Site Loader

Содержание

влияние на переменный и постоянный ток, формулы для расчета

Обновлено: 30.11.2022

Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току).

Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной.

Индуктивное сопротивление в цепи переменного тока

В катушке, включенной в цепь переменного напряжения, си­ла тока меньше силы тока в цепи постоянного напряжения для этой же катушки. Следовательно, катушка в цепи переменного напряжения создает большее сопротивление, чем в цепи посто­янного напряжения.

Мгновенное значение силы тока:

Мгновенное значение напряжения можно установить, учиты­вая, что u = — εi , где u — мгновенное значение напряжения, а εi — мгновенное значение эдс самоиндукции, т. е. при изменении тока в цепи возникает ЭДС самоиндукции, которая в соответствии с законом электромагнитной индукции и правилом Ленца равна по величине и противоположна по фазе приложенному напряжению.

Следовательно , где амплитуда напряжения.

Напряжение опережает ток по фазе на π/2.

Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению и обратно пропорциональная сопротивлению, то приняв величину ωL за сопротивление катушки переменному току, получим: — закон Ома для цепи с чисто индуктивной нагрузкой.

Величина — индуктивное сопротивление.

Т.о. в любое мгновение времени изменению силы тока противодействует ЭДС самоиндукции. ЭДС самоиндукции — причина индуктивного сопротивления.

В отличие от активного сопротивления, индуктивное не является характеристикой проводника, т.к. зависит от параметров цепи (частоты): чем больше частота переменного тока, тем больше сопротивление, которое ему оказывает катушка.

Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и индуктивной нагрузкой. Такая нагрузка наз. реактивной.

При проектировании электрический цепей, оборудования и электроприборов учитываются многие свойства проводников. Одним из важных свойств считается емкостное сопротивление.


В данной статье будет подробно описано — что такое емкостное сопротивление конденсатора. Так же будет приведена формула расчета такого параметра, описана работа конденсатора в цепи переменного тока и сферы применения ёмкостного сопротивления.

Определение

Сопротивлением называют физический эффект противодействия протеканию тока по любой электрической цепи. Этим свойством обладают все проводники электрического тока. Данная величина измеряется в Ом.

Емкостное электрическое сопротивление является величиной, благодаря которой можно понять, что в цепи присутствует конденсатор. Емкостные сопротивления конденсатора рассчитываются только для цепей переменного тока, без учета наличия в них резисторов.

Конденсатор обозначается на схеме буквой «С», а его ёмкостное сопротивление «Xc».

Принцип работы

Конденсатор с определенной ёмкостью работает по принципу периода, который состоит из заряда и разряда элемента. Период делится на 4 части:

  1. Первая часть предполагает рост напряжения. В этот момент сопротивление конденсатора минимально, а зарядный ток очень высокий.
  2. Во второй четверти происходит наполнение его ёмкости за счет зарядного тока.
  3. В третьей четверти конденсатор полностью заряжается, при этом происходит снижение тока вплоть до 0. ЭДС возрастает с эффектом смены своей направленности.
  4. В последней четверти происходит разряд элемента. На этом этапе ЭДС будет в пределах 0, а ток постепенно нарастать.


Все описанные процессы за один период определяют дальнейший фазный сдвиг на 90 градусов.

Природа возникновения емкостного сопротивления полностью зависит от нескольких факторов:

  1. Обязательно наличие конденсатора в цепи.
  2. По цепи должен течь только переменный ток.
  3. Сопротивление проводника должно быть меньше емкости конденсатора.

Все эти факторы помогают рассчитать наиболее правильное значение ёмкостных характеристик для наиболее эффективной работы электроцепи.

Расчет

Расчет электрического емкостного сопротивления цепи делается по формуле. Она состоит из следующих значений:

  1. «Xc» — является емкостным сопротивлением в Омах.
  2. «1» — период полного заряда и разряда элемента.
  3. «w» — круговая частота переменного тока с емкостью, рад/сек.
  4. «C» — емкость конденсатора, единицы измерения Фарад.

Сама формула при этом выглядит следующим образом:


При помощи этой формулы легко рассчитывается Xc. Для этого требуется просто умножить циклическую частоту переменного тока на известную величину емкости конденсатора. Далее необходимо будет один период разделить на полученное значение. Таким образом можно всегда найти сопротивление конденсатора в Ом.

Рассчитываться емкостное сопротивление может так же с помощью и другой формулы, которая приведена на рисунке ниже.


При расчетах по данной формуле прослеживаются следующие зависимости:

  1. Емкость конденсатора и частота тока всегда выше сопротивления.
  2. От величин емкости и частоты зависит скорость одного периода заряда/разряда конденсатора.

Также стоит учесть, что после подключения конденсатора в цепь постоянного тока, его сопротивление сильно увеличивается. Объясняется причина такого явления довольно просто — отсутствует частота протекания электричества.

Характеристики элемента

Для того чтобы понять, что такое емкостное сопротивление, необходимо разобраться с его основной характеристикой, которая называется емкостью. Емкостью называется накопительная способность элемента. Она заключается в накоплении определенной доли электрического тока за определённый промежуток времени. Единицей измерения этой величины является Фарад (Ф или F).


Элемент заряжается электричеством до определенного момента, после которого он начинает разряжаться и отдавать ток дальше по электроцепи. Время полного разряда напрямую зависит от величины сопротивления цепи. Чем выше это значение, тем меньше времени тратится на разрядку элемента. Для расчета ёмкостной характеристики используется следующее выражение:


Так же конденсаторы обладают рядом дополнительных характеристик. К ним относят:

  1. Общую удельную емкость. Является отношением массы диэлектрических пластин и емкостных параметров.
  2. Напряжение. Параметр определяется как рабочее напряжение, которое способен выдержать элемент.
  3. Температурная стойкость или стабильность. Это температурный параметр, который не влияет на изменение емкости.
  4. Изоляционное сопротивление. Является величиной точки утечки и саморазряда.
  5. Эквивалентная нагрузка. Значение, определяющее потери на выводе или контактах устройства.
  6. Абсорбция. Разность потенциалов в момент разряда до 0.
  7. Полярность. Параметр свойственен элементам, которые работают строго при подаче на обкладку потенциала определенного значения (плюс или минус).
  8. Индуктивность. Свойство конденсатора образовывать на контактах индуктивное сопротивление. Такое свойство может наделить элемента параметрами колебательного контура.

Все эти значения строго учитываются при проектировании цепей или схем электрического оборудования.

Импеданс

Кроме емкостного, конденсатор еще имеет общее сопротивление или импеданс. Данное значение определяется с учетом значений трех параметров: индуктивного, резистивного и емкостного сопротивления.


Для вычисления импеданса применяется следующая формула:

В данном выражении используются следующие сопротивления:

  1. xL — индуктивное;
  2. xC — емкостное;
  3. R — активное.

Активное сопротивление цепи появляется вследствие возникновения в ней ЭДС. Так как переменный ток по своей природе импульсный, то электромагнитный поток может довольно незначительно изменяться, а это приводит к сдвигу постоянного значения ЭДС.

Емкостные и индуктивные величины взаимосвязаны. По разнице между ними легко находят реактивную составляющую цепи.


Отсюда легко проследить, от чего зависит само реактивное сопротивление:

  1. Если реактивная величина больше 0, то устройство больше нагружено индуктивным значением.
  2. Если реактивное значение равно 0, то емкость не нагружается активным сопротивлением.
  3. Если реактивность меньше 0, то элемент имеет высокое емкостное сопротивление.

Активное сопротивление считается невосполнимой величиной. Она тратится на преобразование тока в иной вид энергии. Реактивная величина неизменна для актуальной цепи переменного тока.

Узнав, по какой формуле делаются необходимые вычисления и поняв смысл емкостного сопротивления, можно заняться расчетом данной величины.


Например, сделаем расчет на основе следующих данных:

  • Емкость конденсатора C=1мкФ;
  • В цепи также имеется активное сопротивление R, которое равно 5 кОм;
  • Индуктивное сопротивление цепи xL составляет 4. 5 кОм;
  • Частота переменного тока равна 50 Гц;
  • Напряжение 50 вольт.

На основе этих данных необходимо будет найти сопротивление конденсатора.

Емкостное сопротивление определим следующим образом:

xC=1/(2πfC)=1/(2×3.14×50×1×10 -6 )=3184 Ом или округленно 3.2 кОм.

Для определения величины тока в этой цепи воспользуемся законом Ома:

I=U/xC=50/3184=0.0157 ампер или 15.7мА.

После этого определяются параметры общего сопротивления:

Z=(R²+(xL-xC)²)½=(5000²+(4500-3184)²)½=5170 Ом или 5.1 кОм.

По данным расчётам можно определить влияние емкостного элемента на электроцепь. Главное понимать, какие физические величины используются в данных формулах для выполнения правильных вычислений.

Применение

В электронных цепях очень часто конденсатор используется в качестве фильтрующего элемента. При этом инженеры учитывают способ подключения данного элемента:

  1. При параллельном соединении конденсатора с цепью, устройство способно задерживать ток высокой частоты. Такой фильтр работает по принципу зависимости сопротивления от частоты тока. Чем выше частота, тем ниже будет сопротивление.
  2. При последовательном включении фильтр уже отсеивает низкочастотные импульсы. Вторым свойством такого фильтра является возможность не пропускать постоянный ток.


Также большая доля использования таких устройств приходится на звуковые усилители. Конденсатор способен отделить переменный и постоянный ток, а значит работать в качестве усилителя низкой частоты. При этом подбираются элементы с наименьшей емкостью.

Так же устройства используются для блоков питания постоянного тока или стабилизаторов. Тут применяется свойство разделения постоянной и переменной составляющей. Например, разделение ее между потребителями с помощью отдельных выходов для постоянного и переменного тока. В таких устройствах конденсатор разряжается, если нагрузка на цепь увеличивается за счет подключения нового устройства. Тем самым общая пульсация в цепи сглаживается. При необходимости можно передать ток обоих значений по одному проводнику. Делается это следующим образом — контакты с постоянным напряжением подключают к выводу емкости для прямого контакта с переменным напряжением. Таким образом происходит фильтрация частоты, сглаживание импульсов и передача постоянного тока потребителю. Такая схема используется в антенных усилителях, которые подключаются к телевизорам.

Измерение и проверка

Измерить целостность конденсатора и его сопротивление можно при помощи мультиметра. Перед этим элемент обязательно необходимо отсоединить от цепи.

Проверка

Диагностика целостности конденсатора начинается с визуально осмотра его состояния. Любые трещины, вздутия или деформации корпуса можно считать неисправностью элемента. Если визуальный осмотр не дал никаких результатов, то элемент проверяется на пробой при помощи тестера.


Делается такая проверка следующим образом:

  1. Элемент необходимо выпаять из схемы, а его контактные выводы замкнуть металлическим предметом для разрядки.
  2. Мультиметр перемести в режим замера сопротивления.
  3. Измерительные щупы соединить с контактами устройства.
  4. Сопротивление исправного элемента будет измеряться бесконечным значением, которое будет превышать значение сопротивления утечки. Величина этой утечки при этом составляет 2 кОм.


Если показания меньше этого значения, значит элемент неисправен и пробит.

Замер

Замерить сопротивление можно так же с помощью мультиметра. Его надо будет перевести в режим измерения сопротивлений более 100 кОм. Далее необходимо соединить щупы прибора с контактами устройства. Некоторое время потребуется на полную зарядку элемента. После этого он покажет конечный результат, который не должен быть выше 100 кОм. Если этот порог преодолен, то можно сделать однозначный вывод о неисправности элемента.

Измерение емкости

Для замера емкости потребуется тестер с режимом СX. Если такого режима нет, проверить элемент будет невозможно. Далее требуется:

  1. Полностью разрядить конденсатор.
  2. На мультиметре выбирается режим СX.
  3. Измерительные щупы соединить с контактными выводами устройства, строго соблюдая полярность.
  4. Прибор должен показать величину больше 1, но при этом ее значение должно быть в пределах тех значений, которые указаны на корпусе детали. Если значение равняется 0 или находится за пределами указанных значений, то конденсатор можно признать неисправным.


Полученные мультиметром данные также можно считать ёмкостным значением, так как в момент проверки элемент проходит зарядку током.

Емкостным сопротивлением обладают все цепи, в которых задействованы конденсаторы. Зная, какой по параметрам элемент включен в данную цепь, можно легко рассчитать его емкостное влияние на цепь, используя представленные в статье формулы для расчётов.

Конденсатор емкостью C имеет в цепи постоянного тока бесконечно большое сопротивление. Если же приложить к конденсатору переменное напряжение, то он будет периодически перезаряжаться, и в цепи потечет ток. Напряжение на конденсаторе достигает максимального значения в те моменты, когда ток равен нулю.

Если R = 0, то напряжение на конденсаторе совпадает с приложенным напряжением и u = q/C. Мгновенное значение тока определяется выражением:



Между напряжением и током имеется разность фаз —π/2.

В чисто емкостной цепи переменного тока ток опережает напряжение на π/2 (или Т/4).

В соответствии с приведенным выше уравнением амплитуда тока Im = ωCUm. Сравнение с законом Ома U = RI показывает, что величина 1/ωС играет роль сопротивления.

Цепь переменного тока, содержащая емкость C, обладает сопротивлением переменному току; оно называется емкостным сопротивлением ХC.

Единица СИ емкостного сопротивления: [XC] = Ом.

ХCемкостное сопротивление цепи переменного тока,Ом
ω = 2πfкруговая частота переменного тока,радиан/Секунда
Cемкость,Фарад

При увеличении частоты емкостное сопротивление уменьшается. Для постоянного тока (f = 0) оно бесконечно велико.

Ток в цепи, обладающей только емкостным сопротивлением, определяется выражением

Читайте также:

      
  • Драйвер для светодиодов своими руками с питанием от 220 В: как сделать, схема простого самодельного стабилизатора напряжения для работы лед светильника от сети
  •   
  • Катушка индуктивности — что это такое? Магнитные поля. Электрическая индуктивность и ее применение.
  •   
  • Мигает светодиодный прожектор: во включенном состоянии и после выключения, не горит, причина, мерцает, стал тускло светить

Емкостное и индуктивное сопротивление в цепи переменного тока; Школа для электриков: Электротехника и электроника

Емкостное и индуктивное сопротивления называются пассивными сопротивлениями. Энергия не тратится на реактивное сопротивление, как на активное. Энергия, запасенная в конденсаторе, периодически отдается обратно источнику, когда электрическое поле в конденсаторе исчезает.

Содержание

Емкостное и индуктивное сопротивление в цепи переменного тока

Если мы включим конденсатор в цепь постоянного тока, то обнаружим, что он имеет бесконечное сопротивление, потому что постоянный ток просто не может пройти через диэлектрик между витками, так как диэлектрик по определению не проводит постоянный ток.

Конденсатор разрывает цепь постоянного тока. Однако если тот же конденсатор включить в цепь переменного тока, мы обнаружим, что конденсатор не разрывается полностью, а попеременно заряжается и разряжается, т.е. Электрический заряд перемещается, а ток во внешней цепи поддерживается.

Исходя из теории Максвелла, в этом случае можно сказать, что переменный ток, проходящий внутри конденсатора, замыкается, за исключением того, что в данном случае это реактивный ток. Таким образом, конденсатор в цепи переменного тока действует как своего рода сопротивление конечной величины. Это сопротивление называется емкость ..

Практика давно показала, что величина переменного тока, протекающего через провод, зависит от формы провода и магнитных свойств окружающей среды. Прямой провод будет иметь наибольший ток, но если тот же провод намотать в катушку с большим количеством витков, сила тока будет меньше.

А если в ту же катушку вставить ферромагнитный сердечник, ток еще больше уменьшится. Поэтому проводник имеет не только омическое (активное) сопротивление переменному току, но и некоторое дополнительное сопротивление, которое зависит от индуктивности проводника. Это сопротивление называется индуктивное сопротивление ..

Его физический смысл заключается в том, что изменение тока в проводнике, обладающем определенной индуктивностью, вызывает в этом проводнике ЭДС самоиндукции, которая стремится предотвратить изменение тока, то есть стремится уменьшить ток. Это эквивалентно увеличению сопротивления проводника.

Емкость в цепи переменного тока

Давайте сначала подробнее рассмотрим емкостное сопротивление. Предположим, что конденсатор емкостью C подключен к источнику синусоидально переменного тока, ЭДС этого источника будет описываться следующей формулой:

Падение напряжения на соединительных проводах будет опущено, так как оно обычно очень мало и при необходимости может быть рассмотрено отдельно. Теперь предположим, что напряжение на катушках конденсатора равно напряжению источника переменного тока. Следующий:

В любой момент времени заряд на конденсаторе зависит от его емкости и напряжения между его катушками. Затем, для заданного известного источника, о котором говорилось выше, мы получаем выражение для нахождения заряда на катушках конденсатора через напряжение источника:

Пусть за бесконечно долгое время dt заряд на конденсаторе изменится на величину dq, тогда ток I будет равен току, который течет по проводам от источника к конденсатору:

Значение амплитуды тока будет равно:

Тогда окончательное выражение для тока будет выглядеть следующим образом:

Перепишем формулу для амплитуды тока следующим образом:

Это уравнение является законом Ома, где обратная величина угловой частоты, умноженная на емкость, играет роль сопротивления, и по сути является выражением для нахождения емкости конденсатора в цепи синусоидально переменного тока:

Таким образом, емкость обратно пропорциональна угловой частоте тока и емкости конденсатора. Легко понять и физический смысл этих отношений.

Чем больше емкость конденсатора в цепи переменного тока и чем чаще меняется направление тока в цепи, тем больше общий заряд, который в итоге проходит за единицу времени через поперечное сечение проводников, соединяющих конденсатор с источником переменного тока. Таким образом, ток пропорционален произведению емкости и угловой частоты.

В качестве примера рассчитаем емкость конденсатора 10 мкФ для цепи синусоидально переменного тока с частотой 50 Гц:

Если бы частота была 5000 Гц, тот же конденсатор представлял бы собой сопротивление около 3 Ом.

Из приведенных выше формул ясно, что ток и напряжение в цепи переменного тока с конденсатором всегда изменяются в разных фазах. Фаза тока на пи/2 (90 градусов) раньше, чем фаза напряжения. Это означает, что максимальный ток по времени всегда на четверть периода опережает максимальное напряжение. Поэтому в емкостном резисторе ток находится на четверть периода по времени или на 90 градусов по фазе перед напряжением.

Давайте объясним физическое значение этого явления. В первый момент конденсатор полностью разряжен, поэтому малейшее приложенное к нему напряжение перемещает заряды на пластинах конденсатора, создавая ток.

По мере заряда конденсатора напряжение на его катушках увеличивается, что препятствует дальнейшему протеканию заряда, поэтому ток в цепи уменьшается независимо от дальнейшего увеличения напряжения, приложенного к катушкам.

Таким образом, если ток был максимальным в начальный момент времени, то когда напряжение достигнет максимума через четверть периода, ток вообще перестанет течь.

В начале периода ток максимален, а напряжение минимально и начинает расти, но через четверть периода напряжение достигает максимума, а ток к тому времени падает до нуля. Поэтому ток на четверть периода раньше, чем напряжение.

Индуктивное сопротивление в цепи переменного тока

Давайте теперь вернемся к индуктивному сопротивлению. Предположим, что через катушку индуктивности протекает синусоидально переменный ток. Это можно выразить следующим образом:

Ток вызывается изменяющимся напряжением, приложенным к катушке. Это означает, что катушка будет иметь ЭДС самоиндукции, которая выражается следующим образом:

Опять же, давайте пренебрежем падением напряжения на проводах, соединяющих источник ЭДС с катушкой. Их омическое сопротивление очень мало.

Пусть изменяющееся напряжение, приложенное к катушке, в каждый момент времени полностью уравновешивается результирующей ЭДС самоиндукции, равной по величине, но противоположной по направлению:

Тогда у нас есть закон обозначений:

Поскольку амплитуда напряжения, приложенного к катушке, равна:

Выразим максимальный ток следующим образом:

Это выражение на самом деле является законом Ома. Величина, равная произведению индуктивности на угловую частоту, здесь выступает как сопротивление и является ничем иным, как индуктивным сопротивлением катушки индуктивности:

Поэтому индуктивное сопротивление пропорционально индуктивности катушки и угловой частоте переменного тока, протекающего через катушку.

Это происходит потому, что индуктивное сопротивление обусловлено влиянием самоиндуцированного электромагнитного поля на напряжение источника – самоиндуцированное электромагнитное поле стремится уменьшить ток и тем самым вносит сопротивление в цепь. Известно, что величина ЭДС самоиндукции пропорциональна индуктивности катушки и скорости изменения протекающего через нее тока.

В качестве примера рассчитаем индуктивное сопротивление катушки с индуктивностью 1 Гн, включенной в цепь с частотой тока 50 Гц:

Если бы частота была 5000 Гц, то сопротивление той же катушки было бы около 31400 Ом. Напомним, что омическое сопротивление провода катушки обычно указывается в единицах Ом.

Из приведенных формул видно, что изменения тока и напряжения в катушке происходят в разных фазах, причем фаза тока всегда меньше фазы напряжения на pi/2. Поэтому максимум тока наступает на четверть периода позже, чем максимум напряжения.

В индуктивном резисторе ток отстает от напряжения на 90 градусов из-за тормозящего эффекта ЭДС самоиндукции, которая препятствует изменению тока (как увеличению, так и уменьшению), поэтому максимальный ток в цепи катушки наступает позже, чем максимальное напряжение.

Катушка и конденсатор работают вместе

Когда индуктор и конденсатор соединены последовательно в цепи переменного тока, напряжение на индукторе будет превышать напряжение на конденсаторе на половину периода, т.е. 180 градусов по фазе.

Емкостное и индуктивное сопротивления называются пассивными сопротивлениями. В реактивном сопротивлении энергия расходуется не так, как в активном. Энергия, запасенная в конденсаторе, периодически отдается обратно источнику, когда электрическое поле в конденсаторе исчезает.

То же самое справедливо и для катушки: пока магнитное поле катушки создается током, энергия накапливается в катушке в течение четверти периода, а затем возвращается к источнику в течение следующей четверти периода. В этой статье мы рассматриваем синусоидально переменный ток, для которого эти положения строго соблюдаются.

В цепях синусоидального переменного тока для ограничения тока традиционно используются индукционные катушки с сердечниками, называемые дросселями. Их преимущество перед реостатами заключается в том, что энергия не рассеивается в больших количествах в виде тепла.

Если вам понравилась эта статья, пожалуйста, поделитесь ею в социальных сетях. Это поможет нашему сайту сильно вырасти!

C – размер конденсатора в фарадах.

От чего зависит сопротивление конденсаторов в цепях переменного тока?

Его величина зависит не только от емкостных характеристик последнего, но и от частотной характеристики электрического тока, протекающего по цепи. Когда мы говорим о сопротивлении резистора, мы имеем в виду параметры самого резистора, например, материал, форму, но нет абсолютно никакой связи между его сопротивлением и электрической частотой цепи (мы говорим об идеальном резисторе, который не характеризуется паразитными параметрами). Когда мы говорим об устройстве для хранения энергии и зарядки электрическим полем – все по-другому. Конденсатор с одинаковой емкостью имеет разный уровень сопротивления при разных частотах тока. Амплитуда тока, протекающего через него при постоянной амплитуде напряжения, имеет другое значение.

Расчет Xc

Какие выводы можно сделать из этой формулы для сопротивления конденсатора в цепи переменного тока? По мере увеличения частоты сигнала электрическое сопротивление конденсатора уменьшается.

По мере увеличения емкости накопителя заряда энергия электрического поля Xc переменного электричества, протекающего через него, будет иметь тенденцию к уменьшению.

График, представляющий величину этого конденсатора при непостоянном токе в цепи, имеет форму гиперболы

По мере приближения значений частоты к нулю на оси (когда переменный ток становится похожим по своим параметрам на постоянный), это сопровождается увеличением Xc конденсатора до бесконечных значений. Это действительно так: известно, что конденсатор в сети постоянного тока на самом деле является разомкнутой цепью. Фактическое электрическое сопротивление, конечно, не бесконечно; оно ограничено коэффициентом утечки конденсатора. Однако его ценности остаются на высоком уровне, который нельзя игнорировать.

При увеличении числа частот до бесконечных значений емкость электрического конденсатора стремится к нулю. Это характеризует идеальные модели. В реальной жизни конденсатор обладает неприятными свойствами (такими как индуктивность и сопротивление утечки), поэтому емкость уменьшается до определенных значений, а затем увеличивается.

Пожалуйста, обратите внимание! Когда конденсатор подключен к переменной электрической цепи, его энергия не расходуется, поскольку фазовые характеристики напряжения и тока сдвинуты на 90° относительно друг друга. В течение одной четверти периода конденсатор заряжен (энергия накапливается в его электрическом поле), в течение следующего он разряжен, энергия отдается обратно в цепь. Его электрическое сопротивление без ваты, реактивное.

В этом случае сопротивление конденсатора в цепи переменного тока составляет 96,5 кОм. Если мы запишем все расчеты, то получим следующие результаты.

Векторное представление емкости

Для простого понимания процессов, происходящих в конденсаторе под воздействием источника переменного тока, удобно использовать векторное представление емкости.

В начальный момент зарядки конденсатора потенциал U на его катушках равен нулю (точка a). В то же время ток I имеет максимальное значение (точка b). В этот момент уже заметна задержка. Ток начинает уменьшаться от своего пикового значения (точка bd). Напряжение в этой точке еще не увеличилось и только приближается к своему максимальному значению (ac).

То же самое отражено на диаграмме справа. В точке, где напряжение U имеет наименьшее значение (e), ток I только начал переходить в отрицательную область (f).

Таким образом, в конце второй четверти периода конденсатор разрядится, ЭДС будет равна нулю, а ток в цепи достигнет своего наибольшего, амплитудного значения.

Емкость конденсатора

Мы уже видели, что ток в цепи с конденсатором может течь только при изменении приложенного к нему напряжения, и ток, протекающий через цепь при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС.

Конденсатор в цепи переменного тока влияет на ток, протекающий через цепь, то есть ведет себя как сопротивление. Чем выше емкость и чем выше частота переменного тока, тем меньше значение емкостного сопротивления. И наоборот, сопротивление конденсатора для переменного тока увеличивается с уменьшением емкости и снижением частоты.

Рисунок 2. Зависимость емкости конденсатора от частоты.

Для постоянного тока, т.е. когда его частота равна нулю, емкостное сопротивление бесконечно велико; поэтому постоянный ток не может протекать через цепь с емкостью.

Значение емкости определяется по следующей формуле:

где Xc – емкость конденсатора в Ом;

f – частота переменного тока в гц;

ω – угловая частота переменного тока;

C – емкость конденсатора в ф.

Когда конденсатор подключен к цепи переменного тока, в нем не расходуется энергия, как в индуктивности, поскольку фазы тока и напряжения смещены на 90° относительно друг друга. Энергия накапливается в электрическом поле конденсатора в течение одной четверти периода – когда конденсатор заряжается – и в течение другой четверти периода – когда конденсатор разряжается – она высвобождается обратно в цепь. Поэтому емкостное сопротивление, как и индуктивное, является реактивным или безваттным.

Следует отметить, однако, что практически в каждом конденсаторе, когда через него проходит переменный ток, потребляется больше или меньше активной мощности из-за изменений в диэлектрическом состоянии конденсатора. Кроме того, между пластинами конденсатора никогда не бывает абсолютно идеальной изоляции; утечки в изоляции между пластинами приводят к тому, что конденсатор подключается параллельно с каким-либо активным сопротивлением, через которое протекает ток, и, следовательно, потребляется некоторая мощность. В обоих случаях мощность бесполезно расходуется на нагрев диэлектрика и поэтому называется мощностью потерь.

Потери из-за изменения состояния диэлектрика называются диэлектрическими потерями, а потери из-за несовершенства изоляции между пластинами – потерями утечки.

Ранее мы сравнивали электрическую емкость с емкостью герметично закрытого сосуда или с площадью дна открытого сосуда с вертикальными стенками.

Конденсатор в цепи переменного тока можно сравнить с упругостью пружины. Чтобы избежать возможного недопонимания, под упругостью следует понимать не эластичность (“твердость”) пружины, а ее противоположность, “мягкость” или “податливость” пружины.

Представьте себе, что мы периодически сжимаем и растягиваем свернутую пружину, которая одним концом плотно прикреплена к стене. Время, которое нам потребуется для завершения полного цикла сжатия и растяжения пружины, будет соответствовать периоду переменного тока.

Таким образом, мы сожмем пружину в первом квартале периода, отпустим ее во втором квартале периода, растянем в третьем квартале периода и снова отпустим в четвертом квартале периода.

Кроме того, предположим, что наши усилия в течение периода будут неравномерными, а именно, они будут увеличиваться от нуля до максимума в первом и третьем кварталах периода и уменьшаться от максимума до нуля во втором и четвертом кварталах периода.

Сжимая и растягивая пружину таким образом, вы заметите, что в начале первой четверти периода свободный конец пружины будет двигаться довольно быстро при относительно небольшом усилии с нашей стороны.

В конце первой четверти периода (когда пружина сжата), наоборот, несмотря на увеличение силы, неприкрепленный конец пружины будет двигаться очень медленно.

Во второй четверти периода, когда мы постепенно уменьшаем давление на пружину, свободный конец пружины будет отходить от стены в нашу сторону, несмотря на то, что наши сдерживающие силы направлены в сторону стены. В этом случае наши силы в начале второй четверти периода будут наибольшими, а скорость движения незакрепленного конца пружины – наименьшей. В конце второй четверти периода, когда наши силы будут наименьшими, скорость пружины будет наибольшей, и так далее.

Продолжая аналогичные рассуждения для второй половины периода (для третьей и четвертой четвертей) и строя графики (рис. 1, б) изменения нашей силы и скорости движения незакрепленного конца пружины, мы увидим, что эти графики точно соответствуют графикам ЭДС и тока емкостной цепи (рис. 1, а), график силы будет соответствовать графику ЭДС, а график скорости – графику тока.

Рисунок 3. (a) Процессы, происходящие в цепи переменного тока с конденсатором и (b) Сравнение между конденсатором и пружиной.

Легко видеть, что пружина, как и конденсатор, накапливает энергию за одну четверть периода и отдает ее за другую четверть периода.

Также очевидно, что чем менее упругой является пружина, тем более упругой она является и тем большую силу она будет оказывать на нас. То же самое верно и для электрической цепи: чем меньше емкость, тем больше сопротивление цепи на данной частоте.

Наконец, чем медленнее мы сжимаем и растягиваем пружину, тем меньше скорость движения ее свободного конца. Аналогично, чем ниже частота, тем меньше ток при данной ЭДС.

При постоянном давлении пружина будет только сжиматься и тем самым останавливать свое движение, так же как при постоянной ЭДС конденсатор будет только заряжаться и тем самым останавливать дальнейшее движение электронов в цепи.

Теперь вы можете увидеть, как ведет себя конденсатор в цепи переменного тока на видео ниже:

ПОНРАВИЛАСЬ ЛИ ВАМ СТАТЬЯ? ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Если R = 0, то напряжение на конденсаторе равно приложенному напряжению и u = q/C. Мгновенное значение тока задается выражением:

Емкость

Конденсатор с емкостью C имеет бесконечное сопротивление в цепи постоянного тока. Однако если к конденсатору приложить переменное напряжение, он будет периодически заряжаться, и в цепи потечет ток. Напряжение на конденсаторе достигает своего максимального значения в те моменты, когда ток равен нулю.

Если R = 0, то напряжение на конденсаторе равно приложенному напряжению и u = q/C. Мгновенное значение тока задается выражением:

Между напряжением и током существует разность фаз -π/2.

В чисто емкостной цепи переменного тока ток превышает напряжение на π/2 (или T/4).

Из приведенного выше уравнения следует, что амплитуда тока Im = ωCUm. Сравнение с законом Ома U = RI показывает, что 1/ωC действует как сопротивление.

Цепь переменного тока, содержащая емкость C, имеет сопротивление переменному току; это называется емкость ХC.

Единица СИ для емкостного сопротивления: [XC] = Ом.

ХCемкость цепи переменного тока,Ом
ω = 2πfкруговая частота переменного тока,радиан/секунда
Cемкость,Фарад

С увеличением частоты емкость уменьшается. Для постоянного тока (f = 0) она бесконечно велика.

Ток в цепи с одной только емкостью дается выражением

После этого можно легко определить значение емкости или реактивного сопротивления конденсатора: xc = 1/2π x f x C = 1/ ω x C. Этот показатель рассчитывается, когда конденсатор подключен к цепи переменного тока. Поэтому, согласно закону Ома, в цепи переменного тока с подключенным конденсатором значение тока будет следующим: I = U/xc, а напряжение на катушках составит: Uc = Ic x xc.

Емкость в цепи переменного тока

Когда конденсатор подключается к цепи постоянного тока, через него в течение короткого периода времени протекает зарядный ток. После завершения зарядки, когда напряжение конденсатора совпадет с напряжением источника тока, протекание тока в цепи на короткое время прекратится. Таким образом, полностью заряженный конденсатор при постоянном токе будет представлять собой своего рода разомкнутую цепь или сопротивление бесконечной величины. При переменном токе конденсатор будет вести себя совсем по-другому. В такой цепи он будет заряжаться в переменном направлении. Протекание переменного тока в цепи не прерывается в этой точке.

Более внимательное рассмотрение этого процесса показывает, что в момент включения конденсатор имеет нулевое напряжение. При подаче напряжения сети переменного тока начинается зарядка. В это время напряжение в сети будет расти в течение первой четверти этого периода. По мере накопления заряда на катушках напряжение самого конденсатора будет увеличиваться. Когда напряжение в сети достигнет максимума в конце первого квартала, зарядка закончится, и ток в цепи будет равен нулю.

Существует формула для определения тока в цепи конденсатора: I = ∆q/∆t, где q – количество электроэнергии, протекающей через цепь в момент времени t. Согласно законам электростатики, количество электричества в приборе составит: q = C x Uc = C x U.

В этой формуле C – емкость конденсатора, U – напряжение сети, а Uc – напряжение на катушках элемента. Окончательная формула для тока в цепи будет такой: i = C x (∆Uc/∆t) = C x (∆U/∆t).

В начале второго квартала напряжение в сети упадет, и конденсатор начнет разряжаться. Ток в цепи изменит направление и потечет в противоположном направлении. В следующем полупериоде напряжение сети изменит направление, ячейка зарядится, а затем снова начнет разряжаться. Ток, присутствующий в цепи конденсатора, будет опережать напряжение на катушках на 90 градусов.

Установлено, что ток конденсатора изменяется со скоростью, пропорциональной угловой частоте ω. Поэтому, согласно уже известной формуле для тока в цепи i = C x (∆U/∆t), по аналогии получается, что среднеквадратичное значение тока также является пропорциональной зависимостью между скоростью изменения напряжения и угловой частотой ω: I = 2π x f x C x U.

После этого можно легко определить значение емкости или реактивного сопротивления конденсатора: xc = 1/2π x f x C = 1/ ω x C.

Этот показатель рассчитывается, когда конденсатор подключен к цепи переменного тока. Поэтому, согласно закону Ома, в цепи переменного тока с подключенным конденсатором значение тока будет следующим: I = U/xc, а напряжение на катушках составит: Uc = Ic x xc.

Часть сетевого напряжения, падающая на конденсатор, называется емкостным падением напряжения. Она также известна как реактивная составляющая напряжения, обозначаемая символом Uc. Значение емкости xc и значение индуктивного сопротивления xi напрямую зависят от частоты переменного тока.

Читайте далее:

  • Полное сопротивление цепи переменного тока – Основы электроники.
  • Лекции по ТЭ – #27 Явление резонанса в электрических цепях.
  • Урок 28 Электрическая емкость. Конденсатор – Физика – 10 класс – Российская электронная школа.
  • Значение слова ЭЛЕКТРОТЕХНИКАЦИЯ. Что такое ЭЛЕКТРОТЕХНИКА?.
  • 1 Понятие электромагнитного поля и его различные проявления. Материальность – Работа в школе.
  • Механические колебания и волны; FIZI4KA.
  • Урок 7 Свободные и вынужденные электромагнитные колебания. колебательный контур – физика – 11 класс – Русская электронная школа.

Индуктивное реактивное сопротивление и емкостное реактивное сопротивление – определение и примеры решения

Емкостное реактивное сопротивление можно определить как реактивное сопротивление, создаваемое емкостными элементами (конденсаторами). Мы можем обозначить его как. Емкостное реактивное сопротивление представляет собой противодействие напряжения на емкостном элементе, которое временно используется для накопления электрической энергии в виде электрического поля. Емкостное сопротивление создает разность фаз между током и напряжением.

 

В емкостной цепи напряжение опережает ток. Для идеальной емкостной цепи напряжение опережает ток. Благодаря емкостному реактивному сопротивлению, из-за которого коэффициент мощности системы или цепи опережает. Ниже показана векторная диаграмма идеальной емкостной цепи.

 

(Изображение будет загружено в ближайшее время)

 

Разница между реактивным сопротивлением и сопротивлением

  1. Реактивное сопротивление является составляющей импеданса, а сопротивление является постоянной составляющей сопротивления.

  2. Значение реактивного сопротивления всегда является комплексным числом, тогда как значение сопротивления должно быть действительным числом.

  3. В чисто индуктивной или емкостной цепи сопротивление будет равно нулю, а в чисто резистивной цепи реактивное сопротивление будет равно нулю.

  4. Из-за реактивного сопротивления будет изменяться как амплитуда, так и фаза тока.

    Из-за сопротивления ток и напряжение всегда будут оставаться в фазе.

  5. Значение реактивного сопротивления зависит от частоты сети, тогда как значение сопротивления не зависит от частоты сети.

  6. Для источника постоянного тока индуктивное сопротивление должно быть равно нулю, а емкостное сопротивление будет бесконечно. Для питания постоянным током сопротивление останется прежним.

  7. Реактивные сопротивления обозначаются как и. Сопротивление обозначается как.

  8. Коэффициент мощности в реактивном сопротивлении опережает или отстает из-за элемента реактивного сопротивления. В сопротивлении мощность равна единице, когда реактивное сопротивление равно нулю.

Решенные примеры Индуктивное реактивное сопротивление и емкостное реактивное сопротивление

Что такое реактивное электрическое сопротивление?
Электрическое реактивное сопротивление можно определить как поток, противоположный направлению тока в элементе цепи из-за его индуктивности и емкости.

Если реактивное сопротивление больше, то ток будет меньше при том же приложенном напряжении. Реактивное сопротивление, почти аналогичное электрическому сопротивлению, также имеет несколько отличий от него. Когда через электрическую цепь или элемент проходит переменный ток, изменяется как фаза, так и амплитуда тока. Кроме того, энергия запасается в элементе, содержащем реактивное сопротивление.

Таким образом, энергия высвобождается либо в форме электрического поля, либо в форме магнитного поля. Реактивное сопротивление в магнитном поле сопротивляется изменению тока, тогда как в электрическом поле реактивное сопротивление будет сопротивляться изменению напряжения. Если реактивное сопротивление высвобождает энергию в виде магнитного поля, оно называется индуктивным реактивным сопротивлением, тогда как если реактивное сопротивление высвобождает энергию в форме электрического поля, оно называется емкостным реактивным сопротивлением. С увеличением частоты емкостное сопротивление уменьшается, а индуктивное сопротивление увеличивается. Идеальный резистор будет иметь нулевое реактивное сопротивление, тогда как идеальные катушки индуктивности и конденсаторы будут иметь нулевое сопротивление.

Что такое индуктивное сопротивление?

Индуктивное сопротивление – это реактивное сопротивление, создаваемое индуктивным элементом (индуктивностью). Его можно обозначить как. С помощью индуктивных элементов электрическая энергия может храниться в виде магнитного поля. Когда через цепь пропускают переменный ток, вокруг нее образуется магнитное поле, которое может изменяться под действием тока. Изменения в магнитном поле могут индуцировать другой электрический ток в той же цепи. Закон Ленца гласит, что направление этого тока противоположно основному току. Следовательно, мы можем сказать, что индуктивное сопротивление фактически препятствует изменению тока через элемент.

 

Протекание тока из-за индуктивного реактивного сопротивления приводит к задержке, которая может привести к созданию разности фаз между сигналами тока и напряжения. Ток индуктивной цепи может отставать от напряжения. В идеальной индуктивной цепи ток отстает от напряжения на . Индуктивное сопротивление также является причиной отставания коэффициента мощности. Ниже показана векторная диаграмма идеальной индуктивной цепи.

 

(Изображение скоро будет загружено)

 

Векторная диаграмма идеальной индуктивной цепи

Когда учащиеся готовятся к ЕГЭ, вопросы могут быть сложными, но определенно не невозможно решить. Помните, что будучи студентами, вы находитесь на пути к построению светлого будущего, поэтому о чем беспокоиться? Дайте экзаменам все возможное!

Чтобы помочь учащимся лучше учиться и стараться изо всех сил, Vedantu дает определения и решенные примеры, чтобы лучше всего проиллюстрировать тему индуктивного реактивного сопротивления и емкостного реактивного сопротивления. Этот ресурс особенно полезен, когда учащиеся хотят быстро ознакомиться с темами и решить свои сомнения относительно вопросов, которые могут быть заданы в JEE Mains. Студенты должны знать, что каждая тема важна не только для экзамена, но и для их будущей карьеры.

Что такое электрическое, индуктивное и емкостное сопротивление?

1. Электрическое реактивное сопротивление – определяется как поток, который течет в направлении, противоположном течению тока в электрической цепи. Чем больше реактивное сопротивление, тем меньше ток будет для этого приложенного напряжения. Реактивное сопротивление ведет себя по-разному в магнитном и электрическом полях. В магнитном поле реактивное сопротивление будет сопротивляться изменению тока, в то время как оно сопротивляется изменению напряжения в электрическом поле.

2. Индуктивное реактивное сопротивление — Обозначается символом X L , создается за счет наличия индуктивного элемента, т.е. индуктора. Одним из применений индуктивного элемента является то, что его можно использовать для хранения электрической энергии в виде магнитного поля. Конкретный закон, называемый законом Ленца, ясно гласит, что направление тока, создаваемого индуктивным реактивным сопротивлением, противоположно направлению основного тока. Это может привести к задержке мощности между сигналами напряжения и тока.

3. Емкостное реактивное сопротивление — Обозначается символом X C , создается за счет наличия емкостного элемента, т.е. конденсаторов. Емкостной элемент помогает хранить электрическую энергию в виде электрического поля, в отличие от индуктивного элемента. Емкостное реактивное сопротивление возникает из-за противоположности напряжения на конденсаторах. Это также создает отставание между током и напряжением. Идеальное отставание в индуктивной цепи и идеальное опережение напряжения по току в емкостной цепи равны 90 градусов.

Реактивное, индуктивное и емкостное сопротивление | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Зарисовывать зависимость напряжения и тока от времени в простых индуктивных, емкостных и резистивных цепях.
  • Рассчитать индуктивное и емкостное реактивное сопротивление.
  • Расчет тока и/или напряжения в простых индуктивных, емкостных и резистивных цепях.

Многие схемы также содержат конденсаторы и катушки индуктивности в дополнение к резисторам и источнику переменного напряжения. Мы видели, как конденсаторы и катушки индуктивности реагируют на постоянное напряжение при его включении и выключении. Теперь мы рассмотрим, как катушки индуктивности и конденсаторы реагируют на синусоидальное переменное напряжение.

Катушки индуктивности и индуктивное реактивное сопротивление

Предположим, что катушка индуктивности подключена непосредственно к источнику переменного напряжения, как показано на рис. 1. Разумно предположить пренебрежимо малое сопротивление, поскольку на практике мы можем сделать сопротивление катушки индуктивности настолько малым, что это оказывает незначительное влияние на цепь. Также показан график зависимости напряжения и тока от времени.

Рис. 1. (a) Источник переменного напряжения, включенный последовательно с катушкой индуктивности с пренебрежимо малым сопротивлением. (б) График тока и напряжения на катушке индуктивности в зависимости от времени.

График на рис. 1(b) начинается с максимального напряжения. Обратите внимание, что ток начинается с нуля и достигает своего пика после управляющего им напряжения, как это было в случае, когда в предыдущем разделе было включено постоянное напряжение. Когда напряжение в точке а становится отрицательным, ток начинает уменьшаться; он становится равным нулю в точке b, где напряжение является самым отрицательным. Затем ток становится отрицательным, снова следуя за напряжением. Напряжение становится положительным в точке с и начинает делать ток менее отрицательным. В точке d ток проходит через нуль как раз в тот момент, когда напряжение достигает своего положительного пика, чтобы начать новый цикл. Это поведение резюмируется следующим образом:

Напряжение переменного тока в катушке индуктивности

Когда к катушке индуктивности приложено синусоидальное напряжение, оно опережает ток на одну четвертую периода или на фазовый угол 90º.

Ток отстает от напряжения, так как катушки индуктивности препятствуют изменению тока. Изменение тока индуцирует противо-ЭДС В = − L I / Δ t ). Это считается эффективным сопротивлением катушки индуктивности переменному току. Действующее значение тока I через дроссель L задается версией закона Ома:

[латекс]I=\frac{V}{{X}_{L}}\\[/latex],

, где В — среднеквадратичное значение напряжения. через индуктор и X L определяется как

[латекс]{X}_{L}=2\pi{fL}\\[/латекс],

с f частотой источника переменного напряжения в герцах (анализ схемы с использованием правила контура Кирхгофа и исчисления фактически дает это выражение). Х Д называется индуктивным сопротивлением , потому что индуктор препятствует протеканию тока. X L измеряется в омах (1 Гн = 1 Ом ⋅ с, так что частота, умноженная на индуктивность, выражается в (циклах/с)(Ом ⋅ с)=Ом)), что соответствует его роли в качестве эффективное сопротивление. Имеет смысл, что X L пропорционально L , поскольку чем больше индукция, тем больше ее сопротивление изменению. Также разумно, что X L пропорционально частоте f , так как большая частота означает большее изменение тока. То есть Δ I / Δ t велико для больших частот (большие f , малые Δ t ). Чем больше изменение, тем больше сопротивление индуктора.

Пример 1. Расчет индуктивного реактивного сопротивления, а затем тока

(a) Рассчитайте индуктивное реактивное сопротивление катушки индуктивности 3,00 мГн при подаче переменного напряжения частотой 60,0 Гц и 10,0 кГц. б) Чему равно среднеквадратичное значение тока на каждой частоте, если приложенное среднеквадратичное напряжение равно 120 В?

Стратегия

Индуктивное сопротивление находится непосредственно из выражения X L   = 2πf L . После того, как X L найдено на каждой частоте, можно использовать закон Ома, как указано в уравнении I = V / X L , чтобы найти ток на каждой частоте.

Решение для (a)

Ввод частоты и индуктивности в уравнение  x L = 2πf L дает

x L = 2πf L = 6.28 (60,0/с) (3,00 м) = 1,13 №.

Аналогично, на частоте 10 кГц

X L   = 2πf L = 6,28(1,00 × 10 4 кОм, 1 8,0 мГн) при 10 90 260 мГн) (3 90 260 мГн)

Решение для (b)

Среднеквадратичное значение тока теперь находится с использованием версии закона Ома в уравнении В / X L , при условии, что приложенное среднеквадратичное напряжение равно 120 В. Для первой частоты это дает

[латекс]I=\frac{V}{{X}_{L }}=\frac{120\text{ V}}{1,13\text{ }\Omega}=106\text{ A при } 60\text{ Гц}\\[/latex].

Аналогично, на частоте 10 кГц

[латекс]I=\frac{V}{{X}_{L}}=\frac{120\text{ V}}{188\text{ }\Omega}= 0,637\text { A at } 10\text{ кГц}\\[/латекс].

Обсуждение

Катушка индуктивности очень по-разному реагирует на двух разных частотах. На более высокой частоте его реактивное сопротивление велико, а ток мал, что соответствует тому, как индуктор препятствует быстрому изменению. Таким образом, высокие частоты препятствуют больше всего. Индукторы можно использовать для фильтрации высоких частот; например, большой индуктор можно включить последовательно с системой воспроизведения звука или последовательно с вашим домашним компьютером, чтобы уменьшить высокочастотный звук, выходящий из ваших динамиков, или высокочастотные скачки мощности в вашем компьютере.

Обратите внимание, что, хотя сопротивление в рассматриваемой цепи незначительно, переменный ток не очень велик, поскольку индуктивное сопротивление препятствует его протеканию. При переменном токе нет времени для того, чтобы ток стал чрезвычайно большим.

Конденсаторы и емкостное реактивное сопротивление

Рассмотрим конденсатор, подключенный непосредственно к источнику переменного напряжения, как показано на рис. 2. Сопротивление такой цепи можно сделать настолько малым, что оно оказывает незначительное влияние по сравнению с конденсатором, и так что можно предположить пренебрежимо малое сопротивление. Напряжение на конденсаторе и ток представлены на рисунке как функции времени.

Рис. 2. (a) Источник переменного напряжения, включенный последовательно с конденсатором C, имеющим пренебрежимо малое сопротивление. (б) График тока и напряжения на конденсаторе в зависимости от времени.

График на рис. 2 начинается с максимального напряжения на конденсаторе. В этот момент ток равен нулю, потому что конденсатор полностью заряжен и останавливает поток. Затем напряжение падает, а ток становится отрицательным, когда конденсатор разряжается. В точке а конденсатор полностью разряжен ( Q = 0 на нем) и напряжение на нем равно нулю. Ток между точками a и b остается отрицательным, что приводит к изменению напряжения на конденсаторе. Это завершается в точке b, где ток равен нулю, а напряжение имеет самое отрицательное значение. Ток становится положительным после точки b, нейтрализуя заряд конденсатора и сводя напряжение к нулю в точке c, что позволяет току достигать своего максимума. Между точками c и d ток падает до нуля, когда напряжение достигает своего пика, и процесс начинает повторяться. На протяжении всего цикла напряжение следует за током на одну четвертую цикла:

Напряжение переменного тока в конденсаторе

Когда на конденсатор подается синусоидальное напряжение, оно следует за током на одну четвертую периода или на угол сдвига фаз 90º.

Конденсатор влияет на ток, имея возможность полностью остановить его при полной зарядке. Поскольку применяется переменное напряжение, существует среднеквадратичное значение тока, но оно ограничено конденсатором. Это считается эффективным сопротивлением конденсатора переменному току, поэтому среднеквадратичное значение тока I в цепи, содержащей только конденсатор C , по другой версии закона Ома определяется как

[latex]I=\frac{V}{{X}_{C}}\\[/latex] ,

, где V является среднеквадратичным напряжением, и определено x C (как с x L , это экспрессия для x C. схема с использованием правил Кирхгофа и исчисления) будет

[латекс]{X}_{C}=\frac{1}{2\pi fC}\\[/latex],

, где X C называется емкостным реактивным сопротивлением , потому что конденсатор препятствует протеканию тока. X C измеряется в омах (проверка оставлена ​​читателю в качестве упражнения). X C обратно пропорциональна емкости C ; чем больше конденсатор, тем больший заряд он может хранить и тем больший ток может протекать. Он также обратно пропорционален частоте ф ; чем больше частота, тем меньше времени остается для полной зарядки конденсатора, и поэтому он меньше препятствует току.

Пример 2. Расчет емкостного реактивного сопротивления, а затем тока

(a) Рассчитайте емкостное реактивное сопротивление конденсатора емкостью 5,00 мФ при подаче переменного напряжения частотой 60,0 Гц и 10,0 кГц. б) Чему равно среднеквадратичное значение тока, если приложенное среднеквадратичное напряжение равно 120 В?

Стратегия

Емкостное реактивное сопротивление находится непосредственно из выражения в [latex]{X}_{C}=\frac{1}{2\pi fC}\\[/latex]. Однажды 9Для каждой частоты было найдено 0114 X C . Для определения тока на каждой частоте можно использовать закон Ома:

Решение для (a)

Ввод частоты и емкости в [латекс]{X}_{C}=\frac{1}{2\pi fC}\\[/latex], дает

[ латекс]\begin{array}{lll}{X}_{C}& =& \frac{1}{2\pi fC}\\ & =& \frac{1}{6.28\left(60.0/\text {s}\right)\left(5.00\text{ }\mu\text{F}\right)}=531\text{ }\Omega\text{ at }60\text{ Гц}\end{массив}\ \[/латекс]. 9{4}/\text{s}\right)\left(5.00\mu\text{F}\right)}\\ & =& 3.18\text{ }\Omega\text{ при }10 \text{ кГц} \end{массив}\\[/латекс].

Решение для (b)

Среднеквадратичное значение тока теперь находится с использованием версии закона Ома в В / X В действующее значение C при данном напряжении. Для первой частоты это дает

[латекс]I=\frac{V}{{X}_{C}}=\frac{120 \text{V}}{531\text{ }\Omega}=0,226 \text{ A при }60\text{ Гц}\\[/latex].

Аналогично, на частоте 10 кГц

[латекс]I=\frac{V}{{X}_{C}}=\frac{120 \text{ V}}{3.18\text{ }\Omega}= 3,37 \text{ А при }10 \text{ Гц}\\[/latex].

Обсуждение

Конденсатор очень по-разному реагирует на двух разных частотах, и совершенно противоположным образом реагирует индуктор. На более высокой частоте его реактивное сопротивление мало, а ток велик. Конденсаторы способствуют изменениям, тогда как индукторы сопротивляются изменениям. Конденсаторы больше всего препятствуют низким частотам, поскольку низкая частота дает им время зарядиться и остановить ток. Конденсаторы можно использовать для фильтрации низких частот. Например, конденсатор, включенный последовательно со звуковоспроизводящей системой, избавляет ее от гула частотой 60 Гц.

Хотя конденсатор в основном представляет собой разомкнутую цепь, в цепи с переменным напряжением, приложенным к конденсатору, существует среднеквадратичное значение тока. Это связано с тем, что напряжение постоянно меняется, заряжая и разряжая конденсатор. Если частота стремится к нулю (постоянный ток), X C стремится к бесконечности, а ток равен нулю после зарядки конденсатора. На очень высоких частотах реактивное сопротивление конденсатора стремится к нулю — он имеет пренебрежимо малое реактивное сопротивление и не препятствует протеканию тока (он действует как простой провод). Конденсаторы оказывают противоположное воздействие на цепи переменного тока по сравнению с катушками индуктивности .

Резисторы в цепи переменного тока

В качестве напоминания рассмотрим рис. 3, на котором показано напряжение переменного тока, приложенное к резистору, и график зависимости напряжения и тока от времени. Напряжение и ток равны в фазе в резисторе. Поведение простого сопротивления в цепи не зависит от частоты:

Рис. 3. (a) Источник переменного напряжения, включенный последовательно с резистором. (b) График зависимости тока и напряжения на резисторе от времени, показывающий, что они точно совпадают по фазе.

Переменное напряжение на резисторе

Когда на резистор подается синусоидальное напряжение, оно точно совпадает по фазе с током — фазовый угол равен 0º.

Резюме раздела

  • Для катушек индуктивности в цепях переменного тока мы обнаружили, что когда к катушке индуктивности прикладывается синусоидальное напряжение, напряжение опережает ток на одну четвертую периода или на фазовый угол 90º.
  • Противодействие катушки индуктивности изменению тока выражается как вид сопротивления переменному току.
  • Закон Ома для катушки индуктивности

    [латекс]I=\frac{V}{{X}_{L}}\\[/латекс],

    , где В — среднеквадратичное напряжение на катушке индуктивности.

  • X L определяется как индуктивное реактивное сопротивление, определяемое формулой

    [латекс]{X}_{L}=2\pi fL\\[/латекс],

    с f частотой источника переменного напряжения в герцах.

  • Индуктивное сопротивление  X L выражается в омах и имеет наибольшее значение на высоких частотах.
  • Для конденсаторов мы обнаружили, что когда к конденсатору прикладывается синусоидальное напряжение, напряжение следует за током на одну четвертую периода или на фазовый угол 90º.
  • Поскольку конденсатор может останавливать ток при полной зарядке, он ограничивает ток и предлагает другую форму сопротивления переменному току; Закон Ома для конденсатора

    [латекс]I=\frac{V}{{X}_{C}}\\[/латекс],

    , где В — среднеквадратичное напряжение на конденсаторе.

  • Х С  определяется как емкостное реактивное сопротивление, определяемое выражением

    [латекс]{X}_{C}=\frac{1}{2\pi fC}\\[/latex].

  • X C измеряется в омах и имеет наибольшее значение на низких частотах.

Концептуальные вопросы

1. Пресбиакузис — это возрастная потеря слуха, которая постепенно влияет на более высокие частоты. Усилитель слухового аппарата предназначен для одинакового усиления всех частот. Чтобы настроить его выход на пресбиакузис, вы бы включили конденсатор последовательно или параллельно с динамиком слухового аппарата? Объяснять.

2. Будете ли вы использовать большую индуктивность или большую емкость последовательно с системой для фильтрации низких частот, таких как гул частотой 100 Гц в звуковой системе? Объяснять.

3. Высокочастотный шум в сети переменного тока может повредить компьютеры. Использует ли сменный блок, предназначенный для предотвращения этого повреждения, большую индуктивность или большую емкость (последовательно с компьютером) для фильтрации таких высоких частот? Объяснять.

4. Зависит ли индуктивность от тока, частоты или от того и другого? А индуктивное сопротивление?

5. Объясните, почему конденсатор на рис. 4(а) действует как фильтр низких частот между двумя цепями, а конденсатор на рис. 4(б) действует как фильтр высоких частот.

Рис. 4. Конденсаторы и катушки индуктивности. Конденсатор с высокой частотой и низкой частотой.

6. Если конденсаторы на рисунке 4 заменить катушками индуктивности, что будет работать как фильтр низких частот, а что как фильтр высоких частот?

Задачи и упражнения

1. При какой частоте дроссель 30,0 мГн будет иметь реактивное сопротивление 100 Ом?

2. Какое значение индуктивности следует использовать, если требуется реактивное сопротивление 20,0 кОм на частоте 500 Гц?

3. Какую емкость следует использовать для получения реактивного сопротивления 2,00 МОм при частоте 60,0 Гц?

4. При какой частоте конденсатор емкостью 80,0 мФ будет иметь реактивное сопротивление 0,250 Ом?

5. (a) Найдите ток через катушку индуктивности 0,500 Гн, подключенную к источнику переменного тока с частотой 60,0 Гц и напряжением 480 В. б) Какой будет сила тока на частоте 100 кГц?

6. (a) Какой ток протекает, когда источник переменного тока с частотой 60,0 Гц, 480 В подключен к конденсатору 0,250 мкФ? б) Какой будет сила тока на частоте 25,0 кГц?

7. Источник 20,0 кГц, 16,0 В, подключенный к катушке индуктивности, производит ток силой 2,00 А. Индуктивность какая?

8. Источник 20,0 Гц, 16,0 В производит ток 2,00 мА при подключении к конденсатору. Какова емкость?

9. (a) Катушка индуктивности, предназначенная для фильтрации высокочастотных помех от питания, подаваемого на персональный компьютер, устанавливается последовательно с компьютером. Какая минимальная индуктивность должна быть у него, чтобы создать реактивное сопротивление 2,00 кОм для шума 15,0 кГц? б) Каково его реактивное сопротивление при частоте 60,0 Гц?

10. Конденсатор на рис. 4(а) предназначен для фильтрации низкочастотных сигналов, препятствуя их передаче между цепями. (а) Какая емкость необходима для создания реактивного сопротивления 100 кОм на частоте 120 Гц? б) Каким будет его реактивное сопротивление на частоте 1,00 МГц? (c) Обсудите последствия ваших ответов на вопросы (a) и (b).

11. Конденсатор на рис. 4(b) фильтрует высокочастотные сигналы, замыкая их на землю. (a) Какая емкость необходима для получения реактивного сопротивления [латекс]\текст{10,0 м\Омега}[/латекс] для сигнала частотой 5,00 кГц? б) Каким будет его реактивное сопротивление при частоте 3,00 Гц? (c) Обсудите последствия ваших ответов на вопросы (a) и (b).

12. Необоснованные результаты  При записи напряжений, вызванных мозговой активностью (ЭЭГ), сигнал 10,0 мВ с частотой 0,500 Гц подается на конденсатор, производящий ток 100 мА. Сопротивление незначительно. а) Чему равна емкость? б) Что неразумного в этом результате? (c) Какое предположение или предпосылка являются ответственными?

13. Создайте свою собственную задачу  Рассмотрим использование катушки индуктивности последовательно с компьютером, работающим от электричества 60 Гц. Постройте задачу, в которой вы вычисляете относительное снижение напряжения входящего высокочастотного шума по сравнению с напряжением 60 Гц. Среди вещей, которые следует учитывать, — приемлемое последовательное реактивное сопротивление катушки индуктивности для мощности 60 Гц и вероятные частоты шума, проходящего через линии электропередач.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *