Site Loader

Содержание

Понятие об электрическом поле. Взаимодействие электрических зарядов

  

Прежде чем давать определение электрического поля, проделаем простой опыт, показывающий, как взаимодействуют электрические заряды.

Для опыта потребуется очень несложная «аппаратура»: эбонитовая палочка, кусочек сукна и два маленьких пробковых шарика, подвешенных на шелковых нитках.

Эбонитовую палочку потрем о сукно и коснемся ею левого шарика. Так как эбонитовая палочка при трении о сукно заряжается отрицательно, то и шарик зарядится отрицательно. Кусочек сукна, которым мы натирали палочку, заряжается положительно (при рассмотрении электронного строения атома указывалось, что появление отрицательного заряда всегда сопровождается появлением положительного заряда). Этим кусочком сукна коснемся правого шарика. Часть электронов с шарика перейдет на сукно, и он зарядится положительно. Если после этого внести эбонитовую палочку между шариками, то левый шарик будет от нее отталкиваться, а правый — притягиваться (рис. 1).  

Рисунок 1. Взаимодействипе электрических зарядов

 

Этот опыт позволяет сделать следующий вывод:

Одноименные электрические заряды отталкиваются, а разноименные притягиваются

 

Проделанный опыт убедительно показывает, что электрический заряд (в данном случае отрицательно заряженная эбонитовая палочка) вызывает определенные изменения в окружающем пространстве, создавая вокруг себя электрическое поле.

Определение Электрическое поле — это особый, отличный от вещества вид материи, через которую, в частности, передается действие одних заряженных тел на другие.

Электрическое поле проявляется прежде всего в том, что на находящиеся в нем заряженные тела действуют электрические силы.

Всякое электрическое поле обладает определенным запасом электрической энергии. Проявления этой энергии могут быть различными. Например, под влиянием электрического поля может двигаться электрический заряд; при этом электрическая энергия поля тратится на перемещение заряда, и скорость перемещения заряда увеличивается. Электрическое поле, воздействующее на заряд так, что скорость движения последнего увеличивается, называется ускоряющим электрическим полем.

Если заставить электрический заряд двигаться навстречу действию сил поля, то энергия электрического ноля будет возрастать, а скорость движения заряда уменьшаться. Такое поле называется

тормозящим электрическим полем.

Одним из существенных вопросов электротехники является вопрос о движении электрона в электрическом поле. Электрон имеет отрицательный электрический заряд, и к нему применимы все те рассуждения, которые приводились выше.

Если электрон движется в ускоряющем поле, то энергия поля уменьшается. При движении электрона в тормозящем электрическом поле энергия последнего возрастает. На этом явлении основана работа ряда важнейших приборов (клистронов, магнетронов и т. д.), применяемых в современной радио аппаратуре.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия

Электрический зарядэто физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

  • Существует два рода электрических зарядов, условно названных положительными и отрицательными.
  • Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
  • Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q

1 + q2 + q3 + … +qn = const 

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

 

Силы взаимодействия подчиняются третьему закону Ньютона:Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 4.1.3). Взаимодействие неподвижных электрических зарядов называют

электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы

основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:

 

где – электрическая постоянная. 

Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.

Для количественного определения электрического поля вводится силовая характеристика напряженность электрического поля.

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:

 

Напряженность электрического поля – векторная физическая величина. Направление вектора совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

Электрическое поле неподвижных и не меняющихся со временем зарядов называется

электростатическим.

Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Следовательно, напряженность электрического поля, создаваемого системой зарядов в данной точке пространства, равна векторной сумме напряженностей электрических полей, создаваемых в той же точке зарядами в отдельности:

 

Для наглядного представления электрического поля используют силовые линии. Эти линии проводятся так, чтобы направление вектора в каждой точке совпадало с направлением касательной к силовой линии (рис. 4.2.1). При изображении электрического поля с помощью силовых линий, их густота должна быть пропорциональна модулю вектора напряженности поля.

HРабота поля по замкнутому полю равна 0

Ai=q*e*di*cosα

A=0, то поле потенциальное.

Теорема Гаусса

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Понятие потока вектора аналогично понятию потока вектора скорости при течении несжимаемой жидкости. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка ΔS. Произведение модуля вектора на площадь ΔS и на косинус угла α между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку ΔS (рис. 4.3.1):

ΔΦ = EΔS cos α = EnΔS,

где – модуль нормальной составляющей поля  

1

Рисунок 4.3.1.

К определению элементарного потока ΔΦ.

Рассмотрим теперь некоторую произвольную замкнутую поверхность S. Если разбить эту поверхность на малые площадки ΔSi, определить элементарные потоки поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора через замкнутую поверхность S (рис. 4.3.2):

 

В случае замкнутой поверхности всегда выбирается внешняя нормаль.

2

Рисунок 4.3.2.

Вычисление потока Ф через произвольную замкнутую поверхность S.

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 4.3.5).

5

Рисунок 4.3.5.

Поле равномерно заряженной плоскости. σ – поверхностная плотность заряда. S – замкнутая гауссова поверхность.

В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:

где σ – поверхностная плотность заряда, то есть заряд, приходящийся на единицу площади. 

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

 

Электрический заряд. Закон Кулона

Определение 1

Многие из окружающих нас физических явлений, происходящих в природе, не находят объяснения в законах механики, термодинамики и молекулярно-кинетической теории. Такие явления основываются на влиянии сил, действующих между телами на расстоянии и независимых от масс взаимодействующих тел, что сразу отрицает их возможную гравитационную природу. Данные силы называются электромагнитными.

Еще древние греки имели некоторое представление об электромагнитных силах. Однако только в конце XVIII века началось систематическое, количественное изучение физических явлений, связанных с электромагнитным взаимодействием тел.

Определение 2

Благодаря кропотливому труду большого количества ученых в XIX веке было завершено создание абсолютно новой стройной науки, занимающейся изучением магнитных и электрических явлений. Так один из важнейших разделов физики, получил название электродинамики.

Создаваемые электрическими зарядами и токами электрические и магнитные поля стали ее основными объектами изучения.

Электрическое поле

Понятие заряда в электродинамике играет ту же роль, что и гравитационная масса в механике Ньютона. Оно входит в фундамент раздела и является для него первичным.

Определение 3

Электрический заряд представляет собой физическую величину, которая характеризует свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Буквами q или Q в электродинамике обычно обозначают электрический заряд.

В комплексе все известные экспериментально доказанные факты дают нам возможность сделать следующие выводы:

Определение 4

Существует два рода электрических зарядов. Это, условно названные, положительные и отрицательные заряды.

Определение 5

Заряды могут переходить (к примеру, при непосредственном контакте) между телами. Электрический заряд, в отличие от массы тела, не является его неотъемлемой характеристикой. Одно конкретное тело в различных условиях может принимать разное значение заряда.

Определение 6

Одноименные заряды отталкиваются, разноименные – притягиваются. В данном факте проявляется очередное принципиальное различие электромагнитных и гравитационных сил. Гравитационные силы всегда представляют собой силы притяжения.

Закон сохранения электрического заряда является одним из фундаментальных законов природы.

В изолированной системе алгебраическая сумма зарядов всех тел неизменна:

q1+q2+q3+…+qn=const.

Определение 7

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С точки зрения современной науки, носителями зарядов являются элементарные частицы. Любой обычный объект состоит из атомов. В их состав входят несущие положительный заряд протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны являются составной частью атомных ядер, электроны же образуют электронную оболочку атомов. По модулю электрические заряды протона и электрона эквивалентны и равняются значению элементарного заряда e.

В нейтральном атоме количество электронов в оболочке и протонов в ядре одинаково. Число любых из списка приведенных частиц называется атомным номером.

Подобный атом имеет возможность как потерять, так и приобрести один или несколько электронов. Когда такое происходит, нейтральный атом становится положительно или отрицательно заряженным ионом.

Заряд может переходить от одного тела к другому лишь порциями, в которых содержится целое число элементарных зарядов. Выходит, что электрический заряд тела является дискретной величиной: 

q=±ne (n=0, 1, 2,…).

Определение 8

Физические величины, имеющие возможность принимать исключительно дискретный ряд значений, называются квантованными.

Определение 9

Элементарный заряд e представляет собой квант, то есть наименьшую возможную порцию электрического заряда.

Определение 10

Несколько выбивается из всего вышесказанного факт существования в современной физике элементарных частиц так называемых кварков – частиц с дробным зарядом ±13e и ±23e.

Однако наблюдать кварки в свободном состоянии ученым так и не довелось.

Определение 11

Для обнаружения и измерения электрических зарядов в лабораторных условиях обычно используют электрометр – прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1).

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Стержень со стрелкой изолирован от металлического корпуса. Соприкасаясь со стержнем электрометра, заряженное тело провоцирует распределение по стержню и стрелке электрических зарядов одного знака. Воздействие сил электрического отталкивания становится причиной отклонения стрелки на некоторый угол, по которому можно определить заряд, переданный стержню электрометра.

Рисунок 1.1.1. Перенос заряда с заряженного тела на электрометр.

Электрометр – достаточно грубый прибор. Его чувствительность не позволяет исследовать силы взаимодействия зарядов. В 1785 году был впервые открыт закон взаимодействия неподвижных зарядов. Первооткрывателем стал французский физик Ш. Кулон. В своих опытах он измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора для измерения электрического заряда – крутильных весов (рис. 1.1.2), обладающих крайне высокой чувствительностью. Коромысло весов поворачивалось на 1° под действием силы приблизительной 10–9 Н.

Идея измерений основывалась на догадке физика о том, что при контакте заряженного шарика с таким же незаряженным, имеющийся заряд первого разделится на равные части между телами. Так был получен способ изменять заряд шарика в два или более раз.

Определение 12

Кулон в своих опытах измерял взаимодействие между шариками, размеры которых значительно уступали разделяющему их расстоянию, из-за чего ими можно было пренебречь. Подобные заряженные тела принято называть точечными зарядами.

Рисунок 1.1.2. Прибор Кулона.

Рисунок 1.1.3. Силы взаимодействия одноименных и разноименных зарядов.

Основываясь на множестве опытов, Кулон установил следующий закон:

Определение 13

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними: F=kq1·q2r2.

Силы взаимодействия являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3), а также подчиняются третьему закону Ньютона:
F1→=-F2→.

Определение 14

Кулоновским или же электростатическим взаимодействием называют воздействие друг на друга неподвижных электрических зарядов.

Определение 15

Раздел электродинамики, посвященный изучению кулоновского взаимодействия, называется электростатикой.

Закон Кулона может быть применим по отношению к точечным заряженным телам. На практике, он в полной мере выполняется в том случае, если размерами заряженных тел можно пренебречь из-за значительно превышающего их расстояния между объектами взаимодействия.

Коэффициент пропорциональности k в законе Кулона зависим от выбора системы единиц.

В Международной системе СИ единицу измерения электрического заряда представляет кулон (Кл).

Определение 16

Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ в большинстве случаев записывается в виде следующего выражения: 

k=14πε0.

В котором ε0=8,85·10-12Кл2Н·м2 является электрической постоянной.

В системе СИ элементарный заряд e равняется:

e=1,602177·10-19 Кл≈1,6·10-19 Кл.

Опираясь на опыт, можно сказать, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Теорема 1

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Принцип суперпозиции

На рисунке 1.1.4 на примере электростатического взаимодействия трёх заряженных тел поясняется принцип суперпозиции.

Рисунок 1.1.4. Принцип суперпозиции электростатических сил F→=F21→+F31→; F2→=F12→+F32→; F3→=F13→+F23→.

Рисунок 1.1.5. Модель взаимодействия точечных зарядов.

Несмотря на то, что принцип суперпозиции является фундаментальным законом природы, его использование требует некоторой осторожности, когда он применяется по отношению к взаимодействию заряженных тел конечных размеров. Примером таковых могут послужить два проводящих заряженных шара 1 и 2. Если к подобной системе, состоящей из двух обладающих зарядом шаров поднести еще один заряженный шар, то взаимодействие между 1 и 2 претерпит изменения по причине перераспределения зарядов.

Принцип суперпозиции предполагает, что силы электростатического взаимодействия между двумя любыми телами не зависят от наличия других обладающих зарядом тел, при условии, что распределение зарядов фиксировано (задано).

Электрический заряд, напряжение, напряженность, потенциал

Любой физический объект в окружающем нас мире состоит из огромного количества элементарных частиц, обладающих зарядами. Элементарная частица протон имеет элементарный электрический заряд, которому приписывают (условно) положительный знак, элементарная частица электрон имеет элементарный отрицательный заряд.


Содержание:

Электрический заряд

Под электрическим зарядом понимают физическую величину, которая характеризует способность тел (объектов) вступать в электрическое взаимодействие. Электрический заряд обозначается через q (иногда для обозначения используют заглавную букву Q) и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

Электрический заряд – дискретная величина, кратная элементарному электрическому заряду одного электрона (по модулю) e = 1,60217*10-9 Кл.

где N – целое число.

С физической точки зрения 1 кулон [Кл] соответствует электрическому заряду, проходящему через поперечное сечение проводника при силе тока 1 Ампер  за 1 секунду.

Заряды существуют в двух видах: положительные (+) и отрицательные (-). Одноименные заряды отталкиваются, а разноименные – притягиваются.

Сила взаимодействия зарядов направлена вдоль прямой, соединяющей их, пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними (рисунок 1).

Рис. 1. Сила взаимодействия зарядов

где k – коэффициент пропорциональности, зависящий от выбора системы единиц; 

– единичный вектор, направленный вдоль прямой, соединяющей заряды q1 и q2.

Силу взаимодействия двух зарядов принято называть кулоновской силой в честь ученого-физика Шарля Кулона, обнаружевшего ее существование.

Если объект (система) не обменивается зарядами с окружающей средой, его называют электрически изолированным. В такой системе сумма электрических зарядов (положительных и отрицательных) не меняется со временем, то есть наблюдается закон сохранения заряда.

Большинство тел в природе электрически нейтральны, так как содержат заряды обоих типов в одинаковом количестве. Положительные и отрицательные заряды попарно нейтрализуют действие друг друга. Для перехода тела в заряженное состояние необходимо пространственно перераспределить в нем заряды, сконцентрировав одноименные заряды в одной  области тела. Это возможно сделать, например, при помощи трения или взаимодействия с другим заряженным объектом (рисунок 2).

Рис. 2. Переход незаряженного объекта в заряженное состояние

Электрический заряд порождает в окружающем его пространстве непрерывную материю, называемую электрическим полем. Благодаря электрическому полю заряды имеют возможность  взаимодействовать между собой. В электротехнике электрическое поле характеризуется двумя величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика).

Напряженность электрического поля

Напряженность электрического поляэто векторная физическая количественная характеристика электрического поля. Ее величина показывает силу, которая действует на пробный точечный единичный положительный заряд, помещенный в некоторую точку электрического поля.

Под точечным зарядом понимают упрощенную модель положительного заряда, в которой его формой и размером можно пренебречь.

Вектор напряженности по направлению совпадает с вектором силы , с которой электрическое поле действует на положительный точечный заряд, помещенный в заданную точку поля (рисунок 3).

Рис. 3. Вектор напряженности E , созданной зарядом q, в точке А

Величина напряженности поля в точке А определяется согласно формуле

где r – расстояние от заряда q до точки А, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Электрическое поле графически изображается линиями напряженности электрического поля, которые условно принято обозначать исходящими из положительно заряженных элементов и входящими в отрицательно заряженные заряды (рисунок 4).

а) изолированные зарядыб) взаимодействующие заряды

Рис. 4. Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов

Потенциал, напряжение

Физическую величину, равную отношению потенциальной энергии W электрического заряда в электростатическом поле к величине самого заряда q, называют потенциалом φ электрического поля

Потенциал – это скалярная величина, которая показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку. Единицей измерения электрического потенциала является вольт, [В].

При этом важно отметить, что работа сил электростатического поля при перемещении заряда из одной точки электрического поля в другую не зависит от формы траектории перемещения, а зависит только от начального и конечного положения заряда, а также от его величины.

Если имеется некоторая система, состоящая из N точечных зарядов, то потенциал ее электрического поля φ будет равен алгебраической сумме потенциалов полей каждого входящего в него заряда, то есть

Напряжение электрического поля – это разность потенциалов между двумя точками этого поля (рисунок 5).
Напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q  [Дж/Кл] или [В]

Рис. 5. Графическая интерпретация напряжения электрического поля

Напряжение является относительной величиной, то есть всегда определяется относительно некоторого уровня. Нулевой уровень выбирается произвольно и не влияет на итоговое значение напряжения, так как соответствует разности потенциалов в двух точках (то есть изменению потенциальной энергии). Для простоты расчетов в качестве нулевого уровня в большинстве случаев принимают потенциал заземленного проводника или земли.
Как уже было отмечено ранее электрическое напряжение – это разность потенциалов двух точек, следовательно его значение определяется по формуле

В системе СИ за единицу измерения напряжения принимается вольт, [В]. Физически величина напряжения, равная 1 вольту, соответствует работе 1 джоуль при перемещении заряда в 1 кулон.

#1. Физическая величина измеряемая в кулонах?

Электрический заряд обозначается через q и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

#2. Какие пары электрических зарядов будут притягиваться к друг другу?

Одноименные заряды отталкиваются, а разноименные – притягиваются.

#3. … — это работа совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

Результат

Отлично!

Попытайтесь снова(

Основные понятия об электрическом поле. Электрическое поле. Действие электрического поля на электрические заряды

Лекция №1. Понятие об электрическом заряде. Взаимодействие зарядов. Электрическое поле.

Цель: выдать студентам знания по основам электростатики.

Задача: обучить студентов основным понятиям электростатики.

1. Основные понятия о заряде.

2. Взаимодействие зарядов.

3. Электрическое поле.

Основные понятия о заряде

Заряд электрона — самый маленький электрический заряд, известный в природе. За единицу заряда был принят заряд, равный 6,29 ∙10 18 электронов и назван кулоном. Единица заряда кулон записывается сокращенно – Кл. Кулон является единицей СИ (системы интернациональной).

Заряды подразделяются по свойствам на положительные и отрицательные. Одноименные заряды отталкиваются, разноименные притягиваются, незаряженные предметы притягиваются как к положительно, так и к отрицательно заряженным телам.

Взаимодействие зарядов

Опытным путем было установлено, что сила взаимодействия двух зарядов пропорциональна значению этих зарядов и обратно пропорциональна квадрату расстояния между ними. Формула, по которой рассчитывается взаимодействие заряженных тел, называется законом Кулона:

F=Q1Q2/є а R 2 ,

F – сила взаимодействия зарядов Q1 и Q2, (Ньютон).

Q1 и Q2 – заряды, Кл.

R – расстояние между центрами заряженных тел, м;

є а — диэлектрическая проницаемость среды, равная произведению є 0 (диэлектрическая постоянная вакуума) и є r (диэлектрическая проницаемость данной среды, показывает во сколько раз уменьшается взаимодействие заряженных тел, если их перенести из вакуума в данную среду), измеряется в Фарад на метр.

Электрическое поле.

Электрическое поле – это особый вид материи, через который осуществляется взаимодействие зарядов. Электрическое поле неизменяющихся зарядов называется электростатическим.

Каждая точка электрического поля характеризуется напряженностью электрического поля Е. Е= F/q, где – F – сила, действующая на пробный заряд, помещенный в данной точке поля. Пробным зарядом называется заряд, много меньше заряда, создающего основное поле. Напряженность измеряется в Н/Кл.

Напряженность электрического поля – векторная величина, характеризующая электрическое поле и определяющая силу, действующую на заряженную частицу со стороны электрического поля. Электрическое поле изображается линиями напряженности. Густоту линий показывают пропорциональной напряженности электрического поля. Направление поля в каждой точке совпадает с направлением касательной в этой точке. Электрическое поле, у которого во всех точках векторы напряженности одинаковые, называют однородным.

Лекция №2. Потенциал. Напряжение. Электрическая емкость. Конденсаторы .

Цель: восстановить и углубить знания студентов по теме «электрическое поле».

Задача: Научить определять напряжение и емкость.

1. Понятия потенциала и напряжения.

2. Понятие электрической емкости.

Электрическое поле – это одна из теоретических концепций, объясняющих явления взаимодействия меж заряженными телами. Субстанцию нельзя пощупать, но можно доказать существование, что и было сделано в ходе сотен натурных экспериментов.

Взаимодействие заряженных тел

Привыкли считать устаревшие теории утопией, между тем мужи науки вовсе не глупые. Сегодня смешно звучит учение Франклина об электрической жидкости, видный физик Эпинус посвятил целый трактат. Закон Кулона открыт экспериментально на основе крутильных весов, аналогичными методами пользовался Георг Ом при выводе известного . Но что лежит за всем этим?

Должны признаться, электрическое поле попросту является очередной теорией, не уступающей франклиновой жидкости. Сегодня известно о субстанции два факта:

Изложенные факты заложили базис современного представления о взаимодействиях в природе, выступают опорой теории близкодействия. Помимо нее учеными выдвигались другие предположения о сути наблюдаемого явления. Теория близкодействия подразумевает мгновенное распространение сил без участия эфира. Поскольку явления пощупать труднее, нежели электрическое поле, многие философы окрестили подобные взгляды идеалистическими. В нашей стране они успешно критиковались советской властью, поскольку, как известно, большевики недолюбливали Бога, клевали по каждому удобному случаю идею существования чего-либо, «зависимого от наших представлений и поступков» (попутно изучая сверхвозможности Джуны).

Франклин объяснял положительные, отрицательные заряды тел избытком, недостаточностью электрической жидкости.

Характеристики электрического поля

Электрическое поле описывается векторной величиной – напряженностью. Стрелка, направление которой совпадает с силой, действующей в точке на единичный положительный заряд, длина пропорциональна модулю силы. Физики находят удобным пользоваться потенциалом. Величина скалярная, проще представить на примере температуры: в каждой точке пространства некоторое значение. Под электрическим потенциалом понимают работу, совершаемую для перемещения единичного заряда из точки нулевого потенциала в данную точку.

Поле, описываемое указанным выше способом, называется безвихревым. Иногда именуют потенциальным. Функция потенциала электрического поля непрерывная, изменяется плавно по протяженности пространства. В результате выделим точки равного потенциала, складывающие поверхности. Для единичного заряда сфера: дальше объект, слабее поле (закон Кулона). Поверхности называют эквипотенциальными.

Для понимания уравнений Максвелла заимейте представление о нескольких характеристиках векторного поля:

  • Градиентом электрического потенциала называется вектор, направление совпадает с наискорейшим ростом параметра поля. Значение тем больше, чем быстрее изменяется величина. Направлен градиент от меньшего значения потенциала к большему:
  1. Градиент перпендикулярен эквипотенциальной поверхности.
  2. Градиент тем больше, чем ближе расположение эквипотенциальных поверхностей, отличающихся друг от друга на заданную величину потенциала электрического поля.
  3. Градиент потенциала, взятый с обратным знаком, является напряженностью электрического поля.

Электрический потенциал. Градиент «взбирается в гору»

  • Дивергенция является скалярной величиной, вычисляемой для вектора напряженности электрического поля. Является аналогом градиента (для векторов), показывает скорость изменения величины. Необходимость во введении дополнительной характеристики: векторное поле лишено градиента. Следовательно, для описания требуется некий аналог – дивергенция. Параметр в математической записи схож с градиентом, обозначается греческой буквой набла, применяется для векторных величин.
  • Ротор векторного поля именуется вихрем. Физически величина равна нулю при равномерном изменении параметра. Если ротор отличен от нуля, возникают замкнутые изгибы линий. У потенциальных полей точечных зарядов по определению вихрь отсутствует. Не обязательно линии напряжённости в этом случае прямолинейны. Просто изменяются плавно, не образуя вихрей. Поле с ненулевым ротором часто называют соленоидальным. Часто применяется синоним – вихревое.
  • Полный поток вектора представлен интегралом по поверхности произведения напряженности электрического поля на элементарную площадь. Предел величины при стремлении емкости тела к нулю представляет собой дивергенцию поля. Понятие предела изучается старшими классами средней школы, ученик может составить некоторое представление на предмет обсуждения.

Уравнения Максвелла описывают изменяющееся во времени электрическое поле и показывают, что в таких случаях возникает волна. Принято считать, одна из формул указывает отсутствие в природе обособленных магнитных зарядов (полюсов). Иногда в литературе встретим особый оператор – лапласиан. Обозначается как квадрат набла, вычисляется для векторных величин, представляет дивергенцией градиента поля.

Пользуясь означенными величинами, математики и физики рассчитывают электрические и магнитные поля. Например, доказано: скалярный потенциал может быть только у безвихревого поля (точечных зарядов). Придуманы другие аксиомы. Вихревое поле ротора лишено дивергенции.

Подобные аксиомы легко положим в основу описания процессов, происходящих в реальных существующих устройствах. Антигравитационный, вечный двигатель были бы неплохим подспорьем экономике. Если реализовать на практике теорию Эйнштейна никому не удалось, наработки Николы Тесла исследуются энтузиастами. Отсутствуют ротор, дивергенция.

Краткая история развития электрического поля

За постановкой теории последовали многочисленные работы по применению электрического и электромагнитного полей на практике, самой известной из которых в России считают опыт Попова по передачи информации через эфир. Возник ряд вопросов. Стройная теория Максвелла бессильна объяснить явления, наблюдающихся при прохождении электромагнитных волн через ионизированные среды. Планк выдвинул предположение: лучистая энергия испускается дозированными порциями, названными впоследствии квантами. Дифракцию отдельных электронов, любезно демонстрируемую Ютуб в англоязычном варианте, открыли в 1949 году советские физики. Частица одновременно проявляла волновые свойства.

Это говорит нам: современные представление об электрическом поле постоянном и переменном, далеки совершенству. Многие знают Эйнштейна, бессильны объяснить, что отрыл физик. Теория относительности 1915 года связывает электрическое, магнитное поля и тяготение. Правда, формул в виде закона представлено не было. Сегодня известно: существуют частицы, движущееся быстрее, распространения света. Очередной камень в огород.

Системы единиц претерпевали постоянное изменение. Изначально введенная СГС, базирующаяся на наработках Гаусса, не удобна. Первые буквы обозначают базисные единицы: сантиметр, грамм, секунда. Электромагнитные величины добавлены к СГС в 1874 году Максвеллом и Томсоном. СССР в 1948 году страной стала использовать МКС (метр, килограмм, секунда). Конец баталиям положило введение в 60-х годах XX века системы СИ (ГОСТ 9867), где напряженности электрического поля измеряется в В/м.

Использование электрического поля

В конденсаторах происходит накопление электрического заряда. Следовательно, меж обкладками образуется поле. Поскольку емкость напрямую зависит от величины вектора напряженности, с целью повышения параметра пространство заполняется диэлектриком.

Косвенным образом электрические поля применяются кинескопами, люстрами Чижевского, потенциал сетки управляет движением лучей электронных ламп. Несмотря на отсутствие стройной теории, эффекты электрического поля лежат в основе многих изображений.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ (электростатическое поле), область вокруг электрического заряда, в которой на каждую заряженную частицу действует некоторая сила. Объект с противоположным зарядом испытывает силу притяжения. Объект, имеющий такой же заряд, как и окружающее его поле, испытывает отталкивающее воздействие. Сила поля относительно единичного заряда на расстоянии r от заряда Q равна: Q/4pr 2 e, где e — диэлектрическая проницаемость среды, окружающей заряд. Переменное магнитное поле также может создать электрическое поле. см. также ЭЛЕКТРОМАГНЕТИЗМ .

Научно-технический энциклопедический словарь .

Смотреть что такое «ЭЛЕКТРИЧЕСКОЕ ПОЛЕ» в других словарях:

    Частная форма проявления (наряду с магн. полем) электромагнитного поля, определяющая действие на электрич. заряд (со стороны поля) силы, не зависящей от скорости движения заряда. Представление об Э. п. было введено М. Фарадеем в 30 х гг. 19 в.… … Физическая энциклопедия

    ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, одна из форм электромагнитного поля. Создается электрическими зарядами или переменным магнитным полем. Характеризуется напряженностью электрического поля (или электрической индукцией). Напряженность электрического поля у… … Современная энциклопедия

    ЭЛЕКТРИЧЕСКОЕ ПОЛЕ — (14, а) … Большая политехническая энциклопедия

    Частная форма проявления электромагнитного поля; создается электрическими зарядами или переменным магнитным полем и характеризуется напряженностью электрического поля … Большой Энциклопедический словарь

    Электрическое поле — одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду этой частицы и не зависящей от ее скорости… Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ … Официальная терминология

    электрическое поле — Одна из двух сторон электромагнитного поля, характеризующаяся воздействием на электрически заряженную частицу с силой, пропорциональной заряду этой частицы и не зависящей от ее скорости. [ГОСТ Р 52002 2003] EN electric field constituent of an… … Справочник технического переводчика

    Классическая электродинамика … Википедия

    электрическое поле — 06.01.07 электрическое поле [ electric field]: Составляющая электромагнитного поля, которая характеризуется векторами напряженности электрического поля Е и электрической индукции D. Примечание Во французском языке термин «champ electrique»… … Словарь-справочник терминов нормативно-технической документации

    Электрическое поле — Демонстрация поля электростатического заряда. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, одна из форм электромагнитного поля. Создается электрическими зарядами или переменным магнитным полем. Характеризуется напряженностью электрического поля (или электрической… … Иллюстрированный энциклопедический словарь

    Частная форма проявления электромагнитного поля; создаётся электрическими зарядами или переменным магнитным полем и характеризуется напряжённостью электрического поля. * * * ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, частная форма проявления… … Энциклопедический словарь

Книги

  • Теоретические основы электротехники. Электромагнитное поле , Л. А. Бессонов. Рассмотрены традиционные и появившиеся за последние годы новые вопросы теории и методы расчета физических процессов в электрических, магнитных и электромагнитных полях, предусмотренные…
  • Классификация и структура полей Гравитационное поле Электромагнитное поле Магнитное поле Электрическое поле Электростатическое поле Импульсное поле Кулоновское поле Ядерное поле теория абсолютности , Гуревич Г., Каневский С.. В книге»Классификация и структура полей»дана классификация полей окружающего нас мира, основанная на взаимосвязи внутренней структуры полей макромира и микромира.. Рождение, жизнь и смерть…

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу. Мы наблюдали проявление этих сил в опытах, описанных в предыдущих параграфах. Их можно наблюдать также с помощью поучительного опыта, который мы сейчас опишем.

Нальем в небольшую стеклянную кювету (рис. 25) какой-либо жидкий диэлектрик (например, масло), к которому подмешан порошок с крупинками удлиненной формы. В кювету поместим, например, две металлические пластинки, и соединим их с электрической машиной, позволяющей непрерывно разделять положительные и отрицательные заряды. Чтобы удобно было следить за поведением взвешенных в масле крупинок, спроецируем изображение всей картины на экран или просто отбросим тень кюветы на потолок (рис. 25). При зарядке пластинок можно видеть, что отдельные крупинки, расположенные вначале совершенно беспорядочно, начинают перемещаться и поворачиваться и в конце концов устанавливаются в виде цепочек, тянущихся от одного электрода к другому. На рис. 26 приведено изображение расположения крупинок между двумя параллельными металлическими пластинками, а на рис. 27- между двумя металлическими шариками.

Рис. 25. Схема экспериментальной установки для получения картин электрического поля: 1 – кювета, содержащая касторовое масло с кристалликами хинина, 2 – проводники, соединенные с электрической машиной и создающие электрическое поле, 3 – источник света, 4 – экран, на который проецируется тень от кристалликов

Рис. 26. Расположение крупинок между двумя параллельными пластинками, заряженными разноименно

Рис. 27. Расположение крупинок между двумя металлическими шариками, заряженными разноименно

В этом опыте каждая крупинка подобна маленькой стрелке. Небольшие размеры крупинок позволяют разместить их одновременно во многих точках среды и благодаря этому обнаружить, что действие заряженного тела проявляется во всех точках пространства, окружающего заряд. Таким образом, можно судить о существовании электрического заряда в каком-нибудь месте по действиям, производимым им в различных точках окружающего пространства.

В зависимости от заряда и формы заряженного тела действие его в различных точках пространства будет различным. Поэтому для полной характеристики заряда надо знать, какое действие он производит во всевозможных точках окружающего пространства, или, как говорят, надо знать электрическое поле, которое возникает вокруг заряда. Таким образом, понятием «электрическое поле» мы обозначаем пространство, в котором проявляются действия электрического заряда.

Если имеется не один, а несколько зарядов, расположенных в различных местах, то в любой точке окружающего пространства проявится совместное действие этих зарядов, электрическое поле, создаваемое всеми этими зарядами.

Заметим, что в начале изучения электричества часто возникает стремление «объяснить» электрическое поле, т. е. свести его к каким-либо иным, уже изученным явлениям, подобно тому как тепловые явления мы сводим к беспорядочному движению атомов и молекул. Однако многочисленные попытки подобного рода в области электричества неизменно оканчивались неудачей. Поэтому следует считать, что электрическое поле есть самостоятельная физическая реальность, не сводящаяся ни к тепловым, ни к механическим явлениям. Электрические явления представляют собой новый класс явлений природы, с которыми мы знакомимся на опыте, и дальнейшая наша задача должна состоять в изучении свойств электрического поля и его законов.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу. Мы наблюдали проявление этих сил в опытах, описанных в предыдущих параграфах. Их можно наблюдать также с помощью поучительного опыта, который мы сейчас опишем.

Нальем в небольшую стеклянную кювету (рис. 25) какой-либо жидкий диэлектрик (например, масло), к которому подмешан порошок с крупинками удлиненной формы. В кювету поместим, например, две металлические пластинки, и соединим их с электрической машиной, позволяющей непрерывно разделять положительные и отрицательные заряды. Чтобы удобно было следить за поведением взвешенных в масле крупинок, спроецируем изображение всей картины на экран или просто отбросим тень кюветы на потолок (рис. 25). При зарядке пластинок можно видеть, что отдельные крупинки, расположенные вначале совершенно беспорядочно, начинают перемещаться и поворачиваться и в конце концов устанавливаются в виде цепочек, тянущихся от одного электрода к другому. На рис. 26 приведено изображение расположения крупинок между двумя параллельными металлическими пластинками, а на рис. 27- между двумя металлическими шариками.

Рис. 25. Схема экспериментальной установки для получения картин электрического поля: 1 – кювета, содержащая касторовое масло с кристалликами хинина, 2 – проводники, соединенные с электрической машиной и создающие электрическое поле, 3 – источник света, 4 – экран, на который проецируется тень от кристалликов

Рис. 26. Расположение крупинок между двумя параллельными пластинками, заряженными разноименно

Рис. 27. Расположение крупинок между двумя металлическими шариками, заряженными разноименно

В этом опыте каждая крупинка подобна маленькой стрелке. Небольшие размеры крупинок позволяют разместить их одновременно во многих точках среды и благодаря этому обнаружить, что действие заряженного тела проявляется во всех точках пространства, окружающего заряд. Таким образом, можно судить о существовании электрического заряда в каком-нибудь месте по действиям, производимым им в различных точках окружающего пространства.

В зависимости от заряда и формы заряженного тела действие его в различных точках пространства будет различным. Поэтому для полной характеристики заряда надо знать, какое действие он производит во всевозможных точках окружающего пространства, или, как говорят, надо знать электрическое поле, которое возникает вокруг заряда. Таким образом, понятием «электрическое поле» мы обозначаем пространство, в котором проявляются действия электрического заряда.

Если имеется не один, а несколько зарядов, расположенных в различных местах, то в любой точке окружающего пространства проявится совместное действие этих зарядов, электрическое поле, создаваемое всеми этими зарядами.

Заметим, что в начале изучения электричества часто возникает стремление «объяснить» электрическое поле, т. е. свести его к каким-либо иным, уже изученным явлениям, подобно тому как тепловые явления мы сводим к беспорядочному движению атомов и молекул. Однако многочисленные попытки подобного рода в области электричества неизменно оканчивались неудачей. Поэтому следует считать, что электрическое поле есть самостоятельная физическая реальность, не сводящаяся ни к тепловым, ни к механическим явлениям. Электрические явления представляют собой новый класс явлений природы, с которыми мы знакомимся на опыте, и дальнейшая наша задача должна состоять в изучении свойств электрического поля и его законов.

Понятие об электростатическом поле. Закон Кулона

Взаимодействие между электрически заряженными частицами или телами, движущимися произвольным образом относительно инерционной системы отсчета (ИС), осуществляется посредством электромагнитного поля, которое представляет собой совокупность двух взаимосвязанных полей: электрического и магнитного.
Характерной особенностью электрического поля является то, что оно действует на электрический заряд с силой, которая не зависит от скорости движения заряда. Поэтому обнаружить электрическое поле удобно по его силовому действию на помещенный в поле неподвижный электрический заряд.
Электрическое поле неподвижных электрических зарядов, осуществляющее взаимодействие между ними, называется электростатическим полем.
Силы, действующие на заряженные частицы со стороны электростатического поля, называются электростатическими силами.
В природе существуют два рода электрических зарядов: положительные и отрицательные. Носителями электрических зарядов являются элементарные частицы, входящие в состав атома – электрон (e), заряженный отрицательно, и протон (p), заряженный положительно. Заряды этих частиц называются элементарными зарядами.

Точечным электрическим зарядом называется заряженное тело, форма и размеры которого несущественны в условиях данной задачи.
Система тел или частиц называется электрически изолированной системой, если между ней и внешними телами нет обмена электрическими зарядами. Один из важных законов электричества – закон сохранения электрического заряда:
в изолированной системе полная алгебраическая сумма электрических зарядов остается постоянной; заряды могут только передаваться от одного тела данной системы другому или смещаться внутри тела
Электрические заряды взаимодействуют таким образом, что одноименные заряды отталкиваются, а разноименные – притягиваются. Взаимодействие электрических зарядов осуществляется с помощью электростатического поля, которое передает действие от одного заряженного тела к другому.
Электрическое поле представляет собой одну из форм материи, существующую в пространстве вокруг электрического заряда и проявляющую себя силами, действующими на другие заряды, расположенные в этом пространстве.
Сила взаимодействия между двумя точечными зарядами подчиняется закону Кулона, установленному им опытным путем:


В системе СИ

Закон Кулона в системе СИ в скалярной и векторной формах обычно записывается как

Электрический заряд — это… Что такое Электрический заряд?

Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9·109H, т.е. с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн.

История

Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.

Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным». Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда

Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) — численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6·10−19Кл[1] в системе СИ или 4,8·10−10 ед. СГСЭ[2]. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11·10−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон[3]. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67·10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени ее жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

Взаимодействие зарядов: одноименно заряженные тела отталкиваются, разноименно — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Электрический заряд замкнутой системы[5] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолированна, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения заряда — один из основополагающих законов физики. Закон сохранения заряда был впервые экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — это тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.

Измерение

Простейший электроскоп

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стрежнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

См. также

Литература

  • М. Ю. Хлопов. Заряд // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. — М.: Советская энциклопедия, 1988—1998.

Примечания

  1. Или, более точно, 1,602176487(40)·10−19 Кл.
  2. Или, более точно, 4,803250(21)·10−10 ед СГСЭ.
  3. Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Электрическое поле и движение заряда

Возможно, одним из самых полезных, но само собой разумеющихся достижений последних веков является разработка электрических цепей. Поток заряда по проводам позволяет нам готовить пищу, освещать дома, кондиционировать рабочее и жилое пространство, развлекать нас фильмами и музыкой и даже позволяет нам безопасно ездить на работу или в школу. В этом разделе Физического класса мы исследуем причины, по которым заряд течет по проводам электрических цепей, и переменные, которые влияют на скорость, с которой он течет.Средства, с помощью которых движущийся заряд передает электрическую энергию приборам для их работы, будут подробно рассмотрены.

Один из фундаментальных принципов, который необходимо понять, чтобы понять электрические цепи, относится к концепции того, как электрическое поле может влиять на заряд внутри цепи, когда он перемещается из одного места в другое. Понятие электрического поля было впервые представлено в разделе Статическое электричество. В этом блоке электрическая сила описывалась как неконтактная сила.Заряженный воздушный шар может оказывать притягивающее воздействие на противоположно заряженный воздушный шар, даже когда они не находятся в контакте. Электрическая сила действует на расстоянии, разделяющем два объекта. Электрическая сила — это сила, действующая на расстоянии.

Силы действия на расстоянии иногда называют полевыми силами. Концепция полевой силы используется учеными для объяснения этого довольно необычного явления силы, которое происходит при отсутствии физического контакта. На пространство, окружающее заряженный объект, влияет наличие заряда; в этом пространстве устанавливается электрическое поле.Заряженный объект создает электрическое поле — изменение пространства или поля в окружающей его области. Другие заряды в этой области почувствовали бы необычное изменение пространства. Независимо от того, входит заряженный объект в это пространство или нет, электрическое поле существует. Пространство изменяется присутствием заряженного объекта; другие объекты в этом пространстве испытывают странные и таинственные качества космоса. По мере того, как другой заряженный объект входит в пространство и перемещается на все глубже и глубже в поле, действие поля становится все более и более заметным.

Электрическое поле — это векторная величина, направление которой определяется как направление, в котором положительный тестовый заряд будет выдаваться при помещении в поле. Таким образом, направление электрического поля около положительного заряда источника всегда направлено от положительного источника. И направление электрического поля около отрицательного заряда источника всегда направлено в сторону отрицательного источника.

Электрическое поле, работа и потенциальная энергия

Электрические поля подобны гравитационным полям — оба связаны с силами, действующими на расстоянии.В случае гравитационных полей источником поля является массивный объект, а силы действия на расстоянии действуют на другие массы. Когда концепция силы тяжести и энергии обсуждалась в Блоке 5 Класса физики, было упомянуто, что сила тяжести является внутренней или консервативной силой. Когда гравитация воздействует на объект, перемещая его с высокого места на более низкое, общее количество механической энергии объекта сохраняется. Однако во время падающего движения произошла потеря потенциальной энергии (и увеличение кинетической энергии).Когда гравитация действительно воздействует на объект, перемещая его в направлении гравитационного поля, объект теряет потенциальную энергию. Потенциальная энергия, изначально запасенная внутри объекта в результате его вертикального положения, теряется, когда объект движется под действием гравитационного поля. С другой стороны, для перемещения массивного объекта против его гравитационного поля потребуется энергия. Стационарный объект не может естественно двигаться против поля и получать потенциальную энергию. Энергия в форме работы должна быть передана объекту внешней силой, чтобы он достиг этой высоты и соответствующей потенциальной энергии.

Важный момент, который следует сделать из этой аналогии с гравитацией, заключается в том, что внешняя сила должна совершать работу, чтобы сдвинуть объект против природы — от низкопотенциальной энергии к высокопотенциальной. С другой стороны, объекты естественным образом переходят от энергии с высоким потенциалом к ​​энергии с низким потенциалом под действием силы поля. Для объектов просто естественно переходить от высокой энергии к низкой; но требуется работа, чтобы переместить объект с низкой энергии на высокую.

Аналогичным образом, чтобы переместить заряд в электрическом поле против его естественного направления движения, потребуется работа. Работа внешней силы, в свою очередь, добавит объекту потенциальной энергии. Естественное направление движения объекта — от высокой энергии к низкой энергии; но необходимо провести работу по перемещению объекта против природы . С другой стороны, не потребуется работы, чтобы переместить объект из места с высоким потенциалом энергии в место с низким потенциалом энергии.Когда этот принцип логически распространяется на движение заряда в электрическом поле, связь между работой, энергией и направлением движения заряда становится более очевидной.

Рассмотрим диаграмму выше, на которой положительный заряд источника создает электрическое поле, а положительный тестовый заряд движется против поля и вместе с ним. На диаграмме A положительный тестовый заряд перемещается против поля из точки A в точку B. Перемещение заряда в этом направлении было бы подобно движению против природы.Таким образом, потребуется работа, чтобы переместить объект из местоположения A в местоположение B, и положительный тестовый заряд будет приобретать потенциальную энергию в процессе. Это было бы аналогично перемещению массы в восходящем направлении; потребовалась бы работа, чтобы вызвать такое увеличение потенциальной гравитационной энергии. На схеме B положительный тестовый заряд перемещается с полем из точки B в точку A. Это движение было бы естественным и не требовало работы внешней силы. Положительный тестовый заряд будет терять энергию при перемещении из точки B в точку A.Это было бы аналогично падению массы вниз; это произойдет естественным образом и будет сопровождаться потерей гравитационной потенциальной энергии. Из этого обсуждения можно сделать вывод, что место с высокой энергией для положительного тестового заряда — это место, ближайшее к положительному исходному заряду; а место с низким энергопотреблением находится дальше всего.

Вышеупомянутое обсуждение относилось к перемещению положительного тестового заряда в электрическом поле, созданном положительным зарядом источника. Теперь рассмотрим движение того же положительного пробного заряда в электрическом поле, создаваемом отрицательным зарядом источника.Тот же принцип в отношении работы и потенциальной энергии будет использоваться для определения местоположений высокой и низкой энергии.

На схеме C положительный тестовый заряд движется из точки A в точку B в направлении электрического поля. Это движение было бы естественным — как масса, падающая на Землю. Для того, чтобы вызвать такое движение, не потребуется работа, и это будет сопровождаться потерей потенциальной энергии. На схеме D положительный тестовый заряд движется из точки B в точку A против электрического поля.Потребуется работа, чтобы вызвать это движение; это было бы аналогично увеличению массы в гравитационном поле Земли. Поскольку энергия передается испытательному заряду в виде работы, положительный испытательный заряд будет приобретать потенциальную энергию в результате движения. Из этого обсуждения можно сделать вывод, что место с низкой энергией для положительного тестового заряда — это место, ближайшее к отрицательному заряду источника, а место с высокой энергией — это место, наиболее удаленное от отрицательного заряда источника.

Когда мы начнем обсуждать схемы, мы применим эти принципы, касающиеся работы и потенциальной энергии, к движению заряда по цепи. Как мы здесь рассуждали, перемещение положительного тестового заряда против электрического поля потребует работы и приведет к увеличению потенциальной энергии. С другой стороны, положительный тестовый заряд будет естественным образом перемещаться в направлении поля без необходимости работы с ним; это движение приведет к потере потенциальной энергии.Прежде чем применять это к электрическим цепям, нам нужно сначала изучить значение концепции электрического потенциала.


Электрический заряд — Энергетическое образование

Рис. 1. Рисунок, изображающий, как выглядит атом. Электрон имеет отрицательный заряд. Ядро содержит протоны с положительным зарядом и нейтроны с нейтральным зарядом.Обратите внимание, насколько большую площадь занимает электронное облако по сравнению с ядром. [1]

Электрический заряд , или для краткости заряд , является фундаментальным физическим свойством, которое заставляет объекты чувствовать силу притяжения или отталкивания по отношению друг к другу. Основная единица заряда — кулон (Кл). Есть два типа заряда: положительный заряд (проявляемый протонами) и отрицательный заряд (проявляемый электронами). Закон Кулона описывает электрические силы между заряженными частицами; если заряды движутся, электромагнитная сила усложняется.

Движение или поток заряженных частиц — это то, что производит электричество и магнетизм. Фактически, движущийся поток электрического заряда — это электрический ток. Это движение заряда может быть вызвано относительным движением магнита и катушки с проволокой — это основная конструкция электрических генераторов.

Когда количество электронов в атоме не равно количеству протонов, считается, что атом имеет чистый заряд. Заряды складываются точно так же, как положительные и отрицательные числа, поэтому заряд +1 в точности отменяет заряд -1.Вот почему положительные и отрицательные числа используются для обозначения заряда, а заряды отменяются так же, как положительные и отрицательные числа. Когда конкретный атом имеет чистый заряд, этот атом называется ионом (на странице иона есть симуляция PhET об этом). Процесс добавления или снятия заряда с атома называется ионизацией, а когда это делается с помощью излучения, это называется ионизирующим излучением.

Заряд также можно отделить от атомов (в результате чего образовалось некоторое количество ионов) путем трения друг с другом материалов разных типов.Это то, что создает электрическое поле вокруг воздушного шара, который натерли о чьи-то волосы или полотенце. По этой же причине статическое электричество накапливается на одежде, которая валялась в сушилке для одежды. Ниже представлена ​​симуляция PhET по разделению заряда трением.

Чтобы узнать больше о зарядке, см. Гиперфизику.

Моделирование PhET заряда от трения

Университет Колорадо любезно разрешил нам использовать следующее моделирование PhET.Статическое электричество возникает в результате разделения положительного и отрицательного заряда посредством трения (это происходит в сушилке для одежды, поэтому необходимы листы сушилки). Чистые заряды вызывают электрическую силу; обратите внимание на поляризацию стены. Посмотрите анимацию PhET ниже, чтобы узнать, как это работает.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Что такое электричество? — learn.sparkfun.com

Добавлено в избранное Любимый 69

Начало работы

Электричество окружает нас повсюду, питая такие технологии, как наши сотовые телефоны, компьютеры, фонари, паяльники и кондиционеры. В современном мире от этого трудно спастись. Даже когда вы пытаетесь избежать электричества, оно по-прежнему действует в природе, от молнии во время грозы до синапсов внутри нашего тела. Но что такое — это электричество ? Это очень сложный вопрос, и по мере того, как вы копаете глубже и задаете больше вопросов, на самом деле нет окончательного ответа, только абстрактные представления о том, как электричество взаимодействует с нашим окружением.

Электричество — это природное явление, которое встречается в природе и принимает множество различных форм. В этом уроке мы сосредоточимся на современной электроэнергии: на том, что питает наши электронные гаджеты. Наша цель — понять, как электричество течет от источника питания по проводам, зажигает светодиоды, вращаются двигатели и питает наши коммуникационные устройства.

Электричество кратко определяется как поток электрического заряда , , но за этим простым утверждением стоит так много всего.Откуда берутся обвинения? Как мы их перемещаем? Куда они переезжают? Как электрический заряд вызывает механическое движение или заставляет вещи загораться? Так много вопросов! Чтобы начать объяснять, что такое электричество, нам нужно приблизиться, за пределы материи и молекул, к атомам, из которых состоит все, с чем мы взаимодействуем в жизни.

Это руководство основано на некоторых базовых представлениях о физике, силе, энергии, атомах и [полей] (http://en.wikipedia.org/wiki/Field_ (физика)), в частности.Мы рассмотрим основы каждой из этих физических концепций, но, возможно, также будет полезно обратиться к другим источникам.

Going Atomic

Чтобы понять основы электричества, нам нужно для начала сосредоточиться на атомах, одном из основных строительных блоков жизни и материи. Атомы существуют в более чем сотне различных форм в виде химических элементов, таких как водород, углерод, кислород и медь. Атомы многих типов могут объединяться, чтобы образовать молекулы, из которых состоит материя, которую мы можем физически увидеть и потрогать.

Атомы — это крошечных , максимальная длина которых составляет около 300 пикометров (это 3х10 -10 или 0,0000000003 метра). Медный пенни (если бы он на самом деле был сделан из 100% меди) имел бы 3,2х10 22 атомов (32 000 000 000 000 000 000 000 атомов) меди внутри.

Даже атом недостаточно мал, чтобы объяснить работу электричества. Нам нужно спуститься еще на один уровень и посмотреть на строительные блоки атомов: протоны, нейтроны и электроны.

Строительные блоки атомов

Атом состоит из трех различных частиц: электронов, протонов и нейтронов. У каждого атома есть центральное ядро, в котором протоны и нейтроны плотно упакованы вместе. Ядро окружает группа вращающихся электронов.

Очень простая модель атома. Это не в масштабе, но полезно для понимания того, как устроен атом. Ядро ядра протонов и нейтронов окружено вращающимися электронами.

В каждом атоме должен быть хотя бы один протон. Число протонов в атоме важно, потому что оно определяет, какой химический элемент представляет собой атом. Например, атом с одним протоном — это водород, атом с 29 протонами — это медь, а атом с 94 протонами — это плутоний. Это количество протонов называется атомным номером атома .

Ядро-партнер протона, нейтроны, служат важной цели; они удерживают протоны в ядре и определяют изотоп атома.Они не критичны для нашего понимания электричества, поэтому давайте не будем о них беспокоиться в этом уроке.

Электроны критически важны для работы электричества (обратите внимание на общую тему в их названиях?) В наиболее стабильном, сбалансированном состоянии атом будет иметь такое же количество электронов, что и протоны. Как и в модели атома Бора ниже, ядро ​​с 29 протонами (что делает его атомом меди) окружено равным числом электронов.

По мере развития нашего понимания атомов развивались и наши методы их моделирования.Модель Бора — очень полезная модель атома при изучении электричества.

Не все электроны атома навсегда связаны с атомом. Электроны на внешней орбите атома называются валентными электронами. При наличии достаточной внешней силы валентный электрон может покинуть орбиту атома и стать свободным. Свободные электроны позволяют нам перемещать заряд, в чем и заключается вся суть электричества. Кстати о зарядке …

Текущие расходы

Как мы упоминали в начале этого урока, электричество определяется как поток электрического заряда. Заряд — это свойство материи, такое же как масса, объем или плотность. Это измеримо. Точно так же, как вы можете количественно определить, сколько у чего-то массы, вы можете измерить, сколько у него заряда. Ключевой концепцией заряда является то, что он может быть двух типов: положительный (+) или отрицательный (-) .

Чтобы переместить заряд, нам нужно носителей заряда , и именно здесь наши знания об атомных частицах — в частности, об электронах и протонах — пригодятся. Электроны всегда несут отрицательный заряд, а протоны — положительно.Нейтроны (верные своему названию) нейтральны, у них нет заряда. И электроны, и протоны несут одинаковые заряда , только другого типа.

Модель атома лития (3 протона) с обозначенными зарядами.

Заряд электронов и протонов важен, потому что он дает нам возможность воздействовать на них силой. Электростатическая сила!

Электростатическая сила

Электростатическая сила (также называемая законом Кулона) — это сила, действующая между зарядами.В нем говорится, что заряды одного типа отталкиваются друг от друга, а заряды противоположных типов притягиваются друг к другу. Противоположности привлекают, а лайки отталкивают .

Сумма силы, действующей на два заряда, зависит от того, как далеко они находятся друг от друга. Чем ближе подходят два заряда, тем больше становится сила (сдвигающая или отталкивающая).

Благодаря электростатической силе электроны отталкивают другие электроны и притягиваются к протонам.Эта сила является частью «клея», удерживающего атомы вместе, но это также инструмент, который нам нужен, чтобы заставить электроны (и заряды) течь!

Поток начислений

Теперь у нас есть все инструменты, чтобы заставить заряды течь. Электронов в атомах может действовать как наш носитель заряда , потому что каждый электрон несет отрицательный заряд. Если мы сможем освободить электрон от атома и заставить его двигаться, мы сможем создать электричество.

Рассмотрим атомную модель атома меди, одного из предпочтительных источников элементарных зарядов.В сбалансированном состоянии медь имеет 29 протонов в ядре и такое же количество электронов, вращающихся вокруг нее. Электроны вращаются на разных расстояниях от ядра атома. Электроны, расположенные ближе к ядру, испытывают гораздо более сильное притяжение к центру, чем электроны на далеких орбитах. Крайние электроны атома называются валентными электронами , для их освобождения от атома требуется наименьшее количество силы.

Это диаграмма атома меди: 29 протонов в ядре, окруженные полосами вращающихся электронов.Электроны, расположенные ближе к ядру, трудно удалить, в то время как валентный электрон (внешнее кольцо) требует относительно небольшой энергии для выброса из атома.

Используя достаточную электростатическую силу на валентный электрон — либо толкая его другим отрицательным зарядом, либо притягивая его положительным зарядом — мы можем выбросить электрон с орбиты вокруг атома, создав свободный электрон.

Теперь рассмотрим медную проволоку: вещество, заполненное бесчисленными атомами меди. Поскольку наш свободный электрон плавает в пространстве между атомами, он тянется и подталкивается окружающими зарядами в этом пространстве.В этом хаосе свободный электрон в конце концов находит новый атом, за который цепляется; при этом отрицательный заряд этого электрона выбрасывает другой валентный электрон из атома. Теперь новый электрон дрейфует в свободном пространстве, пытаясь сделать то же самое. Этот цепной эффект может продолжаться и продолжаться, создавая поток электронов, называемый электрическим током .

Очень упрощенная модель зарядов, протекающих через атомы для создания тока.

Электропроводность

Некоторые элементарные типы атомов лучше других выделяют свои электроны.Чтобы получить наилучший возможный поток электронов, мы хотим использовать атомы, которые не очень крепко держатся за свои валентные электроны. Проводимость элемента измеряет, насколько сильно электрон связан с атомом.

Элементы с высокой проводимостью, которые имеют очень подвижные электроны, называются проводниками . Это типы материалов, которые мы хотим использовать для изготовления проводов и других компонентов, которые способствуют электронному потоку. Металлы, такие как медь, серебро и золото, обычно являются нашим лучшим выбором в качестве хороших проводников.

Элементы с низкой проводимостью называются изоляторами . Изоляторы служат очень важной цели: они предотвращают поток электронов. Популярные изоляторы включают стекло, резину, пластик и воздух.

Статическое или текущее электричество

Прежде чем мы продолжим, давайте обсудим две формы, которые может принимать электричество: статическое или текущее. При работе с электроникой гораздо чаще встречается текущее электричество, но также важно понимать статическое электричество.

Статическое электричество

Статическое электричество возникает, когда на объектах, разделенных изолятором, накапливаются противоположные заряды. Статическое (как в «состоянии покоя») электричество существует до тех пор, пока две группы противоположных зарядов не найдут путь между собой, чтобы сбалансировать систему.

Когда заряды все же находят способ уравновешивания, возникает статический разряд . Притяжение зарядов становится настолько большим, что они могут проходить даже через лучшие изоляторы (воздух, стекло, пластик, резину и т. Д.).). Статические разряды могут быть вредными в зависимости от того, через какую среду проходят заряды и на какие поверхности переносятся заряды. Выравнивание зарядов через воздушный зазор может привести к видимому сотрясению, поскольку движущиеся электроны сталкиваются с электронами в воздухе, которые возбуждаются и выделяют энергию в виде света.

Запальные устройства с искровым разрядником используются для создания управляемого статического разряда. Противоположные заряды накапливаются на каждом из проводников, пока их притяжение не станет настолько сильным, что заряды могут течь по воздуху.

Одним из наиболее ярких примеров статического разряда является молния . Когда облачная система накапливает достаточно заряда относительно другой группы облаков или земли, заряды будут пытаться уравновеситься. Когда облако разряжается, огромное количество положительных (а иногда и отрицательных) зарядов проходит по воздуху от земли к облаку, вызывая видимый эффект, с которым мы все знакомы.

Статическое электричество также существует, когда мы терем воздушные шары о голову, чтобы волосы встали дыбом, или когда мы шаркали по полу в пушистых тапочках и шокировали семейную кошку (конечно, случайно).В каждом случае трение от трения о разные типы материалов переносит электроны. Объект, теряющий электроны, становится положительно заряженным, а объект, получающий электроны, становится отрицательно заряженным. Два объекта притягиваются друг к другу, пока не найдут способ уравновесить их.

Работая с электроникой, мы обычно не сталкиваемся со статическим электричеством. Когда мы это делаем, мы обычно пытаемся защитить наши чувствительные электронные компоненты от статического разряда.Профилактические меры против статического электричества включают ношение браслетов ESD (электростатический разряд) или добавление специальных компонентов в схемы для защиты от очень высоких скачков заряда.

Текущее электричество

Текущее электричество — это форма электричества, которая делает возможными все наши электронные штуковины. Эта форма электричества существует, когда зарядов могут постоянно течь . В отличие от статического электричества, когда заряды собираются и остаются в покое, текущее электричество является динамическим, заряды всегда находятся в движении.Мы сосредоточимся на этой форме электричества на протяжении всего урока.

Схемы

Для протекания электрического тока требуется цепь: замкнутая, бесконечная петля из проводящего материала. Схема может быть такой же простой, как проводящий провод, соединенный встык, но полезные схемы обычно содержат смесь проводов и других компонентов, которые управляют потоком электричества. Единственное правило, когда дело доходит до изготовления цепей, не должно иметь изоляционных промежутков .

Если у вас есть провод, полный атомов меди, и вы хотите вызвать поток электронов через него, все свободных электронов должны где-то течь в том же общем направлении. Медь — отличный проводник, идеальный для протекания зарядов. Если цепь из медного провода разорвана, заряды не могут проходить через воздух, что также предотвратит перемещение любого из зарядов к середине.

С другой стороны, если бы провод был соединен встык, у всех электронов был бы соседний атом, и все они могли бы течь в одном и том же общем направлении.


Теперь мы понимаем , как может течь электронов, но как мы вообще можем заставить их течь? Затем, когда электроны текут, как они производят энергию, необходимую для освещения лампочек или вращающихся двигателей? Для этого нам нужно понимать электрические поля.

Электрические поля

Мы знаем, как электроны проходят через материю, чтобы создать электричество. Это все, что касается электричества. Ну почти все.Теперь нам нужен источник, чтобы вызвать поток электронов. Чаще всего источником электронного потока является электрическое поле.

Что такое поле?

Поле — это инструмент, который мы используем для моделирования физических взаимодействий, которые не включают никаких наблюдаемых контактов . Поля нельзя увидеть, поскольку они не имеют физического внешнего вида, но эффект, который они оказывают, очень реален.

Мы все подсознательно знакомы с одной областью, в частности: гравитационным полем Земли, эффектом притяжения массивного тела другими телами.Гравитационное поле Земли можно смоделировать с помощью набора векторов, направленных в центр планеты; независимо от того, где вы находитесь на поверхности, вы почувствуете силу, толкающую вас к ней.

Сила или напряженность полей неодинакова во всех точках поля. Чем дальше вы находитесь от источника поля, тем меньшее влияние поле оказывает. Величина гравитационного поля Земли уменьшается по мере удаления от центра планеты.

Когда мы продолжим изучать электрические поля, вспомним, в частности, как работает гравитационное поле Земли, оба поля имеют много общего.Гравитационные поля действуют на объекты массы, а электрические поля действуют на объекты заряда.

Электрополя

Электрические поля (е-поля) — важный инструмент в понимании того, как начинается и продолжает течь электричество. Электрические поля описывают тянущую или толкающую силу в пространстве между зарядами . По сравнению с гравитационным полем Земли, электрические поля имеют одно важное отличие: в то время как поле Земли обычно привлекает только другие объекты массы (так как все , поэтому значительно менее массивны), электрические поля отталкивают заряды так же часто, как и притягивают их.

Направление электрических полей всегда определяется как направление , положительный тестовый заряд переместился бы на , если бы он был сброшен в поле. Испытательный заряд должен быть бесконечно малым, чтобы его заряд не влиял на поле.

Мы можем начать с построения электрических полей для отдельных положительных и отрицательных зарядов. Если вы сбросите положительный тестовый заряд рядом с отрицательным зарядом, тестовый заряд будет притягиваться к отрицательному заряду . Итак, для одиночного отрицательного заряда мы рисуем стрелки электрического поля , направленные внутрь во всех направлениях.Тот же самый тестовый заряд, падающий рядом с другим положительным зарядом , приведет к отталкиванию наружу, что означает, что мы рисуем стрелок, выходящих из положительного заряда.

Электрические поля одиночных зарядов. Отрицательный заряд имеет внутреннее электрическое поле, потому что он притягивает положительные заряды. Положительный заряд имеет внешнее электрическое поле, отталкиваясь, как заряды.

Группы электрических зарядов могут быть объединены для создания более полных электрических полей.

Равномерное электронное поле сверху направлено от положительных зарядов к отрицательным. Представьте себе крошечный положительный тестовый заряд, сброшенный в электронное поле; он должен следовать в направлении стрелок. Как мы видели, электричество обычно включает в себя поток электронов — отрицательных зарядов — которые текут против электрических полей.

Электрические поля дают нам толкающую силу, необходимую для индукции тока. Электрическое поле в цепи похоже на электронный насос: большой источник отрицательных зарядов, который может толкать электроны, которые будут течь по цепи к положительному сгустку зарядов.

Электрический потенциал (энергия)

Когда мы используем электричество для питания наших цепей, устройств и устройств, мы действительно преобразуем энергию. Электронные схемы должны иметь возможность накапливать энергию и передавать ее другим формам, таким как тепло, свет или движение. Накопленная энергия цепи называется электрической потенциальной энергией.

Энергия? Потенциальная энергия?

Чтобы понять потенциальную энергию, нам нужно понять энергию в целом. Энергия определяется как способность объекта выполнять работы над другим объектом, что означает перемещение этого объекта на некоторое расстояние.Энергия присутствует в различных формах , некоторые из которых мы можем видеть (например, механическая), а другие — нет (например, химическая или электрическая). Независимо от того, в какой форме она находится, энергия существует в одном из двух состояний : кинетическом или потенциальном.

Объект имеет кинетической энергии , когда он движется. Количество кинетической энергии объекта зависит от его массы и скорости. Потенциальная энергия , с другой стороны, представляет собой накопленную энергию , когда объект находится в состоянии покоя. Он описывает, сколько работы мог бы сделать объект, если бы он был приведен в движение.Это энергия, которую мы обычно можем контролировать. Когда объект приводится в движение, его потенциальная энергия превращается в кинетическую.

Давайте вернемся к использованию гравитации в качестве примера. Шар для боулинга, неподвижно сидящий на вершине башни Халифа, имеет много потенциальной (запасенной) энергии. После падения мяч, притягиваемый гравитационным полем, ускоряется по направлению к земле. По мере ускорения мяча потенциальная энергия преобразуется в кинетическую (энергию движения). В конце концов вся энергия мяча превращается из потенциальной в кинетическую, а затем передается всему, в что он попадает.Когда мяч находится на земле, у него очень низкая потенциальная энергия.

Электрическая потенциальная энергия

Точно так же, как масса в гравитационном поле имеет гравитационную потенциальную энергию, заряды в электрическом поле имеют электрическую потенциальную энергию . Электрическая потенциальная энергия заряда описывает, сколько у него накопленной энергии, когда она приводится в движение электростатической силой, эта энергия может стать кинетической, и заряд может выполнять работу.

Подобно шару для боулинга, сидящему на вершине башни, положительный заряд в непосредственной близости от другого положительного заряда имеет высокую потенциальную энергию; оставленный свободным для движения, заряд будет отталкиваться от аналогичного заряда.Положительный тестовый заряд, помещенный рядом с отрицательным зарядом, будет иметь низкую потенциальную энергию, как и шар для боулинга на земле.

Чтобы привить чему-либо потенциальную энергию, мы должны выполнить работу , перемещая это на расстояние. В случае шара для боулинга работа заключается в том, чтобы поднять его на 163 этажа против поля силы тяжести. Точно так же необходимо проделать работу, чтобы подтолкнуть положительный заряд к стрелкам электрического поля (либо к другому положительному заряду, либо от отрицательного заряда).Чем дальше идет заряд, тем больше работы вам предстоит сделать. Точно так же, если вы попытаетесь отвести отрицательный заряд от от положительного заряда — против электрического поля — вам придется работать.

Для любого заряда, находящегося в электрическом поле, его электрическая потенциальная энергия зависит от типа (положительный или отрицательный), количества заряда и его положения в поле. Электрическая потенциальная энергия измеряется в джоулях ( Дж, ).

Электрический потенциал

Электрический потенциал основан на электрическом потенциале energy , чтобы помочь определить, сколько энергии хранится в электрических полях .Это еще одна концепция, которая помогает нам моделировать поведение электрических полей. Электрический потенциал равен , а не , как электрическая потенциальная энергия!

В любой точке электрического поля электрический потенциал равен количеству электрической потенциальной энергии, деленному на количество заряда в этой точке. Он исключает количество заряда из уравнения и оставляет нам представление о том, сколько потенциальной энергии могут обеспечить определенные области электрического поля. Электрический потенциал выражается в джоулях на кулон ( Дж / Кл ), который мы определяем как вольт (В).

В любом электрическом поле есть две точки электрического потенциала, которые представляют для нас значительный интерес. Есть точка с высоким потенциалом, где положительный заряд будет иметь максимально возможную потенциальную энергию, и есть точка с низким потенциалом, где заряд будет иметь минимально возможную потенциальную энергию.

Один из наиболее распространенных терминов, которые мы обсуждаем при оценке электроэнергии, — это напряжение . Напряжение — это разница потенциалов между двумя точками электрического поля.Напряжение дает нам представление о том, сколько толкающей силы имеет электрическое поле.


Обладая потенциальной и потенциальной энергией, у нас есть все ингредиенты, необходимые для производства электричества. Давай сделаем это!

Электричество в действии!

Изучив физику элементарных частиц, теорию поля и потенциальную энергию, мы теперь знаем достаточно, чтобы заставить электричество течь. Сделаем схему!

Сначала рассмотрим ингредиенты, необходимые для производства электричества:

  • Электричество определяется как поток заряда .Обычно наши заряды переносятся свободно текущими электронами.
  • Отрицательно заряженные электронов слабо удерживаются атомами проводящих материалов. Небольшим толчком мы можем освободить электроны от атомов и заставить их течь в общем однородном направлении.
  • Замкнутая цепь из проводящего материала обеспечивает путь для непрерывного потока электронов.
  • Заряды приводятся в движение электрическим полем . Нам нужен источник электрического потенциала (напряжения), который толкает электроны из точки с низкой потенциальной энергией в точку с более высокой потенциальной энергией.

Короткое замыкание

Батареи — распространенные источники энергии, преобразующие химическую энергию в электрическую. У них есть две клеммы, которые подключаются к остальной части схемы. На одном выводе имеется избыток отрицательных зарядов, а на другом все положительные заряды сливаются. Это разность электрических потенциалов, которая только и ждет, чтобы подействовать!

Если мы подключим наш провод, полный проводящих атомов меди, к батарее, это электрическое поле будет влиять на отрицательно заряженные свободные электроны в атомах меди.Одновременно подталкиваемые отрицательной клеммой и притягиваемой положительной клеммой, электроны в меди будут перемещаться от атома к атому, создавая поток заряда, который мы называем электричеством.

После секунды протекания тока электроны на самом деле переместились на очень — доли сантиметра. Однако энергия, производимая текущим потоком, составляет огромных , особенно потому, что в этой цепи нет ничего, что могло бы замедлить поток или потреблять энергию.Подключить чистый проводник напрямую к источнику энергии — плохая идея . Энергия очень быстро перемещается по системе и превращается в тепле в проволоке, которое может быстро превратиться в плавящуюся проволоку или пожар.

Освещение лампочки

Вместо того, чтобы тратить всю эту энергию, не говоря уже о разрушении аккумулятора и провода, давайте построим схему, которая сделает что-нибудь полезное! Обычно электрическая цепь передает электрическую энергию в другую форму — свет, тепло, движение и т. Д.Если мы подключим лампочку к батарее с помощью проводов между ними, мы получим простую функциональную схему.

Схема: батарея (слева), подключаемая к лампочке (справа), цепь замыкается, когда замыкается переключатель (вверху). Когда цепь замкнута, электроны могут течь, проталкиваясь от отрицательной клеммы батареи через лампочку к положительной клемме.

В то время как электроны движутся со скоростью улитки, электрическое поле почти мгновенно влияет на всю цепь (мы говорим о скорости света быстро).Электроны по всей цепи, будь то с самым низким потенциалом, с максимальным потенциалом или непосредственно рядом с лампочкой, находятся под влиянием электрического поля. Когда переключатель замыкается и электроны подвергаются воздействию электрического поля, все электроны в цепи начинают течь, по-видимому, в одно и то же время. Ближайшие к лампочке заряды сделают один шаг по цепи и начнут преобразовывать энергию из электрической в ​​световую (или тепловую).

Ресурсы и дальнейшее развитие

В этом уроке мы раскрыли лишь крохотную часть пресловутого айсберга.Остается еще масса нераскрытых концепций. Отсюда мы рекомендуем вам перейти сразу к нашему руководству по напряжению, току, сопротивлению и закону Ома. Теперь, когда вы знаете все об электрических полях (напряжении) и текущих электронах (токе), вы на правильном пути к пониманию закона, регулирующего их взаимодействие.

Для получения дополнительной информации и визуализаций, объясняющих электричество, посетите этот сайт.

Вот еще несколько концептуальных руководств для начинающих, которые мы рекомендуем прочитать:

Или, может быть, вы хотите научиться чему-нибудь практическому? В этом случае ознакомьтесь с некоторыми из этих руководств по навыкам базового уровня:

электрических полей — Что такое электрический заряд? — OCR 21C — Редакция GCSE Physics (Single Science) — OCR 21st Century

Все заряженные объекты окружены электрическим полем, которое показывает, как они будут взаимодействовать с другими заряженными частицами.

Генератор Ван де Граафа удаляет электроны, чтобы произвести положительный заряд. Человеку не нужно прикасаться к генератору Ван де Граафа, чтобы почувствовать воздействие, поскольку статическое электричество — это бесконтактная сила. Эта сила будет действовать на любую заряженную частицу в электрическом поле вокруг генератора.

Человек, прикоснувшийся к куполу генератора Ван де Граафа, также потеряет электроны и станет положительно заряженным. То же самое произойдет с каждым волоском на голове. Поскольку человек, его голова и каждый из волосяных фолликулов заряжены положительно, волосы будут отталкиваться от головы и от любой другой пряди, заставляя их торчать из головы во всех направлениях.

Формы электрического поля

Электрическое поле — это область, в которой заряды испытывают силу.

Поля обычно показаны в виде диаграмм со стрелками:

  • Направление стрелки показывает направление, в котором будет двигаться положительный заряд .
  • Чем ближе друг к другу стрелки, тем сильнее поле и тем больше сила, которую испытывают заряды в этом поле. Это означает, что ближе к заряженному объекту поле сильнее.

Линии поля направлены от положительных зарядов в сторону отрицательные заряды.

Радиальное поле вокруг положительного заряда отталкивает другие положительные заряды. Следовательно, стрелки указывают от центрального положительного заряда. Вот что происходит на примере генератора Ван де Граафа.

Однако, если в это поле поместить отрицательный заряд, он привлечет положительный заряд и почувствует силу в направлении, противоположном силовым линиям.

Поле между двумя параллельными пластинами, одна положительная, а другая отрицательная, будет однородным полем.Силовые линии должны быть прямыми, параллельными и указывать от положительного к отрицательному.

Если поле достаточно сильное, заряды могут проходить через изоляторы, такие как воздух, и возникнет искра. Это то, что происходит при ударе молнии и может произойти, если заряженный человек коснется проводника. Например, человек, волочащийся по ковру, может получить заряд, поэтому, если он потянется, чтобы коснуться дверной ручки, возникнет искра, и он почувствует небольшой шок.

Что такое электрический заряд? | Живая наука

Большая часть электрического заряда переносится электронами и протонами внутри атома.Считается, что электроны несут отрицательный заряд, а протоны несут положительный заряд, хотя эти обозначения совершенно произвольны (подробнее об этом позже). Протоны и электроны притягиваются друг к другу, архетип клише «противоположности притягиваются», согласно веб-сайту HyperPhysics Университета Джорджии. И наоборот, два протона отталкиваются друг от друга, как и два электрона.

Протоны и электроны создают электрические поля, которые создают силу, называемую кулоновской силой, которая распространяется во всех направлениях.По словам Серифа Урана, профессора физики в Питтсбургском государственном университете, электрическое поле излучается наружу от заряженной частицы так же, как свет излучается наружу от электрической лампочки. Так же, как и яркость света, напряженность электрического поля уменьшается пропорционально квадрату расстояния от источника (1/ r 2 ). Если вы отодвинетесь вдвое дальше, сила поля уменьшится до одной четвертой, а если вы переместитесь втрое дальше, поле уменьшится до одной девятой.

Поскольку протоны обычно ограничены ядрами, заключенными внутри атомов, они не так свободно перемещаются, как электроны. Поэтому, когда мы говорим об электрическом заряде, мы почти всегда имеем в виду избыток или недостаток электронов. Когда существует дисбаланс зарядов и электроны могут течь, создается электрический ток.

Локальный и постоянный дефицит или избыток электронов в объекте вызывает статическое электричество. Ток может принимать форму внезапного разряда статического электричества, такого как молния или искра между вашим пальцем и заземленной пластиной выключателя света; устойчивый поток постоянного тока (DC) от батареи или солнечного элемента; или колебательный ток, например, от генератора переменного тока (AC), радиопередатчика или аудиоусилителя.

Электрическая вселенная

Мы обычно не знаем об электрическом заряде, потому что большинство объектов содержат равные количества положительного и отрицательного заряда, которые эффективно нейтрализуют друг друга, по словам Майкла Дубсона, профессора физики из Университета Колорадо в Боулдере. Обычно считается, что чистый заряд Вселенной нейтрален. Если бы соотношение положительного и отрицательного заряда было меньше всего в 10 −40 , кулоновская сила была бы сильнее гравитации, что сделало бы Вселенную совершенно отличной от той, которую мы наблюдаем, сказал Дубсон Live Science.Тем не менее, некоторые исследователи, такие как Майкл Дюрен из Университета Юстуса Либиха в Гиссене в Германии, высказывали предположения о возможности электрически заряженной Вселенной.

Ранние исследования в области электричества

Положительные и отрицательные значения заряда были первоначально присвоены американским государственным деятелем и изобретателем Бенджамином Франклином, который начал изучать электричество в 1742 году. До тех пор большинство людей думали, что электрические эффекты являются результатом смешения двух различных электрических жидкости, одна положительная и одна отрицательная.Однако Франклин убедился, что существует только одна электрическая жидкость и что у объектов может быть избыток или недостаток этой жидкости. Поэтому, согласно данным Университета Аризоны, он изобрел термины «положительный» и «отрицательный» для обозначения избытка или недостатка соответственно.

Единицей измерения электрического заряда является кулон (C), названный в честь Шарля-Огюстена Кулона, французского физика XVIII века. Кулон разработал закон, гласящий, что «одинаковые заряды отталкиваются, а разные заряды притягиваются».«Кулон определяется как количество заряда, переносимого током в один ампер за одну секунду. Хотя это звучит как небольшая величина, согласно HyperPhysics,« два заряда в один кулон, каждый, разделенные метром, будут отталкиваться друг от друга. силой около миллиона тонн! » Инженеры-электрики часто предпочитают использовать для заряда более крупную единицу — ампер-час, равную 3600 C.

Кулоновская сила — одна из двух фундаментальных сил, заметных в макроскопическом масштабе, вторая — сила тяжести.Однако электрическая сила намного сильнее гравитации. Кулоновская сила отталкивания между двумя протонами из-за их заряда в 4,1 × 10 42 раз сильнее, чем сила притяжения между ними из-за их массы. Это верно на любом расстоянии, поскольку расстояние сокращается с обеих сторон уравнения.

Насколько велико это число? Сравнение величины этих двух сил похоже на сравнение массы Земли с массой одной молекулы пенициллина! Однако гравитация по-прежнему доминирует во Вселенной в больших масштабах, потому что, в отличие от заряда, можно собрать большие количества массы.Большое скопление одинаково заряженных частиц невозможно из-за их взаимного отталкивания и их сродства к разным зарядам.

Другие свойства заряда

Электрический заряд квантуется, что означает, что он возникает в дискретных единицах. Протоны и электроны несут заряды размером ± 1,602 × 10 −19 C. Каждое накопление заряда является четным кратным этому числу, и дробные заряды не могут существовать. Квантовая хромодинамика (КХД) утверждает, что протоны и нейтроны состоят каждый из трех кварков с зарядами +2/3 или -1/3 от единичного заряда протона, и два кварка одного и один другой объединяются, чтобы сформировать частицы с зарядами ноль или +1 единица заряда.

Однако эти частицы не могут существовать отдельно. Всякий раз, когда вы пытаетесь разделить протон или нейтрон на составляющие его кварки, для этого требуется столько энергии, что энергия преобразуется в материю в соответствии со знаменитым уравнением Эйнштейна E = mc 2 , а вместо одиночный кварк, вы в конечном итоге получаете нейтрально заряженную кварк-антикварковую пару, называемую мезоном. Однако электроны считаются действительно фундаментальными, то есть их нельзя разделить на более мелкие части.

Электрический заряд — это сохраняемая величина. Это означает, что он не может быть создан или разрушен, а чистое количество электрического заряда во Вселенной постоянное и неизменное. Положительные и отрицательные заряды могут нейтрализовать друг друга, или нейтральные частицы могут расщепляться, образуя положительно и отрицательно заряженные пары частиц, но чистое количество заряда всегда остается неизменным.

Дополнительные ресурсы

1.5 Расчет электрических полей распределения зарядов — Введение в электричество, магнетизм и схемы

ЦЕЛИ ОБУЧЕНИЯ

К концу этого раздела вы сможете:
  • Объясните, что такое непрерывное распределение заряда источника и как оно связано с концепцией квантования заряда
  • Опишите линейные, поверхностные и объемные заряды
  • Вычислить поле непрерывного распределения заряда источника любого знака

Распределение заряда, которое мы видели до сих пор, было дискретным: оно состояло из отдельных точечных частиц.Это контрастирует с непрерывным распределением заряда , которое имеет по крайней мере одно ненулевое измерение. Если распределение заряда является непрерывным, а не дискретным, мы можем обобщить определение электрического поля. Мы просто делим заряд на бесконечно малые части и рассматриваем каждую часть как точечный заряд.

Обратите внимание, что поскольку заряд квантуется, не существует такой вещи, как «действительно» непрерывное распределение заряда. Однако в большинстве практических случаев полный заряд, создающий поле, включает в себя такое огромное количество дискретных зарядов, что мы можем спокойно игнорировать дискретную природу заряда и считать его непрерывным.Именно такое приближение мы делаем, когда имеем дело с ведром с водой как сплошной жидкостью, а не с набором молекул h3Oh3O.

Наш первый шаг — определить плотность заряда для распределения заряда вдоль линии, по поверхности или внутри объема, как показано на рисунке 1.5.1.

(рисунок 1.5.1)

Рисунок 1.5.1 Конфигурация элементов разности зарядов для (а) линейного заряда, (б) слоя заряда и (в) объема заряда.Также обратите внимание, что (d) некоторые компоненты полного электрического поля уравновешиваются, а оставшаяся часть приводит к чистому электрическому полю.

Определения плотности заряда:

Тогда для линейного заряда, поверхностного заряда и объемного заряда сумма в уравнении 1.4.2 становится интегралом и заменяется на, или соответственно:

(1.5.1)

(1.5.2)

(1.5.3)

(1.5.4)

Интегралы являются обобщением выражения для поля точечного заряда.Они неявно включают и предполагают принцип суперпозиции. «Уловка» их использования почти всегда заключается в том, чтобы придумать правильные выражения для, или, в зависимости от обстоятельств, выразить в терминах, а также соответствующим образом выразить функцию плотности заряда. Может быть постоянным; это может зависеть от местоположения.

Внимательно обратите внимание на значение в этих уравнениях: это расстояние от элемента заряда до интересующего местоположения (точка в пространстве, где вы хотите определить поле).Однако не путайте это со значением; мы используем его и векторные обозначения для записи трех интегралов одновременно. То есть уравнение 1.5.2 фактически равно

.

ПРИМЕР 1.5.1


Электрическое поле отрезка линии

Найдите электрическое поле на расстоянии выше середины отрезка прямой линии длиной, несущего однородную линейную плотность заряда.

Стратегия

Поскольку это непрерывное распределение заряда, мы концептуально разбиваем сегмент провода на отрезки разной длины, каждый из которых несет разную величину заряда.Затем мы вычисляем дифференциальное поле, создаваемое двумя симметрично расположенными отрезками провода, используя симметрию установки для упрощения расчета (рисунок 1.5.2). Наконец, мы интегрируем это выражение дифференциального поля по длине провода (фактически, по половине, как мы объясним ниже), чтобы получить полное выражение электрического поля.

(рисунок 1.5.2)

Рисунок 1.5.2 Равномерно заряженный отрезок провода. Электрическое поле в точке можно найти, применив принцип суперпозиции к симметрично расположенным элементам заряда и интегрировав.
Решение

Прежде чем мы перейдем к делу, как мы ожидаем, что поле «будет выглядеть» издалека? Поскольку это конечный отрезок линии, издалека он должен выглядеть как точечный заряд. Мы проверим полученное выражение, чтобы убедиться, что оно соответствует этому ожиданию.

Электрическое поле для линейного заряда дается общим выражением

Симметрия ситуации (наш выбор двух идентичных дифференциальных зарядов) подразумевает, что горизонтальные () -компоненты поля сокращаются, так что чистое поле указывает в -направлении.Проверим формально.

Общее поле — это векторная сумма полей каждого из двух элементов заряда (назовите их и, пока):

Потому что два элемента заряда идентичны и находятся на одинаковом расстоянии от точки, где мы хотим вычислить поле, поэтому эти компоненты отменяются. Остается

Эти компоненты также равны, поэтому имеем

, где в этом примере находится наш дифференциальный линейный элемент, поскольку мы интегрируем вдоль линии заряда, лежащей на оси -оси.(Пределы интегрирования заключаются в том, что мы построили чистое поле из двух разностных частей заряда. Если мы проинтегрируем по всей длине, мы получим ошибочный множитель.)

В принципе на этом полно. Однако, чтобы фактически вычислить этот интеграл, нам нужно исключить все переменные, которые не указаны. В этом случае оба и меняются по мере того, как мы интегрируем наружу до конца линейного заряда, так что это переменные, от которых нужно избавиться. Мы можем сделать это так же, как и с двумя точечными зарядами: заметив, что

и

Подставляя, получаем

, что упрощается до

(1.5.5)

Значение

Еще раз обратите внимание на использование симметрии для упрощения задачи. Это очень распространенная стратегия расчета электрических полей. Поля несимметричного распределения заряда должны обрабатываться с помощью множественных интегралов, и может потребоваться численный расчет на компьютере.

ПРОВЕРЬТЕ ПОНИМАНИЕ 1.4


Как изменится использованная выше стратегия для расчета электрического поля в точке, находящейся на расстоянии выше одного конца конечного отрезка линии?

ПРИМЕР 1.5,2


Электрическое поле бесконечной линии заряда

Найдите электрическое поле на расстоянии выше середины бесконечной линии заряда, которая несет однородную линейную плотность заряда.

Стратегия

Это точно так же, как в предыдущем примере, за исключением того, что пределы интеграции будут равны.

Решение

Опять же, горизонтальные компоненты уравновешиваются, поэтому мы получаем

.

, где в этом примере находится наш дифференциальный линейный элемент, поскольку мы интегрируем вдоль линии заряда, лежащей на оси -оси.Опять же,

Подставляя, получаем

, что упрощается до

Значение

Наша стратегия работы с непрерывным распределением зарядов также дает полезные результаты для зарядов с бесконечной размерностью.

В случае конечной линии заряда обратите внимание, что для, доминирует в знаменателе, так что уравнение 1.5.5 упрощается до

Если вы помните, общий заряд на проводе, мы получили выражение для поля точечного заряда, как и ожидалось.

В пределе, с другой стороны, мы получаем поле бесконечного прямого провода , который представляет собой прямой провод, длина которого намного больше любого из его других размеров, а также намного, намного больше расстояния в котором рассчитывается поле:

(1.5.6)

Интересным артефактом этого бесконечного предела является то, что мы утратили привычную зависимость. Это станет еще более интригующим в случае с бесконечной плоскостью.

ПРИМЕР 1.5.4


Поле диска

Найдите электрическое поле круглого тонкого диска радиуса и однородной плотности заряда на расстоянии выше центра диска (рисунок 1.5.4).

(рисунок 1.5.4)

Рисунок 1.5.4 Равномерно заряженный диск. Как и в примере линейного заряда, поле над центром этого диска можно рассчитать, воспользовавшись симметрией распределения заряда.
Стратегия

Электрическое поле для поверхностного заряда равно

.

Для решения задач поверхностного заряда мы разбиваем поверхность на симметричные дифференциальные «полосы», соответствующие форме поверхности; здесь мы будем использовать кольца, как показано на рисунке.Опять же, из-за симметрии горизонтальные компоненты сокращаются, и поле полностью находится в вертикальном направлении. Вертикальная составляющая электрического поля извлекается умножением на, так что

Как и раньше, нам нужно переписать неизвестные множители в подынтегральном выражении в терминах заданных величин. В данном случае

(Пожалуйста, обратите внимание на два разных «s» здесь; это расстояние от дифференциального кольца заряда до точки, где мы хотим определить поле, тогда как это расстояние от центра диска до дифференциального кольца заряда. .) Также мы уже выполнили интеграл по полярному углу в записи.

Решение

Подставив все это, получаем

или, проще говоря,

(1.5.7)

Значение

Опять же, можно показать (с помощью разложения Тейлора), что когда, это сокращается до

, что является выражением точечного заряда.

ПРОВЕРЬТЕ ПОНИМАНИЕ 1.5


Как изменится указанный выше предел при использовании равномерно заряженного прямоугольника вместо диска?

As, уравнение 1.5.7 сводится к полю бесконечной плоскости , которая представляет собой плоский лист, площадь которого намного, намного больше его толщины, а также намного, намного больше расстояния, на котором должно быть вычислено поле:

(1.5.8)

Обратите внимание, что это поле является постоянным. Этот удивительный результат, опять же, является артефактом нашего предела, хотя мы будем неоднократно использовать его в будущем. Чтобы понять, почему это происходит, представьте, что вас помещают над бесконечной плоскостью постоянного заряда.Изменится ли самолет, если вы измените высоту? Нет, вы все еще видите, как самолет уходит в бесконечность, независимо от того, как далеко вы от него. Важно отметить, что уравнение 1.5.8 вызвано тем, что мы находимся над плоскостью. Если бы мы были ниже, поле указывало бы в направлении -направлении.

ПРИМЕР 1.5.5


Поле двух бесконечных плоскостей

Найдите повсюду электрическое поле, возникающее из двух бесконечных плоскостей с равными, но противоположными плотностями заряда (Рисунок 1.5.5).

(рисунок 1.5.5)

Рисунок 1.5.5 Две заряженные бесконечные плоскости. Обратите внимание на направление электрического поля.
Стратегия

Мы уже знаем электрическое поле, возникающее из одной бесконечной плоскости, поэтому мы можем использовать принцип суперпозиции, чтобы найти поле из двух.

Решение

Электрическое поле направлено от положительно заряженной плоскости к отрицательно заряженной. Поскольку они равны и противоположны, это означает, что в области за пределами двух плоскостей электрические поля компенсируют друг друга до нуля.

Однако в области между плоскостями электрические поля складываются, и мы получаем

для электрического поля. Причина в том, что на рисунке поле указывает в направлении.

Значение

Системы, которые можно представить как две бесконечные плоскости такого типа, предоставляют полезные средства для создания однородных электрических полей.

ПРОВЕРЬТЕ ПОНИМАНИЕ 1.6


Как могло бы выглядеть электрическое поле в системе с двумя параллельными положительно заряженными плоскостями с равными плотностями заряда?

Кандела Цитаты

Лицензионный контент CC, конкретная атрибуция

  • Загрузите бесплатно с http: // cnx.org/contents/[email protected]. Получено с : http://cnx.org/contents/[email protected]. Лицензия : CC BY: Attribution

Калькулятор электрического поля

С помощью нашего калькулятора электрического поля вы можете вычислить величину электрического поля, созданного на определенном расстоянии от одной точки заряда. В тексте ниже мы сначала попытаемся ответить на простой вопрос: что такое электрическое поле? Затем мы представим уравнение электрического поля для точечного заряда и опишем другие возможные источники электрического поля.(-19) C , отталкивайтесь друг от друга. Вы можете проверить наш калькулятор закона Кулона, если хотите количественно определить количество электрического взаимодействия между двумя заряженными частицами.

Вы, наверное, знаете, что все в природе состоит из атомов, которые состоят из ядра (положительный заряд) и электронов, вращающихся вокруг ядра (отрицательный заряд). Ядро генерирует электрическое поле, которое притягивает и удерживает электроны на их орбитах, как солнце и планеты вокруг него.

Уравнение электрического поля

Вы можете оценить электрическое поле, создаваемое точечным зарядом, с помощью следующего уравнения электрического поля:

E = k * Q / r²

где

  • E — величина электрического поля,
  • Q — точка заряда,
  • r — расстояние от точки,
  • k — постоянная Кулона k = 1 / (4 * π * ɛ0) = 8.9 Н * м² / C² .

С помощью нашего калькулятора электрического поля вы можете проверить, что величина электрического поля быстро уменьшается по мере увеличения расстояния от точки заряда.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *