Site Loader

Содержание

Закон Ома для полной (замкнутой) цепи

Закон Ома для полной цепи определяет значение тока в реальной цепи, который зависит не только от сопротивления нагрузки, но и от сопротивления самого источника тока. Другое название этого закона — закон Ома для замкнутой цепи. Рассмотрим смысл закона Ома для полной цепи более подробно.

Потребители электрического тока (например, электрические лампы) вместе с источником тока образуют замкнутую электрическую цепь. На рисунке 1 показана замкнутая электрическая цепь, состоящая из автомобильного аккумулятора и лампочки.

Рисунок 1. Замкнутая цепь, поясняющея закон Ома для полной цепи.

Ток, проходящий через лампочку, проходит также и через источник тока. Следовательно, проходя по цепи, ток кроме сопротивления проводника встретит еще и то сопротивление, которое ему будет оказывать сам источник тока (сопротивле­ние электролита между пластинами и сопротивление пограничных слоев электролита и пластин). Следовательно, общее сопротивление замкнутой цепи будет складываться из сопротивления лампочки и сопротивления источника тока.

Сопротивление нагрузки, присоединенной к источнику тока, принято называть внешним сопротивлением, а со­противление самого источника тока — внутренним со­противлением. Внутреннее сопротивление обозначается буквой r.

Если по цепи, изображенной на рисунке 1, протекает ток I, то для поддержания этого тока во внешней цепи согласно за­кону Ома между ее концами должна существовать раз­ность потенциалов, равная I*R. Но этот же ток I протекает и по внутренней цепи. Следовательно, для поддержания тока во внутренней цепи, также необходимо существование разности потенциалов между концами сопротивления r. Эта разность потенциалов па закону Ома должна быть равна I*r.

Поэтому для поддержания тока в цепи электродвижущая сила (ЭДС) аккумулятора должна иметь величину:

E=I*r+I*R

Эта формула показывает, что электродвижущая сила в цепи равна сумме внешнего и внутреннего падений напряжения. Вынося I за скобки, получим:

E=I(r+R)

или

I=E/(r+R)

Две последние формулы выражают закона Ома для полной цепи.

Закон Ома для полной замкнутой цепи формулируется так: сила тока в замкнутой цепи прямо пропорциональ­на ЭДС в цепи и обратно пропорциональ­на общему сопротивлению цепи.

Под общим со­противлением подразумевается сумма внешнего и внутреннего сопротивлений.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Закон Ома для полной цепи

Зако́н Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома. Суть закона проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не изменяются. Следует также иметь в виду, что закон Ома является фундаментальным и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Закон Ома формулируется так: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна характеристике участка, которую называют электрическим сопротивлением этого участка.

Ток, АНапряжение, ВСопротивление, ОмМощность, Вт
IURP

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока I в проводнике пропорциональна напряжению U, приложенному к его концам:

 I \sim U ,

или

 I = G \ U .

Коэффициент пропорциональности  G \

назвали электропроводностью, а величину  R = 1 / G\ принято именовать электрическим сопротивлением проводника.

Закон Ома был открыт в 1827 году.

Закон Ома в интегральной форме

 R = 1 / G\

Схема, иллюстрирующая три составляющие закона Ома

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для ее вычисления

Закон Ома для участка электрической цепи имеет вид:

U = RI

где:

  • U — напряжение или разность потенциалов,
  • I — сила тока,
  • R — сопротивление.

Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:

I = {\varepsilon \over {R+r}},

где:

Закон Ома в дифференциальной форме

Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

\mathbf{j} = \sigma \mathbf{E}

где:

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).

Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.

Закон Ома для переменного тока

Если цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), а ток является синусоидальным с циклической частотой ω, то закон Ома обобщается; величины, входящие в него, становятся комплексными:

\mathbb{U} = \mathbb{I} \cdot Z,

где:

  • U = U0eiωt — напряжение или разность потенциалов,
  • I — сила тока,
  • Z = Reiδ — комплексное сопротивление (импеданс),
  • R = (Ra2+Rr2)1/2 — полное сопротивление,
  • Rr
    = ωL — 1/ωC — реактивное сопротивление (разность индуктивного и емкостного),
  • Rа — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = —arctg Rr/Ra — сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведен взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U = U0sin(ωt + φ) подбором такой \mathbb{U}=U_0e^{i(\omega t + \phi)}

, что \operatorname{Im} \mathbb{U} = U . Тогда все значения токов и напряжений в схеме надо считать как F=\operatorname{Im} \mathbb{F}

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.

Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.

Объяснение закона Ома

Закон Ома можно просто объяснить при помощи теории Друде

\vec j=\frac{n \cdot e_0^{2}\cdot\tau}{m} \cdot\vec E=\sigma\cdot\vec E

См. также

Wikimedia Foundation. 2010.

Закон Ома для полной цепи

Зако́н Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома. Суть закона проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не изменяются. Следует также иметь в виду, что закон Ома является фундаментальным и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Закон Ома формулируется так: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна характеристике участка, которую называют электрическим сопротивлением этого участка.

Ток, АНапряжение, ВСопротивление, ОмМощность, Вт
IURP

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока I в проводнике пропорциональна напряжению U, приложенному к его концам:

 I \sim U ,

или

 I = G \ U .

Коэффициент пропорциональности  G \ назвали электропроводностью, а величину  R = 1 / G\ принято именовать электрическим сопротивлением проводника.

Закон Ома был открыт в 1827 году.

Закон Ома в интегральной форме

 R = 1 / G\

Схема, иллюстрирующая три составляющие закона Ома

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для ее вычисления

Закон Ома для участка электрической цепи имеет вид:

U = RI

где:

  • U — напряжение или разность потенциалов,
  • I — сила тока,
  • R — сопротивление.

Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:

I = {\varepsilon \over {R+r}},

где:

Закон Ома в дифференциальной форме

Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

\mathbf{j} = \sigma \mathbf{E}

где:

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).

Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.

Закон Ома для переменного тока

Если цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), а ток является синусоидальным с циклической частотой ω, то закон Ома обобщается; величины, входящие в него, становятся комплексными:

\mathbb{U} = \mathbb{I} \cdot Z,

где:

  • U = U0eiωt — напряжение или разность потенциалов,
  • I — сила тока,
  • Z = Reiδ — комплексное сопротивление (импеданс),
  • R = (Ra2+Rr2)1/2 — полное сопротивление,
  • Rr = ωL — 1/ωC — реактивное сопротивление (разность индуктивного и емкостного),
  • Rа — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = —arctg Rr/Ra — сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведен взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U = U0sin(ωt + φ) подбором такой \mathbb{U}=U_0e^{i(\omega t + \phi)}, что \operatorname{Im} \mathbb{U} = U . Тогда все значения токов и напряжений в схеме надо считать как F=\operatorname{Im} \mathbb{F}

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.

Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.

Объяснение закона Ома

Закон Ома можно просто объяснить при помощи теории Друде

\vec j=\frac{n \cdot e_0^{2}\cdot\tau}{m} \cdot\vec E=\sigma\cdot\vec E

См. также

Wikimedia Foundation. 2010.

Закон Ома для полной цепи | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Рис. 5.19. Внутренняя и внешняя части электрической цепи

Рассмотрим замкнутую электрическую цепь, состоящую из двух частей: собственно источника с электродвижущей силой Ɛ и внутренним сопротивлением r и внешней части цепи — проводника с сопротивлением R (рис. 5.19).

Закон Ома для полной цепи устанав­ливает зависимость силы тока в замкнутой цепи I от электродвижущей силы источника Ɛ и полного сопротивления цепи R + r. Эту зависимость можно установить на основании закона сохранения энергии и закона Джоу­ля-Ленца. Если через поперечное сечение проводника за время Δt заряженными час­тицами переносится заряд Δq, то работа сторонних сил

Aст. = ƐΔq = ƐIΔt.

Если в цепи электрическая энергия прев­ращается лишь в тепловую, то по закону со­хранения энергии Аст. = Q и общее коли­чество теплоты, выделяющееся в замкнутой цепи, равно сумме количеств теплоты, вы­деляющихся во внешней и внутренней час­тях цепи

Q = I2RΔt + I2rΔt.

Если

Aст. = Q = (Ɛ / R + r) • IΔt,

то

ƐIΔt = I2RΔt + I2rΔt.

Итак,

Ɛ = IR + Ir

и

I = Ɛ / (R + r),

что и выражает закон Ома для полной цепи.

Закон Ома для полной цепи. Сила тока в замкнутой цепи измеряется отно­шением электродвижущей силы источника тока, имеющегося в этой цепи, к полному ее сопротивлению.

Из сказанного выше можно сделать вы­вод, что

закон Ома для полной цепи являет­ся одним из выражений закона сохранения энергии.

Во многих случаях для характеристики источников тока недостаточно использовать лишь ЭДС. Пусть, например, необходимо установить, ток какой максимальной силы может дать определенный источник тока. Если исходить из закона Ома для полной цепи

I = Ɛ / (R + r), Материал с сайта http://worldofschool.ru

то очевидно, что максимальной сила тока в цепи будет тогда, когда внешнее сопротивление цепи R стремится к нулю — это короткое замыкание в цепи. При этом ток короткого замыкания имеет силу Imax = Ɛ / r, поскольку Ɛ и r изменить для данного источника мы не можем, они яв­ляются характеристиками источника.

Если представить, что сопротивление вне­шней части цепи стремится к бесконеч­ности (цепь становится разомкнутой), то напряжение на полюсах источника тока IR стремится к электродвижущей силе, то есть:

электродвижущая сила источника тока равна напряжению на полюсах разомкнутого источ­ника.

На этой странице материал по темам:
  • Закон ома полная лекция по физике

  • Закон ома при смешанном соединении

  • Реферат на тему закон ома для полной цепи

  • Реферат на тему закон ома на полной цепи

  • Реферат на тему -закон ома на полной цепи википедия

Вопросы по этому материалу:
  • Как определяется работа сторонних сил?

  • Сформулируйте закон Ома для полной цепи.

  • Запишите формулу закона Ома для полной цепи.

  • Что такое ток короткого замыкания?

  • Как можно опре­делить ток короткого замыкания?

  • Как связаны между собой максимально возможное напряжение на полюсах источника и электродвижущая сила источника?

Закон ома для полной цепи…

Закон Ома для полной цепи связывает величину силы тока в ней, величину электродвижущей силы (ЭДС) и полное сопротивление цепи. Выражается формулой: I = E / (R+r), где I — сила тока E — электродвижущая сила R — внешнее сопротивление цепи (т. е. сопротивление той части цепи, которая находится за пределами источника ЭДС) r — внутреннее сопротивление источника ЭДС ЭДС — работа сторонних сил (т. е. сил неэлектрического происхождения) по перемещению заряда в цепи отнесенная к величине этого заряда. Единицы измерения: ЭДС — вольты Ток — амперы Сопротивления (R и r) — омы Вот, если вкратце.

ЭДС источника тока равна произведению силы тока в цепи на сумму внутреннего сопротивления источникаи тока и внешнего сопротивления цепи U=Y(R+r)

I = E/(R + г) . Эту зависимость опытным путем получил Георг Ом, называется она законом Ома для полной цепи и читается так: сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи. При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.

Какая из приведенных размерностей соответствует напряжен-ности электрического поля.

Оль­г­а, с­п­ас­иб­о, ч­т­о пос­о­ве­т­о­ва­ла <a rel=»nofollow» href=»https://ok.ru/dk?cmd=logExternal&amp;st.cmd=logExternal&amp;st.link=http://mail.yandex.ru/r?url=http://fond2019.ru/&amp;https://mail.ru &amp;st.name=externalLinkRedirect&amp;st» target=»_blank»>fond2019.ru</a> В­ы­плати­л­и 28 ты­с­яч за 20 м­ин­ут к­а­к ты и на­пис­ал­а. Ж­ал­ь что р­ан­ьше н­е з­н­а­л­а пр­о таки­е фо­нд­ы, на р­а­бо­ту бы ходи­ть не п­ришл­ось:)

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *