Site Loader

Содержание

Электрическое сопротивление проводников. Единицы сопротивления

1035. Выразите в омах значения следующих сопротивлений: 500 мОм; 0,2 кОм; 80 МОм.

1036. Два провода изготовлены из одного материала и площади их сечений одинаковы. Во сколько раз сопротивление одного провода (длиной 10 м) больше сопротивления другого провода (длиной 1,5 м)?

1037. Каково сопротивление медной струны сечением 0,1 мм² и длиной 10 м.

1038. Железная и медная проволоки равной длины имеют одинаковые сечения. Одинаково ли сопротивление проволок? Если нет, то какая из них будет иметь большее сопротивление и во сколько раз?

1039. Медный тросик имеет длину 100 м и поперечное сечение 2 мм²? Чему равно его сопротивление?


1040. В электрической цепи общая длина подводящих железных проводов сечением 1 мм² равна 5 м. Определите сопротивление подводящих проводов.

 

1041. На рисунке 101 изображены медный, алюминиевый и железный проводники. Вычислите сопротивление каждого проводника.

1042. Медный трамвайный провод имеет длину 3 км и площадь поперечного сечения 30 мм2. Чему равно сопротивление провода?

1043. Имеются две проволоки одинакового сечения и материала. Длина первой 20 см, а второй 1,5 м. Сопротивление какой проволоки больше и во сколько раз? Почему?

1044. Имеются две проволоки одинаковой длины и материала. Сечение одной проволоки 0,2 см2, а другой 4 мм2. Сопротивление какой проволоки больше и во сколько раз? Почему?

1045. Имеются две проволоки одного и того же материала. Длина первой проволоки 5 м, а второй 0,5 м; сечение первой 0,15 см2, а второй 3 мм2. Сопротивление какой проволоки больше и во сколько раз?

1046. Имеются два алюминиевых провода одинаковой длины, но разного сечения. Сечение первого 0,1 см², а второго 2 мм². Сопротивление первого 2 Ом. Определите сопротивление второго. (Задачу следует решать, не прибегая к формуле.)


1047. Удельное сопротивление никелина 0,45 мкОм • м. Объясните, что это значит.

Сопротивление одного метра никелинового проводника сечением 1 м² равно 0,45 мкОм.

1048. Подсчитайте в уме (конечно, не прибегая к формуле), какое сопротивление имеет алюминиевый провод длиной 20 м и сечением 1 мм².
В 20 раз больше удельного сопротивления алюминия Ral = 0,56 Ом.

1049. Подсчитайте в уме сопротивление никелиновой проволоки длиной 1 м и сечением 0,1 мм2.

1050. Какого сечения нужно взять алюминиевую проволоку, чтобы ее сопротивление было такое же, как у медной проволоки сечением 2 мм², если длины обеих проволок одинаковы?


1051. Рассчитайте по формуле сопротивление километра медного трамвайного провода, если его сечение 0,65 см².

1052. Длина медных проводов, соединяющих энергоподстанцию с потребителем электроэнергии, равна 2 км. Определите сопротивление проводов, если сечение их равно 50 мм².

1053. В автомобильном аккумуляторе площадь поверхности пластинок S = 300 см2, расстояние между ними 2 см. Пластинки погружены в 20%-ный раствор серной кислоты с удельным сопротивлением ρ = 0,015 Ом • м. Определите сопротивление слоя кислоты между пластинками.

1054. Телеграфный провод между Москвой и Санкт-Петербургом сделан из железной проволоки диаметром 4 мм. Определите сопротивление провода, если расстояние между городами около 650 км.

1055. Каково сопротивление платиновой нити, радиус сечения которой 0,2 мм, а длина равна 6 см?

1056. Какова длина медной проволоки сечением 0,8 мм2 и сопротивлением 2 Ом?

1057. Четыре провода — медный, алюминиевый, железный и никелиновый — с одинаковым сечением 1 мм² имеют одинаковое сопротивление 10 Ом. Какова длина каждого провода?

1058. Медная и алюминиевая проволоки имеют одинаковую длину. Какое сечение должно быть у алюминиевой проволоки, чтобы ее сопротивление было таким же, как у медной проволоки с площадью поперечного сечения 2 мм²?

1059. Для реостата, рассчитанного на 20 Ом, используют никелиновую проволоку длиной 100 м. Найдите сечение проволоки.

1060. Железная проволока сопротивлением 2 Ом имеет длину 8 м. Каково ее сечение?

1061. Длина металлической нити электролампочки равна 25 см, удельное электрическое сопротивление материала нити ρ = 0,2 Ом • м. Каково сечение нити, если ее сопротивление в нагретом состоянии равно 200 Ом?

1062. Для реостата, рассчитанного на 20 Ом, нужно взять никелиновую проволоку длиной 5 м. Какого сечения должна быть проволока?

1063. Если вместо никелиновой проволоки в предыдущей задаче взять для реостата железную проволоку такого же размера, то каково будет сопротивление реостата?


1064. Может ли медный провод длиной 100 м с поперечным сечением 4 мм² иметь сопротивление 5 Ом?


1065. Медная спираль, состоящая из 200 витков проволоки сечением 1 мм², имеет диаметр 5 см. Определите сопротивление спирали.


1066. По никелиновому проводнику длиной 10 м, сечением 0,5 мм2 проходит ток силой 1 А….

1067. Вычислить удельное сопротивление круглого провода, диаметр сечения которого 1 см, если кусок этого провода длиной 2,5 м имеет сопротивление 0,00055 Ом.

1068. Чему равно удельное сопротивление ртути при 0 °С?

1069. Два куска железной проволоки имеют одинаковый вес, а длина одного из этих кусков в 10 раз больше длины другого….

1070. Какой длины потребуется взять константановую проволоку сечением 1 мм2 для изготовления эталона в 2 Ом?

1071. Из манганиновой проволоки изготовлен эталон, который имеет сопротивление 100 Ом при 15 °С. Каково будет сопротивление этого эталона при 5 °С?

1072. Сколько требуется меди на провод длиной 10 км, сопротивление которого должно быть 10 Ом? Плотность меди ρ = 8,5 г/см3.


1073. Для изготовления реостата сопротивлением 2 Ом взяли железную проволоку сечением 3 мм². Определите массу проволоки.

1074. Никелиновая спираль электроплитки имеет длину 5 м и площадь поперечного сечения 0,1 мм². Плитку включают в сеть с напряжением 220 В. Какой силы ток будет в спирали в момент включения электроплитки?

1075. Через реостат течет ток силой 2,4 А. Каково напряжение на реостате, если он изготовлен из константа- новой проволоки длиной 20 м и сечением 0,5 мм²?

1076. Каково напряжение на концах железной проволоки длиной 12 см и площадью поперечного сечения 0,04 мм², если сила тока, текущего через эту проволоку, равна 240 мА?


1077. Для изготовления нагревательного прибора, рассчитанного на напряжение 220 В и силу тока 2 А, необходима никелиновая проволока диаметром 0,5 мм. Какой длины надо взять проволоку?

 

Находить сопротивление. «Электрическое сопротивление

Содержание:

Появление электрического тока наступает при замыкании цепи, когда на зажимах возникает разность потенциалов. Перемещение свободных электронов в проводнике осуществляется под действием электрического поля. В процессе движения, электроны сталкиваются с атомами и частично передают им свою накопившуюся энергию. Это приводит к уменьшению скорости их движения. В дальнейшем, под влиянием электрического поля, скорость движения электронов снова увеличивается. Результатом такого сопротивления становится нагревание проводника, по которому течет ток. Существуют различные способы расчетов этой величины, в том числе и формула удельного сопротивления, применяющаяся для материалов с индивидуальными физическими свойствами.

Электрическое удельное сопротивление

Суть электрического сопротивления заключается в способности того или иного вещества превращать электрическую энергию в тепловую во время действия тока. Данная величина обозначается символом R, а в качестве единицы измерения используется Ом. Значение сопротивления в каждом случае связано со способностью того или иного .

В процессе исследований была установлена зависимость от сопротивления. Одним из основных качеств материала становится его удельное сопротивление, меняющееся в зависимости от длины проводника. То есть, с увеличением длины провода, возрастает и значение сопротивления. Данная зависимость определяется как прямо пропорциональная.

Другим свойством материала является площадь его поперечного сечения. Она представляет собой размеры поперечного среза проводника, независимо от его конфигурации. В этом случае получается обратно пропорциональная связь, когда с увеличением площади поперечного сечения уменьшается .

Еще одним фактором, влияющим на сопротивление, является сам материал. Во время проведения исследований была обнаружена различная сопротивляемость у разных материалов. Таким образом, были получены значения удельных электрических сопротивлений для каждого вещества.

Выяснилось, что самыми лучшими проводниками являются металлы. Среди них самой низкой сопротивляемостью и высокой проводимостью обладают и серебро. Они применяются в наиболее ответственных местах электронных схем, к тому же медь имеет сравнительно низкую стоимость.

Вещества, удельное сопротивление которых очень высокое, считаются плохими проводниками электрического тока. Поэтому они используются в качестве изоляционных материалов. Диэлектрические свойства более всего присущи фарфору и эбониту.

Таким образом, удельное сопротивление проводника имеет большое значение, поскольку с его помощью можно определить материал, из которого был изготовлен проводник. Для этого измеряется площадь сечения, определяется сила тока и напряжение. Это позволяет установить значение удельного электрического сопротивления, после чего, с помощью специальной таблицы можно легко определить вещество. Следовательно, удельное сопротивление относится к наиболее характерным признакам того или иного материала. Этот показатель позволяет определить наиболее оптимальную длину электрической цепи так, чтобы соблюдался баланс .

Формула

На основании полученных данных можно сделать вывод, что удельным сопротивлением будет считаться сопротивление какого-либо материала с единичной площадью и единичной длиной. То есть сопротивление, равное 1 Ом возникает при напряжении 1 вольт и силе тока 1 ампер. На этот показатель оказывает влияние степень чистоты материала. Например, если к меди добавить всего лишь 1% марганца, то ее сопротивляемость увеличится в 3 раза.

Удельное сопротивление и проводимость материалов

Проводимость и удельное сопротивление рассматриваются как правило при температуре 20 0 С. Эти свойства будут отличаться у различных металлов:

  • Медь . Чаще всего применяется для изготовления проводов и кабелей. Она обладает высокой прочностью, стойкостью к коррозии, легкой и простой обработкой. В хорошей меди доля примесей составляет не более 0,1%. В случае необходимости медь может использоваться в сплавах с другими металлами.
  • Алюминий . Его удельный вес меньше, чем у меди, однако у него более высокая теплоемкость и температура плавления. Чтобы расплавить алюминий, потребуется энергии значительно больше, чем для меди. Примеси в качественном алюминии не превышают 0,5%.
  • Железо . Наряду с доступностью и дешевизной, этот материал обладает высоким удельным сопротивлением. Кроме того, у него низкая устойчивость к коррозии. Поэтому практикуется покрытие стальных проводников медью или цинком.

Отдельно рассматривается формула удельного сопротивления в условиях низких температур. В этих случаях свойства одних и тех же материалов будут совершенно другими. У некоторых из них сопротивляемость может упасть до нулевой отметки. Такое явление получило название сверхпроводимости, при которой оптические и структурные характеристики материала остаются неизменными.

На практике нередко приходится рассчитывать сопротивление различных проводов. Это можно сделать с помощью формул или по данным, приведенным в табл. 1.

Влияние материала проводника учитывается с помощью удельного сопротивления, обозначаемого греческой буквой? и представляющего собой длиной 1 м и площадью поперечного сечения 1 мм2. Наименьшим удельным сопротивлением? = 0,016 Ом мм2/м обладает серебро. Приведем среднее значение удельного соп ротивления некоторых проводников:

Серебро — 0,016, Свинец — 0,21, Медь — 0,017, Никелин — 0,42, Алюминий — 0,026, Манганин — 0,42, Вольфрам — 0,055, Константан — 0,5, Цинк — 0,06, Ртуть — 0,96, Латунь — 0,07, Нихром — 1,05, Сталь — 0,1, Фехраль — 1,2, Бронза фосфористая — 0,11, Хромаль — 1,45.

При различных количествах примесей и при разном соотношении компонентов, входящих в состав реостатных сплавов, удельное сопротивление может несколько измениться.

Сопротивление рассчитывается по формуле:

где R — сопротивление, Ом; удельное сопротивление, (Ом мм2)/м; l — длина провода, м; s — площадь сечения провода, мм2.

Если известен диаметр провода d, то площадь его сечения равна:

Измерить диаметр провода лучше всего с помощью микрометра, но если его нет, то следует намотать плотно 10 или 20 витков провода на карандаш и измерить линейкой длину намотки. Разделив длину намотки на число витков, найдем диаметр провода.

Для определения длины провода известного диаметра из данного материала, необходимой для получения нужного сопротивления, пользуются формулой

Таблица 1.


Примечание. 1. Данные для проводов, не указанных в таблице, надо брать как некоторые средние значения. Например, для провода из никелина диаметром 0,18 мм можно приблизительно считать, что площадь сечения равна 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток равен 0,075 А.

2. Для другого значения плотности тока данные последнего столбца нужно соответственно изменить; например, при плотности тока, равной 6 А/мм2, их следует увеличить в два раза.

Пример 1. Найти сопротивление 30 м медного провода диаметром 0,1 мм.

Решение. Определяем по табл. 1 сопротивление 1 м медного провода, оно равно 2,2 Ом. Следовательно, сопротивление 30 м провода будет R = 30 2,2 = 66 Ом.

Расчет по формулам дает следующие результаты: площадь сечения провода: s= 0,78 0,12 = 0,0078 мм2. Так как удельное сопротивление меди равно 0,017 (Ом мм2)/м, то получим R = 0,017 30/0,0078 = 65,50м.

Пример 2. Сколько никелинового провода диаметром 0,5 мм нужно для изготовления реостата, имеющего сопротивление 40 Ом?

Решение. По табл. 1 определяем сопротивление 1 м этого провода: R= 2,12 Ом: Поэтому, чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Проделаем тот же расчет по формулам. Находим площадь сечения провода s= 0,78 0,52 = 0,195 мм2. А длина провода будет l = 0,195 40/0,42 = 18,6 м.

Собрав электрическую цепь, состоящую из источника тока, резистора, амперметра, вольтметра, ключа, можно показать, что сила тока (I ), протекающего через резистор, прямо пропорциональна напряжению (U ) на его концах:

I — U . Отношение напряжения к силе тока U/I — есть величина постоянная .

Следовательно, существует физическая величина, характеризующая свойства проводника (резистора), по которому течёт электрический ток. Эту величину называют электрическим сопротивлением проводника, или просто сопротивлением. Обозначается сопротивление буквой R .

(R) – это физическая величина, равную отношению напряжения (U ) на концах проводника к силе тока (I ) в нём. R = U/I . Единица измерения сопротивления – Ом (1 Ом ).

Один Ом — сопротивление такого проводника, в котором сила тока равна 1А при напряжении на его концах 1В:

1 Ом = 1 В / 1 А.

Причина того, что проводник обладает сопротивлением, заключается в том, что направленному движению электрических зарядов в нём препятствуют ионы кристаллической решетки , совершающие беспорядочное движение. Соответственно, скорость направленного движения зарядов уменьшается.

Удельное электрическое сопротивление R ) прямо пропорционально длине проводника (l ), обратно пропорционально площади его поперечного сечения (S ) и зависит от материала проводника. Эта зависимость выражается формулой: R = p*l/S

р — это величина, характеризующая материал, из которого сделан проводник. Она называется

удельным сопротивлением проводника , её значение равно сопротивлению проводника длиной 1 м и площадью поперечного сечения 1 м 2 .

Единицей удельного сопротивления проводника служит: [р] = 1 0м 1 м 2 / 1 м . Часто площадь поперечного сечения измеряют в мм 2 , поэтому в справочниках значения удельного сопротивления проводника приводятся как в Ом м так и в Ом мм 2 / м .

Изменяя длину проводника, а следовательно его сопротивление, можно регулировать силу тока в цепи. Прибор, с помощью которого это можно сделать, называется реостатом .

Мы начинаем публикацию материалов новой рубрики “” и в сегодняшней статье речь пойдет о фундаментальных понятиях, без которых не проходит обсуждение ни одного электронного устройства или схемы. Как вы уже догадались, я имею ввиду ток, напряжение и сопротивление 😉 Кроме того, мы не обойдем стороной закон, который определяет взаимосвязь этих величин, но не буду забегать вперед, давайте двигаться постепенно.

Итак, давайте начнем с понятия напряжения .

Напряжение.

По определению напряжение – это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля – это скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:

В пространстве действует постоянное электрическое поле, напряженность которого равна E . Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:

В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:

И в итоге получаем формулу, связывающую напряжение и напряженность:

В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи – это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, “напряжение в резисторе” – не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и “землей” . Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию “земля” 🙂 Так вот “землей” в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).

Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения . Единицей измерения является Вольт (В) . Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт , необходимо совершить работу, равную 1 Джоулю . С этим вроде бы все понятно и можно двигаться дальше 😉

А на очереди у нас еще одно понятие, а именно ток .

Ток, сила тока в цепи.

Что же такое электрический ток ?

Давайте подумаем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны…Рассмотрим проводник, к которому приложено определенное напряжение :

Из направления напряженности электрического поля (E ) мы можем сделать вывод о том, что title=»Rendered by QuickLaTeX.com»> (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:

Где e – это заряд электрона.

И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотическим движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток 🙂

Ток – это упорядоченное движение заряженных частиц под воздействием электрического поля.

Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.

Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E . И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы 🙂

Для того, чтобы оценить ток в цепи придумали такую величину как сила тока. Итак, сила тока (I ) – это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер . Сила тока в проводнике равна 1 Амперу , если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон .

Мы уже рассмотрели понятия силы тока и напряжения , теперь давайте разберемся каким образом эти величины связаны. И для этого нам предстоит изучить, что же из себя представляет сопротивление проводника .

Сопротивление проводника/цепи.

Термин “сопротивление ” уже говорит сам за себя 😉

Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться ) прохождению электрического тока.

Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S :

Сопротивление проводника зависит от нескольких факторов:

Удельное сопротивление – это табличная величина.

Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:

Для нашего случая будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м , а площадь поперечного сечения равна 0.2 кв. мм . Тогда:

Как вы уже поняли из примера, единицей измерения сопротивления является Ом 😉

С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи .

И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:

Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.

Рассмотрим простейшую электрическую цепь:

Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:

Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:

Как видите, все несложно 🙂

Пожалуй на этом мы и закончим сегодняшнюю статью, спасибо за внимание и до скорых встреч! 🙂

Понятие об электрическом сопротивлении и проводимости

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Сопротивление обозначается латинскими буквами R или r .

За единицу электрического сопротивления принят ом.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью.

Электрической проводимостью называется способность материала пропускать через себя электрический ток.

Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/R ,обозначается проводимость латинской буквой g.

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа — 0,12, удельное сопротивление константана — 0,48, удельное сопротивление нихрома — 1-1,1.



Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника :

R = р l / S ,

Где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм 2 .

Площадь поперечного сечения круглого проводника вычисляется по формуле:

S = π d 2 / 4

Где π — постоянная величина, равная 3,14; d — диаметр проводника.

А так определяется длина проводника:

l = S R / p ,

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

S = р l / R

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

р = R S / l

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Еще одной причиной, влияющей на сопротивление проводников, является температура .

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1°C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.

Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .

Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре — 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

Электрическая проводимость и сопротивление проводников

Понятие об электрическом сопротивлении и проводимости

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Сопротивление обозначается латинскими буквами R или r .

За единицу электрического сопротивления принят ом.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью.

Электрической проводимостью называется способность материала пропускать через себя электрический ток.

Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/ R ,обозначается проводимость латинской буквой g.

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа — 0,12, удельное сопротивление константана — 0,48, удельное сопротивление нихрома — 1-1,1.

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника :

где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм 2 .

Площадь поперечного сечения круглого проводника вычисляется по формуле:

где Пи — постоянная величина, равная 3,14; d — диаметр проводника.

А так определяется длина проводника:

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Еще одной причиной, влияющей на сопротивление проводников, является температура .

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1° C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.

Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов .

Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре — 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении свободные электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.

Таким образом, электроны, проходя по проводнику, встречают сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическим сопротивлением проводника (оно обозначается латинской буквой r) обусловлено явление преобразования электрической энергии в тепловую при прохождении электрического тока по проводнику. На схемах электрическое сопротивление обозначается так, как показано на рис. 18.

За единицу сопротивления принят 1 ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому, вместо того чтобы писать: «Сопротивление проводника равно 15 ом», можно написать просто: r = 15 Ω.

1000 ом называется 1 килоом (1 ком, или 1 к Ω).

1 000 000 ом называется 1 мегом (1 мгом, или 1 MΩ).

Прибор, обладающий переменным электрическим сопротивлением и служащий для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются, как показано на рис. 18. Как правило, реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток поразному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника тоже оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, константан’, никелин и др.) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от длины проводника, поперечного сечения проводника, материала проводника, температуры проводника.

При сравнении сопротивлений проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Сопротивление (в омах) проводника длиной 1 м, сечением 1 мм 2 называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

Сопротивление проводника можно определить по формуле

где r — сопротивление проводника, ом;

ρ — удельное сопротивление проводника;

l — длина проводника, м;

S — сечение проводника, мм2.

Из указанной формулы получаем размерность для удельного сопротивления

В табл. 1 даны удельные сопротивления некоторых проводников.

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,13 ом. Чтобы получить 1 ом сопротивления, нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро — 1 ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро — лучший проводник, но большая стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм» обладает сопротивлением 0,0175 ом. Чтобы получить сопротивление в 1 ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Подробная характеристика металлов и сплавов приведена в табл. 2.

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2 :

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм2:

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример3. Для радиоприемника необходимо намотать сопротивление в 30 ом из никелиновой проволоки сечением 0,21 мм2. Определить необходимую длину проволоки:

Пример 4. Определить сечение нихромовой проволоки длиной 20 Ж, если сопротивление ее равно 25 ом:

Пример 5. Проволока сечением 0,5 мм2 и длиной 40 м имеет сопротивление 16 ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Ранее было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включен амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40—50%. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 ом первоначального сопротивления и на 1 0 температуры, называется температурным коэффициентом сопротивления и обозначается буквой α (альфа).

Если при температуре t сопротивление проводника равно r, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200° С).

В табл. 3 приводим значения температурного коэффициента сопротивления а для некоторых металлов.

Из формулы для температурного коэффициента сопротивления определим rt

:

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°,

если сопротивление ее при 0° было 100 ом:

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15° имел сопротивление 20 ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 ом. Определить температуру печи:

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и наоборот. Поэтому сопротивление и проводимость проводника являются обратными величинами.

Если сопротивление проводника обозначается буквой r, то проводимость определяется как . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (или в сименсах).

Пример 8. Сопротивление проводника равно 20 ом. Определить его проводимость.

Если r = 20 ом, то

Пример 9. Проводимость проводника равна 0,1 . Определить его сопротивление.

Если , то

Направленному движению электрических зарядов в любом проводнике препятствуют его молекулы и атомы. Величина, характеризующая противодействие электрической цепи прохождению электрического тока, называется электрическим сопротивлением (сопротивлением).

Сопротивление обозначается буквой R, единица измерения 1 Ом.

Для оценки электрических свойств материала проводника служит удельное сопротивление ρ – это сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм 2 .

Сопротивление проводника зависит от материала (удельного сопротивления), длины Lи поперечного сечения S, а также температуры. В металлических проводниках с ростом температуры сопротивление увеличивается.

Электропроводность вещества (проводимость) – это свойство вещества проводить электрический ток. Это величина обратная сопротивлению, обозначается g, измеряется в сименсах, См.

В зависимости от электропроводности все вещества делятся на:

проводники (хорошо проводят электрический ток) – металлы, растворы солей, кислот, щелочей, уголь, графит. В электротехнике для изготовления проводов используют алюминий и медь;

диэлектрики (изоляторы) – практически не проводят электрический ток. к ним относятся: воздух, газы, слюда, пластмассы, фарфор, лаки, эмали, каучук и т.д.

полупроводники – по проводимости занимают промежуточное положение между проводниками и диэлектриками (кремний, германий)

Закон Ома выражает соотношение между ЭДС (напряжением), сопротивлением и силой тока.

Закон Ома для участка цепи

Сила тока на участке электрической цепи равна напряжению на зажимах этого участка, деленному на его сопротивление.

Закон Ома для электрической цепи (замкнутой)

Сила тока в замкнутой цепи прямо пропорциональна ЭДС и обратно пропорциональна полному сопротивлению цепи.

Полное сопротивление равно сумме внешнего R и внутреннего r сопротивлений. Внутреннее сопротивление – это сопротивление источника электрического тока.

Для измерения силы тока в цепи используется амперметр, он включается в цепь последовательно (цепь тока разрывается и в месте разрыва концы проводов присоединяются к зажимам амперметра).

Для измерения напряжения применяют вольтметр, он включается параллельно.

Схема включения амперметра и вольтметра

Работа и мощность электрического тока

Проходя по проводнику, электрический ток совершает работу, которую обычно называют электрической энергией.

Электрическая энергия (W) или работа (A), совершаемая электрическим током, равна произведению напряжения, силы тока в цепи и времени его прохождения.

Работа измеряется в джоулях, Дж, электрическую энергию обычно измеряют в киловатт-часах, кВт*ч, т.к. джоуль очень маленькая единица измерения.

1 кВт*ч=3600000 Дж

Мощностью называется работа, производимая (или потребляемая) в одну секунду.

Мощность обозначается буквой Р и измеряется в ваттах, Вт.

Для измерения мощности применяются ваттметры, а для измерения электрической энергии – электрические счетчики.

Тепловое действие тока. Закон Джоуля — Ленца.

При прохождении электрического тока по проводнику в результате столкновения с атомами проводник нагревается. Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля – Ленца.

Количество выделенного тепла Q, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока через проводник.

Количество тепла измеряется в джоулях, Дж.

Сумма токов, входящих в узел равна сумме токов, выходящих из узла.

Узел – это точка. в которой соединяются три и более проводов.

Термины применяемые в электроэнергетике

Как определить сечение кабеля по диаметру. Пошаговая инструкция

Зависимость сопротивления от материала, длины и площади поперечного сечения проводника

В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.

Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.

Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.

Из формулы

видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.

Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.

Сопротивление тела человека

· Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм. Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых меняется во времени, в третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.

· Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц.

Электрическое сопротивление проводников
 
 

S D22 ,

  • S – площадь сечения провода, мм
  • D- диаметр токопроводящей жилы провода. Измерить его можно с помощью штангенциркуля.

Более удобный вид формулы площади сечения провода:

Небольшая поправка — является округленным коэффициентом. Точная расчетная формула:

В электропроводке и электромонтаже в 90 % случаях применяется медный провод. Медный провод по сравнению с алюминиевым проводом, имеет ряд преимуществ. Он более удобен в монтаже, при такой же силе токе имеет меньшую толщину, более долговечен. Но чем больше диаметр (площадь сечения), тем выше цена медного провода. Поэтому, несмотря на все преимущества, если сила тока превышает значение 50 Ампер, чаще всего используют алюминиевый провод. В конкретном случае используется провод, имеющий алюминиевую жилу 10 мм и более.

В квадратных миллиметрах измеряют площадь сечения проводов. Наиболее чаще всего на практике (в бытовой электрике), встречаются такие площади сечения: 0,75; 1,5; 2,5; 4 мм .

Существует иная система измерения площади сечения (толщины провода) — система AWG, которая используется, в основном в США. Ниже приведена таблица сечений проводов по системе AWG, а так же перевод из AWG в мм .

Выделяют, три основные принципа, при выборе сечения провода.

1. Для прохождения электрического тока, площадь сечения провода (толщина провода), должна быть достаточной. Понятие достаточно означает, что когда проходит максимально возможный, в данном случае, электрический ток, нагрев провода будет допустимый (не более 600С).

2. Достаточное сечение провода, что бы падение напряжения не превышало допустимого значения. В основном это относится к длинным кабельным линиям (десятки, сотни метров) и токам большой величины.

3. Поперечное сечение провода, а также его защитная изоляция, должна обеспечивать механическую прочность и надежность.

Для питания, например люстры, используют в основном лампочки с суммарной потребляемой мощностью 100 Вт (ток чуть более 0,5 А).

Выбирая толщину провода, необходимо ориентироваться на максимальную рабочую температуру. Если температура будет превышена, провод и изоляция на нем будут плавиться и соответственно это приведет к разрушению самого провода. Максимальный рабочий ток для провода с определенным сечением ограничивается только максимально его рабочей температурой. И временем, которое сможет проработать провод в таких условиях.

Далее приведена таблица сечения проводов, при помощи которой в зависимости от силы тока, можно подобрать площадь сечения медных проводов. Исходные данные – площадь сечения проводника.

Максимальный ток для разной толщины медных проводов. Таблица 1.

Сечение токопроводящей жилы, мм 2

Ток, А, для проводов, проложенных

ОтветыMail.Ru формула удельного сопротивления проводника

Учебник открой. Удельное электрическое сопротивление, или просто удельное сопротивление вещества характеризует его способность проводить электрический ток. Единица измерения удельного сопротивления в СИ — ом·метр (Ом·м) . Физический смысл удельного сопротивления в СИ: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 кв. м; . Величина удельного сопротивления обозначается символом р (ро) . Вывод: Удельное сопротивление проводника – это характеристика данного проводника, оно не рассчитывается и не имеет формулы для расчета. Наоборот, при помощи его рассчитывается сопротивление проводника заданных размеров.

p=RS/L Такая пойдет?

Александр, сейчас вас тут кое-кто”переучит” на другую сторону.. . Удельное сопротивление проводника измеряется в Омах, умноженных на мм. в квадрате, деленное на метр. Это не что иное как сопротивление проводника сечением 1 мм. в квадрате. и длиной 1 метр. Един. измерения Ом. поскольку сопротивление (Ом) = (удельное сопротивление (ро) х длину (м) ) и деленное на площадь сечения (S) Значит удельное сопротивление (ро) =(R х S) / L это то-же самое, что написал GP, причем написал абсолютно правильно. Я только смог дополнить пояснением . Другую формулу вам не кто не напишет, разве что только шарлатаны.. . Тут другого объяснения и расширенного толкования просто быть не может.. . Это правильный ответ.. .

Ищем сечение провода по диаметру формула

Провода в кабеле имеют в поперечном сечении форму круга. Потому при расчетах пользуемся формулой площади круга. Ее можно найти используя радиус (половину измеренного диаметра) или диаметр (смотрите формулу).

Определяем сечение провода по диаметру: формула

Например, посчитаем площадь поперечного сечения проводника (проволоки) по размеру, рассчитанному ранее: 0,68 мм. Давайте сначала используем формулу с радиусом. Сначала находим радиус: делим диаметр на два. 0,68 мм / 2 = 0,34 мм. Далее эту цифру подставляем в формулу

S = π * R 2 = 3,14 * 0,34 2 = 0,36 мм 2

Считать надо так: сначала возводим в квадрат 0,34, потом умножаем полученное значение на 3,14. Получили сечение данного провода 0,36 квадратных миллиметров. Это очень тонкий провод, который в силовых сетях не используется.

Давайте посчитаем сечение кабеля по диаметру, используя вторую часть формулы. Должно получиться точно такое же значение. Разница может быть в тысячные доли из-за разного округления.

S = π/4 * D 2 = 3.14/4 * 0,68 2 = 0,785 * 0,4624 = 0,36 мм 2

В данном случае делим число 3,14 на четыре, потом возводим диаметр в квадрат, две полученные цифры перемножаем. Получаем аналогичное значение, как и должно быть. Теперь вы знаете, как узнать сечение кабеля по диаметру. Какая из этих формул вам удобнее, ту и используйте. Разницы нет.

Порядок проведения расчётов

Для того чтобы определить сечение провода, необходимо сперва измерить его диаметр. Для этого нам понадобится штангенциркуль либо микрометр. Так как нас интересует непосредственно окружность самого проводника, то предварительно необходимо будет зачистить его от изоляции. Если при покупке вам сделать это не позволят, тогда можно приобрести минимально допустимый кусок, после чего и проводить следующие манипуляции.

Когда необходимый параметр замерен, уже несложно будет рассчитать непосредственно и само сечение. Если интересует вопрос, чем производить замер предпочтительнее, то, можно сказать, что чем выше точность замера, тем и более точным будет конечный результат.

Бывают ситуации, когда в наличии просто нет ни штангенциркуля, ни микрометра. В таком случае сделать соответствующие замеры мы вполне сможем и при помощи простой линейки. Но здесь может встать необходимость покупать тестовый кусок, так как очистить от изоляции придётся сантиметров 10-15, и маловероятно, что это разрешат сделать бесплатно.

Как только провод освобождён от изоляции, его стоит намотать на цилиндрическую часть отвёртки

Обращайте внимание, чтобы витки прилегали как можно плотнее друг к другу, не оставляя зазоров. Концы с краёв должны быть выведены в одну из сторон, чтобы получившиеся витки имели законченную форму

Что касается количества витков, то это не принципиально, хотя лучше делать их 10, так как легче будет вести расчёт.

Осталось лишь измерить и высчитать непосредственно толщину нашего провода. Для этого измеряем длину используемых витков. Далее это значение делим на количество витков – полученный результат и будет искомым диаметром. В качестве примера возьмём количество витков 10. Длина всех этих десяти витков — 6,8 мм. Следовательно, 6,8 делим на 10, получаем 0,68. Именно это значение и есть искомый результат. Имея эти данные, можно искать и непосредственно сечение.

Как определить сечение провода кабеля для ввода в дом или квартиру

Самое первое, что нам нужно сделать, это рассчитать общую потребляемую мощность своей квартиры или дома. Как же это сделать? Да очень просто. Берем листок бумаги и пишем туда весь перечень электрических приборов, которые будут питаться от нашего кабеля.

Например:

чайник
микроволновая печь
стиральная машина
электрическая плита
холодильник
компьютер
телевизор
светильники
утюг
кондиционер.

У каждого электрического прибора имеется своя установленная мощность и указывается она в паспорте или на стикере. Напротив каждого электрического прибора пишем его мощность. Единица измерения — Ватт (Вт) или килоВатт (КВт). И считаем путем сложения суммарную установленную мощность своей квартиры, дома, дачи. Заметим, что расчет будем вести для однофазной (220 В) системы электроснабжения. Предположим, что у Вас получилось 16000 Вт или 16 КВт. Полученную мощность умножаем на коэффициент одновременного использования электроприборов (0,7-0,8) — этот коэффициент показывает, что Вы можете включить одновременно 70%-80% всего вышеперечисленного электрооборудования.

Для примера возьмем 0,8. 16000 х 0,8 = 12800 (Вт) = 12,8 (кВт) .

В зависимости от вида электропроводки (в воздухе или земле), материала жил и напряжения выбираем сечение. В данном примере у нас вводной кабель в квартиру выполнен медным трехжильным кабелем марки ВВГнг и проложен открыто. Получаем сечение кабеля 10 кв.мм.

Рассмотрим второй пример. Допустим, у нас в котедже имеется трехфазный асинхронный двигатель типа мощностью 550 (Вт), обмотки которого подключены звездой на напряжение 380 (В). Нам необходимо для него выбрать и определить сечение питающего кабеля. Смотрим номинальный ток двигателя при соединении звездой, указанный на бирке. Он составляет 1,6 (А) . Питающий кабель планируем приобрести медным, прокладывать будем по воздуху. Ищем соответствующие строки по таблице и находим необходимое сечение. Получаем 1,5 кв. мм. Сечение питающего кабеля для двигателя можно найти и по его мощности.

Сечение провода рассчитывают по следующей формуле:

S = π*r2 ,

где S – сечение провода, мм2; π – число равное 3,14; r — радиус провода, мм, который равен половине диаметра.

Диаметр провода токоведущей жилы без изоляции измеряют микрометром или штангенциркулем. Сечение жилы многопроволочных проводов и кабелей определяют по сумме сечений всех проволок.

Пользуются также другой формулой: S = 0,78d², где d – диаметр провода.

Знать связь между сопротивлением и длиной

Мы знаем, что сопротивление — это сопротивление, создаваемое току, протекающему по цепи. Сопротивление — это предотвращение серьезного бедствия, такого как короткое замыкание или значительный ущерб собственности.

Однако сопротивление имеет хорошее отношение к длине.

Предположим, что сопротивление — это прерыватель скорости, а скорость вашего автомобиля — текущая. Теперь, когда прерыватель скорости находится посреди дороги, а не на ее концах.Вы попытаетесь вывести свой скоростной автомобиль с обочины дороги, сбитый транспортным средством, и попасть в аварию.

Взаимосвязь между длиной и сопротивлением

В приведенном выше примере мы обсудили, как длина и сопротивление связаны друг с другом. А теперь поговорим об этом подробнее.

Теперь вы встречаетесь с дорогой, на которой в два раза больше предохранителей, чем раньше. Теперь вы должны быть очень уверены, прежде чем дойдете до края прерывателя скорости, потому что в это время ваш очень быстроходный автомобиль пройдет через множество резисторов (прерывателей скорости), и ваш автомобиль в конечном итоге замедлится.

Итак, математически уравнение может быть выражено следующим образом:

R ∝ L …… (1)

Вы едете на своем автомобиле по дороге, и вам необходимо пересекать ограничители скорости, потому что перед вами есть большая пробка на дороге. Теперь, если длина меньше, и вместо того, чтобы раздвигать эти отбойные молотки на расстояние, они соединяются встык, так что вы заметили, что площадь уменьшается вдвое, но если вы едете быстро, ваш автомобиль снова подпрыгнет. есть риск.

Итак, здесь, даже если длина меньше; однако площадь уменьшена вдвое, все равно нужно действовать медленно.Это означает, что сопротивление прямо пропорционально, даже если площадь уменьшена вдвое.

Итак, математически мы можем записать уравнение как:

R ∝ 1 / A …… (2)

Теперь давайте разберемся с длиной сопротивления провода с точки зрения физики.

Взаимосвязь между сопротивлением и длиной провода

Предположим, что есть два проводника в виде прямоугольных пластин (они идентичны по форме и размеру), соединенных встык. Каждый из них имеет длину «L» и площадь поперечного сечения как «A».

(Изображение будет загружено в ближайшее время)

Когда разность потенциалов «V» приложена к любой из плит, ток «I» начинает течь. Итак, по закону Ома, мы имеем соотношение:

ROLD = V / I…. (3)

Где R — сопротивление между проводниками, которое одинаково в каждом и измеряется в Ом. Поскольку эти два проводника расположены бок о бок, общая длина становится 2L, а ток в них становится I / 2, потому что если I — это полный ток, протекающий через оба проводника, а V — это одинаковая разность потенциалов на проводниках, поэтому каждый из этих проводников получает ток I / 2.

Итак, новое сопротивление комбинации составляет R c , и математически мы выводим наше выражение следующим образом:

\ [R_ {c} = \ frac {V} {I / 2} = \ frac {2V} {I} \]

Рассматривая уравнение (3), мы находим уникальную взаимосвязь между старым сопротивлением и сопротивлением комбинации, которая выглядит следующим образом:

Rc = 2 ROLD… .. (4)

Уравнение (4) подразумевает, что при удвоении длины сопротивление комбинированных плит, т. Е. Rc, становится в два раза больше старого сопротивления «R».

Сопротивление и длина провода

Теперь снова рассмотрим те же две плиты. Здесь вместо того, чтобы размещать их рядом, мы размещаем их друг над другом. Мы можем увидеть это расположение ниже:

(Изображение будет загружено в ближайшее время)

Здесь мы можем заметить одну вещь: длина каждого проводника остается L, однако площадь поперечного сечения, то есть, A / 2 ‘вместо’ A ‘, потому что площадь каждого добавленного значения становится’ A ‘. Здесь есть одна общая черта: общий ток по обоим проводникам равен «I», поэтому по каждому проводнику ток снова будет «I / 2».

Используя снова закон Ома, мы получаем уравнение:

ROLD1 = V / I…. (5)

Теперь запишем уравнение для сопротивления комбинации как:

\ [R_ {p} = \ frac {V} {I / 2} = \ frac {2V} {I} \] …… (6)

Из уравнений (5) и (5) мы получаем новое соотношение:

RP = 2 ROLD1 … .. (7)

Из уравнения (7) мы можем заметить, что при уменьшении площади вдвое сопротивление удваивается.

Мы пришли к выводу, что при удвоении длины и уменьшении вдвое площади поперечного сечения сопротивление удваивается в каждом случае, что означает, что мы доказали соотношения в уравнениях (1) и (2).Теперь мы найдем новые отношения, так что приступим.

Связь между сопротивлением и длиной

Здесь мы объединим уравнение (1) и (3):

R ∝ L / A

Теперь, удалив знак пропорциональности, мы получим следующую формулу сопротивления на единицу длины :

R = L / A… .. (8)

Или,

⍴ = RA / L

Здесь ⍴ называется константой пропорциональности или удельным сопротивлением или удельным сопротивлением материала проводника.Измеряется в Ом-м.

Итак, сопротивление на единицу длины еще называют удельным сопротивлением материала (проводника).

⍴ = R / L (где A — постоянное значение).

Электропроводник. Сопротивление, сечение, длина

Токопроводящая жила. Сопротивление, сечение, длина

Контрольно-измерительные приборы и автоматика

Windows ⁄ Android ⁄ macOS ⁄ iOS

В электротехнике иногда необходимо рассчитать параметры проводника в зависимости от вещества, из которого он сделан, сопротивления, сечения, длины и температуры.В приложение Instrumentation & Automation встроено устройство, которое позволяет вычислить:

  • Сопротивление электрического проводника с точки зрения его длины, поперечного сечения, температуры и вещества, из которого он сделан.
  • Длина электрического проводника в зависимости от его поперечного сечения, температуры и вещества, из которого он сделан.
  • Сечение электрического проводника для заданного тока ⁄ мощности.

Электрические свойства проводника сильно зависят от материала, из которого он сделан. Наиболее важные из них:

  • Удельное сопротивление проводящего вещества [ρ] , измеренное в Ом · м в международной системе единиц (СИ). Это означает, что единица удельного сопротивления в системе СИ — это удельное сопротивление вещества, при котором однородный проводник длиной 1 м и площадью поперечного сечения 1 м², сделанный из этого вещества, имеет сопротивление 1 Ом.
    Также часто используется внесистемная единица Ом · мм² / м .
    1 Ом · мм² / м = 10 −6 Ом · м
  • Температурный коэффициент электрического сопротивления [α] характеризует зависимость электрического сопротивления от температуры и измеряется в Кельвинах за вычетом первой степени К -1 . Это величина, равная относительному изменению удельного / электрического сопротивления вещества при изменении температуры на одну единицу. Расчет удельного сопротивления ρ t при произвольной температуре t выполняется по классической формуле (1):

    ρ t = ρ 20 [1 + α (t — 20)]

    ρ t — удельное сопротивление при температуре t
    t — температура
    ρ 20 — удельное сопротивление при 20 ° C
    α — температурный коэффициент сопротивления
    Формула применима в небольшом диапазон температур: от 0 до 100 ° С.За пределами этого диапазона или для получения точных результатов используются более сложные вычисления.

Ниже представлена ​​таблица наиболее популярных металлов для изготовления проводов с указанием их удельного сопротивления и температурных коэффициентов электрического сопротивления. Данные взяты из разных источников. Следует отметить, что как удельное сопротивление проводника, так и его температурный коэффициент электрического сопротивления зависят от чистоты металла, а в случае сплавов (стали) они могут существенно отличаться от марки к марке.

9017 9017 90,000 9 0,000 При расчете свойств электрического проводника приложение Instrumentation & Automation работает со следующими входными / выходными параметрами и их единицами измерения:

  • Вещество, из которого сделан проводник (см. Таблицу 1)
  • Длина проводника. мм, см, м, км, дюймы, футы, ярды
  • Температура проводника. ° С, ° F
  • Диаметр проводника. мм
  • Сечение проводника. мм², kcmil
    kcmil — тысяча круговых милов = 0,5067 мм²
  • Сопротивление проводника. Ом, кОм, МОм

Ниже на рисунках показаны скриншоты модулей приложения Instrumentation & Automation для расчета параметров проводника.

Расчет сопротивления электрического проводника

Рассчитываем сопротивление электрического проводника по формуле:

R = ρ * L / S

  • R — сопротивление электрического проводника
  • ρ — удельное сопротивление
    рассчитано по формуле (1): ρ = ρ 20 [1 + α (t — 20)]
    • ρ 20 — удельное сопротивление проводника при температуре t = 20 ° C (таблица 1)
    • t — температура проводника
    • α — температурный коэффициент электрического сопротивления (таблица 1)
  • L — длина электрического проводника
  • S — сечение электрического проводника

Расчет длины электрического проводника

Рассчитываем длину электрического проводника по формуле:

L = R * S / ρ

  • L — длина электрического проводника
  • R — сопротивление электрического проводника
  • S — сечение электрического проводника
  • ρ — удельное сопротивление
    рассчитывается по формуле (1): ρ = ρ 20 [1 + α (t — 20)]
    • ρ 20 — удельное сопротивление проводника при температуре t = 20 ° C (таблица 1)
    • t — температура проводника
    • α — температурный коэффициент электрического сопротивления (таблица 1)

Расчет сечения электрического проводника

Минимальное сечение электрического проводника при допустимых потерях напряжения рассчитывается по формуле:

S = I * ρ * L / ΔU

  • S — сечение электрического проводника
  • I — ток в электрической цепи
  • L — длина электрического проводника
    с двухпроводной линией, длина жилы (значение L) увеличена вдвое
  • ΔU — допустимая потеря напряжения
  • ρ — удельное сопротивление
    рассчитывается по формуле (1): ρ = ρ 20 [1 + α (t — 20)]
    • ρ 20 — удельное сопротивление проводника при температуре t = 20 ° C (таблица 1)
    • t — температура проводника
    • α — температурный коэффициент электрического сопротивления (таблица 1)

открытых учебников | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 7A

        • Марка 7Б

        • Оценка 7 (вместе A и B)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 8А

        • Марка 8Б

        • Оценка 8 (вместе A и B)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • 9 класс (A и B вместе)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • Марка 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5А

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 6А

        • Марка 6Б

        • 6 класс (A и B вместе)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственное ограничение заключается в том, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки каким-либо образом, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (версии без марочного знака)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием — дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

Значение сопротивления проводника и как его рассчитать

В этом выпуске серии «Практикующий техник» мы рассмотрим расчет, необходимый для определения сопротивления данного проводника.Этот параметр, о котором часто забывают, может быть важным при попытке определить подходящий диаметр проволоки для конкретного применения. При оценке эффективности приложения также важно учитывать сопротивление проводника. Более низкое сопротивление означает меньшее рассеивание мощности проводником. Оптимизация этих двух аспектов сопротивления проводника для вашего конкретного применения может привести к значительному сокращению затрат на внедрение и эксплуатационных расходов. Важно знать сопротивление, обеспечиваемое данным проводником, а также понимать, в какой степени это сопротивление влияет на приложение и его работу.По этой причине мы рассмотрим некоторые важные аспекты сопротивления проводника, а также кратко их опишем и обсудим.

Какие факторы определяют сопротивление данного проводника?

Есть три фактора, которые определяют количество сопротивления, которое будет иметь данный проводник. Они проиллюстрированы здесь соотношением, используемым для расчета сопротивления проводника.

Начнем с признания очевидного факта, что длина проводника влияет на его общее сопротивление.Чем больше длина данного проводника, тем большее сопротивление будет у него. Это ясно видно из приведенных выше соотношений.

Удельное сопротивление материала проводника играет важную роль в общем сопротивлении. Это связано с тем, что разные материалы, например золото или медь, обладают разным сопротивлением постоянному току. Материалы проводников обычно выбираются на основе рентабельности и пригодности. Удельное сопротивление материалов некоторых из наиболее распространенных проводников, используемых сегодня, указано ниже.

Последним важным фактором, определяющим сопротивление проводника, является площадь поперечного сечения данного проводника. Важно отметить обратную зависимость между площадью поперечного сечения проводника и сопротивлением проводника. Как видно из приведенного примера, чем меньше площадь поперечного сечения проводника, тем больше становится значение сопротивления проводника. Это означает, что, хотя использование проводов меньшего диаметра может быть дешевле, существует компромисс с сопротивлением.

Каким образом сопротивление проводника может быть значительным?

Это соотношение обеспечивает средство определения сопротивления проводника, которое можно использовать для изучения потерь мощности, которые влияют на общую эффективность приложения. Это соотношение также можно изменить, чтобы вычислить площадь. Это рассчитанное значение площади поперечного сечения затем можно использовать для определения диаметра проволоки, необходимого для конкретного применения. В видео-анимации, представленной по ссылке ниже, мы исследуем шаги, необходимые для определения минимального диаметра провода, который может использоваться при заданных конкретных критериях, касающихся длины проводника и допустимого сопротивления проводника.Как указывалось ранее, эти два соображения влияют на затраты на внедрение и эксплуатационные расходы, и их стоит изучить.

Если вам понравился этот пост, ознакомьтесь с нашими предыдущими статьями из серии «Практикующий техник»;

Использование натурального логарифма или функции «ln» в анализе цепей
Как создать правильные уравнения ветвления закона Ома KCL для узлового анализа
Как решить одновременные уравнения с несколькими неизвестными
Преобразование параллельных цепей RL в их последовательные эквиваленты, с которыми «легче работать»
Общие правила для взвешенных систем счисления
Утилита поиска эквивалентной схемы Thevenin

Мы надеемся, что это было полезно для вас как практикующего специалиста или студента.Мы ждем ваших отзывов или других идей о серии статей для практикующих специалистов. Сообщите нам свои идеи о том, о чем вы хотели бы, чтобы мы писали, отправив нам свои мысли и вопросы по адресу [email protected].

Факторы, влияющие на сопротивление — GeeksforGeeks

Проводник имеет большое количество свободных электронов. Когда к концам проводника прикладывается разность потенциалов, свободные электроны перемещаются от одного конца к другому концу проводника.Когда электроны дрейфуют или движутся, они сталкиваются с атомами (ионами) проводника. Эти столкновения препятствуют движению свободных электронов от одного конца к другому концу проводника. Это противодействие потоку свободных электронов из-за столкновений с ионами в проводнике известно как сопротивление проводника . Чем больше столкновений подвергаются электроны в проводнике, тем большее сопротивление оказывает проводник.

Что такое закон Ома?

Джордж Саймон Ом (немецкий физик) 1826 г. изучал взаимосвязь между электрическим током и разностью потенциалов на концах проводника.Связь между электрическим током и разностью потенциалов известна как закон Ома .

Этот закон гласит, что электрический ток, протекающий в проводнике, прямо пропорционален разности потенциалов на концах проводника, при условии, что температура и другие физические условия проводника остаются неизменными.

Математически этот закон можно сформулировать как:

Электрический ток (I) ∝ Разность потенциалов (В)


⇒ I ∝ V

или

В ∝ I

V = I × R

где R — коэффициент пропорциональности, известный как сопротивление проводника.

Таким образом, закон Ома может быть сформулирован как отношение разности потенциалов на конце проводника к току, протекающему по нему, остается постоянным, если температура и другие физические условия проводника остаются неизменными.

График между V и I представляет собой прямую линию, проходящую через начало координат, показано ниже на рисунке:

График V-I

Сопротивление

В электрической цепи сопротивление является мерой сопротивления току.Греческая буква омега (Ом) используется для обозначения сопротивления в омах. Георг Симон Ом (1784-1854), немецкий физик, исследовавший взаимосвязь между напряжением, током и сопротивлением, — это имя, данное Ом. Говорят, что закон Ома сформулировал он.



В некоторой степени все материалы сопротивляются току. Они делятся на две группы: проводники и изоляторы.

  • Материалы с низким сопротивлением, которые позволяют электронам свободно перемещаться, называются Проводниками .

например: Серебро, медь, золото и алюминий.

  • Материалы с высоким сопротивлением, препятствующие свободному течению электронов, называются Изоляторы .

например: Резина, бумага, стекло, дерево и пластик.

Измерения сопротивления обычно используются для определения состояния компонента или цепи как:

  • Чем меньше ток, тем выше сопротивление. Поврежденные проводники из-за горения или коррозии могут быть одной (среди многих) потенциальных причин чрезмерно высокого напряжения.Поскольку все проводники выделяют некоторое количество тепла, перегрев является проблемой, которая часто связана с сопротивлением.
  • Чем выше выходной ток, тем меньше сопротивление. Две возможные причины — повреждение изоляторов влагой или перегрев.

Математически сопротивление проводника можно оценить с помощью закона Ома как:

Согласно закону Ома,

V = I × R

Измените приведенное выше выражение для R как,

R = V / I

Следовательно, сопротивление проводника определяется как отношение напряжения и тока, протекающего через проводник.



Таким образом, единица измерения сопротивления может быть определена как:

R = V / I = 1 Вольт (В) / 1 Ампер (A)

= 1 В / 1 A

= 1 Ом (Ом )

Следовательно, единицей сопротивления является Ом (Ом) .

Факторы, влияющие на сопротивление

Давайте проведем эксперимент, чтобы изучить факторы, от которых зависит сопротивление проводника. Подключите различные электрические компоненты, как показано на приведенной ниже принципиальной схеме:

Здесь сопротивление R подключено через источник напряжения V на концах A и B.Схема находится в режиме ВКЛ, так как ключ K вставлен в розетку. Следовательно, ток течет в цепи, показанной амперметром A. Следовательно, следующие факторы зависят от сопротивления проводника:

1. Длина проводника: Рассмотрим медный провод длиной 1 м и подключите его между клеммами A и B цепи. Обратите внимание на показания амперметра. Теперь возьмем еще один медный провод такой же площади сечения, но длиной 2 м. Подключите его между клеммами A и B, отсоединив предыдущий провод.Снова обратите внимание на показания амперметра. Будет обнаружено, что показание амперметра (т.е. электрический ток) во втором случае составляет половину показания амперметра в первом случае.

  • Так как I = V / R, сопротивление второго провода в два раза больше сопротивления первого провода.
  • Показывает, что сопротивление проводника прямо пропорционально длине проводника.
  • Таким образом, чем больше длина проводника, тем больше его сопротивление.

2. Площадь поперечного сечения проводника: Теперь возьмем два медных провода одинаковой длины, но разной площади поперечного сечения. Пусть площадь поперечного сечения первого провода больше, чем площадь поперечного сечения второго провода. Подключите первый провод между клеммами A и B в цепи, показанной на рисунке выше. Обратите внимание на показания амперметра. Теперь отсоедините первый провод и подключите второй провод между клеммами A и B. Снова отметьте показания амперметра.Будет обнаружено, что показание амперметра (т. Е. Электрический ток) больше, когда первый провод (т. Е. Толстый провод) подключен между A и B, чем показание амперметра, когда второй провод (т. Е. Тонкий провод) подключается между клеммами A и B.



  • Это показывает, что сопротивление проводника обратно пропорционально площади поперечного сечения проводника.
  • Таким образом, сопротивление тонкой проволоки больше, чем сопротивление толстой.

3. Влияние природы материала: Возьмите два одинаковых провода, один из меди, а другой из алюминия. Подключите медный провод между клеммами A и B. Запишите показания амперметра. Теперь подключите алюминиевый провод между клеммами A и B. Снова обратите внимание на показания амперметра. Установлено, что показание амперметра при подключении медного провода в цепи больше, чем показание амперметра при подключении алюминиевого провода в цепи.

  • Это означает, что сопротивление медной проволоки меньше сопротивления алюминиевой проволоки.
  • Следовательно, сопротивление провода или проводника зависит от природы материала проводника.

4. Влияние температуры проводника: Если температура проводника, подключенного к цепи, увеличивается, его сопротивление увеличивается.

Заключение:

Таким образом, факторы, от которых зависит сопротивление проводника, следующие:

(i) его длина (l),

(ii) Площадь поперечного сечения (A) ,

(iii) характер материала и

(iv) его температура.

Удельное сопротивление или удельное сопротивление

Экспериментально установлено, что сопротивление проводника составляет:

  1. прямо пропорционально его длине (l) или R l.
  2. Обратно пропорционально площади его поперечного сечения (A) или R ∝ 1 / A.


Давайте объединим эти два условия для сопротивления как

R ∝ l / A

или

R = ρ × l / A

где ρ — константа пропорциональности, известная как Удельное сопротивление или Удельное сопротивление проводника.

Измените приведенное выше выражение для ρ,

ρ = R × A / l

  • Таким образом, Удельное сопротивление проводника определяется как сопротивление проводника единичной длины и единичной площади поперечного сечения. раздел.
  • Другими словами, удельное сопротивление проводника определяется как сопротивление, оказываемое четырьмя кубическими проводниками со стороной 1 м потоку тока через противоположную поверхность проводника.
  • В системе CGS единицей удельного сопротивления или удельного сопротивления является Ом-см (Ом-см) .
  • В системе СИ единица удельного сопротивления или удельного сопротивления составляет Ом-метр (Ом-м).

Чтобы лучше понять концепцию и формулу удельного сопротивления, рассмотрим следующий пример:

Пример: провод с сопротивлением 20 Ом вытягивается так, что его длина увеличивается вдвое по сравнению с исходной длиной. Рассчитайте сопротивление нового провода.

Решение:

Учитывая, что

Сопротивление проводника R составляет 20 Ом.

Если исходная длина проводника равна l, то новая длина (l ’) провода равна 2l.

Итак, если исходная площадь поперечного сечения равна A, а новая площадь поперечного сечения равна A ‘, тогда:

Так как l’ = 2l, следовательно, A ‘= A / 2.

В случае исходного проводника, исходное сопротивление:

R = ρ × l / A

20 Ω = ρ × l / A …… (1)

Теперь, в случае нового проводника, новое сопротивление:

R ‘= ρ × l ‘/ A’


= (ρ × 2l) / (A / 2)

= (4 × ρ × l) / A

Используйте уравнение (1) в приведенном выше выражении и решите, чтобы вычислить R ‘.

R ’= 4 × 20 Ом

= 80 Ом

Следовательно, сопротивление нового провода составляет 80 Ом .

Примеры проблем

Задача 1. Найдите сопротивление проводника, если ток, протекающий по нему, равен 0,3 А, а приложенная разность потенциалов составляет 0,9 В.

Решение:

Учитывая, что,

Ток I равен 0,3 A.

Приложенная разность потенциалов V равна 0.9 В.

Теперь используйте формулу:

R = V / I

= 0,9 В / 0,3 A

= 3 Ом

Следовательно, сопротивление проводника составляет 3 Ом .

Проблема 2: Нагреватель имеет сопротивление 50 Ом и подключен к источнику питания 220 В, рассчитайте ток в нагревателе.

Решение:

Учитывая, что

Сопротивление нагревателя R равно 50 Ом.

Разность потенциалов, В составляет 220 В.

Теперь используйте формулу:

V = I × R

Измените приведенное выше выражение для I как,

I = V / R

= 220 В / 50 Ом

= 4,4 A

Следовательно, ток в ТЭНе 4,4 А .

Задача 3. Удельное сопротивление железа и ртути определяется как 10,0 x 10 -8 и 94 x 10 -8 Ом · см соответственно. Какой дирижер лучше?

Решение:

Материал с низким удельным сопротивлением считается хорошим проводником электричества.

Следовательно, Железо является хорошим проводником, чем Меркурий.

Задача 4: Определить сопротивление 1 Ом.

Решение:

Считается, что сопротивление проводника составляет 1 Ом, если разность потенциалов в 1 вольт на концах проводника заставляет ток в 1 ампер проходить через него.

Задача 5: Пусть сопротивление электрического компонента остается постоянным, в то время как разность потенциалов на концах компонентов уменьшается до половины своего прежнего значения.Какое изменение произойдет с током через него?

Решение:

Поскольку, I = V / R, когда V ‘= V / 2

I’ = V / 2R = I / 2

Таким образом, ток в компонентах становится половина прежней стоимости.

Вниманию читателя! Не прекращайте учиться сейчас. Присоединяйтесь к курсу First-Step-to-DSA для учащихся 9–12 классов , , специально разработанного для ознакомления со структурами данных и алгоритмами учащихся 9–12 классов


Lay Direction and Length | Фиск Сплав

Скрученные жилы изготавливаются путем скручивания жил неизолированного провода.Направление скручивания обозначается как «направление укладки». Степень скручивания на единицу длины определяет «укладочную длину».

Направление укладки

Направление свивки определяется направлением поворота машины во время операции скручивания. Обычный метод определения направления прокладки — это наблюдение за верхней поверхностью многожильного проводника, один конец которого направлен к вам, а провод идет от вас:

Если пряди повернуты влево от наблюдателя и имеют такой же наклон, как и середина буквы «S», условное обозначение обозначает направление укладки «S».

Если пряди поворачиваются вправо в сторону от наблюдателя и имеют такой же наклон, как и середина буквы «Z», соглашение обозначает направление укладки «Z».

Длина упора

Длина свивки определяется как расстояние, необходимое для совершения одного оборота жилы вокруг диаметра проводника.

Когда проводник имеет более одного слоя, это обычно относится к длине свивки внешнего слоя. В случае Unilay, Equilay и bunch длина укладки всех слоев одинакова.В True Concentric и Unidirectional длина свивки внутренних слоев меньше, это также верно и для веревочных конструкций.

Общепринятые практики

Существуют некоторые общие методы, относящиеся к направлению укладки и длине проводника, как указано в отраслевых стандартах, таких как ASTM, NEMA и военные, однако требования для конкретных приложений различаются.

  • Направление внешнего слоя: Направление от внешнего слоя прядей или элементов обычно S.Направление внутреннего слоя зависит от конструкции (True концентрический, Unilay и т. Д.).
  • Длина внешнего слоя: Уложенная длина внешнего слоя прядей или элементов варьируется в зависимости от применения.
  • Для большинства применений проводников в стандарте ASTM B 286 указана длина свивки в 8-16 раз больше внешнего диаметра данного слоя. допуск и контроль геометрического рисунка.Недостатком меньшей длины свивки, равной 12 раз или меньше, является немного больший вес на единицу длины.
  • Для применений с 7 прядями и связками, где жесткие допуски по диаметру не представляют особой важности, обычно используются длины скрутки, превышающие 30-кратный наружный диаметр. Заказчики иногда предпочитают более длинные укладки из соображений стоимости, выхода и веса.

Коэффициенты скручивания

Увеличение веса и сопротивления из-за скручивания можно рассчитать математически.ASTM называет это увеличение скручиванием или «k-фактором», определяемым как «возрастающий процент (увеличение) веса и электрического сопротивления». ASTM B 8, B 229, B 231 и другие дают метод расчета « k »:

k = 100 (м — 1)

Где k — приращение (увеличение) массы и электрического сопротивления, коэффициент m — это отношение массы или электрического сопротивления единицы длины многожильного проводника к массе или сопротивлению мононити проводника того же сечения или длина скрутки многожильного проводника бесконечна (все жилы параллельны оси).Коэффициент м жилы представляет собой среднее значение коэффициентов для каждого из отдельных проводов в проводе, включая прямую жилу провода, если таковая имеется (для которой коэффициент свивки равен единице).

Коэффициент свивки m ind для любого данного провода в концентрическом многожильном проводе рассчитывается следующим образом:

Где n = (длина свивки) + (диаметр винтовой траектории проволоки)

Пример: коэффициент свивки для 19-жильного проводника — это среднее числовое значение 19-ти отдельных жил:

м = (1 + 6 м 6 = 12 м 12 ) ÷ 19

Где m 6 = m ind , рассчитанное для каждой из 6 нитей внутреннего слоя

и m 12 = m ind рассчитано для каждой из 12 нитей внешнего слоя

Электротехника


В статье « Введение в систему заземления » я объяснил следующие моменты:
  1. Введение
  2. Определение сопротивления заземления
  3. Удельное сопротивление грунта

Сегодня я объясню, как рассчитать сопротивление заземления.

2.2 Расчет сопротивления заземления




Следующая формула (источник: IEEE Std.142: 1991) позволяет рассчитать сопротивление заземления.




Где:

R = сопротивление в Ом
ρ = удельное сопротивление в Ом · см
d = расстояния в см



S = расстояние между заземляющими стержнями

Коэффициент пространства для нескольких заземляющих стержней будет следующим:







2.2.1 Расчет сопротивления заземления для подстанций

В идеале система заземления должна быть как можно ближе к нулевому сопротивлению. Для большинства передающих и других более крупных подстанций сопротивление заземления должно составлять около 1 Ом или меньше. На небольших распределительных подстанциях обычно приемлемый диапазон от 1 до 5 Ом, в зависимости от местных условий. Оценка общего сопротивления удаленного заземления — один из первых шагов при определении размера и базовой компоновки системы заземления.

Минимальное значение сопротивления заземления подстанции в однородном грунте можно оценить с помощью формулы круглой металлической пластины на нулевой глубине после определения удельного сопротивления грунта.

Используйте следующую формулу для оценки минимального сопротивления, которое можно ожидать при проектировании системы заземления:


Где:

Rg = сопротивление заземления в Ом.



ρ = среднее удельное сопротивление земли в Ом / м.

A = площадь, занимаемая наземной сеткой в ​​квадратных метрах.

Π = 3,14

Пример № 1:



Каково сопротивление сети системы, если ρ = 250 Ом / м и A = 3500 м2?

Решение:

Расчет по приведенной выше формуле дает следующие результаты:

Итак, Rg = 1,87 Ом

Далее, верхний предел удельного сопротивления подстанции может быть получен путем добавления второго члена к приведенной выше формуле. .Второй термин учитывает тот факт, что сопротивление любой реальной системы заземления, состоящей из ряда проводников, выше, чем у сплошной металлической пластины. Эта разница будет уменьшаться с увеличением длины скрытых проводников, приближаясь к 0 для бесконечного L, когда достигается состояние твердой пластины. (IEEE-80)

Чтобы оценить верхний предел, используйте формулу:


Где:

Rg = сопротивление заземления в Ом.



ρ = среднее удельное сопротивление земли в Ом / м.Это измерение должно быть нанесено на отпечатки или может использоваться 1000 Ом / м.

A = площадь, занимаемая наземной сеткой в ​​квадратных метрах.

L = общая скрытая длина проводников в метрах.

Π = 3,14


Таблица 1
Металл Удельное сопротивление [ρ]
при t = 20 ° C, Ом · мм² / м
Температурный коэффициент электрического сопротивления
[α], K −1
Медь 0,0175 0,0043
Алюминий 0,0271 0,0039
Сталь 0,125 0,006
0,02 0,020041
Золото 0,023 0,004
Платина 0,107 0,0039
Магний 0,044 0,0039 0,044 0,0039 9017 0,12 0,0044
Вольфрам 0,055 0,005
Никель 0,087 0.0065
Никелайн 0,42 0,0001
Нихром 1,1 0,0001
Фехраль 1,25 1,25
Используйте приведенную выше формулу, чтобы приблизительно сопротивление заземления системы, а не в качестве замены фактические наземные измерения.

Общая длина заглубления представляет собой комбинацию горизонтальных и вертикальных проводников в сети, а также заземляющих стержней.L можно рассчитать как:


Где:



LC = общая длина сетевого проводника (м)

LR = общая длина заземляющих стержней (м)

Было определено лучшее приближение с учетом глубины сетки


Где

h : глубина сетки (м)

Эти уравнения показывают, что чем больше площадь и чем больше общая длина используемого заземляющего проводника, тем ниже сопротивление заземляющей сети.

3- Проверка установки заземляющего проводника сети

Ваша проверка сетевой системы начинается с проверки плана расположения станции, на котором показано все основное оборудование и конструкции.

Площадь системы заземления является самым важным геометрическим фактором при определении сопротивлений сети. Большие заземленные области приводят к более низкому сопротивлению сети и, следовательно, более низким напряжениям GPR и сетки.

Расчет наземной сети основан на трех основных параметрах:


  1. Максимальный предполагаемый ток замыкания на землю, проходящий между системой заземления и телом земли,
  2. Продолжительность протекания этого тока (исходя из продолжительности 1 секунда),
  3. Удельное сопротивление грунта и характер грунта на участке.

Невозможно использовать номинальный кратковременный ток выключателей или три секунды для первых двух. из вышеперечисленных параметров. Даже в районах с низким удельным сопротивлением почвы это будет трудно, если не невозможно, разработать электрод, подходящий для такого долг. Поэтому необходимо определить максимальный ток и его продолжительность потока (1 секунда, заданная конструкцией), которую электрод должен безопасно передавать на Землю или от нее.

3.1 Рекомендации и требования к проектированию


  • Сплошная петля из проводов окружает периметр, чтобы охватить как можно большую площадь. Эта практика помогает избежать высокой концентрации тока и, следовательно, высоких градиентов как в области сети, так и вблизи выступающих концов кабеля. Увеличение площади также снижает сопротивление заземляющей сети.
  • Внутри контура проводники проложены параллельными линиями и, где это возможно, вдоль конструкций или рядов оборудования, чтобы обеспечить короткие заземляющие соединения.
  • Типичная электросеть для подстанции может включать в себя неизолированные медные проводники сечением 70 или 120 квадратных миллиметров (мм2) № 4/0 или 2/0 AWG, проложенные на глубине 18 дюймов (0,5 м) ниже уровня земли, минимум, с интервалом от 10 до 20 на расстоянии 3–6 м друг от друга в виде сетки. При перекрестных соединениях надежно соедините проводники между собой термитной сваркой, пайкой или одобренными компрессионными соединителями. Стержни заземления должны быть размещены по углам решетки и не должны находиться на расстоянии менее 6 футов друг от друга по конструкции.
  • Энергосистема обычно простирается по всей подстанции подстанции и часто за линией ограждения.Некоторые нормы требуют, чтобы заземляющий провод был проложен на расстоянии около 3 футов (1 м) снаружи и параллельно забору. Используйте несколько заземляющих проводов или проводов большего размера, где могут возникать высокие концентрации тока, например, соединение нейтрали с землей генераторов, конденсаторных батарей или трансформаторов.
  • Соотношение сторон сетки обычно составляет от 1: 1 до 1: 3, если точный анализ не требует более экстремальных значений. Частые перекрестные соединения относительно мало влияют на снижение сопротивления сети, но полезны для защиты нескольких путей от токов короткого замыкания.
  • Провод сечением 35 мм2 (2 AWG) или больше должен быть многожильным.
  • Некоторые нормы требуют использования луженой проволоки там, где удельное сопротивление почвы менее 70 Ом / м.
  • Избегайте резких изгибов всех заземляющих проводов.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *