ней деталей генератора-пробника с использованием пьезофильтра.

Использование в схеме пробника диодного аттенюатора в цепи положительной обратной связи генератора ПЧ изменяет условия баланса амплитуд высокочастотного генератора.

Это дает возможность получить относительно глубокую модуляцию амплитуды сигнала. Начальный ток диодов аттенюатора задается резисторами R6…R9. Разделительный конденсатор С5 необходим для исключения влияния коллекторного напряжения транзистора ѴТЗ на режим работы аттенюатора.

Детали

В приборе использованы не дефицитные радиодетали, кроме радиоэлементов указанных на схеме могут быть использованы транзисторы КТ315Г, КТ325Г или КТ342, КТ3102 с любым буквенным индексом, диоды серий Д2 и Д9 и пьезофильтры ФШП-022…ФШП-027. Постоянные конденсаторы типа КТ, КД или К10-7, а резисторы МЛТ-0,125. Выключатель SA1 типа МП, а переключатель SA2 типа ПТ57.

Все детали пробника собраны на печатной плате размером 195×17 мм вырезанной из одностороннего фольги-рованного стеклотекстолита толщиной 0,8 мм. Рисунок печатной платы и монтаж на ней деталей показан на рис. 2.

Выводы выключателя SA1 и переключателя SA2 вставлены в монтажные отверстия платы и припаяны к печатным дорожкам. К выходу генератора пробника, контакту переключателя SA2, припаян щуп в виде тонкого заостренного медного стержня. Общая шина прибора соединена с многожильным изолированным проводом, оканчивающимся зажимом типа «крокодил».

Настройка

Настройка генератора-пробника несложна и сводится к установке напряжения на коллекторе транзистора ѴТЗ величиной примерно 0,7 В. Установка этого напряжения производится с помощью изменения сопротивления резистора R10 до достижения максимальной амплитуды сигнала на выходе высокочастотного генератора.

Работают с пробником таким образом. Подключают зажим «крокодил» к общей шине и переключателем SA2 устанавливают требуемый режим генерации сигнала: ПЧ или ЗЧ. После этого нажимают на кнопку SA1, включают питание, генератор начинает вырабатывать сигнал, который подается на щуп. Заметим, что при проверке УПЧ, в частности, первых каскадов, можно не касаться щупом выводов элементов схемы.

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

Генераторы — часть 1

Генераторы — часть 1

Oscillators — English version

1. Генератор на пьезофильтре

2. Генератор,управляемый напряжением.

3. Высокостабильный генератор.

4. Генератор на транзисторе,работающий в режиме лавинного пробоя.

5. Генератор на ПТ

6. Генератор на однопереходном транзисторе.

7. Генератор с низким энергопотреблением.

8. Кварцевый генератор на гармониках

9. Гун

10. ВЧ RC Генератор

11. Генератор гармонических колебаний.

12. ГСП

13. ГСП

14. ГСП

15. Высокочастотный RC Генератор на ЭСЛ.

16. Генератор, работающий на разности частот.

17. ВЧ Генератор.

18. RC Генератор.

19. Звуковой Генератор.

20. Электроудочка.

21. Релаксационный Генератор.

22. Релаксационный Генератор.

23. Генератор на аналоге лямбда-диода.

24. RC генератор на триггере Шмидта.

25. RC генератор на триггере Шмидта с изменяемой скважинностью.

26. Генератор на пьезофильтре.

27. Электронный микрометр.

28. Генератор на одном транзисторе.

29. ГУН

30. LC генератор на ОУ.

РАДИО для ВСЕХ — Генератор-пробник 465 кГц / 1000 Гц

Предлагается вашему вниманию набор для сборки простого пробника-генератора 1 кГц + 465 кГц

Генератор разработан Сергеем Эдуардовичем Беленецким (US5MSQ). Подробное описание конструкции выложено на сайте автора здесь http://us5msq.com.ua Кроме того, там Вы сможете найти информацию по другим его конструкциям, задать вопросы на форуме, а также приобрести наборы для сборки.  Данная конструкция опубликована с любезного разрешения автора и, надеюсь, заинтересует радиолюбителей. Его принципиальная схема приведена здесь и на чертеже ниже. 

 

При ремонте в домашних условиях звукового усилителя или бытового радиоприемника нередко появляется необходимость проследить прохождение сигнала через каскады. И это вызывает определенные затруднения при ремонте тем радиолюбителям, у которых нет необходимых приборов.


Предлагаемый вашему вниманию простой генератор-пробник предназначен для ремонта радиоаппаратуры. Он не содержит намоточных узлов и доступен в изготовлении, настройке и эксплуатации даже начинающему радиолюбителю. Генератор-пробник позволяет не только проверить исправность звукового усилителя и тракта усилителя промежуточной частоты (ПЧ 465 кгц) радиоприемника, но и подстроить контуры ПЧ радиоприемника по максимальному уровню сигнала. Принципиальная схема устройства показана на рисунке ниже:

На транзисторе VT1 собран НЧ генератор, вырабатывающий колебания с частотой примерно 1 кГц (определяется параметрами фазосдвигающей цепи С1С2С3R1R2, включенной в цепи ООС).
Выходной сигнал подается на базу ВЧ генератора VT2 через однозвенный ФНЧ R5C5, который подчищает выходной сигнал от гармоник и уменьшает его амплитуду для получения глубины АМ модуляции на уровне примерно 30 %.


Высокочастотный генератор работает на частоте 465 кГц и выполнен по схеме емкостной трёхточки (вариант Клаппа), только вместо катушки индуктивности применен керамический резонатор ZQ1. В этой схеме генерация колебаний возможна только при индуктивном сопротивлении цепи резонатора, т.е. частота колебаний находится между частотами последовательного и параллельного резонансов. В качестве резонатора применён малогабаритный керамический фильтр ФП1П1-61-02 (маркировка без цветных меток). ФП1П1-61 фильтры серии ФП1П1-61 широко распространены, не дорого стоят и, главное, при указанном на схеме включении имеют малый разброс параметров по частоте генерации, фактический разброс по частоте генерации не превышает обычно ±0,5 кГц (по ТУ не должен превышать ±1 кГц). Таким образом, при применении фактически любого фильтра из серии ФП1П1-61 можно гарантированно, без подстройки, получить тестовый сигнал частотой 465±1 кГц, что нам, собственно, и требуется. Эмиттер VT2 нагружен на резистивный делитель R7R8, который понижает выходной сигнал до удобных на практике уровней и обеспечивает стабильный режим работы генератора не зависимо от подключаемых внешних цепей (тестируемого устройства). Потенциометр R9 служит для плавной регулировки уровня выходного сигнала.

При указанном на схеме правом положении переключателя на выходе генератора-пробника будет сигнал АМ с частотой 465 кГц, модулированный низкочастотным сигналом 1 кГц (30% модуляция). В среднем положении SA1 на выходе появится только низкочастотный сигнал с частотой 1 кГц.
Транзисторы можно применить любые ВЧ (КТ315, КТ3102, BC847, 2N2222 и т.п.) с Н21е в пределах 100-220, иначе потребуется подобрать R4 для получения на коллекторе VT1 4,5±0,5В.

Питание пробника-генератора осуществляется от батареи 9В типа от «Крона».

Применение для переключения режимов работы малогабаритного трёхпозиционного переключателя позволило разместить пробник на маленькой плате, соизмеримой с батарей питания типа «Крона». Контрольная сборка показала, что при отсутствии ошибок монтажа конструкция запускается сразу и не требует никакой наладки, в т.ч. и индивидуального подстройки указанного на схеме режима транзистора VT1 подбором резистора R3 – т.к. в наборах используются транзисторы из одной партии с малым разбросом по Н12е (в пределах от 300 до 330), то и величина R3 остаётся неизменной.


Стоимость печатной платы с маской и маркировкой: 30 грн.

Стоимость набора (печатная плата с маской и маркировкой + полный комплект деталей

) для сборки генератора-пробника: 100 грн.

Стоимость фильтра ФП1П1-61 (в состав набора он уже входит) — 10 грн.

Краткое описание, инструкция по сборке, схема и состав набора находится здесь >>>

Для заказа устройства просьба обращаться сюда >>> или сюда >>>

Мирного неба, удачи, добра! 73!

Пьезогенераторы. Устройство и работа. Особенности и применение

С развитием технологий человечество начинает расходовать все меньше энергии понапрасну. Появились солнечные панели, ветровые электростанции, солнечные концентраторы, пьезогенераторы, суперконденсаторы и иные устройства, которые помогают людям получать альтернативную энергию и сохранять ее. Большинство из этих устройств уже используются в повседневной жизни.

Но наука не стоит на месте, в скором времени можно будет получать энергию с помощью повседневных и малозначительных движений. Это можно будет сделать при помощи пьезогенераторов. Ее вполне хватит, чтобы быстро зарядить телефон или плеер. Могут появиться и такие пьезогенераторы, которые будут подзаряжать, к примеру, наручные часы при помощи возбуждения, которое передается сердцебиением.

Устройство

В последние годы было создано несколько опытных образцов пьезогенераторов для различного применения. Они могут быть объединены в два различных класса, которые отличаются по типу колебаний, продольных и поперечных.

Пьезогенератор, работающий по продольной схеме колебаний. В данном устройстве одиночный пьезоэлемент монтируется в подкладку обуви, он позволяет генерировать определенную мощность энергии при быстром передвижении, к примеру, при беге человека. Данное устройство изобретено в техническом университете Луизианы и был выполнен в виде специального спирального пластинчатого пьезоэлемента.

На данный момент обеспечить надежность и долговечность подобного устройства затруднительно в виду хрупкости пьезокерамического материала. Однако данная идея может оказаться продуктивной при использовании гибких пьезополимерных пластин. Но подобные материалы на данный момент находятся на стадии исследований.

Не менее перспективны пьезогенераторы, работающие на изгибных колебаниях. Они также могут отличаться своей конфигурацией и конструктивным исполнением.

Для источников питания сравнительно большой мощности созданы опытные образцы макропьезогенераторов самых разных конструкций. К самым продвинутым разработкам подобного класса устройств можно отнести экспериментальную систему накопителей энергии, созданную на основе пьезогенераторов, которые вмонтированы в настил пола у билетных терминалов на входе в станции метро Marunouchi (Токио).

Известно устройство взрывного пьезогенератора, который включает:
  • Устройство инициирования:
  • Генератор ударной волны:
  • Пьезоэлектрический преобразователь, выполненный из набора пьезопластин, соединенных параллельно:
  • Электроды, которые нанесены на противоположные грани пьезопластин, расположены перпендикулярно выходной поверхности генератора ударной волны:
  • Блок пьезопластин размещен в цилиндрический объем, у которого торцевая часть совпадает с поверхностью генератора ударной волны:
  • Генератор ударной волны выглядит как аксиально симметричная конструкция, она выполнена из слоя взрывчатого вещества, конического алюминиевого лайнера и конической алюминиевой крышки.
Принцип действия

Пьезоэффект, который применяется в пьезогенераторах, заключается в том, что в устройстве имеется специальный диэлектрик, к которому прикладываются механические напряжения. В результате диэлектрик на двух разных концах создает разницу потенциалов. В итоге, создавая давление на подобный пьезоэлемент, можно на выходе получить электрическое напряжение определенной величины.

Пьезоэффект также может вызывать и обратное преобразование, то есть обеспечить превращение электрической энергии в механическую, к примеру, для создания звуковых излучателей. По типу применяемого соотношения между вектором поляризации пьезоэлемента и направлением механических колебаний пьезогенераторы можно разделить на классы с поперечным и продольным направлением механического воздействия.

Если рассматривать физику процессов, которые происходят в пьезоэлектрике, подробней, то все выглядит довольно просто. Для этого нужно только понимать принципы генерации энергии пьезоэлектрическими материалами:
  • При механическом воздействии на пьезоэлемент наблюдается смещение атомов в его материале, то есть в несимметричной кристаллической решетке.
  • Данное смещение приводит к появлению электрического поля, которое приводит к индукции зарядов на электродах пьезоэлемента.

В отличие от стандартного конденсатора, обкладки которого способны сохранять заряды весьма долго, индуцированные заряды пьезогенератора сохраняются до момента, пока не перестает действовать механическая нагрузка. Именно в течение данного периода от элемента можно получать энергию. Как только нагрузка снимается, индуцированные заряды исчезают.

Явление пьезоэлектричества открыто братьями Пьером и Джексоном Кюри в 1880 году, с того времени оно широкое распространение в измерительной технике и радиотехнике. Термин «пьезогенераторы» характеризует лишь направление преобразования энергии, а не эффективность превращения. Именно с явлением, связанным с генерацией электричества в случае механического воздействия, заинтересовались инженера и изобретатели в последние годы.

Начали появляться сообщения о возможностях получения электрической энергии при помощи воздействия разной механической энергии:
  • Движение волн и ветра.
  • Воздействие уличного шума.
  • Нагрузки от перемещения машин и людей.
  • Сердцебиение и так далее.

На основе всех этих вариантов стали придумываться различные изобретения. Многие из них уже нашли применение, а некоторые на данный момент находятся в планах, так как технологии не достигли требуемого уровня.

Применения и особенности
На текущий момент известно несколько вариантов практического применения пьезогенераторов в:
  • Пьезозажигалках с целью высокого напряжения на специальном разряднике от движения пальца. Сегодня любой курильщик может носить в кармане собственную «электростанцию».
  • Качестве чувствительного элемента в приемных элементах сонаров, микрофонах, головках звукоснимателя электрофонов, гидрофонах.
  • Контактном пьезоэлектрическом взрывателе, к примеру, к выстрелам гранатомета РПГ-7.
  • Датчиках в виде чувствительного к силе элемента, к примеру, датчиках давления газов и жидкостей, силоизмерительных датчиках и так далее.
Обратный пьезоэлектрический эффект может применяться в:
  • Пьезокерамических излучателях звука, к примеру, музыкальные открытки, всевозможные оповещатели, которые используются в самых разных бытовых устройствах от стандартных наручных часов до техники на кухне.
  • Системах сверхточного позиционирования, к примеру, позиционер перемещения головки винчестера, в сканирующем туннельном микроскопе в системе позиционирования иглы.
  • Излучателях гидролокаторов (сонарах).
  • Ультразвуковых излучателях для ультразвуковой гидроочистки (промышленные ультразвуковые ванны, ультразвуковые стиральные машины).
  • Пьезоэлектрических двигателях.
  • Струйных принтерах для подачи чернил.
  • Адаптивной оптике с целью изгиба отражающей поверхности деформируемого зеркала.
Обратный и прямой эффект пьезогенераторов одновременно используются в:
  • Датчиках на специальных поверхностных акустических волнах.
  • Ультразвуковых линиях задержки специальных электронной аппаратуры.
  • Приборах на эффекте специальных поверхностных акустических волн.
  • Пьезотрансформаторах с целью изменения напряжения высокой частоты.
  • Кварцевых резонаторах, применяемых в качестве эталона частоты.

Большинство из применяемых пьезогенераторов вырабатывают небольшой ток. Отдельные пьезоэлементы могут генерировать высокое напряжение, которое пробивает разрядный промежуток, затем ток поступает на выпрямитель, после чего в накопительное устройство, к примеру, ионистор.

Достоинства и недостатки
Среди преимуществ пьезогенераторов можно выделить:
  • Длительный срок службы.
  • Небольшие габариты.
  • Мобильность.
  • Отсутствие отходов, а также загрязнения окружающей среды.
  • Независимость от погодных и природных условий.
  • Не требует выделения дополнительных площадей.
  • Широкая применяемость пьезогенераторов в самых разных устройствах.
  • Отличное решение в качестве источника электрических зарядов, контроля изоляции, источника высокого напряжения с целью воспламенения и многих других. В некоторых случаях применение пьезогенераторов целесообразно в качестве микромощных источников питания. Максимальное напряжение, которое могут выдавать пьезогенераторы, в большинстве случаев не превышает 1,6 В, чего вполне хватает для небольших источников света, мобильных плееров или мобильных коммуникационных аппаратов.
Среди недостатков пьезогенераторов можно выделить:
  • Небольшой ток. Пьезогенератор является преобразователем, но не источником электроэнергии.
  • Выработка электрического заряда только в момент механического воздействие. Ток идет краткосрочный, что требует внедрение в ряд устройств дополнительных элементов. В результате конструкция усложняется, а значит, утрачивает свою надежность.
  • На текущий момент времени пьезогенераторы не могут использоваться для питания мощных устройств.
Перспективы
  • Развитие технологий в ближайшем будущем позволит использовать пьезогенераторы мощности в случае невозможности применения солнечных батарей. Они смогут эффективно заменить их, для этого потребуется энергия ветра, моря или мускул. Вырабатываемой энергии вполне будет хватать для зарядки аккумуляторов планшетов, ноутбуков и возможно для питания целого дома.
  • Сегодня проводятся опыты по созданию систем с пьезогенераторами, которые могли бы получать энергию от движущегося автотранспорта. По подсчетам ученых километр автобана способен генерировать электрическую мощность, равную 5 МВт. Однако на текущий момент прорыв в этой области альтернативной энергетики останавливает недостаточное развитие технологий.
  • В обозримом будущем будет возможно подзаряжать плеер, мобильный телефон или иное устройство, просто положив его в карман. А сердцебиение человека сможет стать источником тока, к примеру, для портативного датчика артериального давления. Подобные революционные перспективы открываются благодаря созданию плоских миниатюрных «наногенераторов», которые могут при тряске, сгибании или сжатии вырабатывать то же напряжение, что и стандартная батарейка АА.
Похожие темы:
  • Наногенераторы. Устройство и принцип действия, виды и особенности
  • Окна батареи. Прозрачные солнечные батареи
  • Электронные генераторы. Виды и устройство. Классификация
  • Инверторные генераторы. Принцип действия и особенности

Пьезоэлектрический генератор своими руками » Изобретения и самоделки

Пьезоэлектрический генератор

Изображение пьезоэлектрического генератора

Я пришел с новой привлекательной, простой и умной идеей генерации энергии, которая полезна для вашего умного проекта и даст новый способ получения природного электричества.
Производство пьезоэлектрической энергии, которая полностью зависит от давления на пьезоэлектрический преобразователь,

Шаг 1: Нарежь фанеру в нужном размере 

Картина Собери Деревянную Фанеру, Как Ты хочешь сделать в своем размере
Вырезать по изображениям.

Шаг 2: Купите пьезоэлемент и подготовьте его 

Изображение Купить Piezo Electric Buzzer по 20 рупий за фото и изменить как изображение и получить пьезоэлектрический преобразователь

Шаг 3: Нарисуйте рамку

Начертите прямоугольную рамку, чтобы прикрепить кусочки картона, как показано на рисунке. Верхние элементы зуммера используют для изготовления верхней части.

Изображение прямоугольника для рисования, чтобы прикрепить коробку использования, как показано на изображениях ,, верхние части зуммера используют для изготовления верхней части для печатиИзображение прямоугольника для рисования, чтобы прикрепить коробку использования, как показано на изображениях ,, верхние части зуммера используют для изготовления верхней части для печатиИзображение прямоугольника для рисования, чтобы прикрепить коробку использования, как показано на изображениях ,, верхние части зуммера используют для изготовления верхней части для печати

Шаг 4: Выполните последовательное соединение пьезоэлектрического преобразователя 

Изображение Соединение серии Make пьезоэлектрического преобразователя

Шаг 5: Склейте, как показано на рисунке 

Наконец, склейте детали на последовательном соединении на нижней части, как показано на рисунке.

Изображение, наконец, склеить или (использовать пластиковый кран) на последовательном соединении на нижней части, как показано на рисунке

Шаг 6: Начните генерировать электричество, применяя давление пальца 

Картина начала генерировать электричество путем нажатия пальцем ,,,

Шаг 7: выработка электричества во время прогулки


Источник

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *