Site Loader

Содержание

Электрическое сопротивление источника силы тока формула в Омах

Каждый человек знает, что по проводам течет электрический ток, за счет чего горит свет или работает прибор, потребляющий электрическую энергию. Это настолько прочно вошло в обычную жизнь, что никто не задумывается о физической составляющей данного явления. Человек, чья профессиональная деятельность не связана с физикой, слышал про электрическое сопротивление, силу тока или мощность последний раз в разрезе школьного курса физики.

Физика очень сложная наука, которая базируется не только на формулах и вычислениях, но в большей степени на понятиях. Особенно ярко это проявляется в разделе «электричество», которое само по себе не является материальной субстанцией, его не возможно «пощупать» или увидеть, но при этом оно занимает важную нишу в человеческой жизни.

Что есть сила сопротивления? Что такое электрическая цепь? Почему ток обладает силой? Для человека, который давно окончил школу, вопросов больше, чем ответов и немногие обладают хотя бы общим представлением, что на самом деле происходит под изоляцией электрического провода.

Какие процессы протекают в проводниках при прохождении через них тока?

Если некое тело, обладающее способностью проводить электрический ток, поместить таким образом, что с одной стороны будет находиться положительный полюс, а с другой отрицательный, то по нему начинает проходить электрический ток. Ток представляет собой в очень упрощенном виде движение отрицательных электронов, имеющее направленность. При этом частицы, имеющие отрицательный заряд, притягиваются к положительному полюсу. Именно за счет этого принято различать полярность электрической цепи, что легко заметить при подключении элементов питания, которые устанавливаются с учетом плюса и минуса.

При движении электроны встречают на своем пути атомы вещества, которым передается часть энергии в результате столкновения, что приводит к нагреву тела, пропускающее ток. При этом при столкновении происходит подтормаживание электронов. Появляющееся электрическое поле имеет способность заново ускорять замедленные электроны, которые снова начинают свое движение к положительному полюсу. Весь этот процесс будет бесконечным, пока тело подключено к источнику электрического поля. Именно движущиеся электроны испытывают на себе сопротивление поля, при этом существует прямая связь между количеством препятствий на пути заряженных частиц и значением данной величины. Сопротивление тока в цепи увеличивается при увеличении количества столкновении электронов.

Сопротивление цепи — что это?

Существует два вида определения сопротивления. Первое базируется на законе Ома. Согласно данному определению сопротивление цепи есть численная величина, определяемая как результат деления значения напряжения, создаваемого в проводнике на силу тока, который протекает через него. Формула сопротивления в данном случае будет иметь вид:

R=U:I, где

R — сопротивление;
U — напряжение;
I — сила тока.

Второе определение формулы сопротивления базируется на физических особенностях токопроводящего материала. Сопротивление источника есть также числовая величина, указывающая на способность тела превращать электрическую энергию в тепловую. Формула сопротивления в Омах для второго случая выглядит следующим образом:

R=(p*l)/S, где

R — сопротивление;
p — удельное сопротивление;
l — длина проводника;
S — площадь сечения.

При этом оба определения являются правильными и имеют право быть, но преимущественно в школьном курсе изучают лишь первый постулат. Единицы, определяющие сопротивление — Ом, названы так по имени ученого, который открыл сам факт существования данного явления и описал его природу.

Закон Ома или что есть сила в Омах

Одним очень важным открытием для понимания физической сущности электричества является открытый Омом закон, который выводит зависимость силы тока от напряжения. В основе закона лежит простой эксперимент. Представим, что существует простейшая цепь, которая состоит из обычной лампочки и амперметра. При добавлении в цепь большого гальванического элемента можно наблюдать, что нить накаливания лампы не нагревается и в сети практически отсутствует ток. Но если имеющийся гальванический элемент заменить свежим аккумулятором или элементом питания, то лампочка моментально загорается и ток в сети увеличивается. Замерив ток на обоих концах сети можно заметить, что при включении в сеть элемента питания напряжение значительно возрастает.

Закон Ома для участка цепи

Из проведенного опыта вытекает сформулированный Омом закон, который гласит, что сила тока в проводящем электрический ток теле увеличивается при увеличении напряжения, подаваемого к концам цепи или проводника. При этом сила тока находится в прямо пропорциональной зависимости от напряжения и обратно пропорциональной связи с сопротивлением. Закон Ома — это зависимая связь, в которой принимают участие сила тока, сопротивление и напряжение.

Виды сопротивлений

Физика выделяет несколько видов электрического сопротивления:

  1. Удельное. Под удельным сопротивлением понимается способность металла или иного тела противостоять прохождению электрического тела. Высокая величина удельного сопротивления будет означать, что данный материал является плохим проводником;
  2. Сопротивление провода. В данном случае формула сопротивления в Омах будет включать в себя диаметр сечения провода, удельное сопротивление конкретного металла и длину провода;
  3. Поверхностное сопротивление. Этот вид применяется для расчета удельного сопротивления тонких материалов, в частности пленок. В случае поверхностного сопротивления диаметр сечения в формуле представлен в виде габаритных размеров (толщина, длина, ширина).

Электрическое сопротивление является важным понятием, сделавшее возможным создание резистора, главная задача которого является осуществление контроля и ограничения действия электрического тока. Применение резисторов сводится к препятствованию возрастанию напряжения, поскольку эта деталь способна рассеивать тепло. Также резистор, который является неотъемлемой частью любой современной платы и схемы, применяется для разделения напряжения, понижая данную характеристику.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Удельное электрическое сопротивление: что это такое?

Большинство законов физики основано на экспериментах. Имена экспериментаторов увековечены в названиях этих законов. Одним из них был Георг Ом.

Опыты Георга Ома

Он установил в ходе экспериментов по взаимодействию электричества с различными веществами, в том числе металлами фундаментальную взаимосвязь плотности электрического тока, напряжённости электрического поля и свойства вещества, которое получило название «удельная проводимость». Формула, соответствующая этой закономерности, названная как «Закон Ома» выглядит следующим образом:

j= λE, в которой

  • j — плотность электрического тока;
  • λ — удельная проводимость, именуемая также как «электропроводность»;
  • E – напряжённость электрического поля.

В некоторых случаях для обозначения удельной проводимости используется другая буква греческого алфавита —

σ. Удельная проводимость зависит от некоторых параметров вещества. На её величину оказывают влияние температура, вещества, давление, если это газ, и самое главное структура этого вещества. Закон Ома соблюдается только для однородных веществ.

Для более удобных расчётов используется величина обратная удельной проводимости. Она получила название «удельное сопротивление», что так же связано со свойствами вещества, в котором течёт электрический ток, обозначается греческой буквой ρ и имеет размерность Ом*м. Но поскольку для различных физических явлений применяются разные теоретические обоснования, для удельного сопротивления могут быть использованы альтернативные формулы. Они являются отображением классической электронной теории металлов, а также квантовой теории.

Формулы

В этих утомительных, для простых читателей, формулах появляются такие множители, как постоянная Больцмана, постоянная Авогадро и постоянная Планка. Эти постоянные применяются для расчетов, которые учитывают свободный пробег электронов в проводнике, их скорость при тепловом движении, степень ионизации, концентрацию и плотность вещества. Словом, всё довольно сложно для не специалиста. Чтобы не быть голословным далее можно ознакомиться с тем, как всё выглядит на самом деле:

Особенности металлов

Поскольку движение электронов зависит от однородности вещества, ток в металлическом проводнике течёт соответственно его структуре, которая влияет на распределение электронов в проводнике с учётом его неоднородности. Она определяется не только присутствием включений примесей, но и физическими дефектами – трещинами, пустотами и т.п. Неоднородность проводника увеличивает его удельное сопротивление, которое определяется правилом Маттисена.

Это несложное для понимания правило, по сути, говорит о том, что в проводнике с током можно выделить несколько отдельных удельных сопротивлений. А результирующим значением будет их сумма. Слагаемыми будут удельное сопротивления кристаллической решётки металла, примесей и дефектов проводника. Поскольку этот параметр зависит от природы вещества, для вычисления его определены соответствующие закономерности, в том числе и для смешанных веществ.

Несмотря на то, что сплавы это тоже металлы, они рассматриваются как растворы с хаотической структурой, причём для вычисления удельного сопротивления имеет значение, какие именно металлы входят в состав сплава. В основном большинство сплавов из двух компонентов, которые не принадлежат к переходным, а также к редкоземельным металлам попадают под описание законом Нодгейма.

Как отдельная тема рассматривается удельное сопротивление металлических тонких плёнок. То, что его величина должна быть больше чем у объёмного проводника из такого же металла вполне логично предположить. Но при этом для плёнки вводится специальная эмпирическая формула Фукса, которая описывает взаимозависимость удельного сопротивления и толщины плёнки. Оказывается, в плёнках металлы проявляют свойства полупроводников.

А на процесс переноса зарядов оказывают влияние электроны, которые перемещаются в направлении толщины плёнки и мешают перемещению «продольных» зарядов. При этом они отражаются от поверхности плёночного проводника, и таким образом один электрон достаточно долго совершает колебания между его двумя поверхностями. Другим существенным фактором увеличения удельного сопротивления является температура проводника. Чем выше температура – тем сопротивление больше. И наоборот, чем ниже температура, тем сопротивление меньше.

Металлы являются веществами с наименьшим удельным сопротивлением при так называемой «комнатной» температуре. Единственным неметаллом, который оправдывает своё применение как проводник, является углерод. Графит, являющийся одной из его разновидностей, широко используется для изготовления скользящих контактов. Он имеет очень удачное сочетание таких свойств как удельное сопротивление и коэффициент трения скольжения. Поэтому графит является незаменимым материалом для щёток электродвигателей и других скользящих контактов. Величины удельных сопротивлений основных веществ, используемых для промышленных целей, приведены в таблице далее.

Сверхпроводимость

При температурах соответствующих сжижению газов, то есть вплоть до температуры жидкого гелия, которая равна – 273 градуса по Цельсию удельное сопротивление уменьшается почти до полного исчезновения. И не только у хороших металлических проводников, таких как серебро, медь и алюминий. Практически у всех металлов. При таких условиях, которые называются сверхпроводимостью, структура металла не имеет тормозящего влияния на движение зарядов под действием электрического поля. Поэтому ртуть и большинство металлов становятся сверхпроводниками.

Но, как выяснилось, относительно недавно в 80-х годах 20-го века, некоторые разновидности керамики тоже способны к сверхпроводимости. Причём для этого не надо использовать жидкий гелий. Такие материалы назвали высокотемпературными сверхпроводниками. Однако уже прошло несколько десятков лет, и ассортимент высокотемпературных проводников существенно расширился. Но массового использования таких высокотемпературных сверхпроводящих элементов не наблюдается. В некоторых странах сделаны единичные инсталляции с заменой обычных медных проводников на высокотемпературные сверхпроводники. Для поддержания нормального режима высокотемпературной сверхпроводимости необходим жидкий азот. А это получается слишком дорогим техническим решением.

Поэтому, малое значение удельного сопротивления, дарованное Природой меди и алюминию, по-прежнему делает их незаменимыми материалами для изготовления разнообразных проводников электрического тока.

Формула электрического сопротивления от А до Я

В моей практике много случаев, когда электрик тратит лишнее время на правильный подбор деталей при ремонте оборудования. А решить эту проблему довольно просто: достаточно представлять принцип его работы.

Формула электрического сопротивления, выраженная разными способами для цепей постоянного или переменного тока, позволяет правильно выполнить расчет под исходные данные действующей схемы.

При этом соотношение проходящей через нее мощности, создающей нагрев, должно соответствовать условиям теплоотвода. Выполняя эти требования, вы будете работать быстрее, повысите свой авторитет в глазах окружающих.

Для начинающих электриков я подготовил небольшой теоретический материал про физические процессы, происходящие с электричеством.

Вы же можете сразу перейти к вычислениям, щелкнув по второму подзаголовку из содержания по формулам или третьему через онлайн калькулятор удельного сопротивления.

Содержание статьи

Что надо знать про электрические процессы

Если говорить простым языком, то под сопротивлением принято понимать свойство среды, по которой протекает электрический ток, снижающее его величину.

Так работают провода и изоляторы высоковольтной линии электропередач, показанные на верхней картинке, да и любое вещество.

Изоляторы обладают очень высокими диэлектрическими свойствами, изолируют высоковольтное напряжение, присутствующее на токоведущих шинах от контура земли. Это их основное назначение.

Провода же должны максимально эффективно передавать транслируемые по ним мощности. Их создают так, чтобы они обладали минимальным электрическим сопротивлением, работали с наименьшими потерями энергии на нагрев.

В этом случае передача электричества от источника напряжения к потребителю на любое расстояние будет проходить эффективно.

Приведу для примера картинку из предыдущей моей статьи.

Ее, как и верхнюю, можно представить таким обобщенным видом.

На внешнем участке цепи токоведущие жилы отделены друг от друга воздушной средой и слоем изоляции с высокими диэлектрическими свойствами.

Хорошей проводимостью обладают токоведущие жилы. Подключенный к ним электрический прибор функционирует оптимально.

Как работает резистор

Ток в металлах проходит под действием приложенного напряжения за счет направленного движения электронов. При этом они соударяются, встречаются с положительно и отрицательно заряженными ионами.

Такие столкновения повышают температуру среды, уменьшают силу тока.

За направление электрического тока в электротехнике принято движение заряженных частиц от плюса к минусу. Электроны же движутся от катода к аноду.

Электрическое сопротивление металла зависит от его структуры и геометрических размеров.

Аналогичные процессы протекают в любой другой токопроводящей среде, включая газы или жидкости.

Какие существуют виды сопротивлений

В домашних электрических приборах используется большое разнообразие резисторов с постоянной или регулируемой величиной.

Они ограничивают величину тока всех бытовых устройств, а в наиболее сложных модулях их количество может достигать тысячи или более. Резисторы работают практически во всех схемах.

При использовании в цепях переменного тока они обладают активным сопротивлением, а конденсаторы и дроссели — реактивным.

Причем, на конденсаторах создается емкостное сопротивление, а у дросселей — индуктивное.

Реактивная составляющая на конденсаторах и дросселях сильно зависит от частоты электромагнитного колебания.

2 Шутки электриков о токах через конденсатор и дроссель

Их я привожу потому, что они позволяют запомнить характер прохождения тока через реактивные элементы.

Шутка №1 о емкости

В домашней сети и внутри многих приборов работают переменный и постоянный токи. Они по-разному ведут себя, если встречают на своем пути конденсатор.

Поскольку он состоит из двух токопроводящих пластин, разделенных слоем диэлектрика, то его обозначают на схемах двумя жирными черточками, расположенными параллельно. К их серединам подключены провода, нарисованные перпендикулярными линиями.

Переменный ток имеет форму гармоничной синусоиды, состоящей из двух симметричных половинок.

Такая гармоника движется от начала координат, встречает на своем пути обкладки, переваливается через них и, скатившись, начинает обгонять приложенное напряжение.

Постоянный ток таким свойством не обладает. Его тупой конец просто упирается в обкладку и останавливается. Пройти через конденсатор он не может. Это для него непреодолимое препятствие.

Шутка №2 о дросселе

Индуктивность выполнена витками изолированного провода. Любой ток проходит по нему. Но синусоида своими волнами путается в витках катушки, начинает отставать от напряжения.

Постоянка же спокойно перемещается внутри провода дросселя без ощущения какого-либо значительного противодействия. Поэтому постоянное напряжение может своим током спалить дроссель, созданный для работы на переменке.

Что же это за зверь: сверхпроводимость

Сто лет назад выявлена способность определенных металлов полностью терять свое сопротивление электрическому току при сверхнизких температурах. Выглядит этот процесс следующим образом.

Со сверхпроводниками домашний мастер не работает. Но на верхнюю часть приведенного графика рекомендую обратить внимание: нагрев металла повышает его электрическое сопротивление.

При электротехнических расчетах, требующих получения точного результата, необходимо учитывать температурный коэффициент, взятый из справочников.

Как просто вычислить сопротивление по закону Ома из электрических величин

Шутки и их разъяснения закончились, хотя они приведены для объяснения поведения токов внутри индуктивностей и емкостей. Пора переходить к расчетам.

Его позволяет выполнить одна из формул, приведенных в шпаргалке электрика. Для этого достаточно знать два из трех электрических параметров: ток I, мощность P или напряжение U.

Если же вам лениво вычислять цифры, то можете спокойно использовать онлайн калькулятор закона Ома. Он избавит вас от сложных арифметических действий.

Формула электрического сопротивления по свойствам среды: научный подход

Электротехника давно использует термин: удельное сопротивление. Он учитывает свойства материала токопроводящей среды с ее размерами: длиной и поперечным сечением, через которое протекает электрический ток.

Все данные для него получены в результате многочисленных исследований и сведены в таблицы. Для бытовых вычислений достаточно следующих сведений.

Таблица характеристик металлов, используемых в быту

Металл проводаУдельное сопротивление (Ом∙мм.кв/м)
Медь техническая0,017
Алюминий0,028
Стальные сплавы0,11
Свинец0,21
Сплавы нихрома1,11

На основе этих данных удобно подбирать провода, детали, вычислять их сопротивление R либо определять другие параметры.

Например, нас интересует сопротивление проволоки нихрома диаметром 1 мм, при температуре 20 градусов.

Определяем площадь поперечного сечения через площадь круга.

S = 3.14 x 1 x 1 / 4 = 0,785 мм кв.

Делаем расчет на основе приведенной формулы.

R = 1,1 х 5 / 0,785 = 7 Ом

Простой онлайн калькулятор сопротивления проводов

Его назначение — облегчить работу с формулами и арифметическими действиями. Он позволяет решать одну из двух часто встречающихся задач:

  • Определение сопротивления провода.
  • Расчет его длины.

Достаточно заполнить исходные данные в соответствующей размерности и нажать кнопку “Рассчитать”.

Формулы расчета электрического сопротивления для переменного тока простыми словами

Переменное напряжение наводится вращением рамки (ротора генератора) в магнитном поле (создается обмоткой или магнитами статора).

Ток потребителя, подключенного к выводам генератора, по-разному ведет себя на резисторе, индуктивности и конденсаторе.

Формула активного сопротивления

Резисторы изготавливают из металлов с повышенными удельными характеристиками для ограничения силы тока без изменения его направления.

Синусоиды токов и напряжений на резисторе совпадают по времени. В векторном выражении они обладают одинаковым направлением.

Активное сопротивление переменному току вычисляется по закону Ома так же, как и при постоянной форме напряжения.

Формула индуктивного сопротивления

В обмотках катушек электромагнитов, дросселей, трансформаторов наводится электродвижущая сила индукции. Она взаимодействует с приложенным переменным напряжением. В результате происходит сдвиг фазы тока относительно направления вращения электромагнитного поля (ротора генератора).

Формула индуктивного сопротивления XL сильно зависит от частоты тока f и индуктивности L.

Ток в такой цепи сдвигается от напряжения и отстает от него на 90 угловых градусов.

Число ∏ в формуле отображает отношение длины окружности к ее диаметру (3,14).

Формула емкостного сопротивления ХС

Конденсатор состоит из двух токопроводящих пластин, отделенных слоем диэлектрика. При появлении на них напряжения они накапливают электрический заряд.

Его энергия постоянно взаимодействует с приложенным переменным напряжением. Поэтому в цепи создается ток, зависящий от частоты электромагнитного сигнала и емкости конденсатора.

Он сдвигается вперед от вектора напряжения по направлению вращения поля.

Формула полного сопротивления

Электротехника, как и сама жизнь, описывает явления, переплетенные между собой, а не в чистом виде.

Электрическая энергия, поступающая к нам в квартиру по проводам и кабелям от трансформаторной подстанции, преодолевает:

  1. активное сопротивление токоведущих шин;
  2. емкость кабельных линий;
  3. индуктивное противодействие обмоток трансформаторов.

Поэтому для расчетов применяют метод полного сопротивления, выражаемый законом прямоугольного треугольника.

Каждая его сторона отображает определенную характеристику сопротивления:

  • гипотенуза — суммарную, полную величину Z:
  • прилегающий катет — активную составляющую R;
  • противолежащий — реактивную X, представленную геометрической суммой емкостного XL и индуктивного сопротивления XC.

Точно так же каждая сторона этого треугольника создает определенную величину затраченной мощности электрической энергии.

На активном участке создается мощность, совершающая полезную для нас работу, обеспечивающую вращение роторов электродвигателей, свечение осветительных приборов, нагрев обогревателей и другие нужные действия.

Полная мощность, расходуемая всеми видами потребителей, состоит из полезной активной и потерь, создающих индуктивными и емкостными составляющими. Они снижают эффективность работы электрической системы. Поэтому с ними борются.

Запомнить роль реактивной мощности помогает простая и наглядная картинка, естественно, выраженная в шутливой форме.

Однако стоит понимать, что угол φ, образованный между гипотенузой и прилегающим к нему катетом, характеризует величину реактивной части, создающей бесполезные потери энергии. Ее всегда стремятся снизить.

Что такое вольтамперная характеристика

Металлы в обычном состоянии формируют электрический ток строго по прямолинейной характеристике в зависимости от величины приложенного напряжения.

У других сложных веществ и индуктивностей этот принцип не соблюдается. Зависимость выражается кривыми линиями и называется вольтамперной характеристикой.

ВАХ индуктивностей

Характер протекания тока зависит от величины индуктивности. Если в рабочей обмотке возникает пробой изоляции, приводящий к образованию короткозамкнутого витка, то вольтамперная характеристика резко изменяет свой вид: падает.

За счет уменьшения индуктивного сопротивления при меньшем значении величины приложенного напряжения в обмотке начинают протекать бОльшие токи.

Они свидетельствуют о возникновении неисправности, требующей немедленного устранения. Поэтому снятие ВАХ является обязательным элементом проверки исправности обмоток всех видов трансформаторов или дросселей.

Она выполняется различными методами с определением состояния точки перегиба характеристики.

ВАХ полупроводникового прибора

На правой картинке показан один из примеров работы нелинейного элемента — диода.

В первой четверти квадранта проходит прямой участок характеристики, а у третьей — обратный.

На прямом участке повышение напряжения выше точки перегиба ведет к открытию переходного полупроводникового слоя и пропусканию через него тока практически по прямой линейной характеристике.

Такие же действия на обратном участке ведут к потере диодом своих свойств.

Закон Шварцнегера или как надо обеспечивать надежную работу резистора под нагрузкой

Знаменитый на весь мир атлет Арнольд постоянно тренировался по методике нашего советского силача Юрия Власова. Он брал его опыт за основу и даже приезжал в Россию погостить к своему кумиру.

В основе метода постоянных результативных тренировок положен принцип не столько полноценного питания и отдыха, сколько подбор правильных нагрузок, которые должен преодолевать организм.

Все это полностью соответствует законам электротехники, применяется в работе любого электрического сопротивления. Рассмотрим его на примере резистора: так проще для понимания.

Его металл не только пропускает электрический ток, но и нагревается, выделяя тепло. Нагрев увеличивается с повышением тока. При этом температура может снижаться за счет теплоотвода в окружающую среду или увеличиваться в герметичном, не теплопроводящем объеме.

Так работает электропроводка, выполненная одним и тем же кабелем, проложенным открыто по стенам или спрятанным в штробах.

В первом случае от нагревающегося током кабеля тепло отводится в окружающий воздух за счет его естественной циркуляции, а во втором нагрев идет более интенсивно.

Однако повышать температуру жил можно только до определенной величины. За ее рабочим диапазоном вначале происходит разрушение слоя изоляции, а потом — простое перегорание металла, когда проводка сгорает.

На этом примере я попытался показать, что любой резистор обладает запасом тепловой мощности, за который его нельзя переводить.

Для облегчения работы электриков всем видам резисторов введен термин мощности теплового рассеивания. Она указывается в технической документации или прямо на корпусе, измеряется ваттами. Ее же показывают на электрических схемах.

Как выбрать резистор по тепловой нагрузке за 2 шага

Действуют по следующему алгоритму:

  1. Вначале определяют мощность, которая будет проходить через искомый резистор. Достаточно перемножить величину номинального тока на напряжение, выразить полученное значение в ваттах.
  2. Под эту величину из всего многообразия элементов подбирают тот, который соответствует по значению сопротивления и обладает мощностью теплового рассеивания не меньшего номинала.

Желательно брать его с небольшим резервом. Он не будет лишним для работы в критических ситуациях электрической схемы, но повлияет на габариты устройства.

Полезные примеры из жизни

Как продлить ресурс лампы накаливания

В пожарном депо Ливермоля (Калифорния) зарегистрирован рекорд рабочего режима осветительной лампы: 117 лет. Она практически непрерывно выполняет свою задачу с 1901 года по настоящее время.

Такой ресурс обеспечен за счет:

  • правильного выбора сопротивления, ограничивающего ток через нить накала и создания экономного режима освещения;
  • беспрерывной работы, исключающей переходные процессы при включениях/выключениях, сопровождаемые бросками токов;
  • надежной конструкции.

Как регулировать токи от 100 ампер в силовой цепи

Этот случай я привожу не для повторения, а с целью расширения кругозора и лучшего уяснения процессов, происходящих в электричестве.

Ни один обычный резистор не способен длительно выдерживать токи такой величины. Он просто сгорит. Однако при наладке промышленных генераторов требуется иметь устройство, справляющееся с подобными мощностями.

Это водяной реостат, состоящий из металлического корпуса — ведра прямоугольной формы, служащего одним из контактов для подключения провода от нагрузки.

Второй контакт составляет металлический нож, подключаемый через изоляторы.

Внутрь ведра наливают воду и засыпают соль: создают электролит, хорошо проводящий большие токи.

Перемещение ножа в электролите меняет сопротивление среды и обеспечивает регулировку высоких токов. Проводимость можно изменять концентрацией соли в растворе.

Напоминаю: подобное устройство нельзя использовать в бытовых цепях: оно не отвечает требованиям безопасности.

Таким образом, под каждый конкретный случай расчета используется своя формула электрического сопротивления, которой следует внимательно пользоваться. Исключить ошибки в расчетах помогает специализированный онлайн калькулятор.

По этой теме рекомендую посмотреть видеоролик Владимира Романова.

Если хотите задать вопрос или дополнить информацию, то воспользуйтесь разделом комментариев.

Формула удельного сопротивления

Появление электрического тока наступает при замыкании цепи, когда на зажимах возникает разность потенциалов. Перемещение свободных электронов в проводнике осуществляется под действием электрического поля. В процессе движения, электроны сталкиваются с атомами и частично передают им свою накопившуюся энергию. Это приводит к уменьшению скорости их движения. В дальнейшем, под влиянием электрического поля, скорость движения электронов снова увеличивается. Результатом сопротивления становится нагревание проводника, по которому течет ток. Существуют разные способы расчетов этой величины, в том числе и формула удельного сопротивления, применяющаяся для материалов с индивидуальными физическими свойствами.

Электрическое удельное сопротивление

Суть электрического сопротивления заключается в способности того или иного вещества превращать электрическую энергию в тепловую во время действия тока. Данная величина обозначается символом R, а в качестве единицы измерения используется Ом. Значение сопротивления в каждом случае связано со способностью того или иного металла проводить электрический ток.

В процессе исследований была установлена зависимость силы тока от сопротивления. Одним из основных качеств материала становится его удельное сопротивление, меняющееся в зависимости от длины проводника. То есть, с увеличением длины провода, возрастает и значение сопротивления. Данная зависимость определяется как прямо пропорциональная.

Другим свойством материала является площадь его поперечного сечения. Она представляет собой размеры поперечного среза проводника, независимо от его конфигурации. В этом случае получается обратно пропорциональная связь, когда с увеличением площади поперечного сечения уменьшается сопротивление проводника.

Еще одним фактором, влияющим на сопротивление, является сам материал. Во время проведения исследований была обнаружена различная сопротивляемость у разных материалов. Таким образом, были получены значения удельных электрических сопротивлений для каждого вещества.

Выяснилось, что самыми лучшими проводниками являются металлы. Среди них самой низкой сопротивляемостью и высокой проводимостью обладают медь и серебро. Они применяются в наиболее ответственных местах электронных схем, к тому же медь имеет сравнительно низкую стоимость.

Вещества, удельное сопротивление которых очень высокое, считаются плохими проводниками электрического тока. Поэтому они используются в качестве изоляционных материалов. Диэлектрические свойства более всего присущи фарфору и эбониту.

Таким образом, удельное сопротивление проводника имеет большое значение, поскольку с его помощью можно определить материал, из которого был изготовлен проводник. Для этого измеряется площадь сечения, определяется сила тока и напряжение. Это позволяет установить значение удельного электрического сопротивления, после чего, с помощью специальной таблицы можно легко определить вещество. Следовательно, удельное сопротивление относится к наиболее характерным признакам того или иного материала. Этот показатель позволяет определить наиболее оптимальную длину электрической цепи так, чтобы соблюдался баланс длины и площади сечения.

Формула

На основании полученных данных можно сделать вывод, что удельным сопротивлением будет считаться сопротивление какого-либо материала с единичной площадью и единичной длиной. То есть сопротивление, равное 1 Ом возникает при напряжении 1 вольт и силе тока 1 ампер. На этот показатель оказывает влияние степень чистоты материала. Например, если к меди добавить всего лишь 1% марганца, то ее сопротивляемость увеличится в 3 раза.

Удельное сопротивление и проводимость материалов

Проводимость и удельное сопротивление рассматриваются как правило при температуре 20С. Эти свойства будут отличаться у различных металлов:

  • Медь. Чаще всего применяется для изготовления проводов и кабелей. Она обладает высокой прочностью, стойкостью к коррозии, легкой и простой обработкой. В хорошей меди доля примесей составляет не более 0,1%. В случае необходимости медь может использоваться в сплавах с другими металлами.
  • Алюминий. Его удельный вес меньше, чем у меди, однако у него более высокая теплоемкость и температура плавления. Чтобы расплавить алюминий, потребуется энергии значительно больше, чем для меди. Примеси в качественном алюминии не превышают 0,5%.
  • Железо. Наряду с доступностью и дешевизной, этот материал обладает высоким удельным сопротивлением. Кроме того, у него низкая устойчивость к коррозии. Поэтому практикуется покрытие стальных проводников медью или цинком.

Отдельно рассматривается формула удельного сопротивления в условиях низких температур. В этих случаях свойства одних и тех же материалов будут совершенно другими. У некоторых из них сопротивляемость может упасть до нулевой отметки. Такое явление получило название сверхпроводимости, при которой оптические и структурные характеристики материала остаются неизменными.

Электрический ток. Основные теоретические сведения | by NikolayGolovko

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны — отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I — скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока — сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления — взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

где: l — длина проводника, S — площадь его поперечного сечения, ρ — удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества — табличная величина.

Сопротивление проводника зависит и от его температуры:

где: R0 — сопротивление проводника при 0°С, t — температура, выраженная в градусах Цельсия, α — температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод — это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы — вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Сопротивление r — внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R — сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Сила тока короткого замыкания — максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность — в ваттах (Вт).

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ ~ Изучение электротехники

Пользовательский поиск

ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ :
Электрическое сопротивление — это сопротивление данного материала потоку электричества. Сопротивление электрического проводника определяется по формуле:

R = eL / A
, где R = сопротивление в омах
L = длина в метрах
A = площадь поперечного сечения проводника (csa)
e = удельное сопротивление проводника в омметре


Удельное сопротивление e = RA / L
Если A = 1msq, то: удельное сопротивление определяется как сопротивление на метр для единицы c.sa
Двумя наиболее популярными проводниками, встречающимися в области электротехники, являются медь и алюминий

Электрическое сопротивление проводника зависит от следующих факторов:
(a) температура
(b) длина материала проводника
(c) крест площадь сечения (csa) проводника

ОМ ЗАКОН :
Закон Ома гласит, что напряжение, приложенное к проводнику, прямо пропорционально току, проходящему через проводник, при условии, что температура и физическое состояние проводника остаются постоянными.

Это означает, что:
V = IR
Где V = напряжение, приложенное к проводнику
I = ток, проходящий через проводник
R = сопротивление проводника

Для систем постоянного тока подходящим термином является сопротивление. Для систем переменного тока правильным термином является импеданс. Импеданс — это противодействие протеканию переменного тока через проводник. Импеданс возникает в результате резистивного, емкостного и индуктивного воздействия переменного тока на проводник.Для проводов малых размеров емкостными и индуктивными эффектами переменного тока обычно можно пренебречь, и можно использовать термин «сопротивление».

Часто при электромонтажных работах необходимо приблизительно определить сопротивление проводника.
Сопротивление в Ом на км определяется по формуле:
R = (22,5 Ом · мм кв.) / S (csa) на км для меди

R = (36 Ом · мм · кв. csa менее 50 мм / кв.

Электрическое сопротивление и закон Ома | Основная теория постоянного тока (DC)

Для обзора, напряжение — это мера потенциальной энергии, доступной для электрических зарядов.

Ток — это равномерный дрейф электрических зарядов в ответ на напряжение. У нас может быть напряжение без тока, но у нас не может быть тока без напряжения, которое его мотивирует. Ток без напряжения был бы эквивалентен движению без движущей силы.

Когда электрические заряды проходят через такой материал, как металл, они, естественно, сталкиваются с некоторым трением, так же как жидкость, движущаяся по трубе, неизбежно сталкивается с трением. У нас есть название для этого трения движения электрического заряда: сопротивление .Подобно напряжению и току, сопротивление имеет свою особую единицу измерения: Ом и , названную в честь немецкого физика Георга Симона Ома.

На этом этапе было бы хорошо обобщить и сравнить символы и единицы, которые мы используем для напряжения, тока и сопротивления:

R $ $
Кол-во Алгебраический символ Единица измерения и Аббревиатура единиц
Напряжение V $ (или E $) Вольт В
Текущий $ I $ ампер (или ампер) А
Сопротивление $ Ом $ \ Омега

Сопротивление определяется как математическое соотношение между приложенным напряжением и результирующим током.Эта формула стала известна как Закон Ома , возможно, самая основная формула во всей электротехнике (показана здесь в трех разных формах, каждая из которых решает разные переменные):

\ [R = {V \ over I} \ hskip 30pt V = IR \ hskip 30pt I = {V \ over R} \]

Устно сопротивление — это то, сколько напряжения требуется, чтобы протолкнуть ток определенной скорости через проводящий материал. Многие материалы обладают относительно стабильным сопротивлением, а другие — нет. Продаются устройства, называемые резисторами , которые производятся с очень точным сопротивлением с целью ограничения тока в цепях (среди прочего).

Вот пример действия закона Ома: рассчитайте величину тока в цепи с источником напряжения 25 В и общим сопротивлением 3500 \ (\ Omega \). Взяв 25 вольт и разделив на 3500 Ом, вы должны получить результат 0,007143 ампера, или 7,143 миллиампер (7,143 мА).

Один из самых сложных аспектов закона Ома — это не забыть сохранять все переменные в контексте . Это обычная проблема для многих студентов, изучающих физику: ни одно из уравнений, изученных на уроке физики, не даст правильных результатов, если все переменные не относятся к одному и тому же объекту или ситуации.2 \)). Точно так же, согласно закону Ома, мы должны убедиться, что значения напряжения, тока и сопротивления, которые мы используем, относятся к одной и той же части одной и той же цепи.

Если рассматриваемая схема имеет только один источник напряжения, одно сопротивление и один путь для тока, мы не можем неправильно применить закон Ома. Представляя предыдущий пример схематической диаграммой:

Однако, если мы посмотрим на более сложную схему, мы столкнемся с возможностью неправильного применения закона Ома, потому что у нас есть несколько сопротивлений в цепи, а не только одно сопротивление:

Какое сопротивление мы используем для расчета тока в этой цепи? Делим ли мы наши 25 вольт на 3500 Ом, как в прошлый раз, или мы делим их на 1500 Ом, или что-то совсем другое? Ответ на этот вопрос заключается в идентификации напряжений и токов.Мы знаем, что потенциал 25 В будет приложен к общим из двух сопротивлений \ (R_1 \) и \ (R_2 \), и, поскольку существует только один путь для тока, они должны разделять один и тот же ток. Таким образом, у нас фактически есть три напряжения (\ (V_1 \), \ (V_2 \) и \ (V_ {total} \)), три сопротивления (\ (R_1 \), \ (R_2 \), и \ (R_ {total} \)), и только один ток (\ (I \)):

Используя форму \ (V = IR \) закона Ома, чтобы связать эти три напряжения (\ (V_1 \), \ (V_2 \) и \ (V_ {total} \)) с одним током (\ (I \)), получаем три уравнения для этой схемы:

\ [V_ {1} = I R_ {1} \]

\ [V_ {2} = I R_ {2} \]

\ [V_ {total} = I R_ {total} = I (R_1 + R_2) \]

Мы можем решить только одну неизвестную переменную за раз в любом уравнении.Это означает, что мы пока не можем решить для \ (V_1 \), потому что, хотя мы знаем значение резистора \ (R_1 \) (3500 Ом), мы еще не знаем ток цепи (\ (I \)). То же самое для \ (V_2 \), потому что мы еще не знаем значение \ (I \). Однако третье уравнение разрешимо, поскольку мы знаем полное напряжение, а также значения обоих резисторов, оставив ток цепи \ (I \) в качестве единственной неизвестной переменной. Обработка этого уравнения и решение для \ (I \):

\ [I = {V_ {total} \ over R_ {total}} = {V_ {total} \ over R_1 + R_2} = {25 \ hbox {V} \ over 3500 \> \ Omega + 1500 \> \ Omega } = 0.005 \ hbox {A} = 5 \ hbox {mA} \]

Теперь, когда мы знаем величину тока в этой цепи, мы можем решить для \ (V_1 \) и \ (V_2 \) в других уравнениях, чтобы найти, что напряжение на резисторе \ (R_1 \) составляет 17,5 вольт, и что напряжение на резисторе \ (R_2 \) составляет 7,5 вольт.

Электрическое сопротивление и закон Ома

Цель обучения

В этом уроке мы узнаем об электрическом сопротивлении и способах его расчета.

Результаты обучения

По окончании этого урока вы сможете:

  • Определите электрическое сопротивление и приведите примеры материалов с высоким и низким сопротивлением.
  • Опишите, как различные факторы могут повлиять на сопротивление электрического провода.
  • Опишите постоянные и переменные резисторы.
  • Рассчитайте общее сопротивление в последовательной и параллельной цепях.
  • Используйте закон Ома для расчета сопротивления, напряжения и тока.


(Изображение: bluebudgie, Pixabay)


Краткое содержание урока

  • Сопротивление — это мера ограничения протекания тока.
  • Измеряется в омах (Ом).
  • Проводники имеют низкое сопротивление и легко проводят электричество.
  • Полупроводники имеют некоторое сопротивление, но все же проводят электричество.
  • Изоляторы имеют очень высокое сопротивление и не проводят электричество.
  • Сопротивление электрического провода зависит от:
  • Толщина проволоки
  • Резисторы — это электрические компоненты, предназначенные для уменьшения тока.
  • Постоянные резисторы имеют заданный уровень сопротивления.
  • Переменные резисторы имеют регулируемый уровень сопротивления.
  • Общее сопротивление в последовательной цепи рассчитывается по формуле:
  • Общее сопротивление в параллельной цепи рассчитывается по формуле:
  • Закон Ома гласит, что математическая связь между сопротивлением, напряжением и током задается формулой:


(Изображение: olafpictures, Pixabay)



Щелкните изображение, чтобы просмотреть таблицу для этого урока.



Щелкните изображение, чтобы просмотреть Учебное пособие по физике за 9 год.



Щелкните изображение, чтобы просмотреть заметки об уроке физики 9-го класса.

Электрическое сопротивление | IOPSpark

В этом эпизоде ​​рассматривается сопротивление металла и полупроводника, дается микроскопическое объяснение его изменения в зависимости от температуры. Также дается краткий обзор сверхпроводимости и ее приложений.

Краткое содержание урока

  • Демонстрация и обсуждение: сопротивление и температура (10 минут)
  • Обсуждение: Свободные электроны в металлах (10 минут)
  • Студенческий эксперимент: Поведение термистора (20 минут)
  • Обсуждение и демонстрация: Проводимость в полупроводниках (5 минут)
  • Обсуждение: Сверхпроводимость (20 минут)
  • Деятельность учащихся: Исследование сверхпроводимости (30 минут плюс время для отчета)
  • Вопросы учащихся: Использование этих идей (20 минут)
Обсуждение и демонстрация: Сопротивление и температура

В этой серии рассказывается об изменении сопротивления лампы накаливания.Собственные результаты учеников должны показать, что сопротивление возрастает с увеличением тока. Свяжите это с изменением температуры проволоки и напомните им, что металлы подчиняются закону Ома, если температура постоянна. (Когда они измеряли сопротивление константановой проволоки в эпизоде ​​109, ток всегда был небольшим, поэтому температура была почти постоянной.) Вы можете усилить идею изменения сопротивления в металлах, охладив провод и показывая, что его сопротивление уменьшается. Это можно сделать с помощью охлаждающего спрея или, что еще более важно, с помощью жидкого азота (если он доступен).

Эпизод 110-1: Сопротивление металла уменьшается при понижении температуры (Word, 43 КБ)

Обсуждение: Свободные электроны в металлах

Здесь стоит остановиться, чтобы обсудить механизм металлического сопротивления. Напомните студентам о модели, согласно которой с увеличением температуры тепловые колебания в решетке увеличиваются, вызывая большее рассеяние электронов. (Имейте в виду, что здесь есть нечто большее, чем кажется на первый взгляд с точки зрения квантовой теории, в отличие от классической теории свободных электронов).Это увеличивает сопротивление металла.

Далее рассмотрим полупроводники. Студенты вряд ли много знают о полупроводниках, поэтому, возможно, стоит сделать краткое введение, сказав, что по сравнению с металлами у них есть только несколько свободных электронов, поэтому сопротивление (сопротивление — более подходящий термин здесь, но они еще не встречались это) намного выше. Однако полупроводники, такие как кремний, занимают центральное место в электронной промышленности, поэтому стоит учесть их электрические характеристики.Например, как их сопротивление зависит от температуры?

Студенческий эксперимент: поведение термистора

Студенты могут самостоятельно исследовать температурную зависимость сопротивления термистора.

Результаты должны показать явное уменьшение сопротивления с повышением температуры. Это противоположно тому, что произошло с металлом.

NB Эти термисторы н.з. типы (отрицательный температурный коэффициент). Существуют и другие типы, которые имеют нелинейный положительный температурный коэффициент.

Эпизод 110-2: Калибровка термистора (Word, 39 КБ)

Обсуждение и демонстрация: Проводимость в полупроводниках

Спросите, колеблются ли атомы в полупроводнике сильнее при более высокой температуре. Конечно, есть — поэтому этот вклад в сопротивление должен увеличиваться так же, как и для металла. Так что еще может улучшить проводимость полупроводников? Ответ: больше носителей заряда. В то время как количество свободных электронов в металле постоянно, эффект нагрева полупроводника освобождает дополнительные электроны (и дырки, но, вероятно, о них пока не стоит упоминать!).Для кремния в этом диапазоне температур влияние дополнительных носителей заряда перевешивает влияние дополнительных колебаний.

Интересная дополнительная демонстрация может быть проведена с использованием другого полупроводника (углерода). Это показывает, что два эффекта конкурируют друг с другом. При более низких температурах преобладает увеличение сопротивления из-за вибрации, поскольку с повышением температуры высвобождается все больше и больше электронов, и сопротивление начинает падать.

Обсуждение: Сверхпроводимость

Представив идею о том, что металлическое сопротивление вызывается рассеянием электронов на ионах, когда они колеблются, вы должны вернуться к тому, что происходит при охлаждении металла.

Вы ищете аргумент, который работает по следующим принципам: более низкая температура, меньшая амплитуда вибрации, следовательно, меньшее рассеяние и, следовательно, меньшее сопротивление. Вернитесь к первоначальной демонстрации.

Как низко мы можем спуститься?

Студенты должны предсказать, что тепловые колебания в конечном итоге прекратятся (при абсолютном нуле на простой механической модели). Это означает очень низкое сопротивление при низких температурах (но не обязательно нулевое).

Привести к работе Каммерлинг-Оннеса и его удивление, что сопротивление ртути исчезает при очень низкой температуре (несколько градусов выше абсолютного нуля: 4.15 К).

Этот внезапный переход был неожиданным и является квантовым эффектом. Это происходит с некоторыми, но не со всеми металлами. Это также наблюдалось при гораздо более высоких температурах (около 150 К) в некоторых керамических изделиях. Они называются высокотемпературными сверхпроводниками (хотя мы все еще говорим о температурах более 100 градусов ниже нуля по Цельсию! Механизм высокотемпературной сверхпроводимости полностью не изучен, и есть надежда, что в будущем мы сможем производить продукцию комнатной температуры. сверхпроводники.

Вместо того, чтобы читать им лекции о сверхпроводниках, это было бы хорошей возможностью поставить им некоторые исследовательские задачи, о которых можно было бы доложить классу. Вот рабочий лист, который можно использовать:

Эпизод 110-3: Исследование сверхпроводимости (Word, 27 КБ)

Вопросы учащихся: использование этих идей

Эпизод 110-4: Последовательное соединение лампы накаливания и термистора (Word, 31 КБ)

Веб-сайт открытых дверей: IB Физика: СОПРОТИВЛЕНИЕ

Сопротивление проводника равно мера противостояния , которую он предлагает потоку электрического Текущий.
Сопротивление компонента вызывает электрическую энергию конвертируется в тепловую энергию .
Сопротивление компонента равно разнице потенциалов на Единица тока .
Другими словами, напряжение, необходимое для Ампер тока, протекающего через компонент.
Записав это определение в виде уравнения, мы иметь
Таким образом, единицы тока ВА -1 но сопротивление 1ВА -1 называется 1 Ом (1 Ом) по Георгу Симону Ому
Ом исследовал сопротивление металлов.Он хотел узнать, как сопротивление куска металла зависит от его размеров.
Он обнаружил, что сопротивление куска металла составляет непосредственно пропорционально его длине, L и обратно пропорционально к его площади поперечного сечения, A.
Следовательно, можно написать
Неудивительно, что он также обнаружил, что сопротивление зависит от Тип металла исследуется .
Константа пропорциональности, ρ это число, которое зависит от типа металла.
Его называют удельным сопротивлением металла.
и, глядя на это уравнение, мы можем утверждать, что единицы измерения удельное сопротивление должно быть Ом · м
Закон Ома
Ом также исследовали связь между напряжением на данный кусок металла и ток, текущий через него.Его результаты дал то, что сейчас называется законом Ома, который сформулирован следующим образом:
Для металлического проводника на постоянная температура , протекающий через нее ток прямо пропорционально напряжению на нем.
Поскольку напряжение, деленное на ток, является сопротивлением, этот закон говорит нам что сопротивление куска металла (при постоянной температуре) равно постоянный.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *