Электрическое сопротивление проводника – таблица, закон Ома для тока
4.3
Средняя оценка: 4.3
Всего получено оценок: 160.
4.3
Средняя оценка: 4.3
Всего получено оценок: 160.
Электрический ток в проводнике возникает в результате силового воздействия электрического поля на заряженные частицы. Скорость частиц, достигнув определенной, конечной величины, далее не возрастает. Способность проводника ограничивать скорость движения электронов называется электрическим сопротивлением.
Основной механизм сопротивления проводников
Ток в проводнике создается направленным движением свободных электронов. Электроны, ускорившись в электрическом поле, продолжают одновременно участвовать в тепловом хаотическом движении, сталкиваясь с нейтральными и заряженными атомами, расположенными в узлах кристаллической решетки. Излишки приобретенной кинетической энергии электроны отдают (“тормозятся”) более тяжелым по массе атомам (нейтральным и ионизированным).
Таким образом возникает сопротивление однонаправленному движению свободных электронов. Отличия в структуре решеток, размерах и массах атомов разных веществ являются причинами того, что электрические сопротивления проводников могут значительно отличаться друг от друга. Рис. 1. Столкновения электронов с атомами ограничивают электрический ток в проводнике и создают сопротивление.Как определить величину сопротивления
$ U = I * R $ (1)
где:
U — напряжение, В;
I — сила тока, А.
Величина R была названа электрическим сопротивлением. Пользуясь формулой (1) можно получить уравнение для вычисления R по результатам измерения напряжения U и тока I:
$ R={U \over I} $ (2)
Рис. 2. Схема измерения напряжения и тока в экспериментах Георга Ома.Единица измерения электрического сопротивления
Единицу измерения сопротивления назвали в честь Георга Ома. В Международной интернациональной системе единиц СИ электрическое сопротивление 1 Ом имеет участок цепи, на котором падает напряжение равное 1 В при силе тока 1 А:
$ 1 Ом = { 1 В\over 1 A} $ (3)
Для определения сопротивления с помощью закона Ома требуется измерить предварительно напряжение и ток. Двух измерений можно избежать с помощью прибора, разработанного для непосредственного измерения сопротивления. Прибор называется омметром.
Рис. 3. Приборы для измерения сопротивления – омметры.На практике большинство используемых в электрических схемах и приборах сопротивлений гораздо больше, чем 1 Ом. Поэтому чаще применяются кратные единицы измерений : килоом и мегом:
- 1 кОм = 1000 Ом;
- 1 МОм = 1000 000 Ом.
Удельное электрическое сопротивление
Дальнейшие исследования позволили установить связь величины электрического сопротивления с его основными геометрическими размерами.
Эта функциональная связь хорошо описывается следующей формулой:
$ R = ρ *{ L\over S} $ (4)
Постоянная для каждого вещества величина ρ была названа удельным сопротивлением. Значение этого параметра зависит от плотности вещества, его кристаллической структуры, строения атомов и прочих внутренних характеристик вещества. Из формулы (4) можно получить формулу для расчета удельного сопротивления, если имеются экспериментальные значения для
$ ρ = R*{ S\over L } $ (5)
Для большинства известных веществ измерения были произведены и внесены в справочные таблицы электрических сопротивлений проводников.
Удельное сопротивление металлов, Ом*мм2/м
(при Т = 200С)
Серебро | 0,016 | Бронза (сплав) | 0,1 |
Медь | 0,017 | Олово | 0,12 |
Золото | 0,024 | Сталь (сплав) | 0,12 |
Алюминий | 0,028 | Свинец | 0,21 |
Иридий | 0,047 | Никелин (сплав) | 0,42 |
Молибден | 0,054 | Манганин (сплав) | 0,45 |
Вольфрам | 0,055 | Константан (сплав) | 0,48 |
Цинк | 0,06 | Титан | 0,58 |
Латунь (сплав) | 0,071 | Ртуть | 0,958 |
Никель | 0,087 | Нихром (сплав) | 1,1 |
Платина | 0,1 | Висмут | 1,2 |
Экспериментально было обнаружено, что с понижением температуры сопротивление металлов уменьшается. При приближении к температуре абсолютного нуля, которая равна -2730 С, сопротивление некоторых металлов стремится к нулю. Это явление называется сверхпроводимостью. Атомы и молекулы как бы “замораживаются”, прекращают любое движение и не оказывают сопротивления потоку электронов.
Что мы узнали?
Итак, мы узнали, что способность проводника ограничивать величину электрического тока называется сопротивлением. Величину сопротивления проводника можно определить с помощью закона Ома, измерив напряжение и ток. Если известно удельное сопротивление проводника, его длина и поперечное сечение, то сопротивление можно вычислить с помощью формулы (4), не измеряя ток и напряжение.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
Марина Ковтун
10/10
Оценка доклада
4.3
Средняя оценка: 4.3
Всего получено оценок: 160.
А какая ваша оценка?
определение, суть, единицы измерения и формулы для расчёта
Физика
12.11.21
15 мин.
Способность вещества пропускать электроток определяется его электрическим сопротивлением. Проводник, обладающий им, в электротехнике называют резистором. Зависит значение физической величины от удельного коэффициента и размеров материала, а также строения тела. Для измерения параметра используют устройство, называемое омметром и работающим по принципу закона Ома.
Оглавление:
- Общие сведения
- Удельное сопротивление
- Суть закона Ома
- Решение задач
Общие сведения
Любое вещество состоит из элементарных частиц. Они образуют ядра, которые связаны между собой силами взаимодействия. Вокруг центра по орбиталям вращаются электроны. Это частицы, которые являются носителями элементарного отрицательного заряда. Располагаются они на разных энергетических уровнях. При этом чем ближе электрон находится к ядру, тем сильнее его с ним связь.
В обычном состоянии, то есть когда на тело не оказывается внешнее воздействие, вещество находится в равновесном положении.
Независимые электроны получили название «свободные». Они хаотично перемещаются в структуре тела под действием теплового колебания. Их заряд компенсируется энергией ионной решётки. Если же тело внести под действие электрического поля, то происходит перераспределение как положительных, так и отрицательных частиц. Возникают некомпенсированные заряды — электростатическая индукция.
Из-за особенностей строения то или иное вещество обладает различным числом свободных электронов. В зависимости от их количества все материалы разделяют на три больших класса:
- диэлектрики — вещества, в которых нет свободных носителей заряда;
- полупроводники — тела, способные проводить электрический ток только при создании определённых условий, то есть сообщении извне нужной энергии для преодоления частицами потенциального барьера;
- проводники — характеризуются содержанием большого количества свободных электронов, которые могут участвовать в образовании тока.
Проводимость материала определяется не только количеством свободных носителей, но и его сопротивлением. Суть этой величины заключается в способности вещества препятствовать прохождению тока. Природа же этого явления в том, что носители сталкиваются с молекулами, при этом теряя свою энергию, тем самым уменьшая электроток.
Удельное сопротивление
Проводимость принято в физике обозначать буквой G. Эта величина характеризует возможность тела или среды проводить электрический ток. По сути, она определяет возникновение электротока под воздействием электрического поля и является параметром, обратным сопротивлению.
Упорядочено движущиеся отрицательные носители, сталкиваясь с другими частицами, замедляют своё перемещение. Часть их энергии при этом рассеивается в виде тепла, что приводит к нагреванию проводника. Так как электроны для дальнейшего движения преодолевают некое препятствие, то говорят, что проводник, в котором происходит это явление, обладает электрическим сопротивлением.
Именно поэтому, если оно у тела небольшое, то при пропускании по нему электротока происходит слабый нагрев, если же велико — материал может даже раскалиться. Величина температуры, как подсказывает логика, должна зависеть не только от количества столкновений в теле, но и от физических размеров тела. Эксперименты, проводимые в XIX веке, позволили установить зависимость сопротивления проводника от его формы и размеров: R = p * (l / S), где:
- p — удельный коэффициент;
- l — длина проводника;
- S — площадь материала.
Удельный коэффициент является справочной величиной. Он показывает, при каких значениях однородное вещество длиной 1 м и площадью 1 м2 имеет сопротивление, равное один ом. Измеряется величина в [Ом * м].
Для сравнения удельную сопротивляемость наиболее распространённых проводников, измеренную при температуре 200С, можно привести в таблице.
Название | Обозначение | Значение (10-8 Ом * м) |
Алюминий | Al | 2,8 |
Медь | Cu | 1,7 |
Серебро | Ag | 1,6 |
Никель | Ni | 42 |
Ртуть | Hg | 96 |
Платина | Pt | 10 |
Вольфрам | W | 5,5 |
Цинк | Zn | 0,6 |
Эксперименты также показали зависимость электрического сопротивления от температуры. Объяснить это можно тем, что при её повышении увеличиваются колебания атомов в узлах кристаллической решётки. Это, в свою очередь, затрудняет возможность «просачивания» электронов по структуре без столкновений.
Кстати, это ещё одна особенность, отличающая проводники от диэлектриков. В последних с ростом температуры проводимость увеличивается из-за высвобождения свободных носителей. При достижении определённого значения происходит пробой, то есть резкое снижение сопротивления практически до нуля.
Суть закона Ома
В 1826 году немецкий физик и экспериментатор Георг Симон Ом выступил на собрании Лондонского королевского общества, предоставив результаты своего опыта. На основании его исследований после был сформулирован закон, названный его именем. Открытие физика позволило качественно пересмотреть явление электричества, лучше понять природу протекания тока. По сути, Ом установил зависимость между тремя электрическими величинами: током, напряжением и сопротивлением.
В 1822 году Зеебек обнаружил зависимость силы тока от температуры, а также то, что при контакте двух различных веществ при их нагреве возникает разность потенциалов. Своё открытие он использовал для создания источника электродвижущей силы. Ом, заинтересовавшись устройством, начал проводить свои опыты над различными материалами.
Суть эксперимента учёного заключалась в следующем. Он взял несколько отрезков медной проволоки разной длины и, подключая их к источнику тока, оценивал величину электричества. В качестве измерительного приспособления использовались крутильные весы. Затем медь была заменена на латунь. На основании полученных результатов Ом построил график, где по оси игрек отложил обратную величину закручивания, а по координате икс — длину проволоки.
Как для первого, так и для второго материала график зависимости представлял собой прямую линию. Таким образом, он предположил, что протекающий ток обратно пропорционально зависит от длины тела, то есть от сопротивления проводника.
На то время из-за недостаточности понимания процессов общество не могло оценить важность открытия. Некоторые учёные даже скептически воспринимали полученные результаты. Лишь только в 1835 году авторитетный французский физик Пулье смог подтвердить опытным путём исследования немецкого физика. После этого британское научное общество признало закономерность истинным природным явлением.
Современная же интерпретация закона Ома гласит: электроток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Формула его записи имеет вид: I = U / R. Из этого выражения можно найти сопротивление: R = U / I. В качестве единицы измерения величины взят ом, то есть отношение вольта к амперу: [Ом] = [В] / [А].
Определение Ома дало толчок в развитии электричества. Благодаря его закону появилась возможность управлять параметрами электроцепи, вводя в случае необходимости элементы с известным сопротивлением. В электронике они даже получили своё название — резисторы. Это элементы, обладающие известным постоянным или переменным значением величины обратной проводимости.
Решение задач
Практические навыки позволяют не только закрепить теоретический материал, но и понять возможности его применения. Кроме этого, школьник учится самостоятельно анализировать заданные условия, работать со справочной литературой. Умение находить сопротивление особенно важно для тех, кто собирается работать в области электрики или электроники.
Вот некоторые из типовых заданий, рассчитанные на учащихся восьмых классов средней школы:
- Каково будет сопротивление платинового провода длиной 0,1 метр и площадью поперечного сечения 2 мм2. Из таблицы удельных коэффициентов можно взять значение p для Pt, оно составляет 0,1 Ом * мм2 / м. Для вычисления требуемой величины нужно воспользоваться правилом, согласно которому, сопротивление проводника прямо пропорционально длине и обратно пропорционально площади его поперечного сечения. При этом она зависит и от вида материала. Таким образом, R = p * l / S = 0,1 [Ом * мм2 / м] * 0,1 [м] / 2 [мм2] = 0,005 Ом = 5 *10-3 Ом.
- В схеме последовательно с амперметром включён проводник, имеющий сопротивление, равное 1 кОм. При подключении к источнику тока показания прибора составили 593 мА. Определить напряжение на выводах проводника. Это простая задача на использование закона Ома: I = U / R. Из формулы следует, что напряжение можно найти как U = I * R. Перед тем как подставлять исходные данные в формулу, нужно размерность всех величин привести к стандарту СИ. Так, I = 593 мА = 0,593 A, а 10 кОм = 1 * 103 Ом. Отсюда: U = 0,593 [А] * 103[Ом] = 593 [В].
- Устройство для управления сопротивлением (реостат) изготовлен из цинковой проволоки длиной 50 метров. Её поперечное сечение равно одному квадратному метру. Вычислить напряжение на реостате, если по виткам проволоки проходит ток силой в 2,5 ампера. Для того чтобы определить разность потенциалов, нужно знать сопротивление. Вычислить его можно по формуле: R = p * l / S = (0,6 * 10-6 * 50) / 10-6 = 30 Ом. Отсюда: U = 2,5 [А] * 30 [Ом] = 75 [В].
Таким образом, решать задачи, связанные с электрическим сопротивлением, несложно. Нужно лишь знать несколько формул и понимать явления, которые происходят при появлении электротока. При этом нужно внимательно следить за размерностью подставляемых величин, переводя исходные данные в систему СИ.
Формула удельного сопротивления
Сопротивление проводника
Удельное сопротивление
И вот мы плавно переходим к другому вопросу, что такое сопротивление проводника? Как я уже говорил выше, чем больше свободных электронов в веществе, тем лучше такое вещество проводит электрический ток. Следовательно, сопротивление проводника зависит от того, сколько свободных электронов содержит такой проводник. Поэтому, в физике есть такое понятие, как удельное сопротивление вещества.
Еще раз. Если в каком-либо веществе полно свободных электронов, то такое вещество будет хорошо проводить электрический ток. Если электронов еще меньше, то такое вещество будет плохо проводить электрический ток. А если свободных электронов почти нет, то такое вещество совсем не будет проводить ток. Поэтому, удельное сопротивление вещества показывает способность этого вещества препятствовать электрическому току, проходящему через него.
Удельное сопротивление выражается в единицах Ом × м.
Формула удельного сопротивления проводника
где
ρ – это удельное сопротивление, Ом × м
R – сопротивление проводника, Ом
S – площадь поперечного сечения, м2
l – длина проводника, м
Площадь поперечного сечения проводника – это что-то типа этого:
площадь поперечного сечения проводника
Формула сопротивления проводника
Итак, мы теперь знаем такую физическую величину, как удельное сопротивление. Теперь мы с легкостью можем найти сопротивление проводника.
где
ρ – это удельное сопротивление, Ом × м
R – сопротивление проводника, Ом
S – площадь поперечного сечения, м2
l – длина проводника, м
Таблица удельных сопротивлений проводников
Материал проводника | Удельное сопротивление ρ в |
Серебро Медь Золото Латунь Алюминий Натрий Иридий Вольфрам Цинк Молибден Никель Бронза Железо Сталь Олово Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) Титан Ртуть Нихром (сплав никеля, хрома, железа и марганца) Фехраль Висмут Хромаль | 0,015 0,0175 0,023 0,025… 0,108 0,028 0,047 0,0474 0,05 0,054 0,059 0,087 0,095… 0,1 0,1 0,103… 0,137 0,12 0,22 0,42 0,43… 0,51 0,5 0,6 0,94 1,05… 1,4 1,15… 1,35 1,2 1,3… 1,5 |
Сопротивление тока: формула
Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм2. Серебро — лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм2 обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.
Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.
Сопротивление проводника можно определить по формуле:
где r — сопротивление проводника в омах; ρ — удельное сопротивление проводника; l — длина проводника в м; S — сечение проводника в мм2.
Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм2.
Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм2.
Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.
Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм2. Определить необходимую длину проволоки.
Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.
Пример 5. Проволока сечением 0,5 мм2 и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.
Материал проводника характеризует его удельное сопротивление.
По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.
Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.
У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 — 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.
Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.
температурный коэффициент сопротивления — это изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, обозначается буквой α.
Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления
Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).
Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).
Таблица 2
Удельное электрическое сопротивление
Дальнейшие исследования позволили установить связь величины электрического сопротивления с его основными геометрическими размерами. Оказалось, что сопротивление проводника прямо пропорционально длине проводника L и обратно пропорционально площади поперечного сечения проводника S.
Эта функциональная связь хорошо описывается следующей формулой:
$ R = ρ *{ L\over S} $ (4)
Постоянная для каждого вещества величина ρ была названа удельным сопротивлением. Значение этого параметра зависит от плотности вещества, его кристаллической структуры, строения атомов и прочих внутренних характеристик вещества. Из формулы (4) можно получить формулу для расчета удельного сопротивления, если имеются экспериментальные значения для R, L и S:
$ ρ = R*{ S\over L } $ (5)
Для большинства известных веществ измерения были произведены и внесены в справочные таблицы электрических сопротивлений проводников.
Удельное сопротивление металлов, Ом*мм2/м
(при Т = 20С)
Серебро | 0,016 | Бронза (сплав) | 0,1 |
Медь | 0,017 | Олово | 0,12 |
Золото | 0,024 | Сталь (сплав) | 0,12 |
Алюминий | 0,028 | Свинец | 0,21 |
Иридий | 0,047 | Никелин (сплав) | 0,42 |
Молибден | 0,054 | Манганин (сплав) | 0,45 |
Вольфрам | 0,055 | Константан (сплав) | 0,48 |
Цинк | 0,06 | Титан | 0,58 |
Латунь (сплав) | 0,071 | Ртуть | 0,958 |
Никель | 0,087 | Нихром (сплав) | 1,1 |
Платина | 0,1 | Висмут | 1,2 |
Экспериментально было обнаружено, что с понижением температуры сопротивление металлов уменьшается. При приближении к температуре абсолютного нуля, которая равна -273С, сопротивление некоторых металлов стремится к нулю. Это явление называется сверхпроводимостью. Атомы и молекулы как бы “замораживаются”, прекращают любое движение и не оказывают сопротивления потоку электронов.
Что мы узнали?
Что такое удельное сопротивление и электропроводность, формула
Итак, мы узнали, что способность проводника ограничивать величину электрического тока называется сопротивлением. Величину сопротивления проводника можно определить с помощью закона Ома, измерив напряжение и ток. Если известно удельное сопротивление проводника, его длина и поперечное сечение, то сопротивление можно вычислить с помощью формулы (4), не измеряя ток и напряжение.
Обобщение понятия удельного сопротивления
Формула силы тока
Кусок резистивного материала с электрическими контактами на обоих концах
Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией координат — коэффициентом, связывающим напряжённость электрического поля E→(r→){\displaystyle {\vec {E}}({\vec {r}})} и плотность тока J→(r→){\displaystyle {\vec {J}}({\vec {r}})} в данной точке r→{\displaystyle {\vec {r}}}. Указанная связь выражается :
- E→(r→)=ρ(r→)J→(r→).{\displaystyle {\vec {E}}({\vec {r}})=\rho ({\vec {r}}){\vec {J}}({\vec {r}}).}
Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства могут зависеть от направления. В этом случае удельное сопротивление является зависящим от координат тензором второго ранга, содержащим девять компонент ρij{\displaystyle \rho _{ij}}. В анизотропном веществе векторы плотности тока и напряжённости электрического поля в каждой данной точке вещества не сонаправлены; связь между ними выражается соотношением
- Ei(r→)=∑j=13ρij(r→)Jj(r→). {3}\rho _{ij}({\vec {r}})J_{j}({\vec {r}}).}
В анизотропном, но однородном веществе тензор ρij{\displaystyle \rho _{ij}} от координат не зависит.
Тензор ρij{\displaystyle \rho _{ij}}симметричен, то есть для любых i{\displaystyle i} и j{\displaystyle j} выполняется ρij=ρji{\displaystyle \rho _{ij}=\rho _{ji}}.
Как и для всякого симметричного тензора, для ρij{\displaystyle \rho _{ij}} можно выбрать
ортогональную систему декартовых координат, в которых матрица ρij{\displaystyle \rho _{ij}} становится диагональной, то есть приобретает вид, при котором из девяти компонент ρij{\displaystyle \rho _{ij}} отличными от нуля являются лишь три: ρ11{\displaystyle \rho _{11}}, ρ22{\displaystyle \rho _{22}} и ρ33{\displaystyle \rho _{33}}. В этом случае, обозначив ρii{\displaystyle \rho _{ii}} как ρi{\displaystyle \rho _{i}}, вместо предыдущей формулы получаем более простую
- Ei=ρiJi.{\displaystyle E_{i}=\rho _{i}J_{i}.}
Величины ρi{\displaystyle \rho _{i}} называют главными значениями тензора удельного сопротивления.
Обобщение понятия удельного сопротивления[править | править код]
Кусок резистивного материала с электрическими контактами на обоих концах
Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией координат — коэффициентом, связывающим напряжённость электрического поля E→(r→){\displaystyle {\vec {E}}({\vec {r}})} и плотность тока J→(r→){\displaystyle {\vec {J}}({\vec {r}})} в данной точке r→{\displaystyle {\vec {r}}}. Указанная связь выражается :
- E→(r→)=ρ(r→)J→(r→).{\displaystyle {\vec {E}}({\vec {r}})=\rho ({\vec {r}}){\vec {J}}({\vec {r}}).}
Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства могут зависеть от направления. В этом случае удельное сопротивление является зависящим от координат тензором второго ранга, содержащим девять компонент ρij{\displaystyle \rho _{ij}}. {3}\rho _{ij}({\vec {r}})J_{j}({\vec {r}}).}
В анизотропном, но однородном веществе тензор ρij{\displaystyle \rho _{ij}} от координат не зависит.
Тензор ρij{\displaystyle \rho _{ij}}симметричен, то есть для любых i{\displaystyle i} и j{\displaystyle j} выполняется ρij=ρji{\displaystyle \rho _{ij}=\rho _{ji}}.
Как и для всякого симметричного тензора, для ρij{\displaystyle \rho _{ij}} можно выбрать ортогональную систему декартовых координат, в которых матрица ρij{\displaystyle \rho _{ij}} становится диагональной, то есть приобретает вид, при котором из девяти компонент ρij{\displaystyle \rho _{ij}} отличными от нуля являются лишь три: ρ11{\displaystyle \rho _{11}}, ρ22{\displaystyle \rho _{22}} и ρ33{\displaystyle \rho _{33}}. В этом случае, обозначив ρii{\displaystyle \rho _{ii}} как ρi{\displaystyle \rho _{i}}, вместо предыдущей формулы получаем более простую
- Ei=ρiJi.{\displaystyle E_{i}=\rho _{i}J_{i}.}
Величины ρi{\displaystyle \rho _{i}} называют главными значениями тензора удельного сопротивления.
Единица измерения электрического сопротивления
Единицу измерения сопротивления назвали в честь Георга Ома. В Международной интернациональной системе единиц СИ электрическое сопротивление 1 Ом имеет участок цепи, на котором падает напряжение равное 1 В при силе тока 1 А:
$ 1 Ом = { 1 В\over 1 A} $ (3)
Для определения сопротивления с помощью закона Ома требуется измерить предварительно напряжение и ток. Двух измерений можно избежать с помощью прибора, разработанного для непосредственного измерения сопротивления. Прибор называется омметром.
Рис. 3. Приборы для измерения сопротивления – омметры.
На практике большинство используемых в электрических схемах и приборах сопротивлений гораздо больше, чем 1 Ом. Поэтому чаще применяются кратные единицы измерений : килоом и мегом:
- 1 кОм = 1000 Ом;
- 1 МОм = 1000 000 Ом.
Последовательное соединение проводников
Сопротивление при последовательном соединении проводников
Последовательное соединение проводников – это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.
последовательное соединение резисторов
Чему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.
Получается, можно записать, что
формула при последовательном соединении резисторов
Пример
У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.
Решение
Rобщее =R1 + R2 + R3 = 3+5+2=10 Ом.
То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .
показать на реальном примере с помощью мультиметра
Сила тока через последовательное соединение проводников
Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.
Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .
сила тока через последовательное соединение проводников
Получается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .
Напряжение при последовательном соединении проводников
Давайте еще раз рассмотрим цепь с тремя резисторами
Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?
Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на любом резисторе. Давайте так и сделаем.
Пусть у нас будет цепь с такими параметрами.
Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.
Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.
Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3 . Но как это сделать?
Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.
Следовательно,
UR1 = IR1 =1×2=2 Вольта
UR2 = IR2 = 1×3=3 Вольта
UR3 = IR3 =1×5=5 Вольт
Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.
Получается
U=UR1+UR2+UR3
Мы получили самый простой делитель напряжения.
Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.
Мультипекарь Redmond RMB-611
2172 ₽ Подробнее
Мультипекарь Redmond RMB-611
2172 ₽ Подробнее
Газовые встраиваемые духовые шкафы
Оцените статью:
что это такое, как найти в цепи, приборы для измерения сопротивления
Электрическое сопротивление является одним из важнейших понятий электротехники. А необходимость его определения составляет одну из главных задач теории цепей.
- Что такое сопротивление?
- Сопротивление проводника
- Что такое сопротивление 1 Ом?
- Как найти сопротивление цепи?
- Приборы для измерения сопротивления
Что такое сопротивление?
В электротехнике под сопротивлением подразумевают свойство материального тела оказывать препятствие прохождению электрического тока. Важное пояснение: обычно здесь всегда вместо «материального тела» указывают «проводника», что вносит путаницу и неразбериху, так как слово «проводник» имеет двоякий смысл:
- с одной стороны – это то, что в данном случае проводит электрический ток;
- с другой стороны – существуют проводники, полупроводники, диэлектрики, как раз и обладающие различным электрическим сопротивлением.
Отсюда и второе определение сопротивления – физическая величина, обратная проводимости, вопросам изучения которой посвятил свою научную деятельность выдающийся немецкий учёный Георг Симон Ом. Испытывая разнообразные проводники в собранной схеме, он убедился в их различной проводимости. Это и послужило отправной точкой к появлению такого понятия, как электрическое сопротивление.
Хотя справедливости ради надо сказать, что сам термин «сопротивление» ввёл ещё раньше русский электротехник Василий Владимирович Петров – физик-экспериментатор. Тем не менее честь открытия эмпирического закона Ома принадлежит физику из Германии, именем которого также названа и единица электрического сопротивления – 1 Ом.
Закон Ома для полной цепи выглядит следующим образом:
I = E/(R+r)
Здесь:
- E – ЭДС источника напряжения, В;
- I – сила тока в цепи, А;
- R – сумма сопротивлений всех внешних элементов цепи, Ом;
- r – сопротивление (внутреннее) источника напряжения, Ом.
Или по-другому:
E = Ir + IR
Что означает равенство суммы падений напряжений на внешней цепи и внутреннем сопротивлении источника ЭДС источника.
Исходя из закона Ома в определённых пределах сопротивление, являющееся постоянным и обозначаемое буквами R или r, можно рассчитать по формуле:
R = U/I
где U – напряжение (разность электрических потенциалов) на концах проводника, В; I – сила тока, протекающего из одного конца проводника в другой, А.
Что касается переменных величин сопротивления, фигурирующего в цепях переменного тока или в изменяющихся электромагнитных полях, то здесь оперируют понятиями импеданса (комплексного сопротивления) и волнового сопротивления. 2)
Здесь: Z – полное сопротивление, R – активное сопротивление цепи переменного тока. X = XC + XL, – сумма реактивного ёмкостного и индуктивного сопротивлений, проявляющих себя в цепях переменного тока.
Ещё одним понятием (названием технического изделия, употребляемого в электронике и электротехнике) сопротивления выступают резисторы, несущие на себе активную нагрузку.
Сопротивление проводника
Сопротивление проводника напрямую зависит от его геометрических размеров, а также материала изготовления. Меньшее сопротивление протеканию электрического тока будет оказывать проводник более толстого сечения и меньшей длины. Математически это выглядит следующим образом:
R = p l/S
- R – электрическое сопротивление проводника, Ом.
- p – удельное сопротивление проводника, Ом·мм2/м.
- l – длина проводника, м.
- S – площадь сечения проводника, м2.
Самыми меньшими удельными сопротивлениями обладают:
- серебро – 0,016 Ом·мм2/м;
- медь – 0,0175 Ом·мм2/м;
- золото – 0,023 Ом·мм2/м;
- алюминий – 0,029 Ом·мм2/м.
Наибольшие удельные сопротивления у графита – 13 Ом·мм2/м, фарфора – 1019 Ом·мм2/м, эбонита – 1020 Ом·мм2/м.
Что такое сопротивление 1 Ом?
Исходя из закона Ома, очень легко догадаться, что сопротивлением в 1 Ом обладает проводник с приложенным к нему напряжением в 1В, при проходе сквозь него электрического тока величиной в 1А. Также можно задать геометрию (длину, ширину, высоту) конкретных материалов, обладающих сопротивлением в 1 Ом.
Как найти сопротивление цепи?
Чтобы рассчитать сопротивление электрической цепи, необходимо иметь в наличии:
- Амперметр – прибор для измерения силы тока, который необходимо устанавливать в цепь последовательно с нагрузкой. Более удобны в этом отношении токоизмерительные клещи, позволяющие проводить бесконтактные замеры.
- Вольтметр – прибор для измерения напряжения или ЭДС, устанавливаемый в обязательном порядке параллельно источнику или нагрузке электрической цепи.
Сняв показания этих двух приборов и разделив полученную величину напряжения на величину силы тока (R = U/I), легко определить сопротивление исследуемой цепи.
Приборы для измерения сопротивления
Сегодня промышленностью изготавливается множество видов и типов приборов, позволяющих измерять сопротивление (тестеры, мультиметры). Но все они содержат в себе омметр – электроизмерительный прибор, предназначенный для измерения активных (омических) сопротивлений. Изготовленные на базе современной электроники, они позволяют делать замеры как в цепях постоянного, так и переменного тока. В зависимости от диапазонов и величин измеряемых сопротивлений, омметры подразделяются на ряд модификаций:
- Микроомметры и миллиомметры.
- Мегаомметры, гигаомметры, тераомметры.
Для высокоточных измерений сопротивления используется измерительный мост, в одно из «плеч» которого подключается измерительный элемент. Если нет ни того ни другого, то собрав схему и включив в неё амперметр и вольтметр, сопротивление можно определить расчётно-экспериментальным путём.
Очень важно при всех этих манипуляциях не попасть под воздействие электрического тока, так как сопротивление тела человека, условно принятого величиной в 1 Ом, не предназначено для подобных воздействий, могущих вызвать необратимые последствия!
Понравилась статья? Расскажите друзьям:
Оцените статью, для нас это очень важно:
Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.
ГОСТы, СНиПы Карта сайта TehTab. ru Поиск по сайту TehTab.ru | Навигация по справочнику TehTab.ru: главная страница / / Техническая информация/ / Физический справочник/ / Электрические и магнитные величины/ / Понятия и формулы для электричества и магнетизма. / / Формулы. Электрическое сопротивление проводника при постоянном токе, зависимость сопротивления проводника от температуры, индуктивное и ёмкостное (реактивное) сопротивление, полное реактивное сопротивление, полное сопротивление цепи при переменном токе
| ||||||||||||||||||||||||||||||||||||||||
Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу. | |||||||||||||||||||||||||||||||||||||||||
TehTab. ru Реклама, сотрудничество: [email protected] | Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями. |
формула. Удельные сопротивления популярных проводников (металлов и сплавов)
Содержание
- Описание явления
- Общие сведения
- От чего зависит
- Как образуется сопротивление проводников
- Формула сопротивления
- Теория
- Закон Ома
- Применение закона Ома на практике
- Удельное сопротивление разных материалов
- Сопротивление проводника
- Определение единицы сопротивления — Ом
- Зависимость сопротивлений от температуры.
- Расчет сопротивления последовательных резисторов
- Расчет сопротивления параллельных резисторов
- Что такое сопротивление медного провода
Описание явления
Электрическим сопротивлением называется физическая величина, которая характеризует проводниковое свойство препятствовать электротоку. В ответ на вопрос, по какой формуле вычисляется электрическое сопротивление, стоит отметить, что оно равно напряжению, поделенному на силу тока, которое проходит по проводниковому элементу. В зависимости от того, какой материал представлен, значение может быть нулевым или минимальным. Близкое к нулю есть в проводниках и металлах, а очень большое в изоляции и диэлектрике. Величина, которая обратна сопротивлению тока, является проводимостью.
Электрическое сопротивление
Стоит отметить, что электросопротивление бывает активным, реактивным и удельным.
Активным является часть полного, находящегося в электроцепи. В нем энергия целиком преобразовывается во все энергетические виды. Бывает тепловой, механической и химической. Отличительным свойством является процесс полного потребления всей электрической энергии.
Реактивным называется то, которое обусловлено энергопередачей переменного тока по цепи электро- или магнитного поля.
Удельное — величина, которая характеризует возможность материала мешать распространению тока.
Дополнение: есть также отрицательное электросопротивление, которое является свойством конкретных элементов с узлами электроцепей, проявляющееся на вольтамперном участке, где значение напряжения снижается, когда увеличивается протекающий ток. Интересно отметить, что данные элементы активные. Благодаря им трансформируется энергия источника питания в незатухающего вида колебания. Их возможно применять в различных электрических схемах, к примеру, в туннельном диоде и схеме транзистора, лампового генератора.
Понятие из учебного пособия
Общие сведения
Упорядоченное движение носителей заряда в физическом теле называют электрическим током. Ими могут быть различные элементарные частицы. Например, в проводниках — электроны, электролитах — ионы. В состоянии покоя, то есть когда на тело не оказывается постороннее воздействие, движение носителей хаотичное. В результате происходит компенсирование зарядов, и ток не возникает. Если же к веществу приложить силу или деформировать его, направление движения частиц станет упорядоченным и возникнет электрический ток.
Все существующие вещества характеризуются физическими и химическими свойствами. Среди них и проводимость. Это электрическая величина, определяющая способность тела пропускать через себя ток. По своему строению все материалы делятся на 3 класса:
- проводники — вещества, не оказывающие сопротивление прохождению тока;
- полупроводники — тела, в которых величина проводимости зависит от чистоты материала, температуры и вида воздействующего излучения;
- диэлектрики — вещества, практически не проводящие электрический ток.
Величина, обратная проводимости, называется сопротивлением. Это параметр, который характеризует способность материала пропускать через себя электрический ток без потерь. Другими словами, для идеального тела количество электричества, поступившего и снятого с него, будет одинаковым.
За единицу измерения силы тока принят Ампер, показывающий, какое количество электричества проходит через поперечное сечение проводника за одну секунду: I = q / t = кулон / секунду = ампер.
Электрическое сопротивление тела зависит от природы носителей заряда и геометрии материала. Это скалярный параметр. При его расчёте используют понятие удельное сопротивление. Выражают его в омах, умноженных на метр, и обозначают греческой буквой р. По физическому смыслу величина является обратным параметром удельной проводимости.
С ней, кроме сопротивления и силы тока, тесно связано и напряжение. С физической точки зрения, это работа, которую выполняет электрическое поле при переносе единичного заряда из одной точки в другую. В Международной системе величин напряжение принято обозначать в вольтах: U = f2- f1, где f — значения потенциала заряда в точках.
От чего зависит
Электрическое сопротивление используемых проводников – это не постоянная величина, она зависит от ряда отдельных моментов. Рассмотрим более подробно зависимость данного значения:
- Материал, который используется в качестве проводящего элемента для электротока.
- Длина, а кроме этого, площадь поперечного сечения используемой проводки, которые присутствуют в цепи.
- Порядок соединения резисторов и проводки (параллельное или последовательное совмещение).
- Кроме того, выделяется зависимость проводника от температуры, которая присутствует внутри проводящего элемента.
- Нагрузка, которая подается от источника питания на концы проводящего элемента, где вычисляется размер.
- Сила электрического тока, которая присутствует внутри единой замкнутой цепи, используемой для вычисления значений.
- Имеющаяся атмосфера (к примеру, в минусовую погоду и в жаркий день сопротивляемость некоторых материалов отличается).
- Возраст используемого источника прохода энергии (как известно, любой материал со временем разрушается, из-за чего его сопротивляемость снижается).
Важно. В качестве проводящих материалов на практике практически всегда используются металлы, так как эти элементы обладают наименьшим размером, что позволяет свободно перемещать по ним электроэнергию.
Как образуется сопротивление проводников
Современные воззрения говорят: свободные электроны перемещаются по проводнику со скоростью порядка 100 км/с. Под действием возникающего внутри поля дрейф упорядочивается. Скорость перемещения носителей вдоль линий напряженности мала, составляет единицы сантиметров в минуту. В ходе движения электроны сталкиваются с атомами кристаллической решетки, некая доля энергии переходит в тепло. И меру этого преобразования принято называть сопротивлением проводника. Чем выше, тем больше электрической энергии переходит в тепло. На этом основан принцип действия обогревателей.
Параллельно контексту идет численное выражение проводимости материала, которое можно увидеть на рисунке. Для получения сопротивления полагается единицу разделить на указанное число. Ход дальнейших преобразований рассмотрен выше. Видно, что сопротивление зависит от параметров – температурное движение электронов и длина их свободного пробега, что прямо приводит к строению кристаллической решётки вещества. Объяснение – сопротивление проводников отличается. У меди меньше алюминия.
Формула сопротивления
Ток обусловлен движением электронов. Классическая формула, используемая для расчёта его силы была выведена немецким физиком Омом. Он на опыте смог подтвердить зависимость между собой тока, сопротивления и напряжения. В математическом виде связь записывают в виде формулы: I = U /R.
Согласно закону Ома, сопротивление тела электрическому току прямо пропорционально его силе и обратно пропорционально напряжению: R = I / U. Это эмпирическая формула справедлива для любого участка цепи.
Подвижные носители при хаотичном движении ведут себя как молекулы газа, поэтому в первом приближении физики считают носителей зарядов своего рода электронным газом. Как было установлено эмпирически, плотность этого газа и строение кристаллической решётки зависят от рода проводника. Соответственно, проводимость, а значит и сопротивление, определяется также и родом вещества. В свою очередь, физическое тело характеризуется и геометрическими параметрами.
Влияние размеров полупроводника объясняется зависимостью от них поперечного сечения. При его уменьшении поток зарядов становится плотнее, степень взаимодействия между частицами возрастает. Полная формула сопротивления проводника с учётом поперечного сечения выглядит так: R = (p * l) / S. Из неё становится ясно, что проводимость прямо пропорциональна площади сечения и обратно пропорциональна длине проводника.
Удельное электрическое сопротивление для многих веществ было установлено во время исследований. Существуют таблицы, в которые занесены данные, измеренные при температуре 20 градусов Цельсия. Ими часто пользуются при решении различных задач, связанных с электричеством. Вот некоторые из них:
- олово — 9,9 * 10-8 Ом * мм2/м;
- медь — 0,01724 Ом * мм2/м;
- алюминий — 0,0262 Ом * мм 2/м;
- железо — 0,098 * Ом * мм2/м;
- золото — 0,023 Ом * мм2/м.
Для проводников характерно увеличение сопротивления при росте температуры. Это связано с колебаниями атомов. В то же время с ростом температуры проводимость в полупроводниках и диэлектриках возрастает из-за увеличения концентрации носителей заряда.
Удельное сопротивление для неоднородного материала можно вычислить по формуле: p = E / J. Где: E и J напряжённость и плотность тока в конкретной точке.
Теория
Электрическое сопротивление характеризует способность электрического проводника препятствовать прохождению электрического тока.
Электрическое сопротивление обозначается буквой R. Единицей сопротивления является ом (Ом).
Закон ОмаСила тока (I) прямо пропорциональна напряжению (U). Это означает следующее: во сколько раз изменяется напряжение, во столько раз изменяется и сила тока.
Сила тока (I) обратно пропорциональна электрическому сопротивлению (R). Поэтому чем больше сопротивление, тем меньше сила тока, протекающего в проводнике.
I=UR
Удельное сопротивление
Причиной электрического сопротивления является тепловое движение образующих материал атомов или молекул. Частицы колеблются около своих мест и мешают перемещению электронов. Это можно сравнить с длинным коридором, в котором одновременно перемещается много людей. И насколько быстро можно двигаться вперед, зависит от различных причин.
Электрическое сопротивление характерно для всех веществ и зависит от:
Материала проводника тока ρ | Длины проводника (l) | Площади поперечного сечения проводника (S) |
Для каждого метериала характерно его удельное сопротивление, которое обозначают буквой ρ и которое можно найти в таблице удельных сопротивлений. | Чем длиннее проводник электричества, тем больше его электрическое сопротивление. | Чем меньше площадь поперечного сечения проводника электричества, тем больше электрическое сопротивление. |
Пример с коридором: движение вперёд зависит от того, сколько людей в нём находится, как каждый из них двигается, насколько они полные или худые. | Пример с коридором: чем длиннее коридор, тем дольше и труднее путь. | Пример с коридором: чем уже коридор, тем труднее пробираться сквозь толпу людей. |
Обрати внимание! R=ρ⋅lS
Удельное сопротивление металлов небольшое, а изоляторов — очень большое. В цепях, в которых электрический ток должен производить большую теплоту (например, в обогревателях), используют проводники с большим удельным сопротивлением, например, нихром. Току труднее течь, увеличивается тепловое движение частиц, в результате проводник нагревается. У алюминия низкое удельное сопротивление, поэтому его можно использовать для передачи электроэнергии.
Электрическое сопротивление человеческого тела может изменяться от 20000 Ом до 1800 Ом.
Чтобы электрическая цепь обеспечивала необходимую силу тока, в неё включают резисторы.
Резистор — прибор с постоянным сопротивлением. Резисторы имеются во всех телевизорах, компьютерах, радиоприёмниках и т. д. Чтобы изменить силу тока в электрической цепи, используют реостаты.
Реостат — прибор с переменным сопротивлением. В составе реостата имеется подвижный контакт, при помощи которого изменяется длина участка, включённого в цепь.
Реостат используется, например, в регуляторах громкости радиоприёмников.
Закон Ома
В 1826 году немецкий физик Георг Ом открыл важный в электронике закон, названный впоследствии его фамилией. Закон Ома определяет количественную зависимость между электрическим током и свойствами проводника, характеризующими его способность противостоять электрическому току.
Существует несколько интерпретаций закона Ома.
Закон Ома для участка цепи (рисунок 3) определяет величину электрического тока I в проводнике как отношение напряжения на концах проводника U и его сопротивления R
Закон Ома для участка цепи
Интерпретировать закон Ома для участка цепи можно следующим образом: если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 В, тогда величина тока I в проводнике будет равна 1 А
На представленном выше простом примере разберем физическую интерпретацию закона Ома, используя аналогию электрического тока и воды. В качестве аналога проводника электрического тока возьмем воронку, сужение в которой возникает из-за наличие в проводнике сопротивления R (рисунок 4). Пусть в воронку из некоторого источника поступает вода, которая просачивается через узкое горлышко. Усилить поток воды на выходе горлышка воронки можно за счет давления на воду, например, силой поршня. В аналогии с электричеством, поршень будет являться аналогом напряжения – чем сильнее на воду давит поршень (то есть чем больше значение напряжения), тем сильнее будет поток воды на выходе из воронки (тем больше будет значение силы тока).
Интерпретация закона Ома для участка цепи с использованием водной аналогии
Закон Ома может быть применен не всегда, а лишь в ограниченном числе случаев. Так закон Ома «не работает» при расчете напряжения и тока в полупроводниковых или электровакуумных приборов, содержащих нелинейные элементы. В этом случае зависимость тока и напряжения можно определить только с помощью построение так называемой вольтамперной характеристики (ВАХ). К категории нелинейных элементов относятся все без исключения полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.), а также электронные лампы.
Применение закона Ома на практике
На практике часто приходится определять не силу тока I, а величину сопротивления R. Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R, зная протекающий ток I и величину напряжения U.
Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.
Удельное сопротивление разных материалов
Важно отметить, что сопротивление у металлических монокристаллов с металлами и сплавами разные. Значения различаются из-за химической металлической чистоты, способов создания составов и их непостоянства. Также стоит иметь в виду, что значения меняются при изменении температуры. Иногда сопротивляемость падает до нуля. В таком случае явление называется сверхпроводимостью.
Интересно, что под термической обработкой, например, отжигом меди, значение вырастает в 3 раза, несмотря на то, что доля примесей в проном, антикоррозийном и легком составе, как правило, равна не больше 0,1%.
Обратите внимание! Что касается отжига алюминия, свинца или железа, значение в таких же условиях вырастает в 2 раза, несмотря на наличие примесей в количестве 0,5% и необходимости большей энергии на плавление.
Таблица значений составов при температуре 20 градусов Цельсия
В целом, удельное электросопротивление представляет собой физическую величину, которая характеризует способность вещества препятствовать тому, чтобы проходил электроток. По СИ измеряется в омах, перемноженных на метры. Зависит от увеличения температуры вещества. Отыскать значение можно по формуле соотношения общего сопротивления и площади поперечного сечения, поделенного на длину проводника. Что касается удельного сопротивления сплавов, согласно изучениям разных ученых состав их непостоянный, может быть изменен под термообработкой.
Сопротивление проводника
Так почему бы все эти свойства не применить также к проводнику? Чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Большую роль играет также материал, из которого он изготовлен.
Поэтому, окончательная формула будет принимать вид
формула сопротивления проводника
В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом × мм2 /м. Чтобы перевести в Ом × м, достаточно умножить на 10-6, так как 1 мм2=10-6 м2.
удельное сопротивление веществ
Как вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником. Ну а самым распространенными и дешевыми проводниками являются медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.
Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками, а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками. Между ними стоит класс полупроводников .
Определение единицы сопротивления — Ом
1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1 (Вольт) протекает ток 1 (Ампер).
Зависимость сопротивлений от температуры.
С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.
Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на 1 °С к величине его сопротивления при 0 ºС:
Зависимость удельного сопротивления проводников от температуры выражается формулой:
В общем случае α зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов α = (1/273)К-1. Для растворов электролитов α < 0. Например, для 10% раствора поваренной соли α = -0,02 К-1. Для константана (сплава меди с никелем) α = 10-5 К-1.
Зависимость сопротивления проводника от температуры используется в термометрах сопротивления.
Расчет сопротивления последовательных резисторов
Расчет падения напряжения в кабеле
При последовательном сопротивлении нескольких резисторов соответственно увеличивается эквивалентная величина. Расчет сопротивления нескольких элементов, соединенных между собой последовательно, проводится за счет суммирования номиналов каждого элемента. Например, при соединении нескольких элементов, которые соединены в одну цепь последовательно, величина электрического сопротивления будет равной сумме уровня противодействия каждого из резисторов. Формула имеет одинаковый вид для любого количества резисторов.
Как найти сопротивление формула для последовательной цепи
Если заменить в последовательной цепи один из элементов, то соответственно изменится уровень противодействия направленному движению частиц в этой цепи. Это также повлечет изменение силы тока.
Расчет сопротивления параллельных резисторов
Подключение светодиода через резистор и его расчет
Сопротивление формула для параллельного соединения имеет несколько другой вид.
Относительно большого количества последовательных элементов при увеличении количества резисторов в цепи соответственно возрастает сложность проведения расчета. Удельное сопротивление буква, которая ему соответствует, – латинская ρ.
Использование параллельного соединения оправдано в цепях, в которых требуется высокая величина параметра. Тогда применяются радиоэлементы с одинаковым параметром мощности и сопротивления. Например, 10 элементов, обладающих уровнем сопротивления 1000 Ом, которые объединены в единую цепь с параллельным соединением, на выходе будут иметь величину препятствия движению заряженных частиц в 100 Ом.
Что такое сопротивление медного провода
В металлах ток образуется при появлении электрического поля. Оно «заставляет» двигаться электроны упорядоченно, в одном направлении. Электроны дальних орбит атома, слабо удерживаемые ядром, формируют ток.
Медные провода
При прохождении отрицательных частиц сквозь кристаллическую решетку молекул меди, они сталкиваются с атомами и другими электронами. Возникает препятствие или сопротивление направленному движению частиц.
Для оценки противодействия току была введена величина «электрическое сопротивление» или «электрический импеданс». Обозначается она буквой «R» или «r». Вычисляется сопротивление по формуле Георга Ома: R=, где U — разность потенциалов или напряжение, действующее на участке цепи, I — сила тока.
Понятие сопротивления
Важно! Чем выше значение импеданса металла, тем меньший ток проходит по нему, и именно медные проводники так широко распространены в электротехнике, благодаря этому свойству.
Исходя из формулы Ома, на величину тока влияет приложенное напряжение при постоянном R. Но резистентность медных проводов меняется, в зависимости от их физических характеристик и условий эксплуатации.
Электрический импеданс медного кабеля зависит от нескольких факторов:
- Удельного сопротивления;
- Площади сечения проволоки;
- Длины провода;
- Внешней температуры.
Последним пунктом можно пренебречь в условиях бытового использования кабеля. Заметное изменение импеданса происходит при температурах более 100°C.
Зависимость сопротивления
Удельное сопротивление в системе СИ обозначается буквой ρ. Оно определяется, как величина сопротивления проводника, имеющего сечение 1 м2 и длину 1 м, измеряется в Ом ∙ м2. Такая размерность неудобна в электротехнических расчетах, поэтому часто используется единица измерения Ом ∙ мм2.
Вам это будет интересно Замеры освещенности помещения
Важно! Данный параметр является характеристикой вещества — меди. Он не зависит от формы или площади сечения. Чистота меди, наличие примесей, метод изготовления проволоки, температура проводника — факторы, влияющие на удельное сопротивление.
Зависимость параметра от температуры описывается следующей формулой: ρt= ρ20[1+ α(t−20°C)]. Здесь ρ20— удельное сопротивление меди при 20°C, α— эмпирически найденный коэффициент, от 0°Cдо 100°C для меди имеет значение, равное 0,004 °C-1, t — температура проводника.
Ниже приведена таблица значений ρ для разных металлов при температуре 20°C.
Таблица удельного сопротивления
Согласно таблице, медь имеет низкое удельное сопротивление, ниже только у серебра. Это обуславливает хорошую проводимость металла.
Чем толще провод, тем меньше его резистентность. Зависимость R проводника от сечения называется «обратно пропорциональной».
Важно! При увеличении поперечной площади кабеля, электронам легче проходить сквозь кристаллическую решетку. Поэтому, при увеличении нагрузки и возрастании плотности тока, следует увеличить площадь сечения.
Увеличение длины медного кабеля влечет рост его резистентности. Импеданс прямо пропорционален протяженности провода. Чем длиннее проводник, тем больше атомов встречаются на пути свободных электронов.
Выводы
Последним элементом, влияющим на резистентность меди, является температура среды. Чем она выше, тем большую амплитуду движения имеют атомы кристаллической решетки. Тем самым, они создают дополнительное препятствие для электронов, участвующих в направленном движении.
Важно! Если понизить температуру до абсолютного нуля, имеющего значение 0° Kили -273°C, то будет наблюдаться обратный эффект — явление сверхпроводимости. В этом состоянии вещество имеет нулевое сопротивление.
Температурная корреляция
После выяснения всех факторов, влияющих на резистентность медного провода, можно объединить их в формуле зависимости сопротивления от сечения проводника и узнать, как вычислить этот параметр. Математическое выражение выглядит следующим образом: R= pl/s, где:
- ρ — удельное сопротивление;
- l — длина проводника, при нахождении сопротивления медного проводника длиной 1 м, l = 1;
- S— площадь поперечного сечения.
Вам это будет интересно Особенности танталовых конденсаторов
Для вычисления S, в случае провода цилиндрической формы, используется формула: S = π ∙ r2 = π d2/4 ≈ 0.785 ∙ d2, здесь:
- r — радиус сечения провода;
- d — его диаметр.
Если провод состоит из нескольких жил, то суммарная площадь будет равна: S = n d2/1,27, где n — количество жил.
Если проводник имеет прямоугольную форму, то S = a ∙ b, где a — ширина прямоугольника, b — длина.
Важно! Узнать диаметр сечения можно штангенциркулем. Если его нет под рукой, то намотать на любой стержень измеряемую проволоку, посчитать количество витков, желательно, чтобы их было не меньше 10 для большей точности. После этого измерить намотанную часть проводника, и разделить значение на количество витков.
Проектируя электрическую сеть, необходимо правильно подобрать сечение кабеля, чтобы его резистентность не была высокой. Большой импеданс вызовет падение напряжения выше допустимого значения. В результате подключенное к сети электрическое устройство может не заработать. Также, провода начнут перегреваться.
Для правильного расчета минимального сечения необходимо учесть следующие факторы:
- По стандартам ПУЭ падение напряжения не должно быть больше 5%.
- В бытовых условиях ток проходит по двум проводам. Поэтому, при расчете величину сопротивления нужно умножить на 2.
- Учитывать нужно мощность всех подключенных приборов на линии. Для развития предусмотреть запас по нагрузке.
Как вычислить сопротивление проводника по формуле? Для примера можно рассмотреть задачу. Требуется определить: достаточно ли будет медного кабеля сечением 2,5 мм2 и длиной 30 метров для подключения оборудования мощностью 9 кВт.
Формулы электрической цепи
Задача решается следующим образом:
Резистентность медного кабеля будет равна:
2 ∙ (ρ ∙ L) / S = 2 ∙ (0,0175 ∙ 30) / 2,5 = 0,42 Ом.
Для нахождения падения напряжения нужно определить силу тока, по формуле: I= P/U.
Вам это будет интересно Особенности трехфазной сети
Здесь P — суммарная мощность оборудования, U — напряжение в цепи. Тогда сила тока будет равна: I = 9000 / 220 = 40,91 А.
- Используя закон Ома, можно найти падение напряжения по кабелю: ΔU = I ∙ R = 40, 91 ∙ 0,42 = 17,18 В.
- От 220 В процент падения составит: U% = (ΔU / U) ∙ 100% = (17,18 / 220) ∙ 100% = 7, 81%>5%.
Падение напряжение выходит за пределы допустимого значения, значит необходимо использовать кабель большего сечения.
Узнать резистентность проводника можно по таблицам. В них содержатся готовые результаты вычислений для разных кабелей.
Таблица меди на метр 1
Например, сопротивление меди на метр для различных сечений можно определить без вычислений, из соответствующей таблицы.
Таблица меди на метр 2
Важно! Таблицы не содержат данные о всех сечениях. Если нужно узнать величину импеданса для неуказанного кабеля, то находится среднее значение между двумя ближайшими известными сопротивлениями.
Источники
- https://rusenergetics.ru/ustroistvo/formula-soprotivleniya
- https://nauka.club/fizika/raschyet-soprotivleniya-provodnik%D0%B0.html
- https://hmelectro.ru/poleznye_statyi/chto-takoe-soprotivlenie
- https://www.yaklass.ru/p/fizika/8-klass/izuchaem-elektricheskie-iavleniia-12351/udelnoe-soprotivlenie-reostaty-rezistory-12362/re-fc42fceb-0ad4-4000-acd8-63e620d50226
- https://electrikam.com/soprotivlenie-provodimost-i-zakon-oma/
- https://YDoma. info/ehlektrotekhnika/electricity-zakon-oma.html
- https://www.RusElectronic.com/soprotivljenije/
- https://www.fxyz.ru/%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B_%D0%BF%D0%BE_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B5/%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%BE/%D1%86%D0%B5%D0%BF%D0%B8_%D0%BF%D0%BE%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE_%D1%82%D0%BE%D0%BA%D0%B0/%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%81%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5/
- https://www.calc.ru/Elektricheskoye-Soprotivleniye.html
- https://amperof.ru/elektroenergia/soprotivlenie-toka-formula.html
- https://rusenergetics.ru/polezno-znat/soprotivlenie-mednogo-provoda-tablitsa
Сопротивление и удельное сопротивление
Сопротивление и удельное сопротивление
Независимо от того, подчиняется ли материал закону Ома, его сопротивление можно описать с помощью объемного удельного сопротивления. Удельное сопротивление и, следовательно, сопротивление зависят от температуры. В значительных диапазонах температур эту температурную зависимость можно предсказать по температурному коэффициенту сопротивления.
| Индекс Цепи постоянного тока | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|