Site Loader

Содержание

Как найти плюс на диоде. Где у диодов плюс? Способы определения полярности

Что такое светодиод знает каждый, но, оказывается, некоторые путаются в его полярности, не знают, как рассчитать номинал резисторов для его подключения, а некоторых интересует его устройство.

Что ж, это будет небольшой ликбез по светодиодам, чтобы заполнить сей пробел. Полярность же светодиода будет вам ясна просто из картинки, которую можно сохранить для напоминания себе в дальнейшем.

Полярность светодиода

Вот вам картиночка, как было обещано в анонсе. Из нее сразу всё становится понятным, где анод и где катод у светодиода, а также где они располагаются на схеме.

Самое главное определение полярности светодиода — по контактам внутри прозрачного корпуса: меньший по размеру — плюс (анод), больший — минус (катод). Еще дополнительными определителями полюсовки могут служить срез на корпусе со стороны катода, а также различная длина контактов: более длинный — анод, более короткий — катод.

Но мне попадались светодиоды и без таких внешних признаков: без среза и с одинаковой длиной контактов, наверное какие-то левые разработки.

На всякий случай: при неправильном подключении полярности светодиод просто не будет работать, он вовсе не выйдет из строя — не сгорит, не испортится. Ведь он хоть и СВЕТО-, но все же ДИОД. А диоды и предназначены для того, чтобы пропускать ток лишь в одном направлении. Так что по большой счету можно просто определить полярность светодиода методом «научного тыка». 🙂

Честно говоря, я в своей практике при подключении светодиодов никогда не парился насчет их полярности: так не светится, а так светится — о, правильно!

Расчет сопротивления для светодиода

А вот расчет номинала резистора, его сопротивления в цепи светодиода — дело более нужное. Тут вступает в свои права банальный принцип по закону известного всем господина Ома на предмет того, что для участка цепи сила тока и сопротивление есть вещи обратно пропорциональные.

Для вычисления сопротивления резистора, подключаемого последовательно в цепь светодиоду, требуется знать: рабочий ток , на который он рассчитан, напряжение данного участка цепи , а также Uпр — это напряжение на светодиоде при его работе. В диодах его еще называют напряжением падения . Смотрите на рисунок слева.

То есть при большом напряжении падение напряжения на самом светодиоде можно и не учитывать. Например, если запитывается один светодиод от сети или от напряжения 36 Вольт. А вот при 6 Вольтах, как в примере, это уже будет существенно.

Светодиоды, как правило имеют это самое напряжение падения (оно же Uпр.) около 2-3 Вольт в зависимости от марки. Здесь я загрузил . По ней можно видеть, что Uпр. светодиода АЛ307Б ровно 2 Вольта.

Для примера расчета сопротивления возьмем светодиод АЛ307В, у которого рабочий ток 20 мА, напряжение падения на нем 2,8 Вольт. Будем считать для примера имеющееся напряжение питания за 5,6 Вольт.

Тут вам и формула, и пример вычисления необходимого резистора с нужным сопротивлением для данного светодиода при указанном исходном напряжении.

То есть по простому, это напряжения питания отнять напряжение падения на светодиоде (Uпр) и поделить это на требуемый данному светодиоду ток (ток при расчетах берется в Амперах).

Для вычисления для гирлянды диодов при последовательном их включении, как можно догадаться, для подсчета остаточного напряжения нужно сложить напряжения всех элементов. Фактически можно умножить на количество светодиодов в гирлянде, поскольку включать последовательно можно только светодиоды одного типа , имеющие одинаковое падение напряжения. Даже при включении одного типа светодиодов последовательно может наблюдаться ощутимая разность в их свечении из-за небольшого разброса падения напряжения в каждом экземпляре.

Именно по причине разброса падения напряжения на каждом светодиоде, для идентичности свечения каждого, предпочтительней включать их параллельно, что и делается в большинстве случаев. Но ТОЛЬКО при этом последовательно каждому в цепь включается резистор как на схеме слева.

Точное знание полярности электроприбора крайне важно. Ведь если подключить электрическую аппаратуру с нарушением полярности, она может либо не работать, либо полностью выйти из строя. В большинстве случаев «плюс» и «минус» проводов и контактов в подобных устройствах обозначаются буквенным, символьным или цветовым способом (на корпусе возле контактов есть маркер «+» и «-», а провода имеют черный цвет для минуса и красный для плюса).

Но иногда случается, что визуально определить полюса нет возможности. Для этого можно воспользоваться как обыкновенным тестером полярности, так и подручными средствами.

Определение полярности мультиметром

Иногда случается, что в новом электрическом аппарате, который необходимо подключить, отсутствует маркировка полярности или необходимо перепаять проводку поврежденного устройства, а все провода одного цвета. В такой ситуации важно правильно определить полюса проводов или контактов.

Но при наличии необходимых приборов возникает закономерный вопрос: как мультиметром определить плюс и минус электроприбора?

Для определения полярности мультиметр необходимо включить в режим замера постоянного напряжения до 20 В. Провод черного щупа подключается в гнездо с маркировкой СОМ (он соответствует отрицательному полюсу), а красный подключается в гнездо с маркером VΩmA (он, соответственно, является плюсом).

После этого щупы подсоединяются к проводам или контактам и прибор, полярность которого необходимо узнать, включается.

Если на дисплее мультиметра отображается значение без дополнительных знаков, то полюса определены правильно, контакт к которому подключен красный щуп – это плюс, а к которому подключен черный щуп будет соответствовать минусу.

В том случае если мультиметр показал значение напряжения со знаком минус – это будет означать, что щупы подключены к устройству неверно и красный щуп будет минусом, а черный – плюсом.

Если мультиметр, которым производится замер, аналоговый (со стрелкой и табло с градациями значений), при правильном подключении полюсов стрелка покажет действительное значение напряжения, а сели полюса перепутаны то стрелка будет отклоняться в противоположную сторону относительно нуля, то есть показывает отрицательное значение напряжения тока.

Определение полярности альтернативными методами

Если случилось так, что мультиметра под рукой нет, а полярность необходимо найти, можно использовать альтернативные и «народные» средства.

К примеру, заряды проводки динамиков проверяются при помощи батарейки на 3 вольта. Для этого необходимо на короткий промежуток времени прикоснуться проводами, присоединенными к батарейке, к выводам динамика.

Если диффузор в динамике начинает двигаться наружу, это будет значить, что положительная клемма динамика присоединена к плюсу батарейки, а отрицательная к минусу. Если же диффузор движется внутрь – полярность перепутана: положительная клемма замкнута на минусе, а отрицательная на плюсе.

Если необходимо подключить блок питания постоянного напряжения или аккумулятор, но на них нет маркировки полярности, а под рукой нет мультиметра, плюс и минус можно определить «народными» методами при помощи подручных материалов.

Самый простой способ определения полярности, которым можно воспользоваться дома – это использовать картофель. Для этого необходимо взять один клубень сырого картофеля и разрезать пополам. После этого два провода (желательно разного цвета или с любым другим отличительным знаком) оголенными концами втыкаются в срез картофеля на расстоянии 1-2 сантиметра друг от друга.

Другие концы проводов подключаются к проверяемому источнику постоянно тока, и прибор включается в сеть (если это аккумулятор, то после подсоединения проводов больше ничего делать не нужно) на 15-20 минут. По истечении этого времени на срезе картофеля, вокруг одного из проводов образуется светло-зеленое пятно, которое будет признаком плюсового заряда провода.

Второй способ также не требует, каких либо, особых устройств или инструментов. Для определения полярности проводов источника постоянного тока понадобится емкость с теплой водой, в которую опускаются два подключенных к источнику питания провода.

После включения прибора в сеть вокруг одного из проводов начнут появляться пузыри газа (водород) – это процесс электролиза воды. Эти пузырьки образуются вокруг источника отрицательного заряда.

Следующий способ подойдет в том случае, если есть не используемый, рабочий компьютерный кулер. Способ определения полярности данным методом заключается в том, что кулер необходимо запитать от проверяемого источника бесперебойного питания. Но зачастую в кулерах присутствует три провода:

  • черный, отвечает за отрицательный заряд;
  • красный, отвечает за положительный заряд;
  • желтый, является датчиком оборотов.

В данном случае желтый провод игнорируется и никуда не подключается. Если после подключения кулера к источнику постоянного напряжения, кулер начал работать, то полярность определена правильно, плюс подключен к красному проводу, а минус – к черному. А если кулер не срабатывает – это будет означать что полярность неправильная.

Также, если мультиметр отсутствует, положительный и отрицательный контакты аккумулятора можно определить при помощи индикаторной отвертки.

Для этого необходимо дотронутся индикатором до одного из выводов аккумулятора, прижать палец к обратной стороне индикатора (к контакту на рукоятке), а ко второму выводу аккумулятора дотронуться рукой.

Если индикатор начал светиться, то заряд проверенного вывода, с которым он контактирует, имеет положительное значение, а если индикатор не засветился – вывод отрицательный. Но у этого способа определения полярности есть один недостаток.

Если аккумулятор разрядился или поврежден (пробит), индикатор будет загораться при контакте с обеими клеммами, из-за чего определить значения полюсов аккумуляторной батареи будет невозможно.

В механике есть такие устройства, которые пропускают воздух или жидкость только в одном направлении. Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда вы убирали шланг насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная штучка – . Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение.

Электроника – эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток. Если провести аналогию: бачок с водой – это заряженный конденсатор , шланг – это провод, катушка индуктивности – это колесо с лопастями


которое невозможно сразу разогнать, а потом невозможно резко остановить.

Тогда что такое ниппель в электронике? А ниппелем мы будем называть радиоэлемент – . И в этой статье мы познакомимся с ним поближе.

Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель;-).

Некоторые диоды выглядят почти также как и резисторы:



А некоторые выглядят чуточку по другому:

Есть также и SMD исполнение диодов:


Диод имеет два вывода , как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия – анод и катод (а не плюс и минус, как говорят некоторые неграмотные электронщики). Но как же нам определить, что есть что? Есть два способа:

1) на некоторых диодах катод обозначают полоской , отличающейся от цвета корпуса



2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Если подать на анод плюс, а на катод минус, то у нас диод “откроется” и электрический ток спокойно по нему потечет. А если же на анод подать минус, а на катод – плюс, то ток через диод не потечет. Своеобразный ниппель;-). На схемах простой диод обозначают вот таким образом:

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки;-).


Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”


Для объяснения параметров диода, нам также потребуется его


1) Обратное максимальное напряжение U обр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток I обр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток I пр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.

3) Максимальная частота F d , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение . Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца . Главный параметр стабилитрона – это напряжение стабилизации (Uст) . Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (I min , I max) . Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:


На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (U обр) может достигать 10 Вольт. Максимальный ток (I max ) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.



Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.



Очень большим спросом пользуются светодиодные ленты, состоящие из множества светодиодов. Смотрятся очень красиво.


На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления


Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах


Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое , которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – I ос,ср. – среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор – (U у ), которое подается на управляющий электрод и при котором тиристор полностью открывается.


а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров – динисторы и симисторы . У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки . Диодные мосты – одна из разновидностей диодных сборок.


На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Светодиоды приобретают сегодня все большую популярность. Подключение разных видов этих световых элементов имеет свои особенности, но первое, с чего нужно начинать в любом случае – это необходимость правильно определить, где «+» и «–» в устройстве.

Как можно визуально определить плюс и минус

Существует несколько типов диодов, которыми пользуются электрики, как любители, так и профессионалы, но методы визуального определения полярных полюсов примерно одинаковая:

Определение при помощи батарейки

Чтобы проверить полярность на диодной лампочке, можно воспользоваться источником, который выдает постоянное напряжение. Данным источником может быть автомобильный аккумулятор или блок питания (батарея).

Диод необходимо подсоединить к блоку питания и постепенно повышать напряжение. Если лампа правильно подсоединена, она светится. Если этого света нет, тогда нужно сменить полярность и подключить другими концами. Помните, что свыше 3-4 В не нужно повышать напряжение, потому что элемент может сгореть.

Также можно проверить соответствие анода-катода при помощи батарейки, аккумулятора от автомобиля или мобильного телефона с напряжением от 4,5 до 12 В. Также можно смастерить такую конструкцию – соединить последовательно вместе батарейки мощностью 1,5 В.

Нельзя напрямую к батарее подключить диод, потому что он сгорит. Для подсоединения необходимо воспользоваться резистором, ограничивающим электроток. Сопротивление данного прибора для маломощных диодных лампочек – от 680 Ом до 1-2 кОм. Для мощных светодиодных светильников необходимо использовать резистор на десятки кОм.

Проверка при помощи мультиметра

При помощи данного прибора можно определить не только полярность, а и работоспособность LED элемента. Измерения проводят в режиме – омметр. В современных моделях мультиметров есть встроенная функция – «тестирование диода».

Для определения плюса-минуса щупы прибора подсоединить к тестируемому элементу и наблюдать показания измерительного аппарата. Если на экране показано «бесконечное» сопротивление, тогда щупы нужно поменять между собой местами.

Если аппарат выводит на экран конечный результат тестирования сопротивления, это свидетельствует о том, что полярность определена правильно и по щупам мультиметра можно определить у светодиодного элемента место анода-катода.

Нужно учитывать такой нюанс – у некоторых моделях стрелочных аппаратов не совпадает полярность щупов при определении напряжения и при работе в режиме омметра. Такое несоответствие наблюдается в тестерах старых моделей (ТЛ-4М).

Поэтому прежде чем тестировать светодиодный элемент, нужно проверить соответствие катод-анод на щупах при работе в разных режимах.

Тестирование мультиметра можно провести с помощью вольтметра.

Принцип аппаратной проверки не отличается от тестирования при помощи батарейки – если элемент исправен и правильно подсоединен, он начинает светиться. Но в то же время, не все диоды светятся, потому что у открытого светодиода происходит падение напряжения до 1,5-3,2 В, и это намного больше, чем у полупроводникового устройства.

Показатель снижения напряжения напрямую зависит от мощности светодиода и его цвета. Измерительные аппараты с низковольтным напряжением не имеют на щупах достаточной мощности тока для зажигания света в LED лампочке. Низковольтными тестерами невозможно определить работоспособность LED-элемента.

Если в тестере есть отсек для проверки транзисторов PNP и NPN, то с его помощью можно определить и полярность LED-лампы. Если в отсек PNP катод вставить в отверстие «С», а противоположный конец в «Е» тогда LED-устройство начнет светиться. В отсеке NPN ножки необходимо поменять местами – и тогда LED-элемент тоже даст свет.

Это самый быстрый метод инструментального тестирования.

Каждый метод тестирования полярности имеет недостатки и преимущества. Выбирать его приходится исходя из условий, в которых нужно пройти тестирование, и наличия подручных инструментов.

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит . Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.


Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

Как работает диод? Применение диодов

Как работает полупроводниковый диод

Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Здесь речь пойдет лишь о некоторых приборах, с которыми тебе в первую очередь придется иметь дело. Схематично диод можно представить, как две пластинки полупроводника, одна из которых обладает электропроводностью типа р, а другая типа n. На рис. 1, а дырки, преобладающие в пластинке типа р, условно изображены кружками, а электроны, преобладающие в пластинке типа n — черными шариками таких же размеров. Эти две области — два электрода диода: анод и катод. Анодом, т. е. положительным электродом, является область типа р, а катодом, т. е. отрицательным электродом, — область типа n. На внешние поверхности пластин нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода.

Такой полупроводниковый прибор может находиться в одном из двух состояний: открытом, когда он хорошо проводит ток, и закрытом, когда он плохо проводит ток. Если к его электродам подключить источник постоянного тока, например, гальванический элемент, но так, чтобы его положительный полюс был соединен с анодом диода, т. е. с областью типа р, а отрицательный — с катодом, т. е. с областью типа n (рис. 1, б), то диод окажется в открытом состоянии и в образовавшейся цепи пойдет ток, значение которого зависит от приложенного к нему напряжения и свойств диода/ При такой полярности подключения батареи электроны в области типа n перемещаются от минуса к плюсу, т. е. в сторону области типа р, а дырки в области типа р движутся навстречу электронам — от плюса к минусу. Встречаясь на границе областей, называемой электронно-дырочным переходом или, короче, р-n переходом, электроны как бы «впрыгивают» в дырки, в результате и те, и другие при встрече прекращают свое существование.

Рис. 1. Схематическое устройство и работа полупроводникового диода

Металлический контакт, соединенный с отрицательным полюсом элемента, может отдать области типа n практически неограниченное количество электронов, пополняя убыль электронов в этой области, а контакт, соединенный с положительным полюсом элемента, может принять из области типа р такое же количество электронов, что равнозначно введению в него соответствующего количества дырок. В этом случае сопротивление р-n перехода мало, вследствие чего через диод идет ток, называемый прямым током. Чем больше площадь р-n перехода и напряжение источника питания, тем больше этот прямой ток.

Если полюсы элемента поменять местами, как это показано на рис. 1, в, диод окажется в закрытом состоянии. В этом случае электрические заряды в диоде поведут себя иначе. Теперь, удаляясь от р-n перехода, электроны в области типа n будут перемещаться к положительному, а дырки в области типа р к отрицательному контактам диода. В результате граница областей с различными типами электропроводности как бы расширится, образуя зону, обедненную электронами и дырками (на рис. 1, в она заштрихована) и, следовательно, оказывающую току очень большое сопротивление. Однако в этой зоне небольшой обмен носителями тока между областями диода все же будет происходить. Поэтому через диод пойдет ток, но во много раз меньший, чем прямой. Этот ток называют обратным током диода. На графиках, характеризующих работу диода, прямой ток обозначают Iпр, а обратный Iобр.

А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр и закрывания при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления обратный ток Iобр. Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в ток постоянный.

Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпр) или пропускным, а напряжение обрат ной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр) или непропускным. При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром.

001

Внутреннее сопротивление открытого диода величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр = 100 мА (0,1 А) и при этом на нем падает напряжение 1 В, то (по закону Ома) прямое сопротивление диода будет: R = U/I = 1/0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико.

Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода. Такую характеристику ты видишь на рис. 2. Здесь по вертикальной оси вверх отложены значения прямого тока Iпр, а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпр, влево обратного напряжения Uобр.

На такой вольт-амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь, соответствующую обратному току. Из нее видно, что ток Iпр диода в сотни раз больше тока Iобр

Рис. 2. Вольт-амперная характеристика полупроводникового диода

Рис. 2. Вольт-амперная характеристика полупроводникового диода

Так, например, уже при прямом напряжении Uпр = 0,5 В ток Iпр равен 50 мА (точка а на характеристике), при Uпр = 1 В он возрастает до 150 мА (точка б на характеристике), а при обратном напряжении Uобр = 100 В обратный ток Iобр не превышает 0,5 мА (500 мкА). Подсчитай, во сколько раз при одном и том же прямом и обратном напряжении прямой ток больше обратного.

Прямая ветвь идет круто вверх, как бы прижимаясь к вертикальной оси. Она характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная же ветвь, как видишь, идет почти параллельно горизонтальной оси, характеризуя медленный рост обратного тока. Наличие заметного обратного тока — недостаток диодов.

Примерно такие вольт-амперные характеристики имеют все германиевые диоды. Вольт-амперные характеристики кремниевых диодов чуть сдвинуты вправо. Объясняется это тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1–0,2 В, а кремниевый при 0,5–0,6 В.

Прибор, на примере которого я рассказал тебе о свойствах диода, состоял из двух пластин полупроводников разной электропроводности, соединенных между собой плоскостями. Подобные диоды называют плоскостными. В действительности же плоскостной диод представляет собой одну пластину полупроводника, в объеме которой созданы две области разной электропроводности. Технология изготовления таких диодов заключается в следующем. На поверхности квадратной пластины площадью 2–4 мм2 и толщиной в несколько долей миллиметра, вырезанной из кристалла полупроводника с электронной электропроводностью, расплавляют маленький кусочек индия. Индий крепко сплавляется с пластинкой. При этом атомы индия проникают (диффундируют) в толщу пластинки, образуя в ней область с преобладанием дырочной электропроводности (рис. 3, а). Получается полупроводниковый прибор с двумя областями различного типа электропроводности, а между ними р-n переход. Контактами электродов диода служат капелька индия и металлический диск (или стержень) с выводными проводниками.

Так устроены наиболее распространенные плоскостные германиевые и кремниевые диоды. Внешний вид некоторых из них показан на рис. 3, б.

Рис. 3. Схематическое устройство (а) и внешний вид некоторых плоскостных диодов (б)

Приборы заключены в цельнометаллические корпуса со стеклянными изоляторами, что позволяет использовать их для работы в условиях повышенной влажности. Диоды, рассчитанные на значительные прямые токи, имеют винты с гайками для крепления их на монтажных панелях или шасси радиотехнических устройств.

Плоскостные диоды маркируются буквами и цифрами, например: Д226А, Д242. Буква Д в маркировке прибора означает «диод», цифры, следующие за нею, — заводской порядковый номер конструкции. Буквы, стоящие в конце обозначения диодов, указывают на разновидности групп приборов. Плоскостные диоды предназначены в основном для работы в выпрямителях переменного тока блоков питания радиоаппаратуры, поэтому их называют еще выпрямительными диодами.

Схему простейшего выпрямителя переменного тока ты видишь на рис. 4, а. На вход выпрямителя подается переменное напряжение электроосветительной сети. К выходу выпрямителя подключен резистор Rн, символизирующий нагрузку, питающуюся от выпрямителя. Функцию выпрямленного элемента выполняет диод V. Сущность работы такого выпрямителя иллюстрируют графики, помещенные на том же рисунке

Рис. 4. Схемы однополупериодного выпрямителя



При положительных полупериодах напряжения на аноде диод открывается. В эти моменты времени через диод, а значит, и через нагрузку, подключенную к выпрямителю, течет прямой ток диода Iпр. При отрицательных полупериодах напряжения на аноде диод закрывается и во всей цепи, в которую он включен, течет незначительный обратный ток диода Iобр. Диод как бы отсекает большую часть отрицательных полуволн переменного тока (на рис. 4, а показано штриховыми линиями). И вот результат: через нагрузку Rн, подключенную к сети через диод V, течет уже не переменный, а пульсирующий ток — ток одного направления, но изменяющийся по значению с частотой 50 Гц. Это и есть выпрямление переменного тока. Таким образом, диод является прибором, обладающим резко выраженной односторонней проводимостью электрического тока. И если пренебречь малым обратным током (что и делают на практике), который у исправных диодов не превышает малые доли миллиампера, можно считать, что диод является односторонним проводником тока.

Можно ли таким током питать нагрузку? Можно, он ведь выпрямленный. Но не каждую. Лампу накаливания, например, можно, если, конечно, выходное напряжение не будет превышать то напряжение, на которое лампа рассчитана. Ее нить будет накаливаться не постоянно, а импульсами, следующими с частотой 50 Гц. Из-за тепловой инертности нить не будет успевать остывать в промежутки между импульсами, поэтому никаких мерцаний света мы не заметим.

А вот приемник питать таким током нельзя. Потому что в цепях его усилителей ток тоже будет пульсировать с такой же частотой. В результате в телефонах или головке громкоговорителя на выходе приемника будет прослушиваться гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Этот недостаток можно частично устранить, если на выходе выпрямителя параллельно нагрузке подключить фильтрующий электролитический конденсатор большой емкости, как это показано на рис. 4, б. Заряжаясь от импульсов тока, конденсатор Сф в момент спадания тока или его исчезновения (между импульсами) разряжается через нагрузку Rн. Если конденсатор достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться и в нагрузке будет непрерывно поддерживаться ток. Ток, поддерживаемый за счет зарядки конденсатора, показан на рис. 4, б сплошной волнистой линией. Но и таким, несколько приглаженным током тоже нельзя питать приемник или усилитель: он будет «фонить», так как пульсации пока еще очень ощутимы.

В выпрямителе, с работой которого ты сейчас познакомился, полезно используется энергия только половины волн переменного тока. Такое выпрямление переменного тока называют однополупериодными, а выпрямители — однополупериодными выпрямителями. Однако выпрямителям, построенным по таким схемам, присущи два существенных недостатка. Первый из них заключается в том, что напряжение выпрямленного тока равно примерно напряжению сети, в то время как для питания транзисторных конструкций необходимо более низкое напряжение, а для ламповых часто более высокое напряжение. Второй недостаток — недопустимость присоединения заземления к приемнику, питаемому от такого выпрямителя. Если приемник заземлить, ток из электросети пойдет через приемник в землю — могут перегореть предохранители. Кроме того, приемник или усилитель, питаемые от такого выпрямителя и, таким образом, имеющие прямой контакт с электросетью, опасны — можно получить электрический удар.

Оба эти недостатка устранены в выпрямителе с трансформатором (рис. 5). Здесь выпрямляется не напряжение электросети, а напряжение вторичной (II) обмотки сетевого трансформатора Т. Поскольку эта обмотка изолирована от первичной сетевой обмотки I, радиоконструкция не имеет контакта с сетью и к ней можно подключать заземление.

Рис. 5 Двухполупериодный выпрямитель с сетевым трансформатором

В выпрямителе на рис. 5 четыре диода, включенные по так называемой мостовой схеме. Диоды являются плечами выпрямительного моста. Нагрузка Rн включена в диагональ 1–2 моста. В таком выпрямителе в течение каждого полупериода работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов. Следи внимательно! Когда на верхнем (по схеме) выводе вторичной обмотки положительный полупериод напряжения, ток идет через диод V2, нагрузку Rн, диод V3 к нижнему выводу обмотки II (график а). Диоды V1 и V4 в это время закрыты. В течение другого полупериода переменного напряжения, когда плюс на нижнем выводе обмотки II, ток идет через диод V4, нагрузку Rн, диод V1 к верхнему выводу обмотки (график б). В это время диоды V2 и V3 закрыты и, естественно, ток через себя не пропускают. И вот результаты: меняются знаки напряжения на выводах вторичной обмотки трансформатора, а через нагрузку выпрямителя идет ток одного направления (график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

Эффективность работы двухполупериодного выпрямителя по сравнению с однополупериодным налицо: частота пульсаций выпрямленного тока удвоилась, «провалы» между импульсами уменьшились. Среднее значение напряжения постоянного тока на выходе такого выпрямителя равно примерно переменному напряжению, действующему во всей вторичной обмотке трансформатора. А если выпрямитель дополнить фильтром, сглаживающим пульсации выпрямленного тока, выходное напряжение увеличится в 1,4 раза, т. е. примерно на 40 %. Именно такой выпрямитель я позже буду рекомендовать тебе для питания транзисторных конструкций.

Теперь о точечном диоде

Внешний вид одного из таких приборов и его устройство (в значительно увеличенном виде) показаны на рис. 6.

Рис. 6. Схематическое устройство и внешний вид точечного диода серии Д9

Это диод серии Д9. Буква «Д» в его маркировке означает диод, а цифра 9 — порядковый заводской номер конструкции. Такой или ему подобный диод, например Д2, тебе уже знаком — я рекомендовал использовать его в твоем первом приемнике в качестве детектора.

Выпрямительным элементом диода служат тонкая и очень маленькая (площадью около 1 мм2) пластина полупроводника германия или кремния n типа и вольфрамовая проволочка, упирающаяся острым концом в пластину. Они припаяны к отрезкам посеребренной проволоки длиной примерно по 50 мм, являющимися выводами диода. Вся конструкция находится внутри стеклянной трубочки диаметром около 3 и длиной меньше 10 мм, запаянной с концов.

После сборки диод формуют — пропускают через контакт между пластиной полупроводника и острием вольфрамовой проволочки ток определенного значения. При этом под острием проволочки в кристалле полупроводника образуется небольшая область с дырочной электропроводностью. Получается электронно-дырочный переход, обладающий односторонней проводимостью тока. Пластина полупроводника является катодом, а вольфрамовая проволочка — анодом точечного диода.

Вывод анода диодов серии Д9 обозначают цветными метками на их корпусах. Электроды точечного диода серии Д2 обозначают символом диода на одном из его ленточных выводов. У точечного диода площадь соприкосновения острия проволочки с поверхностью пластины полупроводника чрезвычайно мала — не более 50 мкм2. Поэтому токи, которые точечные диоды могут выпрямлять в течение продолжительного времени, малы. Точечные диоды радиолюбители используют в основном для детектирования модулированных колебаний высокой частоты, поэтому их часто называют высокочастотными диодами.

Как для плоскостных, так и для точечных диодов существуют максимально допустимые значения прямого и обратного токов, зависящие от прямого и обратного напряжений и определяющие их выпрямительные свойства и электрическую прочность. Это их основные параметры. Плоскостной диод Д226В, например, может продолжительное время выпрямлять ток до 300 мА. Но если его включить в цепь, потребляющую ток более 300 мА, он будет нагреваться, что неизбежно приведет к тепловому пробою р-n перехода и выходу диода из строя. Диод будет пробит и в том случае, если он окажется в цепи, в которой на него будет подаваться обратное напряжение более чем 400 В.

Допустимый выпрямленный ток для точечного диода Д9А 65 мА, а допустимое обратное напряжение 10 В. Основные параметры полупроводниковых диодов указывают в их паспортах и справочных таблицах. Превышение предельных значений приводит к выходу приборов из строя.

А теперь, чтобы лучше закрепить в памяти твое представление о свойствах диодов, предлагаю провести такой опыт. В электрическую цепь, составленную из батареи 3336Л и лампочки накаливания, рассчитанной на напряжение 3,5 В и ток накала 0,28 А, включи любой плоскостной диод из серии Д226 или Д7, но так, чтобы анод диода был соединен непосредственно или через лампочку с положительным выводом батареи, а катод с отрицательным выводом (рис. 7, а). Лампочка должна гореть почти так же, как если бы диода не было в цени. Измени порядок включения электродов диода в цепь на обратный (рис. 7, б). Теперь лампочка гореть не должна. А если горит, значит, диод оказался с пробитым р-n переходом. Такой диод можно разломать, чтобы посмотреть, как он устроен, — для работы как выпрямитель он все равно непригоден. Но, надеюсь, диод был хорошим и опыт удался.

Рис. 7. Опыты с плоскостным диодом

Почему при первом включении диода в цепь лампочка горела, а при втором не горела? В первом случае диод был открыт, так как на него подавалось прямое напряжение Uпр, сопротивление диода было мало и через него протекал прямой ток Iпр, значение которого определялось нагрузкой цепи — лампочкой. Во втором случае диод был закрыт, так как к нему прикладывалось обратное напряжение Uобр, равное напряжению батареи. Сопротивление диода было очень большое, и в цепи тек лишь незначительный обратный ток Iобр, который не мог накалить нить лампочки.

В этом опыте лампочка выполняла двоякую функцию. Она, во-первых, была индикатором наличия тока в цепи, а во-вторых, ограничивала ток в цепи до 0,28 А и таким образом защищала диод от перегрузки.

См. также:


Цветовая маркировка диодов.

    Диод     Цветовая маркировка
2Д102А
  102Б
КД102А
  102Б
полярность обозначается желтой точкой со стороны анода
полярность обозначается оранжевой точкой со стороны анода
полярность обозначается зеленой точкой со стороны анода
полярность обозначается синей точкой со стороны анода
2Д103А
КД103А
  103Б
полярность обозначается белой точкой со стороны анода
полярность обозначается синей точкой со стороны анода
полярность обозначается желтой точкой со стороны анода
2Д104А
КД104А
полярность обозначается белой точкой со стороны анода
полярность обозначается красной точкой со стороны анода
КД105Б
  105В
  105Г
полярность обозначается желтой точкой со стороны анода
полярность обозначается зеленой точкой со стороны анода
полярность обозначается красной точкой со стороны анода
КД106А обозначается белой точкой
ГД107А
  107Б
полярность обозначается черной точкой со стороны анода
полярность обозначается серой точкой со стороны анода
КД109А
  109Б
  109В
обозначается белой точкой
обозначается желтой точкой
обозначается зеленой точкой
КДС111А
   111Б
   111В
маркируется красной точкой у первого вывода
маркируется зеленой точкой у первого вывода
маркируется желтой точкой у первого вывода
КД116Б1 полярность обозначается красной точкой со стороны анода
2Д118А1 полярность обозначается цветной точкой со стороны анода
КД208А полярность обозначается зеленой полосой со стороны анода
КД209А
  209Б
  209В
полярность обозначается красной полосой со стороны анода
полярность обозначается зеленой полосой со стороны анода тип обозначается зеленой точкой
полярность обозначается красной полосой со стороны анода тип обозначается красной точкой
2Д215А полярность обозначается красной точкой со стороны анода
2Д216А
  216Б
полярность обозначается красной точкой со стороны анода
полярность обозначается зеленой точкой со стороны анода
2Д217А
  217Б
полярность обозначается белой точкой со стороны анода
полярность обозначается красной точкой со стороны анода
2Д218А маркируются цветной точкой со стороны анода
КД221А
  221Б
  221В
  221Г
маркируются белой полосой со стороны анода
маркируются белой полосой со стороны анода и белой точкой
маркируются белой полосой со стороны анода и зеленой точкой
маркируются белой полосой со стороны анода и красной точкой
КД226А
  226Б
  226В
  226Г
  226Д
маркируются оранжевым кольцом со стороны катода
маркируются красным кольцом со стороны катода
маркируются зеленым кольцом со стороны катода
маркируются желтым кольцом со стороны катода
маркируются белым кольцом со стороны катода
2Д228А маркируются цветной точкой со стороны анода
2Д235А
  235Б
полярность обозначается белой полосой со стороны анода
полярность обозначается красной полосой со стороны анода
2Д236А
  236Б
полярность обозначается цветной точкой со стороны анода
полярность обозначается двумя цветными точками со стороны анода
2Д237А
  237Б
маркируются одной цветной точкой
маркируются двумя цветными точками
КД243А
  243Б
  243В
  243Г
  243Д
  243Е
  243Ж
полярность обозначается фиолетовой полосой со стороны катода
полярность обозначается оранжевой полосой со стороны катода
полярность обозначается красной полосой со стороны катода
полярность обозначается зеленой полосой со стороны катода
полярность обозначается желтой полосой со стороны катода
полярность обозначается белой полосой со стороны катода
полярность обозначается голубой полосой со стороны катода
КД247А
  247Б
  247В
  247Г
  247Д
  247Е
маркируется двумя оранжевыми кольцами со стороны катода
маркируется двумя красными кольцами со стороны катода
маркируется двумя зелеными кольцами со стороны катода
маркируется двумя желтыми кольцами со стороны катода
маркируется двумя белыми кольцами со стороны катода
маркируется двумя фиолетовыми кольцами со стороны катода
КД409А маркируется желтой точкой на корпусе
КД410А
  410Б
полярность обозначается красной точкой со стороны анода
полярность обозначается синей точкой со стороны катода?
2Д413А
  413Б
КД413А
  413Б
полярность обозначается зеленой точкой со стороны анода
полярность обозначается зеленой и красной точкой со стороны анода
полярность обозначается белой точкой со стороны анода
полярность обозначается белой и красной точкой со стороны анода
КД417А полярность обозначается белой точкой со стороны анода
2Д422А тип диода обозначается продольной чертой красного цвета и тире у анода
КД424А
  424В
  424Г
маркируется двумя голубыми кольцами со стороны катода
маркируется двумя зелеными кольцами со стороны катода
маркируется двумя красными кольцами со стороны катода
КД427А
  427Б
  427В
  427Г
  427Д
маркируется красной точкой со стороны положительного вывода
маркируется оранжевой точкой со стороны положительного вывода
маркируется зеленой точкой со стороны положительного вывода
маркируется желтой точкой со стороны положительного вывода
маркируется белой точкой со стороны положительного вывода
КД510А
2Д510А
маркируется одной широкой и двумя узкими зелеными полосами со стороны катода
маркируется одной широкой и одной узкой зелеными полосами со стороны катода
ГД511А
  511Б
  511В
маркируется двумя голубыми точками со стороны анода
маркируется голубой и желтой точками со стороны анода
маркируется голубой и оранжевой точками со стороны анода
КД512А полярность обозначается красной точкой со стороны анода
КД514А полярность обозначается желтой точкой со стороны анода
КД519А
  519Б
маркируется белой точкой со стороны анода
маркируется красной точкой со стороны анода
КД520А маркируется желтой точкой со стороны анода
КД521А
  521Б
  521В
  521Г
  521Д
маркируется одной широкой и двумя узкими синими полосами со стороны анода?
маркируется одной широкой и двумя узкими серыми полосами со стороны анода?
маркируется одной широкой и двумя узкими желтыми полосами со стороны анода?
маркируется одной широкой и двумя узкими белыми полосами со стороны анода
маркируется одной широкой и двумя узкими зелеными полосами со стороны анода
КД522А
  522Б
маркируется одной широкой и одной узкой черными полосами со стороны анода
маркируется одной широкой и двумя узкими черными полосами со стороны анода
2Д706АС9 маркируются буквами ЛС
2Д707АС9 маркируются буквами МС
2Д708А
  708Б
маркируется белым кольцом со стороны катода
маркируется синим кольцом со стороны катода
2Д803АС9 маркируются буквами НС
2Д806А
  806Б
маркируется двумя красными точками
маркируется красной и белой точками
КД808А маркируется белым кольцом со стороны катода
2Д809А
  809Б
маркируется голубым кольцом
маркируется красным кольцом
2Д906А
  906Б
  906В
маркируется белой точкой и рельефным знаком у 4-го вывода
маркируется красной точкой и рельефным знаком у 4-го вывода
маркируется двумя красными точками и рельефным знаком у 4-го вывода
2Д921А
  921Б
маркируется белой точкой
маркируется зеленой точкой
2Д922А
  922Б
  922В
КД922А
  922Б
  922В
маркируется белой точкой со стороны анода
маркируется зеленой точкой со стороны анода
маркируется желтой точкой со стороны анода
маркируется красной точкой со стороны анода
маркируется синей точкой со стороны анода
маркируется оранжевой точкой со стороны анода
КД923А маркируется зеленым кольцом со стороны анода
2Д924А маркируется двумя белыми точками
2Д925А
  925Б
маркируется двумя черными точками
маркируется белой и черной точками
2Д926А маркируется красной полосой со стороны катода
2Д927А маркируется синим кольцом со стороны катода
2Ц101А плюс диода отмечен точкой на торце
КЦ103А плюс диода отмечен точкой на торце
1Ц104АИ маркируется цветной точкой со стороны анода
КЦ106А плюс диода отмечен точкой на торце
КЦ109А плюс диода отмечен точкой на торце
КЦ111А плюс диода отмечен точкой на торце
2Ц112А плюс диода отмечен точкой на торце
2Ц113А1 плюс диода отмечен точкой на торце
КЦ114А плюс диода отмечен точкой на торце
2Ц116А плюс диода отмечен точкой на торце
КЦ117А
  117Б
маркируется белой полосой со стороны анода
маркируется черной полосой со стороны анода
КЦ123А1
  123Б1
  123В1
  123Г1
  123Д1
  123Е1
  123Ж1
  123И1
  123К1
  123Л1
  123С1
  123Т1
  123У1
маркируется со стороны анодного вывода одной полосой
маркируется со стороны анодного вывода двумя полосами
маркируется со стороны анодного вывода полосой и красной точкой
маркируется со стороны анодного вывода полосой и двумя красными точками
маркируется со стороны анодного вывода полосой и белой точкой
маркируется со стороны анодного вывода полосой и двумя белыми точками
маркируется со стороны анодного вывода двумя полосами и красной точкой
маркируется со стороны анодного вывода двумя полосами и белой точкой
маркируется со стороны анодного вывода полосой и синей точкой
маркируется со стороны анодного вывода двумя полосами и синей точкой
маркируется со стороны анодного вывода полосой и желтой точкой
маркируется со стороны анодного вывода двумя полосами и желтой точкой
маркируется со стороны анодного вывода полосой и двумя желтыми точками

Как оно работает!?

Чтобы научиться создавать устройства, надо знать как они работают, из чего состоят. По любым радиоэлектронным устройствам бегает ток. От того, как и куда его направить, зависит работа устройства. Ток по проводам можно сравнить с течением жидкостей по трубам. Вода в трубах течет по разному, где-то быстро, где-то медленно. Где-то очень большое давление, а где-то совсем маленькое. По трубам не всегда вода течёт, бывает и нефть, а бывают и канализационные и мусоро-проводы для сваливания туда всяких отходов.

У электричества тоже есть свои давление и скорость течения. Чем больше электрический ток, тем толще должен быть провод. Если пустить гречневую кашу через гелевый стержень, она через него не потечёт, стержень заткнётся, и если будет достаточное давление, лопнет в том месте где заткнуло. А вот через трубу диаметром сантиметров пять, гречневая каша потечёт, и ничего не лопнет.
Ток обычно обозначается буквой I и меряется Амперами

Чем больше напряжение, тем толще должна быть изоляция провода. Напряжение — как давление, чем выше, тем толще изоляция, или толще должны быть трубы чтобы выдержать давление. Тонкие трубы ведь большого давления не выдерживают, лопаются, точно так же и провода при большом напряжении пробивает.
Напряжение обычно обозначается буквами U или V и меряется Вольтами.

Электричество течёт в электронных схемах от плюса к минусу.

Начну с описания различных деталей устройств и буду постепенно пополнять их разнообразие.


Диод
Диод обычно предназначен пускать ток в одну сторону, и не пускать в другую.
Как клапан, пропускает воду в одну сторону, а если она потекла в другую, то сразу закрывается. Диод работает точно так же. Диод — электронный клапан.
У каждой лапки диода есть название — анод и катод.
Катод — отрицательный электрод, поэтому в схемах обычно смотрит на минус.
Анод — положительный электрод, и на него чаще всего подают плюс.
Чтобы лучше запомнить, кто из них отрицательный, а кто положительный, — в слове «катод» столько же букв, сколько в слове «минус». А в слове «анод» столько же букв, сколько в слове «плюс». Диод пускает от анода к катоду, и не пускает обратно, от катода к аноду.
На схемах диод обозначается вот так:


Диод

Где у диода катод, а где анод — легко запомнить, одна сторона обозначения походит на буковку А (анод), правая сторона на букву К (катод).

Диоды на вид бывают всякие разные:

Важные характеристики диодов — максимальное напряжение и максимальные токи — постоянный и при коротком импульсе.
Если напряжение в схеме не более 15 Вольт, и ожидаемый постоянный ток через диод предполагается не более 1 Ампер, то и диод должен быть не ниже чем на 15 В, и не ниже чем на ток 1 А.

Если мы подключим диод катодом к минусу, то ток потечёт, и лампочка засветится.
Если мы перевернём диод анодом к минусу, то диод не пропустит ток с плюса на минус, и лампочка не загорится.

Фотодиоды и светодиоды на принципиальных схемах обозначаются вот как:

Иногда с круглишками, иногда без них.

У них точно так же есть катод и анод, как и у простых диодов.
Поэтому крайне важно для работоспособности схемы не путать назначение лапок, полярность.

Переменный ток

 

В предыдущем примере с диодом и лампочкой был постоянный ток, тоесть тёк в одном направлении.
При переменном токе полярность меняется с какой-то частотой.
В розетках нашей страны плюс с минусом меняются местами 50 раз в секунду, в электросетях Японии и Америки 60 раз, в Европе 100 раз в секунду.
Частота, — будь то смена полярности, или количество зажиганий светодиодика в секунду, — меряется в Герцах.

 

Как узнать переменный или постоянный ток в цепи ?
Подключили диод, лампочка светится.
Перевернули диод, лампочка всё равно светится.
Если диод заведомо целый, значит ток в цепи переменный.

Чтобы из переменного тока сделать постоянный, нужно 4 диода, для соединения в диодный мост.
Диодный мост на схемах рисуют из четырёх диодов, или просто ромбом с диодом внутри, для упрощения.

Белые провода — переменное напряжение, на выходе постоянное: черный — минус, красный плюс.

Если постоянный ток изобразить на графике, он будет выглядеть вот так.

С течением времени на плюсе всегда остаётся плюс, на минусе минус.

У переменного тока с течением времени плюс с минусом на проводах меняются местами, на графике он будет выглядеть вот так:

Каждая такая пупырышка называется полупериод.
Если выше полоски — положительный, например который нам нужен.
Если ниже полоски — отрицательный, который нам не нужен, и нам надо его перевернуть.
Участок времени из двух полупериодов, отрицательного и положительного, называют полным периодом.
Пометим положительные полупериоды зеленым цветом, отрицательные красным.

 Если собрать диодный мост из красных и зеленых светодиодов можно увидеть как он работает:

На лампочку идёт постоянный пульсирующий ток, но она не светится потому что ток через светодиоды недостаточно большой.
Светодиодный мост перевернул отрицательные (красные) полупериоды в нужную нам сторону

На предыдущем примере частота переменного тока была около 1 герца, тоесть примерно одна смена полярности в секунду.
С более высокими частотами работа диодного моста уже не так явно видна (здесь герц 7-10):

В цепях переменного тока частотами от 30 или 60 герц, глаз не может уследить за миганием светодиодов, они будут мигать очень быстро и будет казаться что они просто все светятся.

Конденсатор

Конденсатор — электронная бочка.
Конденсатор накапливает в себе энергию, и этим самым в электрических схемах работает как бак с водой.
Например если включать и выключать воду, то она то есть, то нету, а нас это не устраивает.
Нам нужно чтоб вода всегда была.
Если под кран, из которого вода то идёт, то не идёт, поставить бочку и проковырять снизу дырку, то из дырки вода будет течь всё время. Ту же самую роль выполняют и конденсаторы в схемах.

Конденсаторы бывают на переменный и на постоянный ток.
У конденсаторов на постоянный ток важно не путать полярность — назначение выводов, какой из них подключить на плюс, а какой на минус.
Конденсатор обозначается на схеме вот так:

Слева на переменный ток, справа на постоянный.

Конденсаторы бывают всякие разные:

 

 Предыдущая схема у нас была с пульсирующим постоянным током:

Если параллельно лампочке поставить конденсатор, то на лампочку пойдет постоянный ток без пульсаций.

Ёмкость конденсаторов измеряется в пикофарадах (пФ или pF), нанофарадах (нФ, nF), микрофарадах (мкФ, uF), и фарадах (Ф, F).
Например 7 нанофарад = 0, 000 000 007 фарад.
14 пикофарад = 0, 000 000 000 014 фарад.
10 микрофарад = 0, 000 010 Фарад.

 

Ёмкость почти всегда написана на конденсаторе русскими или английскими буквами, или бывает обозначена цветовым или цифровым шифром.

 

Цифровая маркировка выглядит как три цифры, первые две начальные цифры, последняя -количество нулей после них, получается число в пикофарадах.
Например на конденсаторе надпись 104, это 10 и 4 нуля = 100000 пикофарад = 0,1 микрофарад. Или 873 = 87+000 = 87000 пФ = 87 Нанофарад. 151 = 15 и 0 = 150 пФ. Если две цифры, например 82, то значит нулей нет, и ёмкость конденсатора 82 Пф.

 

Цветовая маркировка сначала кажется сложнее, но если часто возиться с полосатыми детальками, то можно и её запомнить наизусть.
На деталь наносят 3, 4 или 5 цветных колец.
Первые два кольца — тоже цифры, третье — множитель, х1, х10, х100, х1000, х10000, и т.п., четвёртая — допуск, серебряного цвета или золотого. Допуск — отклонение в процентах, от заявленной ёмкости, золотое кольцо — меньше или больше на 5%, серебряное — на 10%.
Золотое или серебряное кольцо всегда последнее, это чтобы не перепутать откуда считать кольца.

Не менее важный параметр конденсатора — его допустимое напряжение.
Конденсаторы нельзя ставить в цепь с более высоким напряжением, нежели чем указано на конденсаторе. Например на конденсаторе написано 3300uF 16V, значит его допустимое напряжение 16 вольт, его можно ставить в легковой автомобиль, где 13 вольт, но нельзя ставить в КАМАЗ, потому что там 24 вольта, и он может взорваться, а от взорванного конденсатора никакого толку не будет, только перевод деталей. Если просто хочется взорвать ненужный конденсатор, например с оторваной лапкой, или помятым корпусом, то можно подключить конденсатор с допустимым напряжением 6.3 вольта в цепь 48 вольт или еще больше.

Резистор

Резистор с латинского переводится как «сопротивляться».
Говоря по русски, резистор — сопротивление. Резистор в схемах выполняет роль заткнутой поролоном трубы. Заткнутость в трубах бывает разная, можно поставить сито, тогда будет пропускать почти полностью. Можно затолкать поролона, а можно заткнуть наглухо старым валенком так, что за сутки просочится всего одна капля.
Резистор ограничивает ток в цепи.
Чем меньше сопротивление резистора, тем он больше пропускает. Чем больше сопротивление, тем он больше «заткнут» и следовательно меньше пропускает.
Сопротивление измеряется в омах, килоомах (КОм, или К) и мегаомах (МОм или М). Иногда еще в миллиомах.
Чем больше ом резистор, тем больше в нём засунуто «поролона». Так мегаом (миллион ом) вообще почти ничего не пропускает, а один ом пропускает почти всё.
Резистор обозначается на схемах вот так или так:

Сверху обычно в таком виде он выглядит на наших схемах, а обозначением снизу резисторы рисуют на зарубежных.


Резисторы бывают всякие разные:

Узнать обозначение можно по маркировке, иногда её пишут буквами — М для мегаомов, К для килоомов, Е или R для омов. Резисторы могут маркироваться цветными кольцами, или цифровой маркировкой, так же как конденсаторы, только значение не в пикофарадах, а в омах.
102 = 10 и 2 нолика = 1000 ом = 1 килоом.
754 = 75 и 4 нолика = 750000 ом = 750 килоом, или 0,75 мегаом.

Еще бывают резисторы с надписями 2М2, М15, К47, 15М, 68К, 3К3, 4R7.
2М2 — 2.2 мегаома,
М15 — 0,15 мегаом или 150 килоом,
К47 — 0,47 килоом, или 470 ом,
15М — 15 мегаом,
68К — 68 килоом,
3К3 — 3.3 килоом (3300 ом),
4R7 — 4.7 ом.

В этой маркировке 2.2 мегаома будет выглядеть как 2М2,
22 мегаома — 22М,
220 килоом, или 0,22 мегаома будет выглядеть как 220К или М22.

Правильное подключение светодиода. Схемы подключения.

  1. Подключение светодиода к низковольтному напряжению постоянного тока.
       Если у Вас появилась задача подключения светодиода, то постараюсь Вам в этом помочь в этой статье. При подключении светодиодов необходимо правильно подключать светодиод, соблюдать полярность. Что бы узнать, где у светодиода плюс (+) , а где минус (-) достаточно посмотреть на светодиод одна из ножек светодиода длиннее, чем вторая, соответственно самая длинная ножка будет плюс (+), а короткая минус (-). Начнем с подключения одинарных обычных светодиодов с рабочим напряжением 2-3В с рабочим током 10-20мА, как правило, напряжение светодиодов 2 вольта и что бы подключить светодиод,  скажем к 12 вольтам постоянного напряжения (схема подключения светодиода к 12 вольтам представлена на рисунке 1), нам необходимо подобрать резистор.

Рисунок 1 — Схема подключения светодиода

 

     Чтобы подобрать резистор для светодиода, будем пользоваться следующим способом: нам известно, что напряжение светодиода 2В, соответственно при подключении светодиода к 12 вольтам (например, светодиод будем использовать в автомобиле) нам надо ограничить 10В, в принципе в случаях светодиодов правильней говорить ограничить ток светодиода, но мы при выборе резистора будем пользоваться простым проверенным многими годами  способом  без всяких математических формул.  На каждый вольт  необходим резистор сопротивлением 100 Ом, т.е. если светодиод с рабочим напряжением 2В,  и мы подключаем к 12 вольтам, нам нужен резистор 100Ом х 10В=1000 Ом или 1кОм обычно на схемах обозначается 1К, мощность резистора зависит от тока светодиода, но если мы используем обычный не мощный светодиод, как правило, его ток 10-20мА и в этом случае достаточно резистора на 0,25Вт самого маленького резистора по размеру.
    
     Резистор с большей мощностью  нам понадобится в 2х случаях: 1) если ток светодиода будет больше и 2) если напряжение будет выше, чем 24В и соответственно в случаях подключения светодиода к напряжению 36-48В и выше нам понадобится резистор с большей мощностью 0,5 – 2Вт, а в случае подключения светодиода к сети 220В лучше использовать резистор на 2Вт, но при подключении светодиода к сети переменного тока нам потребуется еще ряд элементов, но об этом чуть позже.

     
      А если нам надо будет подключить светодиод к напряжению 24В, то резистор нужен будет 100Ом х 22В = 2,2кОм. Т.е. при помощи данного способа можно рассчитать резистор для подключения 2-3 вольтового светодиода и с током 5-20мА на любое напряжение постоянного тока. Для удобства приведу ряд номиналов резисторов (рисунок 2) для разных напряжений постоянного тока:
5В – R1 = 300 Ом; 9В – R1 = 750 Ом; 12В – R1 = 1 кОм; 15В – R1 = 1,3кОм; 18В – R1 = 1,6 кОм; 24В – R1 =2,2 кОм; 28В – 2,6 кОм
       

Рисунок 2 — Подключение светодиодов к различному напряжению

     Если требуется светодиод подключить к батарейке, скажем на 3В, то можно поставить резистор последовательно на 100 Ом, а если батарейка пальчиковая на 1,5В, то можно подключить и без резистора.
При расчете мы можем выбрать только резисторы из стандартных номиналов, поэтому нет ничего страшного, если сопротивление резистора, будет чуть больше или меньше расчетного.

     Если вы используете очень яркий светодиод, а светодиод используется, к примеру, для индикации в каких-либо устройствах, то можно сопротивление резистора увеличить, и тем самым яркость светодиода уменьшится, и светодиод не будет ослеплять.  Но лучше всего в таких случаях если не требуется большая яркость светодиода, то при покупке в магазине или заказе в Китае можно выбрать матовый светодиод нужного  цвета и током, как правило, 6-20мА, угол обзора у данных светодиодов, как правило, составляет 60 градусов, они отлично подходят для индикации, не ослепляют и от них не устают глаза, даже если долго на них смотреть. Прозрачные белые светодиоды для данных целей, как правило, не подходят.

     В случае подключения светодиода к микроконтроллеру или плате ARDUINO, как правило, рабочее  напряжение составляет 5В, соответственно резистор можно взять 300-470 Ом можно и еще с большим сопротивлением. Главное учитывать, что ток не может превышать предельного тока вывода микроконтроллера, как правило, не более 10мА, поэтому сопротивление резистора 300-470 Ом для подключения светодиода является золотой серединой. Схема подключения светодиода к микроконтроллеру или плате ARDUINO представлена на рисунке 3. Стоит обратить Ваше внимание, что светодиод может быть подключен как анодом, так и катодом к микроконтроллеру и от этого будет зависеть программный способ управления светодиодом.  

Рисунок 3 — Подключение светодиода к плате ARDUINO


         3. Последовательное подключение нескольких светодиодов
       При последовательном соединении светодиодов чтобы их яркость не отличалась, друг от друга надо, чтобы светодиоды были одного типа. При последовательном соединении светодиодов сопротивление резистора будет меньше в отличие от случая, когда мы подключаем один светодиод. Для расчета резистора мы так же можем использовать ранее рассмотренный способ.

К примеру, нам необходимо последовательно подключить четыре светодиода  к напряжению постоянного тока 12В, соответственно рабочее напряжение светодиодов 2В при последовательном соединении будет 2В х 4шт. = 8В. Тогда мы можем выбрать резистор из стандартного ряда на 470-510 Ом. При последовательном соединении светодиодов ток, протекающий через все светодиоды, будет одинаковым.
 
                     Рисунок 5 — Последовательное соединение светодиодов
     Одним из недостатков последовательного соединения светодиодов  является тот факт, что в случае выхода одного из светодиодов из строя, все светодиоды перестанут светится. Ниже приведена схема с последовательным соединением двух, трех и четырех светодиодов.

        4.Параллельное подключение светодиодов
      При параллельном подключении светодиодов  резистор выбираем так же, как в случае одиночного светодиода. На каждый светодиод должен быть свой резистор при этом, если резисторы по сопротивлению будут отличаться или светодиоды будут различных марок, то будет очень заметно неравномерность свечения одного светодиода от другова. Ток при параллельном соединении будет складываться в зависимости от количества светодиодов.

Рисунок 6 — Параллельное соединение светодиодов

     5. Подключение мощных светодиодов с большим рабочим током, как правило, применяемых для освещения. При использовании мощных светодиодов лучше всего не использовать обычные резисторы, а применять специальные импульсные источники питания для светодиодов в них, как правило, уже установлены цепи стабилизации тока, данные источники питания обеспечивают равномерность свечения светодиодов и более долговечный срок службы. Светодиоды, применяемые для освещения  необходимо устанавливать на теплоотвод (радиатор).

           6. Подключение светодиода к переменному напряжению 220В.
      (Внимание!!! Опасное напряжение все работы по подключению к сети 220В необходимо производить только при выключенном, снятом напряжении и при этом необходимо убедится, что напряжение отсутствует.  Будьте внимательны. Ко всем элементам схемы не должно быть прямого доступа).
     При подключении светодиода к переменному напряжению 220В нам понадобится не только резистор, но и диод для выпрямления напряжения, так как светодиод работает от постоянного тока. Без диода на переменное напряжение лучше не включать. Схема подключения светодиода к сети 220В представлена на рисунке 7. Благодаря тому что мы используем два резистора вместо одного, мы можем использовать резисторы мощностью 1Вт.  Так же лучше всего установить конденсатор особено если будет заметно мерцание светодиода. Конденсатор может быть керамический или пленочный главное нельзя использовать электролитический конденсатор.

Рисунок 7 — Схема подключения светодиода к сети 220В.


      7. Подключение двухцветных светодиодов.
Если мы возьмем двухцветный светодиод, то увидим, что у данного светодиода не два, а три вывода, соответственно, один вывод по центру является общим, а два вывода по бокам каждый отвечает за свой цвет.

       Немного математики :
Расчет сопротивления ограничивающего резистора при 5В и токе светодиода 20мА:
R = U / Imax = 5 / 0.020 = 250 Ом — соответственно сопротивление резистора при 5В должно быть не меньше 250 Ом


 

Что такое катод и анод в химии. Обозначение разных типов диодов на схеме. Диод на схеме где анод и где катод

Определить, какой из электродов является анодом, а какой – катодом, на 1-й взор кажется легко. Принято считать, что анод имеет негативный заряд, катод – правильный. Но на практике могут появиться путаницы в определении.

Инструкция

1. Анод – электрод, на котором протекает реакция окисления. А электрод, на котором происходит поправление, именуется катодом.

2. Возьмите для примера гальванический элемент Якоби-Даниэля. Он состоит из цинкового электрода, опущенного в раствор сульфата цинка, и медного электрода, находящегося в растворе сульфата меди. Растворы соприкасаются между собой, но не смешиваются – для этого между ними предусмотрена пористая перегородка.

3. Цинковый электрод, окисляясь, отдает свои электроны, которые по внешней цепи двигаются к медному электроду. Ионы меди из раствора СuSO4 принимают электроны и восстанавливаются на медном электроде. Таким образом, в гальваническом элементе анод заряжен негативно, а катод – одобрительно.

4. Сейчас разглядите процесс электролиза. Установка для электролиза представляет собой сосуд с раствором либо расплавом электролита, в тот, что опущены два электрода, подключенные к источнику непрерывного тока. Негативно заряженный электрод является катодом – на нем происходит поправление. Анод в данном случае электрод, подключенный к правильному полюсу. На нем происходит окисление.

5. Скажем, при электролизе раствора СuCl2 на аноде происходит поправление меди. На катоде же происходит окисление хлора.

6. Следственно учтите, что анод – не неизменно негативный электрод, так же как и катод не во всех случаях имеет правильный заряд. Фактором, определяющим электрод, является происходящий на нем окислительный либо восстановительный процесс.

Диод имеет два электрода, называемые анодом и катодом. Он горазд проводить ток от анода к катоду, но не напротив. Маркировка, объясняющая предназначение итогов, имеется не на всех диодах .

Инструкция

1. Если маркировка имеется, обратите внимание на ее внешний вид и расположение. Она выглядит как стрелка, упирающаяся в пластину. Направление стрелки совпадает с прямым направлением тока, происходящего через диод. Иными словами, стрелке соответствует анодный итог, а пластине – катодный.

2. Аналоговые многофункциональные измерительные приборы имеют разную полярность напряжения, приложенного к щупам в режиме омметра. У некоторых из них она такая же, как в режиме вольтметра либо амперметра, у других – противоположная. Если она вам незнакома, возьмите диод, имеющий маркировку, переключите прибор в режим омметра, позже чего подключите к диоду вначале в одной, а потом в иной полярности. При варианте, в котором стрелка отклоняется, запомните, какой электрод диода был подключен к какому из щупов. Сейчас, подключая щупы в разной полярности к иным диодам, вы сумеете определять расположение их электродов.

3. У цифровых приборов в большинстве случаев полярность подключения щупов во всех режимах совпадает. Переключите мультиметр в режим проверки диодов – рядом с соответствующим расположением переключателя имеется обозначение этой детали. Алый щуп соответствует аноду, черный – катоду. В верной полярности будет показано прямое падение напряжения на диоде, в неправильной же индицируется бесконечность.

4. Если под рукой измерительного прибора нет, возьмите батарейку от материнской платы, светодиод и резистор на один килоом. Объедините их ступенчато, подключив светодиод в такой полярности, дабы светодиод светился. Сейчас включите в обрыв этой цепи проверяемый диод, экспериментально подобрав такую полярность, дабы светодиод засветился вновь. Итог диода, обращенный к плюсу батарейки – анодный.

5. Если при проверке обнаружится, что диод непрерывно открыт либо непрерывно закрыт, и от полярности ничего не зависит, значит он неисправен. Замените его, заранее удостоверясь в том, что его выход из строя не обусловлен неисправностью других деталей. В этом случае вначале замените и их.

Обратите внимание!
Все перепайки исполняйте при обесточенной аппаратуре и разряженных конденсаторах. Диод проверяйте в выпаянном виде.

Среди терминов в электрике встречаются такие понятия как анод и катод. Это касается источников питания, гальваники, химии и физики. Термин встречается также в вакуумной и полупроводниковой электронике. Им обозначают выводы или контакты устройств и каким электрическим знаком они обладают. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус.

Электрохимия и гальваника

В электрохимии есть два основных раздела:

  1. Гальванические элементы – производство электричества за счет химической реакции. К таким элементам относятся батарейки и аккумуляторы. Их часто называют химическими источниками тока.
  2. Электролиз – воздействие на химическую реакцию электроэнергией, простыми словами – с помощью источника питания запускается какая-то реакция.

Рассмотрим окислительно-восстановительную реакцию в гальваническом элементе, тогда какие процессы протекают на его электродах?

  • Анод – электрод на котором наблюдается окислительная реакция , то есть он отдаёт электроны . Электрод, на котором происходит окислительная реакция – называется восстановителем .
  • Катод – электрод на котором протекает восстановительная реакция , то есть он принимает электроны . Электрод, на котором происходит восстановительная реакция – называется окислителем .

Отсюда возникает вопрос – где плюс, а где минус у батарейки? Исходя из определения, у гальванического элемента анод отдаёт электроны .

Важно! В ГОСТ 15596-82 дано официальное определение названий выводов химических источников тока, если кратко, то плюс на катоде, а минус на аноде.

В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя (катода) к восстановителю (аноду) . Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод – это плюс, а анод – это минус.

Внимание: ток всегда втекает в анод!

Или то же самое на схеме:

Процесс электролиза или зарядки аккумулятора

Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.

В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!

Важно! При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот.

Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.

Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

В электронике

Электроды или ножки полупроводниковых и вакуумных электронных приборов тоже часто называют анодом и катодом. Рассмотрим условное графическое обозначение полупроводникового диода на схеме:

Как мы видим, анод у диода подключается к плюсу батареи. Он так называется по той же причине – в этот вывод у диода в любом случае втекает ток. На реальном элементе на катоде есть маркировка в виде полосы или точки.

У светодиода аналогично. На 5 мм светодиодах внутренности видны через колбу. Та половина, что больше — это катод.

Также обстоит ситуация и с тиристором, назначение выводов и «однополярное» применение этих трёхногих компонентов делают его управляемым диодом:

У вакуумного диода анод тоже подключается к плюсу, а катод к минусу, что изображено на схеме ниже. Хотя при приложении обратного напряжения – названия этих элементов не изменятся, несмотря на протекание электрического тока в обратном направлении, пусть и незначительного.

С пассивными элементами, такими как конденсаторы и резисторы дело обстоит иначе. У резистора не выделяют отдельно катод и анод, ток в нём может протекать в любом направлении. Вы можете дать любые названия его выводам, в зависимости от ситуации и рассматриваемой схемы. У обычных неполярных конденсаторов также. Реже такое разделение по названиям контактов наблюдается в электролитических конденсаторах.

Заключение

Итак, подведем итоги, ответив на вопрос: как запомнить где плюс, где минус у катода с анодом? Есть удобное мнемоническое правило для электролиза, заряда аккумуляторов, гальваники и полупроводниковых приборов. У этих слов с аналогичными названиями одинаковое количество букв, что проиллюстрировано ниже:

Во всех перечисленных случаях ток вытекает из катода, а втекает в анод.

Пусть вас не собьёт с толку путаница: «почему у аккумулятора катод положительный, а когда его заряжают – он становится отрицательным?». Помните у всех элементов электроники, а также электролизеров и в гальванике – в общем у всех потребителей энергии анодом называют вывод, подключаемый к плюсу. На этом отличия заканчиваются, теперь вам проще разобраться что плюс, что минус между выводами элементов и устройств.

Теперь вы знаете, что такое анод и катод, а также как запомнить их достаточно быстро. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы

Автор больше всего боится, что неискушённый читатель далее заголовка читать не станет. Он считает, что определение терминов анод и катод известно каждому грамотному человеку, который, разгадывая кроссворд, на вопрос о наименовании положительного электрода сразу пишет слово анод и по клеточкам всё сходится. Но не так много можно найти вещей страшнее полузнания.

Недавно в поисковой системе Google в разделе «Вопросы и ответы» я нашел даже правило, с помощью которого его авторы предлагают запомнить определение электродов. Вот оно:

«Катод — отрицательный электрод, анод — положительный . А запомнить это проще всего, если посчитать буквы в словах. В катоде столько же букв, сколько в слове «минус», а в аноде соответственно столько же, сколько в термине «плюс».

Правило простое, запоминаемое, надо было бы его предложить школьникам, если бы оно было правильным. Хотя стремление педагогов вложить знания в головы учащихся с помощью мнемоники (наука о запоминании) весьма похвально. Но вернемся к нашим электродам.

Для начала возьмем очень серьезный документ, который является ЗАКОНОМ для науки, техники и, конечно, школы. Это «ГОСТ 15596-82 . ИСТОЧНИКИ ТОКА ХИМИЧЕСКИЕ. Термины и определения ». Там на странице 3 можно прочесть следующее: «Отрицательный электрод химического источника тока это электрод, который при разряде источника является анодом ». То же самое, «Положительный электрод химического источника тока это электрод, который при разряде источника является катодом ». (Термины выделены мной. БХ). Но тексты правила и ГОСТа противоречат друг-другу. В чем же дело?

А всё дело в том, что, например, деталь, опущенная в электролит для никелирования или для электрохимического полирования, может быть и анодом и катодом в зависимости от того наносится на нее другой слой металла или, наоборот, снимается.

Электрический аккумулятор является классическим примером возобновляемого химического источника электрического тока. Он может быть в двух режимах — зарядки и разрядки. Направление электрического тока в этих разных случаях будет в самом аккумуляторе прямо противоположным , хотя полярность электродов не меняется .

В зависимости от этого назначение электродов будет разным. При зарядке положительный электрод будет принимать электрический ток, а отрицательный отпускать. При разрядке — наоборот. При отсутствии движения электрического тока разговоры об аноде и катоде бессмысленны .

«Поэтому, во избежание неясности и неопределенности, а также ради большей точности, — записал в своих исследованиях М.Фарадей в январе 1834г., — я в дальнейшем предполагаю применять термины, определение которых сейчас дам».

Каковы же причины введения новых терминов в науку Фарадеем?

А вот они: «Поверхности, у которых, согласно обычной терминологии, электрический ток входит в вещество и из него выходит, являются весьма важными местами действия и их необходимо отличать от полюсов ». (Фарадей. Подчеркнуто нами. БХ)

В те времена после открытия Т. Зеебеком явления термоэлектричества имела хождение гипотеза о том, что магнетизм Земли обусловлен разностью температур полюсов и экватора, вследствие чего возникают токи вдоль экватора. Она не подтвердилась, но послужила Фарадею в качестве «естественного указателя » при создании новых терминов. Магнетизм Земли имеет такую полярность, как если бы электрический ток шел вдоль экватора по направлению кажущегося движения солнца.

Фарадей записывает: «На основании этого представления мы предлагаем назвать ту поверхность, которая направлена на восток — анодом, а ту, которая направлена на запад — катодом». В основе новых терминов лежал древнегреческий язык и в переводе они значили: анод — путь (солнца) вверх, катод — путь (солнца) вниз.

В русском языке есть прекрасные термины ВОСХОД и ЗАХОД, которые легко применить для данного случая, но почему-то переводчики Фарадея этого не сделали. Мы же рекомендуем пользоваться ими, ибо в них корнем слова является ХОД и, во всяком случае, это напомнит пользователю термина, что без движения тока термин не применим. Для желающего проверить рассуждения создателя термина с помощью других правил, например правила пробочника, сообщаем, что северный магнитный полюс Земли лежит в Антарктиде, возле Южного географического полюса.

Ошибкам в применениях терминов АНОД и КАТОД нет числа. В том числе и в зарубежных справочниках и энциклопедиях. Поэтому в электрохимии пользуются другими определениями, более понятными читателю. У них анод — это электрод, где протекают окислительные процессы, а катод — это электрод, где протекают восстановительные процессы. В этой терминологии нет места электронным приборам, но при электротехнической терминологии указать анод радиолампы, например, легко. В него входит электрический ток. (Не путать с направлением электронов).

Литература:

1. Михаил Фарадей. Экспериментальные исследования по электричеству. Том 1. Изд-во АН СССР, М. 1947. с.266-268.

2. Б.Г.Хасапов. Как определять термины «анод» и «катод». ВНИИКИ. Научно-техническая терминология. Реферативный сборник №6, Москва, 1989, с.17-20.

Есть вещи, которые хочется, что называется «развидеть» — термин вполне устоявшийся и понятный.

Евгений Гришковец, рассказывает про железнодорожников. (с) Спектакль «Одновременно»

А есть вещи которые, ну никак не получается запомнить. Это возникает от того, что новое понятие не может однозначно зацепиться за уже известные факты в сознании, никак не получается построить новую связь в семантической сети фактов.

Все знают, что у диода есть катод и анод. Все знают, как диод обозначается на электрической схеме. Но далеко не все могут правильно сказать, где же на схеме что.

Под спойлером картинка, посмотрев на которую, вы навсегда запомните, где у диода анод, а где катод. Должен предупредить, развидеть это не получится, так что тот, кто не уверен в себе, пусть не открывает.

Теперь, когда мы отпугнули слабых, продолжаем…


Да, вот так все просто. Буква К — это катод, буква А — это анод. Извините, теперь и вы это никогда не забудете.

Продолжим, и разберемся куда течет ток. Если приглядеться, обозначение диода представляет собой стрелку. Вот, не поверите — ток течет именно туда, куда показывает стрелка! Что логично, не правда ли? Дальше больше — ток течет «А ткуда» (от Анода) и «К уда» (к Катоду). В обозначениях транзисторов тоже есть стрелки, и они так же обозначают направление тока.


Ток — направленное движение заряженных частиц — это мы все знаем из школьной физики. Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов (еще раз — не важно каких!) и текут они в сторону «минуса», где их мало и ждут. Все остальные подробности, непринципиальны.

Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом ». Я только так и запомнил, возможно, кто-то предложит вариант лучше.

Теперь, вы без труда ответите на вопрос, загорится ли лампочка в этой схеме:

Про анод и катод источника питания необходимо знать тем, кто занимается практической электроникой. Что и как называют? Почему именно так? Будет углублённое рассмотрение темы с точки зрения не только радиолюбительства, но и химии. Наиболее популярное объяснение звучит следующим образом: анод — это положительный электрод, а катод — отрицательный. Увы, это не всегда верно и неполно. Чтобы уметь определить анод и катод, необходимо иметь теоретическую базу и знать, что да как. Давайте рассмотрим это в рамках статьи.

Анод

Обратимся к ГОСТ 15596-82, который занимается химическими Нас интересует информация, размещённая на третьей странице. Согласно ГОСТу, отрицательным электродом является именно анод. Вот так да! А почему именно так? Дело в том, что именно через него электрический ток входит из внешней цепи в сам источник. Как видите, не всё так легко, как кажется на первый взгляд. Можно посоветовать внимательно рассматривать представленные в статье картинки, если содержимое кажется слишком сложным — они помогут понять, что же автор хочет вам донести.

Катод

Обращаемся всё к тому же ГОСТ 15596-82. Положительным электродом химического источника тока является тот, при разряде из которого он выходит во внешнюю цепь. Как видите, данные, содержащиеся в ГОСТ 15596-82, рассматривают ситуацию с другой позиции. Поэтому при консультировании с другими людьми насчет определённых конструкций необходимо быть очень осторожным.

Возникновение терминов

Их ввёл ещё Фарадей в январе 1834 года, чтобы избежать неясности и добиться большей точности. Он предлагал и свой вариант запоминания на примере с Солнцем. Так, у него анод — это восход. Солнце движется вверх (ток входит). Катод — это заход. Солнце движется вниз (ток выходит).

Пример радиолампы и диода

Продолжаем разбираться, что для обозначения чего используется. Допустим, один из данных потребителей энергии у нас имеется в открытом состоянии (в прямом включении). Так, из внешней цепи диода в элемент по аноду входит электрический ток. Но не путайтесь благодаря такому объяснению с направлением электронов. Через катод во внешнюю цепь из используемого элемента выходит электрический ток. Та ситуация, что сложилась сейчас, напоминает случаи, когда люди смотрят на перевёрнутую картину. Если данные обозначения сложные — помните, что разбираться в них таким образом обязательно исключительно химикам. А сейчас давайте сделаем обратное включение. Можно заметить, что полупроводниковые диоды практически не будут проводить ток. Единственное возможное здесь исключение — обратный пробой элементов. А электровакуумные диоды (кенотроны, радиолампы) вообще не будут проводить обратный ток. Поэтому и считается (условно), что он через них не идёт. Поэтому формально выводы анод и катод у диода не выполняют свои функции.

Почему существует путаница?

Специально, чтобы облегчить обучение и практическое применение, было решено, что диодные элементы названия выводов не будут менять зависимо от своей схемы включения, и они будут «прикреплены» к физическим выводам. Но это не относится к аккумуляторам. Так, у полупроводниковых диодов всё зависит от типа проводимости кристалла. В электронных лампах этот вопрос привязан к электроду, который эмитирует электроны в месте расположения нити накала. Конечно, тут есть определённые нюансы: так, через такие как супрессор и стабилитрон, может немного протекать обратный ток, но здесь существует специфика, явно выходящая за рамки статьи.

Разбираемся с электрическим аккумулятором

Это по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока. Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:

  1. Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
  2. При отсутствии движения о них разговор вести нет смысла.
  3. Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.

Об электрохимии замолвим слово

Здесь используют немного другие определения. Так, анод рассматривается как электрод, где протекают окислительные процессы. И вспоминая школьный курс химии, можете ответить, что происходит в другой части? Электрод, на котором протекают восстановительные процессы, называется катодом. Но здесь нет привязки к электронным приборам. Давайте рассмотрим ценность окислительно-восстановительных реакций для нас:

  1. Окисление. Происходит процесс отдачи частицей электрона. Нейтральная превращается в положительный ион, а отрицательная нейтрализуется.
  2. Восстановление. Происходит процесс получения частицей электрона. Положительная превращается в нейтральный ион, а потом в отрицательный при повторении.
  3. Оба процесса являются взаимосвязанными (так, количество электронов, что отданы, равняется присоединённому их числу).

Также Фарадеем для обозначения были введены названия для элементов, что принимают участие в химических реакциях:

  1. Катионы. Так называются положительно заряженные ионы, что двигаются в в сторону отрицательного полюса (катода).
  2. Анионы. Так называются отрицательно заряженные ионы, что двигаются в растворе электролита в сторону положительного полюса (анода).

Как происходят химические реакции?

Окислительная и восстановительная полуреакции являются разделёнными в пространстве. Переход электронов между катодом и анодом осуществляется не непосредственно, а благодаря проводнику внешней цепи, на котором создаётся электрический ток. Здесь можно наблюдать взаимное превращение электрической и химической форм энергии. Поэтому для образования внешней цепи системы из проводников разного рода (коими являются электроды в электролите) и необходимо пользоваться металлом. Видите ли, напряжение между анодом и катодом существует, как и один нюанс. И если бы не было элемента, что мешает им напрямую произвести необходимый процесс, то ценность источников химического тока была бы весьма низка. А так, благодаря тому, что заряду необходимо пройтись по той схеме, была собрана и работает техника.

Что есть что: шаг 1

Теперь давайте будем определять, что есть что. Возьмём гальванический элемент Якоби-Даниэля. С одной стороны он состоит из цинкового электрода, который опущен в раствор сульфата цинка. Затем идёт пористая перегородка. И с другой стороны имеется медный электрод, который расположен в растворе Они соприкасаются между собой, но химические особенности и перегородка не дают смешаться.

Шаг 2: Процесс

Происходит окисление цинка, и электроны по внешней цепи двигаются к меди. Так получается, что гальванический элемент имеет анод, заряженный отрицательно, и катод — положительный. Причем данный процесс может протекать только в тех случаях, когда электронам есть куда «идти». Дело в том, что попасть напрямую от электрода к другому мешает наличие «изоляции».

Шаг 3: Электролиз

Давайте рассмотрим процесс электролиза. Установка для его прохождения является сосудом, в котором имеется раствор или расплав электролита. В него опущено два электрода. Они подключены к источнику постоянного тока. Анод в этом случае — это электрод, который подключен к положительному полюсу. Здесь происходит окисление. Отрицательно заряженный электрод — это катод. Здесь протекает реакция восстановления.

Шаг 4: Напоследок

Поэтому при оперировании данными понятиями всегда необходимо учитывать, что анод не в 100% случаев используется для обозначения отрицательного электрода. Также катод периодически может лишаться своего положительного заряда. Всё зависит от того, какой процесс на электроде протекает: восстановительный или окислительный.

Заключение

Вот таким всё и является — не очень сложно, но не скажешь, что и просто. Мы рассмотрели гальванический элемент, анод и катод с точки зрения схемы, и сейчас проблем с соединением источников питания с наработками у вас быть не должно. И напоследок нужно оставить ещё немного ценной для вас информации. Всегда приходится учитывать разницу, которую имеет анода. Дело в том, что первый всегда будет немного большим. Это из-за того, что коэффициент полезного действия не работает с показателем в 100 % и часть зарядов рассеивается. Именно из-за этого можно увидеть, что аккумуляторы имеют ограничение на количество раз заряда и разряда.

Smd диод полярность. Все методы определения полярности у светодиодов. Определение полярности по технической документации

Для устройства точечного освещения мастера часто используют светодиоды. Эти маленькие лампочки при минимальном потреблении электроэнергии способны выдавать хорошую производительность. К тому же служат гораздо дольше обычных ламп накаливания. Но при монтаже цепи освещения важно учитывать полярность светодиода. Иначе он просто не сработает на подаваемый ток или быстро выйдет из строя.

Подробно о полярностях светодиодных ламп

Несоблюдение полярности и неправильное включение может привести к поломке светодиода

Работают такие маленькие точки освещения по принципу протекания через них тока только в прямом направлении. От этого возникает оптическое излучение лампочки. Если полярности не соблюсти при подключении, ток не сможет проложить себе прямой путь по цепи. Соответственно, прибор освещения не заработает.

Таким образом, перед установкой светодиода мастер должен узнать расположение его катода и анода («+» и «-»). Сделать это не сложно, зная определенные принципы визуальной оценки лампочки или работы электроприборов в сочетании с ЛЕД-элементом.

Способы выявления полярности

Определение полярности светодиода по внешнему виду

Выделяют несколько основных методов, по которым можно выяснить, где плюс у светодиода, а где минус. Самый простой способ — визуальный осмотр элемента и определение полярностей по внешнему виду.

Для новых LED-элементов характерной чертой является длина ножек. Анод (плюс) всегда будет длиннее катода (минуса). Как памятка мастеру — первая литера «К» от слова «катод» означает «короткий». Можно оценить визуально и колбу лампочки. Если она хорошо просматривается, мастер увидит так называемую «чашечку». В ней расположен кристаллик. Это и есть катод.

Нелишне обратить внимание и на ободок LED-детали. Многие производители предпочитают проставлять специальную маркировку-обозначение напротив катода. Она может выглядеть как засечка (риска), маленький срез или точка. Не увидеть их сложно.

Новый вариант маркировки светодиодов — значки «+» и «-» на цоколе. Таким образом производитель облегчает мастеру работу, помогает определять полярности. Иногда возможна маркировка зеленой линией напротив плюса.

Использование мультиметра

Определение полярности светодиода при помощи мультиметра

Если определить светодиод – анод/катод – визуально не получается, можно использовать специальное оборудование. Таковым является мультиметр. Вся процедура проверки займет не более минуты. Действуют таким образом:

  • На аппарате устанавливают режим измерения сопротивления.
  • Щупы мультиметра аккуратно соединяют с ножками LED-лампочки. Предположительный плюс ставят к красному проводку. Минус — к черному. При этом касание делают кратковременным.
  • Если контакты установлены правильно, аппарат покажет сопротивление, близкое к 1,7 кОм. При неправильном подключении ничего не произойдет.

Мультиметр можно эксплуатировать и в режиме проверки диодов. Здесь при правильном соблюдении полярностей лампочка даст свет. Особенно хорошо такая рекомендация работает с диодами зеленого и красного цветов. Белые и синие требуют напряжения более 3В, поэтому даже при правильном подключении могут не засветиться.

Чтобы проверить элементы этих колеров через мультиметр, можно применить режим определения характеристик транзистора. Он есть на всех современных моделях приборов. Здесь действуют так:

  • Выставляют нужный режим.
  • Лампочку ножками вставляют в специальные пазы С (коллектор) и Е (эмиттер). Они предназначены для транзистора в нижней части устройства.

Если минус светодиода подключен к коллектору, лампочка даст свет.

Метод подачи напряжения

Определение полярности светодиода методом подачи напряжения

Чтобы определить полярности светодиода, можно использовать для этого источники напряжения (аккумуляторная батарейка). Но лучше всего применить лабораторный блок питания с наличием плавной регулировки напряжения, а также вольтметр постоянного тока.

Действуют таким образом:

  • ЛЕД-лампочку подключают к источнику питания и медленно поднимают напряжение.
  • Если полярности элемента соблюдены правильно, светодиод даст колер.
  • Если при достижении 3-4 В лампочка так и не засветится, плюс и минус подключены неверно.

При срабатывании лампочки не нужно продолжать увеличивать напряжение. Элемент от таких экспериментов просто сгорит.

Если у мастера нет блока питания или батареи на 5-12 В, можно последовательно соединить между собой несколько элементов по 1,5 В. Пригодятся здесь аккумулятор от мобильного телефона или авто. Но стоит помнить: при подключении LED-элементов к мощным устройствам рекомендуется параллельно применять токоограничивающий резистор.

Определение полярности с помощью техдокументации

Если светодиод только что купленный, к нему прилагается техническая документация от производителя. Здесь указаны основные данные о лампочках:

  • масса;
  • цоколевка светодиодов;
  • габариты;
  • электрические параметры:
  • иногда распиновка (схема подключения).

При покупке элементов в розницу можно попросить продавца дать ознакомиться с информацией, чтобы не мучиться дома и не искать, где у светодиодов плюс и минус. По бумагам делается соответствующий вывод.

Когда требуется определение полярностей LED-лампочек

Применение светодиодов в декорировании улицы

Маленькие светодиоды широко применяются в различных областях, связанных с освещением и индикацией:

  • уличное освещение: рекламные вывески, парковые подсветки;
  • бытовые элементы искусственного света: освещение рабочих панелей, периметра подвесного потолка, встроенной мебели и др.;
  • индикация электроприборов режимов вкл./выкл.: самодельные умные розетки и т.д.;
  • детские игрушки;
  • пульты ДУ и многое другое.

При выходе из строя лампочки мастер прибегает к её замене. При этом требуется определить анод и катод светодиода. В противном случае элемент просто не выдаст освещения.

На различных форумах есть информация о том, что нет смысла искать, где светодиод «прячет» плюс и минус. Нередки суждения, что лампочку можно подключать без соблюдения полярностей. Здесь есть нюансы. Даже если мастеру повезет и элемент даст свет, в конечном счете это приведет к таким последствиям:

  • Ресурс работы неправильно подключенной лампочки, заявленный производителем, сократится в разы. К примеру, при гарантированном режиме 45000 часов светодиод отработает в два раза меньше.
  • Производительность (интенсивность, яркость света) снизится в разы от той, которая должна быть. В общей цепи это будет видно невооруженным глазом.

Подобные игры с полярностями и вероятность работы диодного элемента напрямую зависят от характеристик конкретного полупроводника и напряжения пробоя.

Средняя продолжительность LED-лампочек составляет 10 лет. При их влагозащите IP67 и более элементы можно смело использовать при устройстве уличного освещения. Чтобы светодиоды работали заявленный срок, стоит принципиально соблюдать полярности при их подключении и определяться с ними до проведения ремонтных работ, а не после.

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

    * Низкое электропотребления – в 10 раз экономичней лампочек
    * Долгий срок службы – до 11 лет непрерывной работы
    * Высокий ресурс прочности – не боятся вибраций и ударов
    * Большое разнообразие цветов
    * Способность работать при низких напряжениях
    * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы. Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Цвета светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Таблица 1. Маркировка светодиодов

Многоцветные светодиоды

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Напряжение питания

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

    * Nmax – максимально допустимое количество светодиодов в гирлянде
    * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
    * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
    * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

Параллельное включение светодиодов с общим резистором — плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

Как запитать светодиод от сети 220 В.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

    Малые размеры
    Компактное устройство световой сигнализации
    Широкий диапазон питающего напряжения (вплоть до 14 вольт)
    Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Способны пропускать электрический ток в определенном направлении. Если подключение выполнено инверсионно, электрический ток не проходит по цепи, а нужный электроприбор не включится. Объясняется это тем, что приборы по принципу устройства представляют собой диоды, и не все имеют способность светиться. Это говорит о том, что светодиод имеет полярность и функционирует при определенном направлении тока. В связи с этим для подключения важно правильно определить, где у светодиодов минус и плюс. Разберем несколько способов.

Визуально

Если у Вас в руках светодиод где плюс где минус вы не знаете, попробуйте сделать это визуально. Как визуально определить светодиодную полярность? Достаточно просто.
У нового светодиода два вывода, один должен быть короче. Короткий вывод — это катод. Запомнить легко: «короткий» — «катод», оба слова на «к». Плюс находится там, где длинный вывод. Если имеем дело с использованным светодиодом, ножки которого согнуты, задача усложняется.
Тогда вглядываемся в корпус, где находится самый важный элемент — кристаллик. Он лежит на крошечной подставке, чашечке. Вывод с подставки — катод, с его стороны располагается срез или засечка.
НО данный способ не всегда применим. Многие производители сегодня при производстве не соблюдают стандарты, а ассортимент моделей поражает многообразием. Некоторые изготовители отмечают катоды точкой или линией зеленого цвета, либо проставляют знаки «-» и «+». Если же внешних опознавательных признаков нет, нужно провести электротестирование.

Источник питания в помощь

Второй способ определить светодиодную полярность — подключить его к . Главное, правильно подобрать источник питания с напряжением, чтобы оно не превышало максимальный уровень напряжения светодиода, иначе он перегорит или испортится. Элементы соединяются так: к » +» подключается «-«, к «-» подключается «+».

Мультиметр

Если вышеописанные способы не дали результатов, используйте мультиметр. Чтобы мультиметром определить полярность светодиода потребует максимум минута. Сначала нужно выбрать на оборудовании режим измерения уровня сопротивления, а затем прикоснуться специальными щипцами к светодиодным контактам. Черный провод идет к «-», а красный к «+». Не нужно касаться слишком долго, 20-30 секунд хватит. Если включение было выполнено напрямую (« + » к « + », а « — » к « -»), на мультиметре отображается показатель в области 1,7 кило Ом. Если включение обратное — на приборе не отображаются измерения..
Измерять в режиме диода несколько легче: при подсоединении напрямую, загорится . Этот режим подходит для зеленых и красных лампочек, а вот белые и синие лампочки рассчитаны на ток с напряжением более 3 В. По этой причине при подключении лампочек синего и белого цвета, они могут засветиться и при правильной полярности.
В данном случае используется режим измерения характеристик транзисторов. Светодиод вставляется в пазы колодки, снизу мультиметра. Применяется часть PNP: одна ножка диода вставляется в разъем «Е» — эмиттер, а вторая в «С» — коллектор. Лампочка светится когда, к коллектору подсоединили катод.
Таким образом, определение полярности не представляет особой сложности.

Эти полупроводниковые радиодетали используются в различных электронных схемах в качестве элементов индикации. Проблем с их монтажом на плате, как правило, нет. Чтобы пропаять 2 ножки, вставленные в соответствующие отверстия на «дорожках», не нужно быть крупным специалистом в этой области. А вот с полярностью, которую необходимо учитывать при работе со всеми п/п приборами, а не только светодиодами, у людей без опыта возникают сложности. Как правильно определить полярность?

Самый простой способ, если светодиод новый, ни разу не использовавшийся. Его выводы неодинаковы – один немного длиннее. Здесь несложно запомнить такую аналогию. Слова «катод» и «короткая» начинаются с одной и той же буквы – «К».

Следовательно, другая ножка, более длинная – анод светодиода. Зная это, сложно перепутать. Хотя у некоторых производителей встречается иное – они могут быть одинаковы. Стоит учесть.

По внутреннему наполнению

Если колба хорошо просматривается, то найти «чашечку» (а это катод) совсем нетрудно.

Узнать полярность светодиода – это еще не все. Необходимо его и правильно установить на плате. Схемное изображение этого полупроводника показано на рисунке. Вершина символа прибора (треугольника) указывает на катод (минусовый вывод).

По корпусу

Так проверить полярность можно не у всех светодиодов, так как это зависит от производителя. Но у некоторых на «ободке» напротив катода есть небольшая риска (засечка). Если присмотреться, заметить ее несложно. Как вариант – небольшая точка, срез.

С помощью батарейки

Также простая методика, но здесь необходимо учесть, что светодиоды разных типов отличаются напряжением пробоя. Чтобы полупроводник не вывести из строя (частично или полностью), в цепь нужно последовательно включить ограничительное сопротивление. Номиналом на 0,1 – 0,5 кОм вполне достаточно.

Мультиметром

Кстати, вполне можно задействовать и , который уже укомплектован всем необходимым – источником питания и щупами. Это даже еще лучше.

Способ определения полярности 1 – основан на свойстве светодиода «загораться» при прохождении по нему тока. Следовательно, его анод будет там, где «плюс» батарейки мультиметра (гнездо для щупа «+»), а катод, соответственно, где минус. Чтобы проверить на «свечение», переключатель прибора устанавливается в позицию «измерение диода».

Способ определения полярности 2 – здесь измеряется сопротивление p -n перехода. Переключатель мультиметра – в положение «измерение сопротивления», предел, в зависимости от модификации тестера, в положение более 2 кОм. Например, на 10.

Касание щупами выводов светодиода – лишь кратковременное, чтобы не вывести радиодеталь из строя. Если полярности п/п и источника питания совпадают, то сопротивление будет небольшим (от сотен Ом до нескольких кОм). В этом случае красный щуп (его принято вставлять в гнездо прибора «+») указывает на ножку-анод, а черный («–»), соответственно, на катод.

Если мультиметр показывает большое сопротивление, значит, при касании щупами выводов полярность была нарушена. Следует повторить измерение, изменив ее, чтобы удостовериться в отсутствии внутреннего обрыва. Только в этом случае можно говорить не только о полярности светодиода, но и о его исправности и готовности к использованию по назначению.

На различных тематических форумах встречаются суждения, что ничего страшного не произойдет; можно подключать источник питания в любой полярности, и на светодиоде это не отразится. Но это не совсем так.

  • Во-первых, все зависит от величины напряжения пробоя, то есть характеристики конкретного полупроводника.
  • Во-вторых, он может в дальнейшем и работать, но частично утратить свои свойства. Проще говоря, светить, но не так сильно, как должен.
  • В-третьих, подобные эксперименты негативно отражаются на эксплуатационном ресурсе светодиода. Если его гарантированная производителем наработка на отказ порядка 45 000 часов (в среднем), то после таких проверок на полярность он прослужит намного меньше. Подтверждено практикой!

Все диоды обязательно имеют положительный и отрицательный выводы. Эти выводы получили специальные названия: положительный называется анодом , а отрицательный — катодом . Катод диода легко опознать по полоске красного или черного цвета, расположенной у этого вывода на корпусе.

На рис. 4.8 как раз показан диод с подобной маркировкой полярности . Полоска, таким образом, соответствует вертикальной линии схемотехнического символа данного элемента. Важно, чтобы, «читая» принципиальную схему какого-либо устройства, вы правильно трактовали расположение в ней диода и направление протекающего тока


Рис. 4.8. Используя диоды, всегда помните об их полярности. Полоска на одном из концов корпуса диода указывает его

Внимание
Как уже говорилось в самом начале этого раздела, диоды позволяют проходить через них току в прямом направлении и блокируют ток, протекающий в обратном. Таким образом, если вставить диод в схему неправильно, схема или не заработает, или некоторые элементы рискуют выйти из строя. Всегда внимательно проверяйте полярность диодов в схеме — лучше дважды перепроверить, чем один раз устранять последствия!

Диод на схеме там, где плюс. Основные способы определения полярности светодиода. Другие способы определения полярности

Все диоды должны иметь положительный и отрицательный выводы. Эти выводы получили специальные названия: положительный называется , анод , а отрицательный — , катод … Катод диода легко определить по красной или черной полосе, расположенной у этого вывода на корпусе.

На рис. 4.8 только что показан диод с аналогичной маркировкой полярности … Полоса, таким образом, соответствует вертикальному обозначению схемы этого элемента … Важно, чтобы при «чтении» принципиальной схемы любого устройства вы правильно интерпретировали расположение диода в нем и направление протекающего тока


Рис. 4.8. При использовании диодов всегда помните об их полярности. Полоса на одном конце корпуса диода указывает на это.

Внимание
Как упоминалось в самом начале этого раздела, диоды позволяют току проходить через них в прямом направлении и блокируют ток, текущий в противоположном направлении.Таким образом, если вы неправильно вставите диод в схему, схема либо выйдет из строя, либо некоторые элементы могут выйти из строя. Всегда внимательно проверяйте полярность диодов в цепи — лучше перепроверить, чем один раз устранять последствия!

Диоды относятся к категории электронных устройств, работающих по принципу полупроводника, который особым образом реагирует на приложенное к нему напряжение. С внешним видом и схематическим обозначением этого полупроводникового изделия можно ознакомиться на рисунке ниже.

Особенностью включения этого элемента в электронную схему является необходимость соблюдения полярности диода.

Дополнительные пояснения. Полярность означает строго установленный порядок включения, который учитывает где плюс, а где минус для данного продукта.

Эти две легенды привязаны к его выводам, называемым анодом и катодом соответственно.

Особенности работы

Известно, что любой полупроводниковый диод при подаче на него постоянного или переменного напряжения пропускает ток только в одном направлении.Если его снова включить, постоянный ток не протекает, потому что n-p переход будет смещен в непроводящем направлении. Из рисунка видно, что минус полупроводника расположен со стороны его катода, а плюс — с противоположного конца.

Эффект односторонней проводимости особенно наглядно подтверждается на примере полупроводниковых изделий, называемых светодиодами, работающих только при правильном включении.

На практике нередки ситуации, когда на корпусе изделия нет явных знаков, позволяющих сразу сказать, где у него какая штанга.Вот почему важно знать специальные знаки, по которым можно научиться различать их.

Методы определения полярности

Для определения полярности диодного изделия можно использовать различные методики, каждая из которых подходит для определенных ситуаций и будет рассмотрена отдельно. Эти методы условно делятся на следующие группы:

  • Метод визуального контроля для определения полярности на основе существующей маркировки или характерных особенностей;
  • Проверка с помощью мультиметра, включенного в режиме набора номера;
  • Узнаем где плюс, а где минус, собрав простую схему с миниатюрной лампочкой.

Рассмотрим каждый из перечисленных подходов отдельно.

Визуальный контроль

Этот метод позволяет расшифровать полярность по специальным отметкам на полупроводниковом изделии. Для некоторых диодов это может быть точка или кольцевая полоска, смещенная к аноду. Некоторые образцы старой марки (например, КД226) имеют характерную форму, заостренную с одной стороны, что соответствует плюсу. На другом, полностью плоском торце, соответственно есть минус.

Примечание! Например, визуальный осмотр светодиодов показывает характерный выступ на одной из их ножек.

На основании этого обычно определяют, где у такого диода плюс, а где — противоположный контакт.

Применение измерительного прибора

Самым простым и надежным способом определения полярности является использование измерительного прибора типа «мультиметр», включенного в режим «Обратный вызов». При замере всегда следует помнить, что на шнур в красной изоляции от встроенного аккумулятора подается плюс, а на шнур в черной изоляции — минус.

После случайного соединения этих «концов» с выводами диода с неизвестной полярностью нужно следить за показаниями на дисплее прибора. Если индикатор показывает напряжение около 0,5-0,7 Вольт, это означает, что он включен в прямом направлении, а ножка, к которой подключен зонд в красной изоляции, положительная.

Если индикатор показывает «единицу» (бесконечность), можно сказать, что диод включен в обратную сторону, и по этому можно будет судить о его полярности.

Дополнительная информация. Некоторые радиолюбители используют для проверки светодиодов розетку, предназначенную для измерения параметров транзисторов.

Диод в этом случае включается как один из переходов транзисторного устройства, а его полярность определяется тем, светится он или нет.

Включение в схему

В крайнем случае, когда визуально определить расположение выводов невозможно, а под рукой нет измерительного прибора, можно воспользоваться методом включения диода в показанную простую схему на рисунке ниже.

При включении в такой цепи лампочка либо загорится (это означает, что полупроводник пропускает ток через себя), либо нет. В первом случае плюс аккумулятора будет подключен к плюсовой клемме изделия (аноду), а во втором, наоборот, к его катоду.

В заключение отметим, что способов определения полярности диода довольно много. При этом выбор конкретного метода его обнаружения зависит от условий эксперимента и возможностей пользователя.

Видео

Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить реверсом, то по цепи не будет проходить постоянный ток, и прибор не загорится. Это происходит потому, что, по сути, устройство представляет собой диод, просто не каждый диод способен светиться. Получается, что у светодиода есть полярность, то есть он чувствует направление движения тока и работает только в определенном направлении.
Определить полярность прибора по схеме несложно.Светодиод обозначается треугольником внутри круга. Треугольник всегда упирается в катод (знак «-», поперечина, минус), положительный анод находится на противоположной стороне.
а как определить полярность, если сам аппарат держишь? Вот небольшая лампочка с двумя проводами. К какой разводке нужно подключить плюс источника, а к какому минусу, чтобы схема работала? Как правильно выставить сопротивление где плюс?

Определить визуально

Первый способ — визуальный.Допустим, вам нужно определить полярность нового двухпроводного светодиода. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это катод. Помните, что это катод по слову «короткий», так как оба слова начинаются с буквы «k». Плюс будет соответствовать более длинному. Однако иногда бывает сложно определить полярность на глаз, особенно если ножки погнуты или изменили свои размеры в результате предыдущей установки.

Заглянув в прозрачный корпус, можно увидеть сам кристалл. Он расположен как бы в маленькой чашке на подставке. Выходом из этой опоры будет катод. Со стороны катода тоже можно увидеть небольшую выемку, похожую на надрез.

Но эти особенности не всегда заметны в светодиодах, так как некоторые производители отклоняются от стандартов. Кроме того, существует множество моделей, изготовленных по другому принципу. Сегодня производитель ставит знаки «+» и «-» на сложные конструкции, маркирует катод точкой или зеленой линией, чтобы все было очень четко.Но если таких отметок по каким-то причинам нет, то на помощь приходит электрическое испытание.

Применяем блок питания

Более действенный метод определения полярности — подключаем светодиод к источнику питания. Внимание! Необходимо выбрать источник, напряжение которого не превышает допустимого напряжения светодиода. Самодельный тестер можно собрать, используя обычную батарею и резистор. Это требование связано с тем, что при повторном подключении светодиод может перегореть или ухудшить свои световые характеристики.

Некоторые говорят, что так подключили светодиод, и он от этого не испортился. Но все дело в предельном значении обратного напряжения. К тому же лампочка может не сразу погаснуть, но срок ее службы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.

Если заряда аккумулятора для светодиода не хватает, и прибор не загорается, так как вы его не подключаете, то к аккумулятору можно подключить несколько элементов.Напоминаем, что сто элементов соединены последовательно плюс к минусу, а минус к плюсу.

Приложение «Мультиметр»

Есть такое устройство, которое называется мультиметром. С его помощью можно с успехом узнать, куда подключить плюс, а где — минус. Это займет ровно одну минуту. В мультиметре выберите режим измерения сопротивления и прикоснитесь щупами к контактам светодиода. Красный провод указывает на положительное соединение, а черный провод указывает на отрицательное соединение.Желательно, чтобы прикосновение было недолговечным. При повторном включении устройство ничего не показывает, а при прямом включении (плюс к плюсу и минус к минусу) устройство будет показывать значение в районе 1,7 кОм.

Также можно включить мультиметр в режим проверки диодов. В этом случае при прямом включении светодиодная лампа будет гореть.

Этот метод наиболее эффективен для красных и зеленых лампочек. Светодиод, излучающий синий или белый свет, рассчитан на напряжение более 3 вольт, поэтому он не всегда будет светиться при подключении к мультиметру даже при правильной полярности.Вы можете легко выйти из этой ситуации, если воспользуетесь режимом определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.

Диод вставляется в пазы специальной колодки для транзисторов, которая обычно находится внизу устройства. Используется PNP-часть (как и для транзисторов соответствующей структуры). Одна ножка светодиода вставляется в разъем C, который соответствует коллектору, вторая ножка — в разъем E, соответствующий эмиттеру.Лампа загорится, если катод (минус) подключить к коллектору. Таким образом определяется полярность.

Руководство по маркировке светодиодов и диодов для печатных плат

Duane Benson

Вы когда-нибудь вставляли светодиод или другой диод в обратном направлении? Сборщики печатных плат усердно трудятся, чтобы каждый раз правильно разместить каждый компонент, от самого большого логического чипа с наибольшим количеством выводов до мельчайших пассивных компонентов и BGA с микропланшетом. Ключевым элементом этой точности является наше понимание вашей платы и маркировки компонентов.

Если вы используете диоды для поверхностного монтажа или светодиоды, вы, вероятно, понимаете проблемы, связанные с правильной и последовательной индикацией полярности диодов. Светодиоды обычно имеют отрицательный катод, тогда как стабилитроны и однонаправленные диоды TVS могут быть катодными положительными. Барьерные диоды могут быть любой ориентации. Все зависит от того, является ли диод выпрямителем, светодиодом, однонаправленным TVS, частью гирляндной цепи и множеством других соображений.

Когда вы начинаете изучать библиотеки САПР, вы не только видите все отличия от этого производителя, но также можете иметь разные схемы маркировки от каждого разработчика пакета САПР и от каждого создателя библиотеки.

Указания по шелкографии отметок полярности диодов — символ диода, «K» для катода или «A» для анода или. Чтобы обеспечить максимальную точность, мы рекомендуем проявлять особую осторожность при маркировке диодов, чтобы устранить любую двусмысленность.

Предпочтительный метод — разместить схематический символ диода на шелкографии. Вы также можете поставить «K» для Катода рядом с катодом. «K» используется потому, что «C» может означать, что пятну нужен конденсатор. Буква «А» рядом с анодом на плате тоже работает, хотя она используется реже.Если вы производите свою плату без шелкографии, вы можете нанести метку на медный слой или отправить четкий сборочный чертеж с другими файлами платы.

Использование +, — или _ не является окончательным в том, что они обозначают, и не рекомендуется. Например, знаков «+» или «-» недостаточно. Потому что не всегда верно, что ток через диод протекает от анода к катоду. Для обычного барьерного диода или выпрямителя это довольно безопасный вариант. Однако с стабилитроном или TVS это не всегда так.Вот почему маркировка диода на печатной плате знаком плюс (+) не является хорошей практикой.

Дуэйн Бенсон — главный чемпион по технологиям в Screaming Circuits .

Стоматологический диодный лазер Photon Plus 10 Вт — Пакет B — Лазеры

Описание продукта
Диодные лазеры для мягких тканей серии Zolar Photon (Photon и Photon Plus) одобрены FDA для мягких тканей, а теперь также для лечения боли.

Преимущества стоматологических лазеров
• Меньше, а иногда и вовсе нет потери крови для хирургии
• Оптическая коагуляция: герметизация кровеносных сосудов без термического прижигания или карбонизации
• Точно резать и коагулировать одновременно
• Избегайте повреждения коллатеральных тканей, увеличивайте количество операций по защите тканей
• Свести к минимуму послеоперационное воспаление и дискомфорт
• Контролируемая глубина проникновения лазера ускоряет заживление пациента
• Увеличьте текучесть пациентов с помощью более эффективных лазерных процедур
• Уменьшает дискомфорт пациента и потребность в анестезии
• Эффективное лечение оральной терапии
• Чувствительность определяется вовремя
• Стоматологическая косметика, отбеливание зубов
• Обезболивающая

Обезболивающая
Диодный лазер Photon / Photon Plus предназначен для подачи энергии лазера в ближнем инфракрасном диапазоне к поверхности ткани с целью временного облегчения боли при использовании дополнительного наконечника двойной функции для отбеливания / обезболивания.

Процедура обезболивания — это процесс повышения температуры тканей для временного облегчения незначительной боли, временного усиления местного кровообращения и временного расслабления мышц, как указано в Показаниях к применению.

Пораженные мышцы и / или суставы должны подвергаться адекватному уровню терапевтической энергии в течение короткого периода времени, чтобы обеспечить эффективный терапевтический эффект. Некоторым пациентам может потребоваться более одного применения лазера или серия процедур, прежде чем будет сообщено о значительном улучшении.При необходимости повторяйте терапию и следите за развитием состояния пациента на протяжении всего курса лечения. Длина волны диода увеличивает поглощение меланина в коже, вызывая больший нагрев поверхности кожи у пациентов с более высокой концентрацией меланина (более темные типы кожи). Пациенты с более высоким содержанием меланина в коже могут чувствовать больший дискомфорт во время лечения, который можно уменьшить, переместив наконечник или уменьшив настройку мощности.

Пациенты должны находиться под наблюдением на предмет дискомфорта и визуальных изменений кожи.Покраснение может быть связано с повышенной температурой в месте нанесения и повышенными впитывающими свойствами кожи. Если во время лечения возникает дискомфорт или покраснение кожи, доступны следующие варианты:

· Переместите наконечник относительно пораженного участка.

· Уменьшите мощность.

· Прекратить лечение.

Использование болевого наконечника

Для временного облегчения боли установите на экране рекомендуемые начальные настройки мощности для терапевтического эффекта на 3.0 Вт в течение 5-8 минут непрерывной обработки (CW). Перемещайте обезболивающий наконечник над указанной зоной лечения равномерными круговыми движениями. Всегда следите за реакцией пациента и регулируйте мощность по мере необходимости для комфорта пациента. Эффективные результаты часто достигаются путем кратковременных, но повторяющихся визитов в офис в течение нескольких дней.

Содержит: лазер, беспроводную ножную педаль, режущее волокно 400 мкм, постоянный наконечник, один отбеливающий наконечник, один камень для ножа, один инструмент для снятия изоляции, три пары защитных очков, артикуляционную бумагу, предупреждающие наклейки, руководство по эксплуатации на DVD и металлический футляр для переноски.

Щелкните, чтобы узнать больше о фотонном лазере

Курт Дж. Лескер Компания | 9191510 — ИОННЫЙ НАСОС, VACION PLUS 150, ДИОДНЫЙ С МАГНИТАМИ

300, 500 Комплект болтов для фланца DN160CF (8,00 дюймов OD), включая болт, гайку, набор шайб и медную прокладку Комплект оборудования CF DN160CF-HDKIT 128 евро.50
150, 75 Комплект болтов для фланца Dn100CF (6,00 «OD), включая болт, гайку, шайбу и медную прокладку Комплект оборудования CF DN100CF-HDKIT 103 евро.75
VacIon Plus 75 Нагреватель Agilent для насосов VacIon Plus 40/55/75, 120 В переменного тока Нагреватель насоса 91

€ 442.00
VacIon Plus 75 Нагреватель Agilent для насосов VacIon Plus 40/55/75, 220 В переменного тока Нагреватель насоса 91

П.ИЛИ.
VacIon Plus 75,150 Диод Контроллер Agilent 4UHV, положительная полярность, с двумя каналами 80 Вт Контроллер насоса 9299201 4941 евро.00
VacIon Plus 75,150 Starcell Контроллер Agilent 4UHV, отрицательная полярность, с двумя каналами 80 Вт Контроллер насоса 9299200 П.ИЛИ.
VacIon Plus 75,150,300 Диод Контроллер Agilent 4UHV, положительная полярность, с одним каналом 200 Вт Контроллер насоса 9299011 3913 евро.00
VacIon Plus 75 150 300 Starcell Контроллер Agilent 4UHV, отрицательная полярность, с одним каналом 200 Вт Контроллер насоса 9299010 3886 евро.26 год
VacIon Plus 75,150,300,500 Высоковольтный радиационно-стойкий кабель Agilent с блокировкой, длина 4 м Соединительный кабель 92

€ 519.84
VacIon Plus 75,150,300,500 Высоковольтный радиационно-стойкий кабель Agilent с блокировкой, длина 7 м Соединительный кабель 92
  • 730 евро.00
    VacIon Plus 75,150,300,500 Высоковольтный радиационно-стойкий кабель Agilent с блокировкой, длина 10 м Соединительный кабель 92 П.ИЛИ.
    VacIon Plus 75,150,300,500 Сетевой кабель с вилкой NEMA 5-15 (N.A. / Japan) для однофазной сети, длина 3 м Сетевой кабель 9699958 € 34.00
    VacIon Plus 75,150,300,500 Сетевой кабель с вилкой CEE 7/7 (Северная Европа) для однофазных насосов, длина 3 м Сетевой кабель 9699957 € 34.00
    VacIon Plus 150 300 500 Насос Agilent VacIon Plus 150, стандартный диод с нагревателями, 120 В переменного тока Ионный насос 9191511 П.ИЛИ.
    VacIon Plus 150 300 500 Насос Agilent Vacion Plus 150, стандартный диод с нагревателями 220 В переменного тока Ионный насос 9191512 П.ИЛИ.
    VacIon Plus 150 300 500 Agilent Vacion Plus 150, диод Starcell, с нагревателями, 120 В переменного тока Ионный насос 9191541 П.ИЛИ.
    VacIon Plus 150 300 500 Agilent Vacion Plus 150, диод Starcell, с нагревателями, 220 В переменного тока Ионный насос 9191542 П.ИЛИ.
    VacIon Plus 300,500 Диод Контроллер Agilent 4UHV, положительная полярность, с двумя каналами 200 Вт Контроллер насоса 9299021 П.ИЛИ.
    VacIon Plus 300,500 Starcell Контроллер Agilent 4UHV, отрицательная полярность, с двумя каналами 200 Вт Контроллер насоса 9299020 П.ИЛИ.
    Диод VacIon Plus 500 Контроллер Agilent 4UHV, положительная полярность, с одним каналом 120 Вт Контроллер насоса 9299101 П.ИЛИ.
    VacIon Plus 500 Starcell Контроллер Agilent 4UHV, отрицательная полярность, с одним каналом 120 Вт Контроллер насоса 9299100 П.ИЛИ.

    Обходные диоды | PVEducation

    Деструктивное воздействие нагрева горячей точки можно избежать с помощью обходного диода. Обходной диод подключается параллельно, но с противоположной полярностью, к солнечному элементу, как показано ниже. При нормальной работе каждый солнечный элемент будет смещен в прямом направлении, и, следовательно, байпасный диод будет иметь обратное смещение и фактически будет разомкнутой цепью.Однако, если солнечный элемент имеет обратное смещение из-за несоответствия тока короткого замыкания между несколькими последовательно соединенными элементами, то байпасный диод проводит, тем самым позволяя току от исправных солнечных элементов течь во внешней цепи, а не смещать вперед каждый хороший сотовый. Максимальное обратное смещение на бедной ячейке снижается примерно до одного падения на диоде, что ограничивает ток и предотвращает нагревание горячей точки. Работа байпасного диода и влияние на ВАХ показаны на анимации ниже.

    Ток для двух последовательно соединенных ячеек и эффект байпасного диода. Анимация автоматически переходит от одного состояния к другому.

    Влияние байпасного диода на ВАХ можно определить, сначала найдя ВАХ одиночного солнечного элемента с обходным диодом, а затем комбинируя эту кривую с ВАХ других солнечных элементов. Обходной диод воздействует на солнечную батарею только обратным смещением. Если обратное смещение больше, чем напряжение колена солнечного элемента, то диод включается и проводит ток.Комбинированная кривая ВАХ показана на рисунке ниже.

    ВАХ солнечного элемента с байпасным диодом.

    Предотвращение нагрева горячих точек с помощью байпасного диода. Для наглядности в примере используется всего 10 ячеек, из которых 9 незатененных и 1 закрашенная. Типичный модуль содержит 36 ячеек, и эффекты рассогласования по току даже хуже без байпасного диода, но менее важны с байпасным диодом. Анимация перемещается автоматически. Для продолжения нажимать не нужно.

    На практике, однако, один байпасный диод на солнечный элемент обычно слишком дорог, и вместо этого байпасные диоды обычно размещаются между группами солнечных элементов. Напряжение на затемненном или слаботочном солнечном элементе равно напряжению прямого смещения других последовательных элементов, которые используют тот же байпасный диод, плюс напряжение байпасного диода. Это показано на рисунке ниже. Напряжение на незатененных солнечных элементах зависит от степени затемнения слаботочного элемента. Например, если элемент полностью затенен, то незатененные солнечные элементы будут смещены в прямом направлении из-за их тока короткого замыкания, и напряжение будет около 0.6В. Если плохой элемент затенен только частично, часть тока от исправных элементов может протекать по цепи, а оставшаяся часть используется для прямого смещения каждого перехода солнечных элементов, вызывая более низкое прямое напряжение смещения на каждой ячейке. Максимальная рассеиваемая мощность в заштрихованной ячейке приблизительно равна генерирующей способности всех ячеек в группе. Максимальный размер группы на диод без повреждения составляет около 15 ячеек на байпасный диод для кремниевых элементов. Поэтому для обычного модуля на 36 ячеек используются 2 байпасных диода, чтобы гарантировать, что модуль не будет уязвим для повреждения «горячей точкой».

    Байпасные диоды для групп солнечных элементов. Напряжение на незатененных солнечных элементах зависит от степени затемнения бедного элемента. На рисунке выше произвольно показано 0,5 В.

    Сравнение диодов SiC

    , 2020 — Консультации по System Plus

    Сравнение технологии и стоимости 11 SiC диодов от Infineon, Wolfspeed, Rohm, STMicroelectronics, ON Semiconductor, Microsemi и UnitedSiC.

    Устройства

    SiC завоевывают доверие многих клиентов и находят применение в различных приложениях.Это подтверждается многообещающими перспективами рынка устройств на основе SiC, совокупный годовой темп роста которых (CAGR) составит 31% в период 2019-2025 гг., Согласно данным Yole Développement.

    С момента их первой коммерческой реализации в 2001 году производительность и добавленная стоимость SiC-диодов постепенно доказывались, и их цена становилась все более приемлемой для конечных пользователей. В этом отчете System Plus Consulting представляет обзор современного состояния SiC-диодов, чтобы выделить различия в процессах проектирования и производства, а также их влияние на размер устройства и стоимость производства.Он дает обзор различных SiC-диодов, доступных на рынке, и анализирует 11 из них от семи основных поставщиков SiC-диодов.

    11 диодов SiC распределены по трем классам напряжения: 650 В, 1200 В и 1700 В. Были проанализированы устройства от Infineon, Wolfspeed, Rohm, STMicroelectronics, ON Semiconductor, Microsemi и UnitedSiC. Они предназначены для различных источников питания, включая два SiC-диода, отвечающие требованиям AEC-Q101.

    В отчете представлены подробные оптические и SEM-изображения с некоторым анализом материала EDX, от упаковки устройства до микроскопического уровня конструкции диодов, с акцентом на последнее.В этом отчете оценивается стоимость производства проанализированных SiC-диодов и их отпускные цены. Он обеспечивает сравнение физических, технологических и производственных затрат между проанализированными диодами.

    Вернуться наверх

    Обзор / Введение

    • Краткое изложение, методология обратной калькуляции и глоссарий

    Технологии и рынок

    • Сегментация рынка с широкополосным зазором в зависимости от диапазона напряжений, разделение доли SiC-диодов на чистом кристалле по напряжению, выявленные на рынке дискретные SiC-диоды и план основных игроков
    • Проблемы SiC и выбор технологии проектирования устройств SiC-диодов

    Профиль компании и цепочка поставок

    • Infineon, Wolfspeed, Rohm, STMicroelectronics, ON Semiconductor, Microsemi, UnitedSiC: профиль и цепочка поставок

    Физический анализ

    • Сводка
    • 650V SiC диоды
      • Infineon IDH06G65C6
      • Wolfspeed C6D04065A
      • Rohm SCS308AH
      • ST Микроэлектроника STPSC6H065D
      • ON Semiconductor FFSP0465A
      • UnitedSiC UJ3D06506TS
    • SiC диоды
    • 1200V
      • Infineon IDK05G120C5
      • Rohm SCS205KGHR
      • ON Semiconductor FFSP05120A
    • 700V SiC диоды
      • Wolfspeed C5D10170H
      • Microsemi MSC010SDA170B

    Сравнение технологий и физических характеристик

    • Конструкция штампа: сравнение физических и технологических характеристик
    • Сравнение производительности: FOM (Qc * Vf) и плотность тока

    Производственный процесс

    • Цепочка поставок
    • Для каждого анализируемого SiC-диода:
      • Описание установки для изготовления пластин и технологической схемы
      • Описание упаковки в сборе

    Анализ затрат

    • Сводка
    • Объяснения и гипотезы доходности
    • Для каждого анализируемого SiC-диода:
      • Стоимость вафли
      • Стоимость кубика
      • Стоимость упаковки
      • Стоимость компонента
      • Стоимость компонента

    Стоимость Сравнение

    • Общее сравнение — стоимость компонентов
    • Общее сравнение — стоимость КЭ пластины и стоимость в амперах на единицу площади
    • 650V, 1200V, 1700V SiC-диодная пластина и сравнение стоимости в амперах
    Наверх

    Руководство по маркировке светодиодов и диодов для печатных плат и сборщиков

    Дуэйн Бенсон, главный чемпион по технологиям, Screaming Circuits
    Вы когда-нибудь располагали светодиод или другой диод обратной стороной? Сборщики печатных плат усердно трудятся, чтобы каждый раз правильно разместить каждый компонент, от самого большого логического чипа с наибольшим количеством выводов до мельчайших пассивных компонентов и BGA с микропланшетом.Ключевым элементом этой точности является наше понимание вашей платы и маркировки компонентов.

    Если вы используете диоды для поверхностного монтажа или светодиоды, вы, вероятно, понимаете проблемы, связанные с правильной и последовательной индикацией полярности диодов. Светодиоды обычно имеют отрицательный катод, тогда как стабилитроны и однонаправленные диоды TVS могут быть катодными положительными. Барьерные диоды могут быть любой ориентации. Все зависит от того, является ли диод выпрямителем, светодиодом, однонаправленным TVS, частью гирляндной цепи и множеством других соображений.

    Когда вы начинаете изучать библиотеки САПР, вы не только видите все отличия от этого производителя, но также можете иметь разные схемы маркировки от каждого разработчика пакета САПР и от каждого создателя библиотеки.

    Указания по шелкографии отметки полярности диода — символ диода, «K» для катода или «A» для анода или. Чтобы обеспечить максимальную точность, мы рекомендуем проявлять особую осторожность при маркировке диодов, чтобы устранить любую двусмысленность.

    Предпочтительный метод — разместить схематический символ диода на шелкографии.Вы также можете разместить букву «K» для катода рядом с катодом. «K» используется потому, что «C» может означать, что пятну нужен конденсатор. Буква «А» рядом с анодом на плате тоже работает, хотя она используется реже. Если вы производите свою плату без шелкографии, вы можете нанести метку на медный слой или отправить четкий сборочный чертеж с другими файлами платы.

    Использование +, — или _ не является окончательным в том, что они обозначают, и не рекомендуется. Например, знаков «+» или «-» недостаточно.Потому что не всегда верно, что ток через диод протекает от анода к катоду. Для обычного барьерного диода или выпрямителя это довольно безопасный вариант. Однако с стабилитроном или TVS это не обязательно так. Вот почему маркировка диода на печатной плате знаком плюс (+) не является хорошей практикой.

    .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *