Site Loader

Содержание

Помогаю с учёбой — Преподаватель Анна Евкова

Рада видеть вас на моем сайте. Если вы здесь – значит, вам необходима помощь с учебой.

Я, Анна Евкова, бывший преподаватель Самарского института информатики и вычислительной техники и моя команда преподавателей поможем вам справиться с трудностями в заданиях. Мы поможем с любым заданием от простого заказа в одну формулу, или если у вас будет заказ на написание большой работы примерно на 198 страниц — мы это тоже умеем!

Я всегда в вашем смартфоне, заказывайте где удобно и когда удобно — просто прислав файлы в Telegram!

Все заказы выполняются качественно, профессионально и высылаются раньше срока. Каждый выполненный заказ проходит проверку на плагиат, вы не сдадите на проверку одинаковую с кем-то работу. Ваш заказ будет уникальным!

Подготовимся онлайн совместно со мной или с преподавателем из моей команды, проработаем базовые темы, освоим сложные разделы, отработаем экзаменационные задания и подойдём к сдаче любого предмета максимально подготовленным и расскажем все секреты.

Лучшие университеты мира: МГУ и MIT

Моя видео презентация:

Пять простых шагов и всё будет на ❝отлично❞

 Шаг 1Сфотографируйте задание так, чтобы изображение было максимально четким. В чат 

прикрепите необходимые для выполнения вашей работы, лекции, учебники, методички и т. д. (если имеются). При необходимости напишите дополнительные пояснения.

 Шаг 2.  Все файлы пришлите мне в чат в Telegram.  

После этого я изучу и оценю. (Не забывайте чем больше времени, тем меньше цена!)

 Шаг 3.  Если всё понравится — оплатите. Оплатить можно с помощью баланса мобильного телефона, картой Visa и MasterCard, а также через Apple Pay и Google Pay.

 Шаг 4.  Приступаю к работе. Все необходимые требования и сроки будут соблюдены. Более 78% заказов отправляются в чат раньше указанного времени.

 Шаг 5.  Получаете заказ в чат. Если у вас возникнут вопросы, я подробно отвечу. Гарантия на заказ действует 1 год. В течение этого времени ошибки в заказе будут исправлены.

ТОП 5 ответов на ваши вопросы

Как вы работаете?

Для того, чтобы разобраться с этим вопросом, предлагаю ознакомиться с простым алгоритмом:

  1. Вы присылаете необходимые файлы с описанием в Telegram.
  2. Я знакомлюсь с файлами, и оцениваю заказ.
  3. Вы оплачиваете заказ.
  4. Я, или преподаватель, начинаем работу над заказом.
  5. В согласованный срок, или раньше, Вы получаете свою работу файлом в чат.

Какая будет цена?

Невозможно ответить на этот вопрос не изучив файлы. Стоимость определяется исходя из нескольких важных факторов: уровень сложности задания, определенные требования к оформлению.

Для точной оценки стоимости присылайте файлы в чат в Telegram. Например: лекции, методички, учебники (если такие имеются).

Какой срок выполнения?

Минимальный срок выполнения заказа варьируется от 2 до 4 дней. Главное помнить, что для срочных заказов цена будет увеличиваться, а срок выполнения сокращаться.

Как происходит оплата?

Оплатить можно с помощью баланса мобильного телефона, картой Visa и MasterCard, а также через Apple Pay и Google Pay.

Какие гарантии?

Любые ошибки, допущенные мной или преподавателем в заказе, исправим в течении 1 года.

Что обо мне говорят студенты и школьники

Разместила отзывы с Ютуба и чуть ниже с Вконтакте, остальные отзывы на моём ютуб канале и социальных сетях.

                       

Правовые документы:

Условия использования

Политика конфиденциальности

Помогаю с учёбой — Преподаватель Анна Евкова

Рада видеть вас на моем сайте. Если вы здесь – значит, вам необходима помощь с учебой.

Я, Анна Евкова, бывший преподаватель Самарского института информатики и вычислительной техники и моя команда преподавателей поможем вам справиться с трудностями в заданиях.

Мы поможем с любым заданием от простого заказа в одну формулу, или если у вас будет заказ на написание большой работы примерно на 198 страниц — мы это тоже умеем!

Я всегда в вашем смартфоне, заказывайте где удобно и когда удобно — просто прислав файлы в Telegram!

Все заказы выполняются качественно, профессионально и высылаются раньше срока.  Каждый выполненный заказ проходит проверку на плагиат, вы не сдадите на проверку одинаковую с кем-то работу. Ваш заказ будет уникальным!

Подготовимся онлайн совместно со мной или с преподавателем из моей команды, проработаем базовые темы, освоим сложные разделы, отработаем экзаменационные задания и подойдём к сдаче любого предмета максимально подготовленным и расскажем все секреты.

Лучшие университеты мира: МГУ и MIT

Моя видео презентация:

Пять простых шагов и всё будет на ❝отлично❞

 Шаг 1Сфотографируйте задание так, чтобы изображение было максимально четким. В чат прикрепите необходимые для выполнения

вашей работы, лекции, учебники, методички и т. д. (если имеются). При необходимости напишите дополнительные пояснения.

 Шаг 2.  Все файлы пришлите мне в чат в Telegram

После этого я изучу и оценю. (Не забывайте чем больше времени, тем меньше цена!)

 Шаг 3.  Если всё понравится — оплатите. Оплатить можно с помощью баланса мобильного телефона, картой Visa и MasterCard, а также через Apple Pay и Google Pay.

 Шаг 4.

  Приступаю к работе. Все необходимые требования и сроки будут соблюдены. Более 78% заказов отправляются в чат раньше указанного времени.

 Шаг 5.  Получаете заказ в чат. Если у вас возникнут вопросы, я подробно отвечу. Гарантия на заказ действует 1 год. В течение этого времени ошибки в заказе будут исправлены.

ТОП 5 ответов на ваши вопросы

Как вы работаете?

Для того, чтобы разобраться с этим вопросом, предлагаю ознакомиться с простым алгоритмом:

  1. Вы присылаете необходимые файлы с описанием в Telegram.
  2. Я знакомлюсь с файлами, и оцениваю заказ.
  3. Вы оплачиваете заказ.
  4. Я, или преподаватель, начинаем работу над заказом.
  5. В согласованный срок, или раньше, Вы получаете свою работу файлом в чат.

Какая будет цена?

Невозможно ответить на этот вопрос не изучив файлы. Стоимость определяется исходя из нескольких важных факторов: уровень сложности задания, определенные требования к оформлению.

Для точной оценки стоимости присылайте файлы в чат в Telegram. Например: лекции, методички, учебники (если такие имеются).

Какой срок выполнения?

Минимальный срок выполнения заказа варьируется от 2 до 4 дней. Главное помнить, что для срочных заказов цена будет увеличиваться, а срок выполнения сокращаться.

Как происходит оплата?

Оплатить можно с помощью баланса мобильного телефона, картой Visa и MasterCard, а также через Apple Pay и Google Pay.

Какие гарантии?

Любые ошибки, допущенные мной или преподавателем в заказе, исправим в течении 1 года.

Что обо мне говорят студенты и школьники

Разместила отзывы с Ютуба и чуть ниже с Вконтакте, остальные отзывы на моём ютуб канале и социальных сетях.

                       

Правовые документы:

Условия использования

Политика конфиденциальности

Лаборатория физики магнитных явлений — Русский

Лаборатория физики магнитных явлений http://kirensky.ru/ru/institute/labs/pmpl/pmpl http://kirensky.ru/@@site-logo/logo.png

Сотрудники лаборатории
Важнейшие публикации
Наиболее значимые результаты исследований
Лаборатория физики магнитных явлений сегодня (2017 год)

Современная лаборатория физики магнитных явлений характеризуется сочетанием нескольких взаимопроникающих и поддерживающих друг друга направлений. Есть две технологических группы: молекулярно –лучевая эпитаксия магнитных пленок и наноструктур в сверхвысоком вакууме (Сергей Николаевич Варнаков, Иван Александрович Яковлев, Сергей Александрович Лященко, Иван Анатольевич Тарасов, Дмитрий Валентинович Шевцов), рост магнитных монокристаллов и поликристаллов (Валерий Васильевич Руденко и Вячеслав Анатольевич Дудников), экспериментальные группы магнитооптических исследований магнитных материалов (Ирина Самсоновна Эдельман, Руслан Дмитриевич Иванцов, Оксана Станиславовна Иванова, Дмитрий Анатольевич Петров), спектроскопии магнитных материалов (Александр Валентинович Малаховский, Александр Леонидович Сухачев), группа транспортных и магнитных исследований (Наталья Валерьевна Казак), которая также активно использует современные синхротронные методики рентгеновской спектроскопии (Михаил Сергеевич Платунов), группа исследования магнитных наночастиц для биомедицинских применений (Алексей Эдуардович Соколов), группа синхротронных исследований структуры биомолекул с помощью малоуглового рассеяния рентгеновских лучей (Владимир Николаевич Заблуда). Есть две теоретические группы: расчеты методами теории функционала плотности свойств твердотельных материалов (Александр Семенович Федоров) и биомолекул (Феликс Николаевич Томилин), и группа по созданию новых методов расчета материалов с сильными электронными корреляциями (С.Г. Овчинников, Игорь Семенович Сандалов, Владимир Александрович Гавричков, Максим Михайлович Коршунов, Елена Игоревна Шнейдер, Юрий Сергеевич Орлов и Илья Александрович Макаров).

Казалось бы, при такой разнородности и широте тематик неминуема самоизоляция каждой группы. На самом деле это не так. Один пример: технологи из группы С.Н. Варнакова получили высококачественную монокристаллическую пленку ферромагнитного силицида Fe3Si, группа теоретиков под руководством И.С. Сандалова выполнила расчеты электронной структуры и оптических спектров поглощения тремя различными вариантами учета электронных корреляций за пределами теории функционала плотности, сравнение с измеренными экспериментально спектрами показало, что только наилучший с точки зрения теории метод с самосогласованным расчетом массового оператора дает согласие с экспериментов во всем диапазоне частот. Таких примеров можно привести немало.

Например, в группе И.С. Эдельман исследовались магнитооптические пленки наночастиц грейгита Fe3S4, а в группе А.С. Федорова были проведены зонные расчеты спин-поляризованных плотностей состояний. Было обнаружено совпадение энергий наблюдаемых пиков в спектрах с энергиями наиболее интенсивных межзонных переходов.

Другой пример: Н.В. Казак исследовала при низких температурах магнитные свойства редкоземельных кобальтитов GdCoO, полученных В.А. Дудниковым, и выделила вклад ионов гадолиния, сам В.А. Дудников провел высокотемпературные магнитные измерения и выделил вклад кобальта, А.С. Федоров и АА. Кузубов рассчитали в теории фукнционала плотности параметры элементарной ячейки в двух возможных состояниях ионов кобальта с высоким спином и с низким спином, прецизионная рентгеновская диффракция в широком интервале температур, измеренная Леонидом Александровичем Соловьевым из института химии и химической технологии, обнаружила области в образце с параметрами высокоспинового и низкоспинового состояния, А. Э. Соколов и В.Н. Заблуда исследовали спектры поглощения, Ю.С. Орлов рассчитал электронную структуру с учетом сильных электроных корреляций. В результате такого комплексного подхода была установлена природа необычно сильной связи между свойствами решетки, электронной и магнитной подсистем в редкоземельных кобальтитах.

Основные результаты  лаборатории «Физика магнитных явлений» в 2017 г.
  1. Магнитооптика и особенности электронных состояний наночастиц и нанослоев магнитных металлов и их соединений в составе нанострук-турированных композитных материалов и гибридных структур
    (И.С. Эдельман, Р.Д.Иванцов, О.С.Иванова, Ю.Э.Самошкина, В.Н.Заблуда, А.Э.Соколов, Петров Д.А.)

    За отчетный период исследовано взаимодействие электромагнитного излучения оптического диапазона с ансамблями наночастиц CuCr2Se4, Dy3Fe5O12 и пленочных структур на основе CuCr2Se4 и PrSrMnO3. Основное внимание уделено магнитному круговому дихроизму (МКД), измеряемому по методике, ранее разработанной участниками проекта. МКД – наиболее информативный магнитооптический эффект с точки зрения расшифровки структуры возбужденных состояний магнитоактивных ионов. Также проведены структурные и магнитные исследования, необходимые для интерпретации магнитооптических данных.

    Впервые синтезированы и изучены ансамбли наночастиц CuCr2Se4 в форме правильных нано-кристаллов, ориентированных в кристаллографичес-кой плоскости (111), в сопоставлении с аналогично ориентированными тонкими пленками такого же состава. Обнаружена тенденция наночастиц образовывать сборки в виде стопок, состоящих из ориентированных плоскостями друг к другу пластин (рисунок 1а). Вследствие магнито-статического взаимодействия в отсутствие внешнего поля магнитные моменты соседних нано-пластинок направлены противоположно друг другу и суммарный магнитный момент всех частиц близок к нулю (рисунок 1 б).

    Рис. 1. Электронно-микроскопическое изображение стопок нано-пластин (а), схемы ориентаций магнитных моментов наночастиц в стопках и ориентаций осей легкого намагничивания в отдельной нанопластинке (б).

    При приложении поля все моменты выстраиваются по его направлению, в результате появляется суммарный момент «стопки», что позволяет с помощью магнитного поля перемещать ее в нужном направлении. Показано, что магнитные, резонансные, транспортные и магнитооптические свойства как частиц, так и пленок обусловлены особенностями структуры и магнитной анизотропии.

    Впервые изучен МКД в оптическом диапазоне для ансамбля наночастиц диспрозиевого феррита-граната (ДИГ), синтезированных по новой модификации метода осаждения анионообменной смолы. В спектре МКД выявлены пики, связанные с электронными переходами в ионах железа и диспрозия, расположенных в различных спектральных интервалах (рисунок 2). Были изучены зависимости интенсивности пика МКД от величины температуры и внешнего магнитного поля. Впервые изучена температурная зависимость вклада редкоземельных ионов Dy в спектр МКД, что может быть использовано для более глубокого изучения свойств редкоземельных гранатов в области температуры магнитной компенсации.

    Рис. 2. Спектры МКД композитного образца, содержащего наночастицы ДИГ при температурах 90 К (красная линия) и 297 К (черная линия) (а). Максимум МКД, связанный с переходом 6h25/2 →6F5/2 в ионе Dy3+ при различных температурах (б). H=3 кЭ. Tкомпенсации≈215 K.

    Исследованы температурные зависимости магнитной восприимчивости (рисунок 3а) и электронного магнитного резонанса (рисунок 3б) в поликристаллических пленках Pr1−xSrxMnO3/YSZ (x = 0.2, 0.4). На основании результатов этих экспериментов сделано заключение, что в исследованных пленках толщиной 50–130 нм при температурах выше Tc (соответственно 115 К, 215 K) реализуется фаза, подобная фазе Гриффитса, представляющая собой ферромагнитные корреляции ближнего порядка в парамагнитной области.

    Рис. 3.Температурные зависимости магнитной восприимчивости и ее обратной величины для Pr1−xSrxMnO3/YSZ (d ∼ 100 нм) (а). Температурные зависимости спектров электронного магнитного резонанса в пленке Pr0. 6Sr0.4MnO3/YSZ (d ∼ 130 нм) (б).

  2. Отработка технологии создания и исследование магнитных наноструктур ферромагнетик/полупроводник как новых материалов спинтроники
    (С.Н.Варнаков, Лященко С.А., Максимова О.А., Тарасов И.А., Яковлев И.А.)

    Синтезированы наноматериалы на основе тонких пленок силицидов железа и марганца с целью создания планарных структур для спинтроники, в том числе пленки Fe1-xSix с сильной одноосной магнитной анизотропией, исследованы структура и магнитные свойства пленок методами in situ магнитооптической эллипсометрии. Предложен метод формирования планарных наноструктур на основе эпитаксиальных пленок Fe1-xSix на поверхности Si(111), выращенных методом молекулярно-лучевой эпитаксии. Проведена модернизация сверхвысоковакуумной многофункциональной установки, позволяющей в едином технологическом цикле получать полупроводниковые или металлические наноструктуры и исследовать их оптические и магнитооптические свойства в температурном диапазоне 85÷900 K. Для этого был разработан оригинальный держатель образца (Рисунок 4).

    Рис. 4.Держатель образца. 1 — винт, 2 — шайба, 3 –диэлектрические втулки, 4 — токопровод, 5 — контакты, 6 — ограничители, 7 – ограничительный элемент , 8 — платиновое термосопротивление ЧЭП-2888, 9 — крепление, 10 –держатель образца, 11 — шток, 12 – коаксиальная трубка, 13 -образец, 14 – диэлектрическая пластина.

    Возможности созданной системы были продемонстрированы на примере измерения температурной зависимости спектрограмм комплексной диэлектрической проницаемости объемного Si. Методика анализа магнитооптических данных, получаемых на упомянутой выше магнитоэллипсометрической установке. развита для двуслойной модели ферромагнитных наносруктур. Реализованные алгоритмы позволяют по данным измерений эллипсометрических параметров и поправок в них рассчитывать комплексный коэффициент преломления, а также комплексный магнитооптический параметр Фохта Q.

  3. Исследование взаимосвязи электронной структуры и магнитных свойств в новых магнитных материалах с низкомерными магнитными подсистемами и сильными электронными корреляциями с применением синхротронных методов
    (Н. В. Казак, В.А.Дудников, В.В.Руденко)

    Для раствор–расплавов на основе тримолибдата висмута (Bi2Mo3O12) определены основные параметры кристаллизации и найдены условия устойчивого роста монокристаллов Mn2-xFexBO4 (x=0.0, 0.3, 0.5, 0.7) и Co2.9Fe0.1BO5. Проведены измерения рентгеновской дифракции, решена кристаллическая структура, определен тип симметрии, параметры решетки. Измерены магнитные характеристики в широком интервале температур (Т=1.8–300 К) и полей (H=0–90 кЭ) при различной ориентации внешнего магнитного поля относительно С-оси. Определены основные параметры магнитной структуры. измерены XANES/EXAFS спектры (K – край поглощения Co, Mn, Fe). Определено отношение катионов Mn/Fe, Co/Fe и проведено уточнение химического состава. Определена симметрия локального окружения, межионные расстояния, фактор Дебая – Уоллера и их температурное изменение. Проведен теоретический расчет XANES спектров в монокристалле Mn2BO4 (FDMNES), анализ электронной структуры, эффективных зарядовых состояний. Выявлено влияние Fe-замещения на кристаллическую, локальную и магнитную структуры. Изучено зарядовое упорядочение в гомометаллическом варвиките Mn2BO4. Проведено измерение рентгеновской дифракции, XANES/EXAFS спектров в широком интервале температур (5-600 К). Получены и исследованы магнитные свойства монокристаллов Co+2 2Co+3 1-xFe+3 xBO5 (x=0.10) со структурой людвигита.

    Рис. 5. Экспериментальные температурные зависимости молярной теплоемкости, коэффициента объемного теплового расширения и рассчитанная зависимость dnHS/dT, характеризующая скорость заселения высокоспинового состояния.

    Для редкоземельных кобальтитов La1-xGdxCoO3, в которых состояние сильного сжатия достигается химическим давлением, экспериментально изучена корреляция температурных аномалий теплового расширения и теплоемкости с заселенностью высокоспиновых состояний (рис. 5) для всего ряда твердых растворов La1-xGdxCoO3, в которых лантаноидное сжатие стабилизирует низкоспиновое состояние с ростом концентрации Gd.

  4. Исследование оптических и магнитооптических свойств новых соединений редкоземельных элементов
    (А.В. Малаховский, Сухачев А.Л.)

    Изучены спектры поглощения монокристалла HoFe3(BO3)4 в интервале 8500-24500 cm-1 в функции от температуры от 2К. Ионы Ho3+ расположены в позициях с локальной симметрией C2. Однако обнаружено, что расщепление состояний иона, соответствующее переходу от симметрии D3 к C2 отсутствует, и поэтому идентификация состояний была осуществлена в симметрии D3. Наблюдалось скачкообразное изменение интенсивности и позиции линий поглощения при реориентационном магнитном фазовом переходе при 4.7K. Было обнаружено и измерено обменное расщепление некоторых возбуждённых состояний. Обменное расщепление изменяется при реориентационном переходе. Изучены поляризованные спектры поглощения и магнитного кругового дихроизма (МКД) монокристалла ErAl3(BO3)4 в интервале 10000-27000 cm-1 при 90 K. Штарковские компоненты расщепления основного и возбуждённого состояний были идентифицированы в терминах неприводимых представлений локальной симметрии D3. Спектры МКД позволили измерить Зеемановские расщепления переходов и, тем самым, определить изменения фактора Ланде при переходах. Спектры МКД позволили также идентифицировать некоторые состояния в представлении функций . Впервые обнаружены аномально интенсивные колебательные повторения f-f переходов. Предложена новая квантово-механическая теория естественной оптической активности (ЕОА), согласующаяся с феноменологической теорией. Эта теория показала принципиальное различие ЕОА разрешённых переходов и запрещённых по чётности f-f переходов. Измерены спектры поглощения и естественного кругового дихроизма (ЕКД) монокристалла ErAl3(BO3)4 в интервале 10000-28200 cm-1 при 90 K. Спектры поглощения и ЕКД были разложены на компоненты Лоренцовой формы, и была определена естественная оптическая активность (ЕОА) f-f переходов. Спектр ЕКД позволил обнаружить существование двух неэквивалентных позиций иона Er3+ в одном из возбуждённых состояний, которые обусловлены локальным изменением симметрии окружения иона Er3+ в возбуждённом состоянии. Обнаружена очень большая ЕОА вибронного перехода, которая объяснена с помощью предложенной нами теории..

  5. Теоретические расчеты электронной структуры, магнитных и сверхпроводящих свойств в системах с сильными электронными корреляциями и низкомерной магнитной структурой
    (В.А. Гавричков, М.М. Коршунов, Е.И. Шнейдер, С.Г. Овчинников, Ю.С. Орлов, И.А. Макаров)

    В рамках развитого ранее поляронного варианта обобщенного метода сильной связи P-GTB выявлен механизм появления температурной зависимости зонной структуры поляронов с сильным электрон-фононным и сильным кулоновским взаимодействием, и показано уширение спектральной функции поляронов на потолке валентной зоны в La2CuO4 с ростом температуры. Продолжено развитие методов кластерной теории возмущений, сочетающей пертурбативные и непертурбативные методы расчета двумерных систем с сильными электронными корреляциями. В рамках кластерной теории возмущений получены спектральные свойства модели Бозе-Хаббарда, описывающей системы ультрахолодных атомов в оптических решетках. Вычислены спиновая и зарядовая восприимчивости в двухзонной модели слоистых сверхпроводников на основе железа. В этой же модели рассчитаны спин-резонансные пики в случае неравных щелей для электронной и дырочной подсистем, проведено сравнение экспериментальных данных по частоте спинового резонанса и величины щели. Подготовлен и опубликован в УФН большой обзор по влиянию примесей на сверхпроводимость пниктидов и халькогенидов железа. Исследовано обменное взаимодействии оптически возбужденных ионов в мотовских диэлектриках. Показано, что межионное обменное взаимодействие изменяет фазовую диаграмму спиновых кроссоверов на плоскости (давление, температура), приводя к фазовым переходам первого рода со скачком магнитного момента и объема при низких температурах. Предложена поляронная модель псевдощелевого состояния в квазиодномерных системах.

  6. Первопринципные квантовомеханические расчеты наноструктур, нанокластеров и нанотруб с магнитными частицами, в том числе биологических наночастиц
    (А. С. Федоров, Ф.Н. Томилин)

    На основе GGA-DFT расчетов проведены исследования локализованных магнитных моментов внутренних дефектов (вакансий, междоузельных атомов и дефектов Френкеля) обоих видов для объемного материала и тонких нанопленок ZnO в фазе вюрцита. Показано, что внутри ZnO междоузельные атомы кислорода (Oi) или вакансии цинка (Znv), соответственно, индуцируют локализованные магнитные моменты 1,98 и 1,26 µB, величины которых значительно уменьшаются, когда расстояние между дефектами увеличивается. В то же время магнитные моменты дефектов кислорода Френкеля велики (~1,5-1,8 µB) и не зависят от расстояния между дефектами. Источником индуцированного ферромагнетизма внутри объемного ZnO является спиновая плотность на ближайших к дефекту атомах кислорода, ближайшем к дефекту. Наши экспериментальные результаты, проведенные с помощью СКВИД измерений пленок ZnO, подтверждают наши теоретические выводы о том, что происхождение намагниченности ZnO обусловлено Oi или Znv дефектами. Предложен новый метод расчета кинетической стабильности наноструктур при высоких температурах. Из первопринципных расчётов прогнозируется существование графеноподобного гексагонального нитрида хрома (h-CrN) с двумерной структурой, который имеет спин-поляризованную полуметаллическую природу с возможным ферромагнитным упорядочением.

Экспериментальное научное оборудование
  1. Установка МЛЭ «Ангара»,, модифицированная для напыления магнитных наноматериалов с эллипометрическим in situ контролем толщины и эффекта Керра.
  2. Спектральный эллипсометр «Эллипс-1891».
  3. Самодельный сверхвысоковакуумный технологический и исследовательский комплекс «Магнитоэллипсометр».
  4. Магнитооптический спектрофотометр с гелиевым криостатом и магнитным полем до 4,2 Т.
  5. Спектрометры для измерения магнитооптических эффектов Фарадея, магнитного кругового и линейного дихроизма.
Разработки
  1. Технология создания прозрачных постоянных магнитов на основе стекол с добавками магнитных наночастиц.
  2. Методы магнитоэллипсометрии для in situ и ex situ измерений.
  3. Сверхвысоковакуумный технологический и исследовательский комплекс «Магнитоэллипсометр».

 

Что такое магнетизм? Факты о магнитных полях и магнитной силе

(Изображение предоставлено: TEK IMAGE через Getty Images)

Магнетизм — это сила природы, создаваемая движущимися электрическими зарядами. Иногда эти движения микроскопические и происходят внутри материала, известного как магниты. Магниты или магнитные поля, создаваемые движущимися электрическими зарядами, могут притягивать или отталкивать другие магниты и изменять движение других заряженных частиц.

Магнитное поле воздействует на частицы силой, известной как сила Лоренца, согласно веб-сайту HyperPhysics Университета штата Джорджия . Сила, действующая на электрически заряженную частицу в магнитном поле, зависит от величины заряда, скорости частицы и напряженности магнитного поля. Сила Лоренца обладает тем специфическим свойством, что заставляет частицы двигаться под прямым углом к ​​их первоначальному движению.

Некоторые материалы, такие как железо, известны как постоянные магниты, что означает, что они могут поддерживать постоянное магнитное поле. Это наиболее распространенные формы магнитов, встречающиеся в повседневной жизни. Другим материалам, таким как железо, кобальт и никель, можно придать временное магнитное поле, поместив их в более мощное поле, но в конечном итоге эти материалы потеряют свой магнетизм.

Как работает магнетизм

Магнитное поле Земли. (Изображение предоставлено: alxpin через Getty Images)

Согласно HyperPhysics, магнитные поля генерируются движением электрических зарядов. Все электроны обладают фундаментальным квантово-механическим свойством углового момента, известным как «спин». Внутри атомов большинство электронов имеют тенденцию образовывать пары, в которых один из них имеет «спин вверх», а другой — «спин вниз», или, другими словами, их угловые моменты направлены в противоположные стороны. В этом случае магнитные поля, созданные этими спинами, направлены в противоположные стороны, поэтому они компенсируют друг друга. Однако некоторые атомы содержат один или несколько неспаренных электронов, и эти неспаренные электроны создают крошечное магнитное поле. По данным Ресурсного центра неразрушающего контроля (НК), направление их вращения определяет направление магнитного поля. Когда значительное большинство неспаренных электронов выровнены со своими спинами в одном и том же направлении, они объединяются, чтобы создать магнитное поле, достаточно сильное, чтобы его можно было наблюдать в макроскопическом масштабе.

Источники магнитного поля диполярны, то есть имеют северный и южный полюса. По словам Джозефа Беккера из Университета штата Сан-Хосе, противоположные полюса (N и S) притягиваются, а одинаковые полюса (N и N или S и S) отталкиваются. Это создает тороидальное поле или поле в форме пончика, поскольку направление поля распространяется наружу от северного полюса и входит через южный полюс.

Земля сама по себе является гигантским магнитом. По данным НАСА, планета получает свое магнитное поле от циркулирующего электрического тока внутри расплавленного металлического ядра . Компас указывает на север, потому что маленькая магнитная стрелка в нем подвешена так, что она может свободно вращаться внутри корпуса, выравниваясь с магнитным полем Земли. Как это ни парадоксально, то, что мы называем магнитным северным полюсом, на самом деле является южным магнитным полюсом, потому что он притягивает северные магнитные полюса стрелок компаса.

История магнетизма

Магнетит (также известный как магнитный камень) является самым магнитным из всех встречающихся в природе минералов на Земле. (Изображение предоставлено Александром Победимским через Shutterstock)

Если выравнивание неспаренных электронов сохраняется без приложения внешнего магнитного поля или электрического тока, оно создает постоянный магнит. Постоянные магниты являются результатом ферромагнетизма . Приставка «ферро» относится к железу, потому что постоянный магнетизм впервые наблюдали в форме природной железной руды, называемой магнетитом, Fe3O4. Кусочки магнетита можно найти разбросанными по поверхности Земли или вблизи нее, и иногда один из них будет намагниченным. Эти природные магниты называются магнитами. Хотя ученые не знают точно, как образуются магниты, «большинство ученых считают, что магнетит — это магнетит, в который ударила молния», согласно Университету Аризоны .

Вскоре люди узнали, что они могут намагничивать железную иглу, проводя по ней магнитным камнем, в результате чего большинство неспаренных электронов в игле выстраиваются в одном направлении. По данным НАСА , примерно в 1000 году нашей эры китайцы обнаружили, что магнит, плавающий в чаше с водой, всегда выстраивается в направлении север-юг. После этого магнитный компас стал огромным помощником в навигации, особенно днем ​​и ночью, когда звезды были скрыты облаками.

Другие металлы, помимо железа, могут обладать ферромагнитными свойствами. К ним относятся никель, кобальт и некоторые редкоземельные металлы , такие как самарий или неодим, которые используются для изготовления сверхсильных постоянных магнитов.

Другие формы магнетизма

Магнетизм принимает множество других форм, но, за исключением ферромагнетизма, они обычно слишком слабы, чтобы их можно было наблюдать, кроме как с помощью чувствительных лабораторных приборов или при очень низких температурах. Антон Бругнамс впервые обнаружил диамагнетизм в 1778 году, когда использовал постоянные магниты в поисках материалов, содержащих железо. По словам Джеральда Кюстлера, широко публикуемого независимого немецкого исследователя и изобретателя, в своей статье «Диамагнитная левитация — исторические вехи» , опубликованной в «Румынском журнале технических наук», Бругнамс заметил: «Только темные и почти Фиолетовый висмут продемонстрировал в исследовании особое явление: когда я положил его кусочек на круглый лист бумаги, плавающий поверх воды, он оттолкнулся от обоих полюсов магнита».

Диамагнетизм вызван орбитальным движением электронов внутри атомов, создающим крошечные токовые петли, которые создают слабые магнитные поля, согласно HyperPhysics . Когда к материалу прикладывается внешнее магнитное поле, эти токовые петли имеют тенденцию выстраиваться таким образом, чтобы противодействовать приложенному полю. Это заставляет все материалы отталкиваться от постоянного магнита; однако результирующая сила обычно слишком слаба, чтобы ее можно было заметить. Однако есть несколько заметных исключений.

Пироуглерод, вещество, похожее на графит, демонстрирует даже более сильный диамагнетизм, чем висмут, хотя и только вдоль одной оси, и фактически может левитировать над сверхсильным редкоземельным магнитом. Некоторые сверхпроводящие материалы демонстрируют еще более сильный диамагнетизм ниже своей критической температуры (температуры, при которой они становятся сверхпроводящими), и поэтому редкоземельные магниты могут парить над ними. (Теоретически из-за их взаимного отталкивания один может левитировать над другим.)

Парамагнетизм возникает, когда материал временно становится магнитным при помещении в магнитное поле и возвращается в свое немагнитное состояние, как только внешнее поле удаляется. Когда приложено магнитное поле, некоторые спины неспаренных электронов выравниваются с полем и подавляют противоположную силу, создаваемую диамагнетизмом. Однако эффект заметен только при очень низких температурах, говорит Дэниел Марш, профессор физики Южного государственного университета Миссури.

Другие, более сложные формы включают антиферромагнетизм, при котором магнитные поля атомов или молекул располагаются рядом друг с другом; и поведение спинового стекла, которое включает как ферромагнитные, так и антиферромагнитные взаимодействия. Кроме того, ферримагнетизм можно рассматривать как комбинацию ферромагнетизма и антиферромагнетизма из-за многих общих черт между ними, но он все же имеет свою уникальность, по данным Калифорнийского университета в Дэвисе. .

Электричество и магнетизм

Инфографика, показывающая, как работает правило правой руки Флеминга. (Изображение предоставлено: fridas через Shutterstock)

Связанный контент

Когда проводник перемещается в магнитном поле, поле индуцирует ток в проводе. И наоборот, магнитное поле создается электрическим зарядом в движении, например, когда по проводу течет ток. Таким образом, все электрические провода в вашем доме создают крошечные магнитные поля. Эта взаимосвязь между электричеством и магнетизмом описывается законом индукции Фарадея , который лежит в основе электромагнитов, электродвигателей и генераторов. Заряд, движущийся по прямой линии, как по прямому проводу, создает магнитное поле, которое закручивается по спирали вокруг провода. Когда этот провод превращается в петлю, поле принимает форму пончика или тора.

Постоянный ток также может создавать постоянное поле в одном направлении, которое может включаться и выключаться вместе с током. Затем это поле может отклонить подвижный железный рычаг, вызывая слышимый щелчок. Это основа телеграфа, изобретенного в 1830-х годах Сэмюэлем Ф. Б. Морзе , который позволял осуществлять связь на большие расстояния по проводам с использованием двоичного кода, основанного на длинных и коротких импульсах, согласно Библиотеке. Конгресса (откроется в новой вкладке). Опытные операторы посылали импульсы, быстро включая и выключая ток с помощью подпружиненного переключателя мгновенного действия или ключа. Затем другой оператор на принимающей стороне переводил слышимые щелчки обратно в буквы и слова.

Катушку вокруг магнита также можно заставить двигаться по схеме с различной частотой и амплитудой, чтобы индуцировать ток в катушке. Это основа для ряда устройств, в первую очередь для микрофона (откроется в новой вкладке). Звук заставляет диафрагму двигаться внутрь и наружу вместе с меняющимися волнами давления. Если диафрагма соединена с подвижной магнитной катушкой вокруг магнитного сердечника, она будет производить переменный ток, аналогичный падающим звуковым волнам. Затем этот электрический сигнал может быть усилен, записан или передан по желанию. Крошечные сверхсильные редкоземельные магниты используются для изготовления миниатюрных микрофонов для сотовых телефонов, сказал Марш в интервью Live Science.

Когда этот модулированный электрический сигнал подается на катушку, он создает колеблющееся магнитное поле, которое заставляет катушку перемещаться внутри и снаружи магнитного сердечника по той же схеме. Затем катушка прикрепляется к подвижному конусу динамика, чтобы он мог воспроизводить слышимые звуковые волны в воздухе. По данным Смитсоновского института, первым практическим применением микрофона и динамика стал телефон, запатентованный Александром Грэмом Беллом в 1876 году. Хотя эта технология была улучшена и усовершенствована, она по-прежнему является основой для записи и воспроизведения звука.

Применение электромагнитов почти бесчисленно. Закон индукции Фарадея формирует основу для многих аспектов нашего современного общества, включая не только электродвигатели и генераторы, но и электромагниты всех размеров. Тот же принцип, который используется гигантским краном для подъема старых автомобилей на свалку, также используется для выравнивания микроскопических магнитных частиц на жестком диске компьютера для хранения двоичных данных, и каждый день разрабатываются новые приложения.

Штатный писатель Таня Льюис внесла свой вклад в этот отчет.

Дополнительные ресурсы

  • Национальная лаборатория сильных магнитных полей (открывается в новой вкладке) — крупнейшая и самая мощная магнитная лаборатория в мире. Исследователи бесплатно пользуются оборудованием для изучения материалов, энергии и жизни.
  • Образовательный курс по физике плазмы в Интернете (открывается в новой вкладке) содержит интерактивный модуль, посвященный основным понятиям, связанным с электричеством и магнетизмом.
  • Центр космических полетов имени Годдарда НАСА предлагает эти уроки по «Ранней истории электричества и магнетизма » и «Исследование магнитосферы Земли ».

Библиография

НАСА, «Магнитосфера Земли», https://www.nasa.gov/magnetosphere (открывается в новой вкладке)

«Магнетизм». ОТКРЫТИЕ НАУКИ. Gale Research, 1996. Воспроизведено в Discovering Collection. Фармингтон-Хиллз, Мичиган: Gale Group. Декабрь 2000 г. http://galenet.galegroup.com/servlet/DC/ (открывается в новой вкладке)

Гриффитс, Дэвид Дж. (1998). Введение в электродинамику (3-е изд.) (открывается в новой вкладке). Прентис Холл. ISBN 978-0-13-805326-0. OCLC 40251748.

Джим Лукас — автор статей для Live Science. Он охватывает физику, астрономию и инженерное дело. Джим окончил Университет штата Миссури, где получил степень бакалавра наук в области физики, а также астрономию и техническое письмо. После окончания университета он работал в Лос-Аламосской национальной лаборатории системным администратором, техническим писателем-редактором и специалистом по ядерной безопасности. Помимо написания статей, он редактирует статьи в научных журналах по различным тематическим направлениям.

Что такое магнетизм? Факты о магнитных полях и магнитной силе

(Изображение предоставлено: TEK IMAGE через Getty Images)

Магнетизм — это сила природы, создаваемая движущимися электрическими зарядами. Иногда эти движения микроскопические и происходят внутри материала, известного как магниты. Магниты или магнитные поля, создаваемые движущимися электрическими зарядами, могут притягивать или отталкивать другие магниты и изменять движение других заряженных частиц.

Магнитное поле воздействует на частицы силой, известной как сила Лоренца, согласно веб-сайту HyperPhysics Университета штата Джорджия . Сила, действующая на электрически заряженную частицу в магнитном поле, зависит от величины заряда, скорости частицы и напряженности магнитного поля. Сила Лоренца обладает тем специфическим свойством, что заставляет частицы двигаться под прямым углом к ​​их первоначальному движению.

Некоторые материалы, такие как железо, известны как постоянные магниты, что означает, что они могут поддерживать постоянное магнитное поле. Это наиболее распространенные формы магнитов, встречающиеся в повседневной жизни. Другим материалам, таким как железо, кобальт и никель, можно придать временное магнитное поле, поместив их в более мощное поле, но в конечном итоге эти материалы потеряют свой магнетизм.

Как работает магнетизм

Магнитное поле Земли. (Изображение предоставлено: alxpin через Getty Images)

Согласно HyperPhysics, магнитные поля генерируются движением электрических зарядов. Все электроны обладают фундаментальным квантово-механическим свойством углового момента, известным как «спин». Внутри атомов большинство электронов имеют тенденцию образовывать пары, в которых один из них имеет «спин вверх», а другой — «спин вниз», или, другими словами, их угловые моменты направлены в противоположные стороны. В этом случае магнитные поля, созданные этими спинами, направлены в противоположные стороны, поэтому они компенсируют друг друга. Однако некоторые атомы содержат один или несколько неспаренных электронов, и эти неспаренные электроны создают крошечное магнитное поле. По данным Ресурсного центра неразрушающего контроля (НК), направление их вращения определяет направление магнитного поля. Когда значительное большинство неспаренных электронов выровнены со своими спинами в одном и том же направлении, они объединяются, чтобы создать магнитное поле, достаточно сильное, чтобы его можно было наблюдать в макроскопическом масштабе.

Источники магнитного поля диполярны, то есть имеют северный и южный полюса. По словам Джозефа Беккера из Университета штата Сан-Хосе, противоположные полюса (N и S) притягиваются, а одинаковые полюса (N и N или S и S) отталкиваются. Это создает тороидальное поле или поле в форме пончика, поскольку направление поля распространяется наружу от северного полюса и входит через южный полюс.

Земля сама по себе является гигантским магнитом. По данным НАСА, планета получает свое магнитное поле от циркулирующего электрического тока внутри расплавленного металлического ядра . Компас указывает на север, потому что маленькая магнитная стрелка в нем подвешена так, что она может свободно вращаться внутри корпуса, выравниваясь с магнитным полем Земли. Как это ни парадоксально, то, что мы называем магнитным северным полюсом, на самом деле является южным магнитным полюсом, потому что он притягивает северные магнитные полюса стрелок компаса.

История магнетизма

Магнетит (также известный как магнитный камень) является самым магнитным из всех встречающихся в природе минералов на Земле. (Изображение предоставлено Александром Победимским через Shutterstock)

Если выравнивание неспаренных электронов сохраняется без приложения внешнего магнитного поля или электрического тока, оно создает постоянный магнит. Постоянные магниты являются результатом ферромагнетизма . Приставка «ферро» относится к железу, потому что постоянный магнетизм впервые наблюдали в форме природной железной руды, называемой магнетитом, Fe3O4. Кусочки магнетита можно найти разбросанными по поверхности Земли или вблизи нее, и иногда один из них будет намагниченным. Эти природные магниты называются магнитами. Хотя ученые не знают точно, как образуются магниты, «большинство ученых считают, что магнетит — это магнетит, в который ударила молния», согласно Университету Аризоны .

Вскоре люди узнали, что они могут намагничивать железную иглу, проводя по ней магнитным камнем, в результате чего большинство неспаренных электронов в игле выстраиваются в одном направлении. По данным НАСА , примерно в 1000 году нашей эры китайцы обнаружили, что магнит, плавающий в чаше с водой, всегда выстраивается в направлении север-юг. После этого магнитный компас стал огромным помощником в навигации, особенно днем ​​и ночью, когда звезды были скрыты облаками.

Другие металлы, помимо железа, могут обладать ферромагнитными свойствами. К ним относятся никель, кобальт и некоторые редкоземельные металлы , такие как самарий или неодим, которые используются для изготовления сверхсильных постоянных магнитов.

Другие формы магнетизма

Магнетизм принимает множество других форм, но, за исключением ферромагнетизма, они обычно слишком слабы, чтобы их можно было наблюдать, кроме как с помощью чувствительных лабораторных приборов или при очень низких температурах. Антон Бругнамс впервые обнаружил диамагнетизм в 1778 году, когда использовал постоянные магниты в поисках материалов, содержащих железо. По словам Джеральда Кюстлера, широко публикуемого независимого немецкого исследователя и изобретателя, в своей статье «Диамагнитная левитация — исторические вехи» , опубликованной в «Румынском журнале технических наук», Бругнамс заметил: «Только темные и почти Фиолетовый висмут продемонстрировал в исследовании особое явление: когда я положил его кусочек на круглый лист бумаги, плавающий поверх воды, он оттолкнулся от обоих полюсов магнита».

Диамагнетизм вызван орбитальным движением электронов внутри атомов, создающим крошечные токовые петли, которые создают слабые магнитные поля, согласно HyperPhysics . Когда к материалу прикладывается внешнее магнитное поле, эти токовые петли имеют тенденцию выстраиваться таким образом, чтобы противодействовать приложенному полю. Это заставляет все материалы отталкиваться от постоянного магнита; однако результирующая сила обычно слишком слаба, чтобы ее можно было заметить. Однако есть несколько заметных исключений.

Пироуглерод, вещество, похожее на графит, демонстрирует даже более сильный диамагнетизм, чем висмут, хотя и только вдоль одной оси, и фактически может левитировать над сверхсильным редкоземельным магнитом. Некоторые сверхпроводящие материалы демонстрируют еще более сильный диамагнетизм ниже своей критической температуры (температуры, при которой они становятся сверхпроводящими), и поэтому редкоземельные магниты могут парить над ними. (Теоретически из-за их взаимного отталкивания один может левитировать над другим.)

Парамагнетизм возникает, когда материал временно становится магнитным при помещении в магнитное поле и возвращается в свое немагнитное состояние, как только внешнее поле удаляется. Когда приложено магнитное поле, некоторые спины неспаренных электронов выравниваются с полем и подавляют противоположную силу, создаваемую диамагнетизмом. Однако эффект заметен только при очень низких температурах, говорит Дэниел Марш, профессор физики Южного государственного университета Миссури.

Другие, более сложные формы включают антиферромагнетизм, при котором магнитные поля атомов или молекул располагаются рядом друг с другом; и поведение спинового стекла, которое включает как ферромагнитные, так и антиферромагнитные взаимодействия. Кроме того, ферримагнетизм можно рассматривать как комбинацию ферромагнетизма и антиферромагнетизма из-за многих общих черт между ними, но он все же имеет свою уникальность, по данным Калифорнийского университета в Дэвисе. .

Электричество и магнетизм

Инфографика, показывающая, как работает правило правой руки Флеминга. (Изображение предоставлено: fridas через Shutterstock)

Связанный контент

Когда проводник перемещается в магнитном поле, поле индуцирует ток в проводе. И наоборот, магнитное поле создается электрическим зарядом в движении, например, когда по проводу течет ток. Таким образом, все электрические провода в вашем доме создают крошечные магнитные поля. Эта взаимосвязь между электричеством и магнетизмом описывается законом индукции Фарадея , который лежит в основе электромагнитов, электродвигателей и генераторов. Заряд, движущийся по прямой линии, как по прямому проводу, создает магнитное поле, которое закручивается по спирали вокруг провода. Когда этот провод превращается в петлю, поле принимает форму пончика или тора.

Постоянный ток также может создавать постоянное поле в одном направлении, которое может включаться и выключаться вместе с током. Затем это поле может отклонить подвижный железный рычаг, вызывая слышимый щелчок. Это основа телеграфа, изобретенного в 1830-х годах Сэмюэлем Ф. Б. Морзе , который позволял осуществлять связь на большие расстояния по проводам с использованием двоичного кода, основанного на длинных и коротких импульсах, согласно Библиотеке. Конгресса (откроется в новой вкладке). Опытные операторы посылали импульсы, быстро включая и выключая ток с помощью подпружиненного переключателя мгновенного действия или ключа. Затем другой оператор на принимающей стороне переводил слышимые щелчки обратно в буквы и слова.

Катушку вокруг магнита также можно заставить двигаться по схеме с различной частотой и амплитудой, чтобы индуцировать ток в катушке. Это основа для ряда устройств, в первую очередь для микрофона (откроется в новой вкладке). Звук заставляет диафрагму двигаться внутрь и наружу вместе с меняющимися волнами давления. Если диафрагма соединена с подвижной магнитной катушкой вокруг магнитного сердечника, она будет производить переменный ток, аналогичный падающим звуковым волнам. Затем этот электрический сигнал может быть усилен, записан или передан по желанию. Крошечные сверхсильные редкоземельные магниты используются для изготовления миниатюрных микрофонов для сотовых телефонов, сказал Марш в интервью Live Science.

Когда этот модулированный электрический сигнал подается на катушку, он создает колеблющееся магнитное поле, которое заставляет катушку перемещаться внутри и снаружи магнитного сердечника по той же схеме. Затем катушка прикрепляется к подвижному конусу динамика, чтобы он мог воспроизводить слышимые звуковые волны в воздухе. По данным Смитсоновского института, первым практическим применением микрофона и динамика стал телефон, запатентованный Александром Грэмом Беллом в 1876 году. Хотя эта технология была улучшена и усовершенствована, она по-прежнему является основой для записи и воспроизведения звука.

Применение электромагнитов почти бесчисленно. Закон индукции Фарадея формирует основу для многих аспектов нашего современного общества, включая не только электродвигатели и генераторы, но и электромагниты всех размеров. Тот же принцип, который используется гигантским краном для подъема старых автомобилей на свалку, также используется для выравнивания микроскопических магнитных частиц на жестком диске компьютера для хранения двоичных данных, и каждый день разрабатываются новые приложения.

Штатный писатель Таня Льюис внесла свой вклад в этот отчет.

Дополнительные ресурсы

  • Национальная лаборатория сильных магнитных полей (открывается в новой вкладке) — крупнейшая и самая мощная магнитная лаборатория в мире. Исследователи бесплатно пользуются оборудованием для изучения материалов, энергии и жизни.
  • Образовательный курс по физике плазмы в Интернете (открывается в новой вкладке) содержит интерактивный модуль, посвященный основным понятиям, связанным с электричеством и магнетизмом.
  • Центр космических полетов имени Годдарда НАСА предлагает эти уроки по «Ранней истории электричества и магнетизма » и «Исследование магнитосферы Земли ».

Библиография

НАСА, «Магнитосфера Земли», https://www.nasa.gov/magnetosphere (открывается в новой вкладке)

«Магнетизм». ОТКРЫТИЕ НАУКИ. Gale Research, 1996. Воспроизведено в Discovering Collection. Фармингтон-Хиллз, Мичиган: Gale Group. Декабрь 2000 г. http://galenet.galegroup.com/servlet/DC/ (открывается в новой вкладке)

Гриффитс, Дэвид Дж. (1998). Введение в электродинамику (3-е изд.) (открывается в новой вкладке). Прентис Холл. ISBN 978-0-13-805326-0. OCLC 40251748.

Джим Лукас — автор статей для Live Science. Он охватывает физику, астрономию и инженерное дело. Джим окончил Университет штата Миссури, где получил степень бакалавра наук в области физики, а также астрономию и техническое письмо. После окончания университета он работал в Лос-Аламосской национальной лаборатории системным администратором, техническим писателем-редактором и специалистом по ядерной безопасности. Помимо написания статей, он редактирует статьи в научных журналах по различным тематическим направлениям.

Еврейский университет открывает новое магнитное явление

Краткое изложение должности :

Генеральный директор AFHU присоединится к организации в ключевой момент времени, сменив успешного лидера и основываясь на наследии огромного роста. В партнерстве с Еврейским университетом, высокоэффективной командой и преданным своему делу советом новый генеральный директор расширит базу доноров, наладит новое сотрудничество и поможет организации достичь еще более амбициозных целей.

Генеральный директор отвечает за финансовое и оперативное управление AFHU, а также за реализацию общего стратегического видения для достижения приоритетов Еврейского университета и целей сбора средств. Генеральный директор AFHU тесно сотрудничает с администрацией и преподавателями Еврейского университета и будет поддерживать культуру сотрудничества и прозрачности с коллегами по всему университету. Надежное партнерство между университетом и AFHU имеет решающее значение для успеха. Генеральный директор будет тесно сотрудничать с Советом AFHU, чтобы создать лучший в своем классе аппарат и инфраструктуру для сбора средств в Соединенных Штатах, возглавить высокоэффективную команду исполнительного руководства и мобилизовать ресурсы от отдельных доноров, фондов и других организаций. Центральная часть роли генерального директора заключается в наборе, обучении и удержании сотрудников по развитию. Для будущего успеха AFHU будет важно, чтобы организация создала динамичную, поддерживающую и эффективную команду разработчиков, которая оказывает влияние на доноров по всей территории Соединенных Штатов.

Главный исполнительный директор:

Контролирует прогресс команды по сбору средств в достижении целевых показателей, рассматривает и утверждает стратегии обслуживания, показатели и бюджеты; и обеспечить наличие и актуальность планов преемственности для всех руководящих должностей в области разработки ресурсов.

Несет общую ответственность за повседневное управление организацией, включая стратегическую, финансовую и операционную отчетность.

Возглавить управленческую команду организации в расстановке приоритетов, внедрении и расширении ее ресурсов для оказания воздействия.

Убедитесь, что все мероприятия и программы соответствуют самым высоким стандартам этики, управления и прозрачности, а также соответствуют основным ценностям AFHU.

Генеральный директор будет непосредственным руководителем, который отвечает за управление портфелем крупных и основных потенциальных клиентов и сбор предложений, а также за развитие отношений на высшем уровне с различными донорами, включая отдельных лиц, фонды и других партнеров внутри и за пределами организации. Сообщество выпускников Еврейского университета. Генеральный директор возглавит команду основных сотрудников по подаркам, управляющих своими собственными портфелями, и обеспечит постоянное сотрудничество AFHU с Еврейским университетом.

Обзор :

Генеральный директор должен быть вдохновляющим и привлекательным человеком с проверенной способностью наращивать организационный потенциал, сильными лидерскими и управленческими навыками, а также отличной проницательностью в области сбора средств.

Они также будут обладать приверженностью миссии и ценностям Еврейского университета в сочетании с сильными навыками межличностного общения для развития новых и укрепления существующих партнерских отношений. Как старший представитель Еврейского университета, генеральный директор должен быть выдающимся коммуникатором с авторитетом, авторитетом и авторитетом, чтобы развивать отношения на самом высоком уровне с различными донорами и партнерами.

Ключевой опыт и знания :

Стратегическое лидерство. Подтвержденный опыт разработки и/или реализации стратегического плана и повышения потенциала и влияния организации, в идеале в организации по сбору средств.

Кто-то, кто быстро понимает возможности и проблемы организации и роль, и понимает, как эффективно работать с Советом и более широкой структурой AFHU, имеет возможность разрабатывать инновационные и творческие планы сбора средств, которые объединяют несколько приоритетов и целей, и имеет сильный аналитический склад ума и использует данные для поддержки мышления и принятия решений; склонность к поиску и анализу данных из различных источников для поддержки решений и согласования других с общей стратегией организации.

Лидерство и управление командой — продемонстрировал сильное лидерство и навыки управления людьми, включая предыдущий опыт руководства командой по сбору средств для достижения успеха.

Кто-то, у кого есть личные склонности и профессиональные способности, чтобы быть позитивной и объединяющей фигурой, которая может вести своим влиянием и примером, чтобы продолжать укреплять культуру совместного развития между AFHU и Еврейским университетом. Лидер, который, по мнению других, обладает высокой степенью честности и предусмотрительности в своем подходе к принятию решений.

Сбор средств — Большой опыт и способность собирать значительные суммы денег из различных источников. Опыт обучения команды сборщиков средств для проведения кампаний.

Культура Fit & Impact :

Ориентация на миссию – Тесная связь и страсть к цели AFHU: соединить увлечения американцев с талантами Еврейского университета в Иерусалиме.

Специалист по построению отношений – Сильные навыки межличностного общения и продемонстрированная способность строить отношения, сети и партнерские отношения как внутри компании, так и за ее пределами.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *