Site Loader

Содержание

Небольшая доработка лабораторного БП на LM317. Регулировка величины ограничения тока.

Всем хорош мой лабораторный блок питания на LM317, описанный здесь.

удобен в работе, надёжен, т.к. имеет хорошую защиту, как от перегрева, так и от перегрузки по току и короткого замыкания в нагрузке. И не сосчитать уж сейчас сколько раз реально это выручало меня в практической работе.  Но порог срабатывания штатной защиты от перегрузки по току, как и ток короткого замыкания,  у LM317 достаточно большой и достигает  2…3А – в зависимости от падения напряжения на стабилизаторе и никак не регулируется, так что эффективно защищая себя, LM317 никак не защищает слаботочную схему (нагрузку) от перегрузки по току.

Предлагаю вашему вниманию очень простой и надёжно работающий вариант  защиты от перегрузки по току (далее – просто схемы защиты) с возможностью ступенчатой регулировки в широких пределах величины ограничения тока нагрузки LM317.

Упрощенная схема защиты  для типового включения стабилизатора напряжения на LM317 представлена на рис. 1. Вновь вводимые детали схемы защиты показаны красным цветом. Она состоит из датчика тока на резисторе R3  и  регулирующего кремниевого транзистора VT1, включённых в отрицательный провод цепи питания стабилизатора. Резисторы R1 и R2 защищают транзистор от перегрузки по току соответственно по цепи базы и коллектора. При работе стабилизатора в штатном режиме по резистору R3 протекает ток нагрузки. Как только падение на нём достигнет напряжения открывания транзистора VТ1 (примерно 0,6 В), он откроется и через коллектор начнёт «притягивать» вывод 1 микросхемы к отрицательному (по отношению к общему проводу) потенциалу эмиттера, величина которого равна напряжению база/эмиттер за вычетом напряжения насыщения коллектор/эмиттер (т.е. 0.6В-0.1В)=0.5В. Схема переходит в режим стабилизации выходного тока на заданном уровне. Поскольку для полного запирания LM317 на её управляющий вывод 1 нужно подать отрицательное напряжение 1,25В, перед схемой защиты включен прямосмещённый кремниевый диод VD3, обеспечивающий дополнительный сдвиг уровня отрицательного напряжения на 0.7…0.8В.

Величина сопротивления резистора R3 задаёт порог срабатывания защиты и переход в режим стабилизации тока и может быть выбрана по формуле R[Ом]=0,6/I[А]. Для большей точности при выборе малых пределов срабатывания не забываем учесть ток потребления  самой LM317 (примерно 5-6 мА), также протекающий через датчик тока. Например, показанный на схеме резистор 1.2 Ом задаёт порог 500 мА.

Полная принципиальная схема доработанного лабораторного блока питания представлена на рис.2.  Схема защиты показана отдельно и имеет  нумерацию деталей со знаком апострофа. В исходную схему БП она включается в разрыв отрицательно провода питания (точки. А и В) и к выводу 1 LM317 (точка С). Как видно, дополнительно к описанному выше введён переключатель пределов, обеспечивающий ступенчатую регулировку величины ограничения тока нагрузки LM317. В данном случае применён малогабаритный  галетный переключатель на 6 положений и 2 направления. Пределы по току выбраны 20,50,100, 200, 500мА и 2А. Токовый датчик наименьшего предела 20 мА (резистор R3) во избежание скачкой выходного напряжения при переключении пределов подключён постоянно, а остальные резисторы-датчики тока подключаются параллельно нему. Поэтому расчёт их сопротивлений под свои требования должен учитывать эту особенность.

Номинал R3 рассчитываем  так же как, как показано выше R3=0,6/(0,02+0,005)=24 Ома, а для остальных пределов сначала определяем требуемое сопротивление шунта Rтр[Ом]=0,6/I[А], а затем вычисляем номинал реального резистора Rn с учётом параллельно включённого R3:

Rn= (R3*Rтр)/ (R3-Rтр).

Диод должен быть кремниевый, рассчитанный на максимальный прямой ток не менее 3А, кроме указанного на схеме подойдут 1N5404, КД202, Д242 и т.п. В принципе можно поставить и Шоттки, но только 2 штуки последовательно. Транзистор любой с с усилением по току не менее 100 и допустимым током коллектора не менее 500 мА 2N2222, 2N5551 и т.п.

Всё детали схемы защиты смонтированы на галетном переключателе. Для большей надёжности обе группы контактов переключателя  соединены параллельно.

Вид на монтаж сбоку

Вид на монтаж сзади

В качестве примера на фото показа реакция БП с установленным выходным напряжением +12.6В  на замыкание выхода пинцетом на пределах защиты по току 200

Короткое замыкание на пределе 200 мА

и 500 мА

Короткое замыкание на пределе 500 мА

Как видим, сопротивление пинцета примерно 0,3 Ома. Таким же образом теперь можно очень просто измерять номинал низкоомных резисторов. Да и вообще теперь, при наличии режима стабилизации тока,  многие виды измерений существенно упрощаются:  при токе 20 мА можно тестировать стабилитроны напряжением  стабилизации до 24 В, заряжать аккумуляторы и многое другое.

 

.Беленецкий, US5MSQ               май 2020г.                   г.Киев, Украина

Блок питания на LM317 с регулировкой напряжения

Если вы хотите построить простой блок питания с возможностью регулировки выходного напряжения с максимальным током нагрузки до 1 ампер, то в качестве основы можно использовать стабилизатор напряжения LM317 от National Semiconductor Corporation (NSC).

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Блок питания на lm317 с регулировкой напряжения способен обеспечить регулируемое выходное напряжение от 1,2 В до 30 В. Этот блок питания будет полезен тогда, когда необходимо в простых схемах всего 1,5 вольта взамен пальчиковой батареи АА или, например, когда вы хотите послушать музыку используя 30 ватный усилитель, для которого, как правило, необходимо напряжение 24 вольта и ток нагрузки около 1А.

Еще не так давно для регулировки напряжения в блоках питания использовали мощные транзисторы, и подобные схемы источников питания были сложны и громоздки. В наши же дни можно использовать стабилизатор LM317 и построить простой блок питания на LM317 с регулировкой напряжения.

Описание работы регулируемого блока питания на стабилизаторе LM317

Сетевой трансформатор Т1 понижает входное сетевое напряжение с 220 вольт до 24 вольт. Далее пониженное напряжение с вторичной обмотки трансформатора поступает на диодный выпрямительный мост, собранного на четырех диодах 1N4001 (D1-D4), после которого выпрямленное пульсирующее напряжение сглаживается конденсатором С1. В результате всего этого на вход стабилизатора LM317 поступает около 35 вольт постоянного напряжения.

 

Выходное напряжение на стабилизаторе зависит от напряжения на его выводе Adj. Изменяя величину напряжения при помощи переменного резистора VR1 можно в широких пределах получить выходное напряжение (1,2…30 вольт)

Расчета выходного напряжения LM317

И мы можем рассчитать выходное напряжение, используя несложную формулу:
Uвых = Vref * (1+ (VR1/R1)

  • Vref = 1,25 В
  • R1 составляет 220 Ом или 240 Ом по даташиту на LM317.
  • Переменный резистор желательно взять на 5 кОм  

Электролитический конденсатор С3 необходим для уменьшения пульсаций. Диоды D5 и D6 (1N4007) — защищают стабилизатор от внешнего обратного напряжения.

перевод: http://www.eleccircuit.com

Блок питания 0…30 В / 3A

Набор для сборки регулируемого блока питания…

Использование регулятора напряжения LM317 — MBS Electronics

Микросхема LM317 — это очень распространенный, универсальный и удобный интегральный регулятор напряжения, который можно использовать в множестве конструкций и узлов. На этой микосхеме даже можно собрать очень простой усилитель мощности звуковой частоты. Кроме регулировки напряжения LM317 можно использовать как регулятор тока. Один из примеров — регулятор яркости линейки светодиодов. Микросхему можно использовать в источнике питания с фиксированным выходным напряжением, или применить его как основу лабораторного источника питания с с возможностью регулировки выходного напряжения в широких переделах. Особенно удобно использовать LM317 когда нужно сделать стабилизированный источник питания на какое-либо нестандартное напряжение или источник питания с регулировкой.

Особенности LM317

  • Микросхема может работать в широком диапазоне выходных напряжений от 1.2 до 37 В.
  • Микросхема обеспечивает выходной ток до 1.5 А.
  • Максимальная рассеиваемая мощность до 20 Вт.
  • Микросхема имеет встроенную защиту от перегрузок по току и от короткого замыкания.
  • Встроенная защита от перегрева.

Минимальное включение подразумевает использование двух внешних резисторов. Отношение сопротивлений этих резисторов задает выходное напряжение регулятора, и двух конденсаторов на входе и выходе микросхемы.

Наиболее важные электрические параметры микросхемы — это опорное напряжение Vref и тое в цепи управляющего вывода Iadj. опорное напряжение — это напряжение, которое микросхема стремиться поддерживать на резисторе R1, то есть, если замкнуть накоротко резистор R2, то на выходе регулятора мы получит это самое опорное напряжение. Это напряжение может немного меняться от экземпляра к экземпляру и составляет 1.2 … 1.3 В ( в среднем 1.25В.) Чем выше падение напряжение на резисторе R2, тем выше выходное напряжение регулятора. Вычислить выходное напряжение просто, оно равно падению напряжения на R2 + 1.25 (Vref).

Что касается второго параметра Iadj, то это фактически паразитный ток. Чем он меньше, тем лучше. Изготовители микросхемы заявляют этот ток от 50 до 100 микроампер, но в действительности может быть до 500 мкА. Поэтому чтобы обеспечить хорошую стабильность выходного напряжения, ток через делитель R1-R2 должен быть не менее 5 мА. Можно оттолкнуться от сопротивления резистора R1 и высчитать R2 по формуле:

R2=R1*((Uвых/Uоп)-1)

Затем уточнить номиналы в реальных условиях в работающей схеме.

Приведем пример номиналов для пары стандартных напряжений:

Для напряжения 5В R1 = 120 Ом, R2 = 360 Ом
Для напряжения 12В R1 = 240Ом, R2 = 2000 Ом

Однако, для типовых напряжений вроде 5, 12, 15 и т.д. вольт проще и удобнее использовать регуляторы на фиксированные напряжения вроде 7805 или 7812. Использовать 317 для этих целей лучше только в том случае если регулятора на фиксированное напряжение не оказалось под рукой, а сделать источник питания нужно срочно.

Конфигурация выводов микросхемы LM317 в разных корпусах

Источник питания с плавным запуском. Как видим, к стандартной схеме добавляется биполярный транзистор структуры PNP, резистор на 50 кОм, кремниевый диод и электролитический конденсатор на 25 мкФ. В момент включения такого источника на его выходе минимальное напряжение, которое плавно увеличивается до установленного 15В по мере заряда конденсатора C1.

Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже. Базы транзисторов соединяем с портами микроконтроллера. При подаче высокого уровня на каждый последующий транзистор он будет подключать параллельно R2 еще один дополнительный резистор и выходное напряжение будет уменьшаться:

LM317 можно использовать не только для стабилизации напряжения, но и в качестве стабилизатора тока. Схема получается еще проще, так как здесь нужен всего один единственный внешний резистор, задающий выходной ток:

На LM317 можно сделать несложное зарядное устройство для аккумуляторов с номинальным напряжением 12В. Номиналы резисторов R1 и R2 задают конечное напряжение на заражаемой батарее, а резистор Rs устанавливает максимальный зарядный ток. Это схема из даташита на микросхему:

Двуполярный регулируемый источник питания (например как основа для лабораторного блока питания) можно собрать на двух LM317, но тогда придется использовать трансформатор с двумя обмотками и два выпрямителя, то есть каналы источника питания нужно будет делать независимыми друг от друга. Это хорошее, но дорогое решение. Можно упростить себе жизнь, если использовать микросхему LM337 — аналог микросхемы LM317, но на отрицательное напряжение. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так:

Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. нужно выбирать транзисторы согласно тому току, на который вы рассчитываете источник питания.

На следующей схеме изображен регулируемый источник питания на ток до 20 ампер и напряжение от 1.3 до 12 вольт. Транзисторы и микросхему LM317 необходимо установить на радиаторы. Резисторы в эмиттерных цепях транзисторов должны быть рассчитаны на мощность не менее 5 Вт.

Микросхему LM317K. можно недорого купить в Китае по этой ссылке. Цена слегка отличается у разных продавцов и в среднем составляет около 4 долларов за 20 штук.

Регулируемый блок питания своими руками


После мультиметра переменный источник питания (также называемый регулируемым блоком питания или лабораторным БП) является одним из самых полезных элементов оборудования, которое необходимо иметь в своей мастерской. Выходное напряжение блоков питания может регулироваться в широком диапазоне от менее 1 вольта до более чем 30 В, в зависимости от того как и по какой схеме он собран.

Регулируемые источники питания используются для питания радиосхем, которые ремонтируем или собираем. При разработке или тестировании устройств возобновляемой энергии можно использовать такой БП для имитации зарядки или разрядки аккумулятора, для настройки контроллера и нагрузки.

Вы можете конечно купить блок питания в магазинах электроники, но лучше построить свой собственный. Так вы чётко будете знать его работу, устройство, а при необходимости (это неизбежно в будущем) почините или улучшите.

Далее рассмотрим две схемы регулируемого блока питания. Обе используют детали, которые элементарно найти в местном магазине электронных компонентов.

Регулируемый блок питания на LM317

Схема блока питания на LM317 с регулировкой

Первая схема это регулятор напряжения на основе LM317. Микросхема LM317 может выдавать до 1,5 А, имеет защиту от короткого замыкания и перегрева. Максимальное входное напряжение составляет 40 вольт постоянного тока, и оно изменяется на выходе до 1,2 вольт. Конечно LM317 следует установить на радиатор (если нагрузка планируется мощная — то большой).

Регулируемый блок питания на LM723

Схема блока питания на LM723 с регулировкой

Также можете собрать схему для более совершенного и мощного регулируемого источника питания, используя микросхему LM723. Помимо регулируемого выходного напряжения, эта схема включает в себя регулируемый предел тока — вы можете ограничить ток, протекающий через тестируемую цепь, тем самым защищая источник питания от короткого замыкания. Параллельно стоящие 4 силовых транзистора увеличивают максимальный ток до 10 ампер (а это уже возможность зарядить авто аккумулятор, обычно средним током 5 А). Силовые транзисторы должны быть установлены на хороший радиатор.

Источник напряжения стабилизатора

Обе схемы стабилизаторов требуют источника питания постоянного тока (то есть подачу на них напряжения), и это напряжение должно быть как минимум на 3 В выше максимального напряжения, которое надо получить от регулируемого блока питания. Поэтому если планируется собрать источник питания, который можно регулировать от 1,2 до 12 вольт, понадобится на входе БП на 15 вольт или более (максимум до 40 вольт, иначе микросхемы сгорят от перегруза).

Схема блока питания постоянного напряжения

Традиционно используют сетевой трансформатор для преобразования сетевого напряжения 220 В до 15 В переменного тока. Затем используем мостовой выпрямитель для преобразования переменного тока в постоянный, а затем несколько фильтрующих конденсаторов для сглаживания пульсаций до чистого постоянного тока. Естественно нужен предохранитель для сетевой стороны.

Но не обязательно брать трансформатор, у большинства есть немало осиротевших импульсных БП которые больше не используются. Эти источники питания в основном от нерабочих мониторов или ноутбуков. У них выходное напряжение 20 В и максимальный ток 4,5 А. А этого более чем достаточно для самодельного переменного источника питания. Использование такого позволит после стабилизатора получать от 1,2 до 17 вольт.

Вы также можете подключить более одного источника питания последовательно для более высокого напряжения, например, два 12-вольтовых последовательно соединённые дадут напряжение 24 В, но максимальный ток будет таким, как в блоке питания с наименьшим номиналом мощности.

Прекрасной идеей будет добавить вольтметр и амперметр в самодельный лабораторный блок питания, тем более в магазинах полно готовых цифровых модулей светодиодных А/В-метров, поэтому делать его самому нет смысла. А если не хотите покупать готовый — ставьте обычные стрелочные индикаторы, как на фото.

Регулируемый стабилизированный блок питания 1-30V, 5А — d.lab

Несложный стабилизированный блок питания мощностью до 5А с регулировкой выходного напряжения от 1 до 30V на микросхеме-стабилизаторе LM317 и мощном биполярном NPN-транзисторе.

Никогда не думал, что с блоком питания у меня могут возникнуть проблемы, всегда можно было выкрутиться «КРЕН-кой». Однако, когда понадобился мощный стабилизированный источник питания «КРЕН-ка» естественно не подошла из-за слабого тока нагрузки. Как правило, на практике, обещанные 1.5А ни одна «КРЕН-ка» не держит. Более того, даже 1А она едва выдерживает при этом «просаживая» выходное напряжение и греясь как утюг.

Другое дело стабилизаторы LD1083 (7.5A), LD1084 (5A) или LD1085 (3A). Всем хороши, только вот LD1083 лично я в глаза ни разу не видел. Вообще достоверно неизвестно, существуют ли они в действительности. LD1085 и даже LD1084 можно свободно купить в магазинах в корпусах ТО-220, хотя теоретически они выпускаются и в больших корпусах ТО-3, но такие опять же никто не видел. Кроме того у таких микросхем есть один, намой взгляд существенный, недостаток — ограничение входного напряжения до 30V. Не выше, иначе микросхема просто не работает. Как в таком случае поступить, если нужно выходное напряжение 24V при токе 5А? Казалось бы чего сложного? Но дело в том, что для получения выходного напряжения 24V нужно на входе стабилизатора не менее 25.5V, а в сумме с подключенным электролитическим конденсатором входного фильтра получается около 33V на входе микросхемы. Вот и все, фактически эта замечательная микросхема способна выдать не более 20V.

Помню, как на раннем этапе своей радиолюбительской практики, я пытался «умощнить» «КРЕН-ку» биполярным транзистором по одной из множества схем с ошибками, опубликованных в радиолюбительской литературе 90-х годов. Тогда у меня толком ничего не получалось в основном по причине неполного понимания физики процесса. Да и сами схемотехнические решения оставляли желать лучшего — нужны были низкоомные резисторы, сильноточные дроссели и даже была схема с тиристором!

Отбросив все лишнее, я взял мощный биполярный транзистор и в режиме эмиттерного повторителя подал на базу напряжение: транзистор открылся. Увеличил напряжение — на эмиттере напряжение также увеличилось. Подцепил нагрузку — держит, подцепил больше, все равно держит. Привязал к базе LM317 — регулирует, ток держит. Пару вариаций, испытаний, подгонка компонентов и все — мощный стабилизированный БП готов:

На схеме есть дроссель L1, на самом деле это не дроссель — это обмотка от неисправного втягивающего реле стартера. Это такая своеобразная защита от КЗ: в обычном режиме работы ток без потерь проходит через толстый провод обмотки, а при КЗ выходных клемм обмотка становится мощной нагрузкой для блока питания. Понятно, что это не самый лучший способ, но он работоспособен и эффективен при кратковременном КЗ.

В остальном, не думаю, что схема такого уровня сложности требует особых пояснений. Следует напомнить, что вся отдаваемая в нагрузку мощность БП рассеивается на силовом транзисторе. Поэтому его нужно обязательно устанавливать на ооочень большой радиатор.

Данное схемотехническое решение не претендует на истину и возможно в будущем вылезут «подводные камни», но пока блок питания работает исправно и надежно.

Lm338t блок питания с регулировкой тока

Стабилизатор напряжения LM338, производства Texas Instruments, является универсальной интегральной микросхемой, которая может быть подключена многочисленными способами для получения высококачественных цепей питания.

Технические характеристики стабилизатора LM

338:
  • Обеспечения выходного напряжения от 1,2 до 32 В.
  • Ток нагрузки до 5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Интегральная микросхема LM338 выпускается в двух вариантах корпусов — это в металлическом корпусе TO-3 и в пластиковом TO-220:

Распиновка выводов стабилизатора LM338

Основные технические характеристики LM338

Калькулятор для LM338

Расчет параметров стабилизатора LM338 идентичен расчету LM317. Онлайн калькулятор находится здесь.

Примеры применения стабилизатора LM338 (схемы включения)

Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM338.

Простой регулируемый блок питания на LM338

Данная схема — типовое подключение обвязки LM338. Схема блока питания обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.

Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Простой 5 амперный регулируемый блок питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.

Регулируемый блок питания на 15 ампер

Как уже было сказано ранее микросхема LM338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:

В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.

Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Зарядное устройство 12В на LM338

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.


Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С2 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.

Схема термостата на LM338

LM338 также может быть настроен для поддержания температуры обогревателя на определенном уровне.

Здесь в схему добавлен еще один важный элемент — датчик температуры LM334. Он используется как датчик, который подключен между adj LM338 и землей. Если тепло от источника возрастает выше заданного порога, сопротивление датчика понижается, соответственно, и выходное напряжение LM338 уменьшается, впоследствии уменьшая напряжение на нагревательном элементе.

Скачать datasheet LM338 (729,7 Kb, скачано: 5 425)

Тут давно не кого этой поделкой не удивишь. Обычный стабилизатор на обычной микрухе LM338Т таж самая LM317 но расчитанная на больший ток.
Схема вот.

Я ее где то взял. Автор схемы 2350 . Чуть переделал для себя.

Можно сказать просто урезал.
Вот печатка.

Сразу пердупрежу это со стороны элементов.
А то я руководствовался вот этими записями www.drive2.ru/l/288230376152185536/ и этого не учел в этоге 2 негодные печатки и одна сгоревшая мируха . А я то думаю че дым то пошел.
Ну да ладно сам затупил не перепроверил.

Короче все это делал для питания LED 5730 12 сборок по 2 светодиода на сборке. Плату настроил как и предлагалось на 10 вольт + резистор на 24 Ом. Получил около 150 мА на сборке. Но благодаря установке подстроечников ток я чуть уменьшил.

Но все я не об этом.
Я тут на просторах инета увидел инфу о термобумаге для изготовления плат по принципу ЛУТ.
Вот на нее ссылка на али ru.aliexpress.com/item/10…pe-Mak-OZ/2054383626.html

Не конечно можно играться с журналами или как я бумага для струйной печати. Но лично мне эта бумага понравилась. Да и 10 листов мне на долго хватит.

Смысл в ней в том что она тонкая и к ней нефига не прилипает. Хотя тонер ложиться отлично. Есть правда и проблема. Так как она очень тонка и скользкая мой принтер ее на отрез отказывался брать. Я вышел из положения легко .

И так печатаем рисунок.

Я специально на плату нанес текст очень мелким шрифтом. И все перенеслось отлично. Да я там немного напортачил и это кстати первый вариант платы (испорченный) но текст нормальный . Я к тому что даже очень тонкие дорожки можно было бы нанести.

После нанесения рисунка на бумагу . Кладем на текстолит и без фанатизма приглаживаем утюгом на максимуме. В идеале бы использовать ламинатор но он у меня на работе и я так и не опробовал. Ну а дальше просто снимаем бумагу. Я сначала мочил по привычке но это делать не обязательно.

Вот рабочий стабилизатор стоит на прогонке.

И пользуясь случаем задам вопрос . Для светодиодов 5730 нужно какое то охлаждение или нет . я замерил температуру оно в районе 60 градусов. Но на многих проектах не какого охлаждения не увидел.

Вот на нее ссылка на али ru. Все мощные микросхемы можно установить на один общий радиатор через слюдяные прокладки, поскольку корпуса микросхем не должны соединяться вместе.


Как обычно, начинаем с самых маленьких элементов.

Примеры применения стабилизатора LM схемы включения Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.
Простой регулируемый источник питания на LM1084

Питание собранного модуля осуществляется от блока питания 12В 5А. Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM

Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1.

Но на многих проектах не какого охлаждения не увидел.

Все, включая монтажную плату, выглядит прилично, откровенного брака нигде не видно.
Электрические характеристики LM338

Высыпаем содержимое всех пакетиков на стол. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Второй параметр — ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум мкА, но в реальных условиях он может достигать мкА.

Попробуем немного уменьшить напряжение.

И пользуясь случаем задам вопрос.

Такое чувство, что комплектовал набор не сильно трезвый китаец : Следующим этапом была установка огромных конденсаторов, сбрасываемого предохранителя 30V3A, а так же переключателя на выходные контакты.

В сегодняшнем обзоре речь пойдет об очередном конструкторе после сборки которого получится понижающий модуль на LMK, а проще говоря — регулируемый блок питания : Причиной его покупки стал мой интерес к конструкторам подобного рода, а так же возможность использовать собранный гаджет в последующем.

Попробуем немного уменьшить напряжение. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.

Получается небольшая кучка разнообразных радиодеталей.
Мощный лабораторный блок питания своими руками

Блок питания на LM338K, 5А/1.2-25В — Меандр — занимательная электроника

Примеры применения стабилизатора LM схемы включения Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM

Внутри оказалась монтажная плата, крепление индикатора, четыре винта и парочка резисторов, а так же еще два пакетика поменьше.

В принципе, больше ничего интересного в отдельно валяющихся элементах нет, а значит можно переходить к сборке блока питания. Резистором RS можно задать необходимый ток зарядки для конкретного аккумулятора.

Подготовлено для сайта RadioStorage. Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Попробуем немного уменьшить напряжение. У микросхемы LMT схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.

Quem id mentitum e velit, nam mentitum in expetendis. Зарядное устройство 12В на LM Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов.


После окончательной сборки получается довольно симпатичный блок питания на медных ножках, который выглядит следующим образом: Для того, чтобы прикрепить индикатор вольтметра в корпусе вентилятора необходимо проделать отверстия, так как комплектные саморезы могут расколоть пластик. Мощные резисторы по 0,3 Ом. На ней отсутствует конденсатор С4 — его припаиваем к выводам переменного резистора R1, который будет крепиться на корпусе устройства и послужит для регулировки напряжения. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM

Выглядит она следующим образом: К качеству изготовления элементов конструктора претензий у меня нет. Данный стабилизатор напряжения, производства Texas Instruments, является универсальной интегральной микросхемой, которая может быть подключена многочисленными способами для получения высококачественных цепей питания. Схема плавного включения мягкий старт блока питания Некоторые чувствительные электронные схемы требуют плавного включения электропитания.

Переменный резистор R1 используется для плавного регулирования выходного напряжения. Например, диодный мост из четырех выпрямительных диодов Д обеспечит рабочие токи до 10А.
Компактный простой ЛБП на LM317 350 338

Основные технические характеристики LM338

Контакты Мощный блок питания на напряжение В и ток 5AA и более LM, Приведена принципиальная схема простого в изготовлении стабилизированного и мощного блока питания с регулируемым выходным напряжением от 5В до 35В и током нагрузки 5А, 10А, 20А, 30А, 40А и более в зависимости от количества микросхем. Внутри оказалась монтажная плата, крепление индикатора, четыре винта и парочка резисторов, а так же еще два пакетика поменьше.

Подготовлено для сайта RadioStorage. Детали Транзистор BD нужно установить на небольшой радиатор.

Согласно описанию, микросхема LM работает при достаточно широком разбросе входного напряжения, этот диапазон может лежать в пределах от 3-х до 35 Вольт. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM

Дабы установить соответствие этих данных истине воспользуемся мультиметром. Я сначала мочил по привычке но это делать не обязательно. Он используется как датчик, который подключен между adj LM и землей.

Вы можете скачать файл с нашего сервера, благодарность сайту приветствуется, особенно материальная. В качестве резисторов R3, R Уважаемый Пользователь! Зарядное устройство 12В на LM Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов.

А то я руководствовался вот этими записями www. Так что данный набор отлично подойдет даже начинающему радиолюбителю : Сперва резисторы, диоды, клеммник, диодный мост KBL, стабилизатор напряжения LM Эти диоды должны быть рассчитаны на ток, который планируется получить на выходе стабилизатора.

Лично меня данная покупка удовлетворила полностью, жаль только, что некоторых деталей изначально не хватало… На этом, пожалуй, все. Так вот, в комплекте их четыре, а нужен только один… А вот диодов в комплекте два, хоть на плате разметка под три. Срезав одну из сторон можно заглянуть внутрь и посмотреть на содержимое посылки. Я специально на плату нанес текст очень мелким шрифтом. Цоколевка расположение выводов у микросхем LM

Смысл в ней в том что она тонкая и к ней нефига не прилипает. Можно сказать просто урезал. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.
Как собрать Простую Схему Блока Питания LM317 — СС#7

Регулятор тока и напряжения на lm317

Блок питания – одно из самых важных устройств, в мастерской радиолюбителя. Тем более с батарейками и с аккумуляторами каждый раз мучиться как-то надоело. Рассмотренный здесь БП Регулирует напряжение от 1.2 вольта до 24 вольта. И нагрузку до 4 А. Для большей силы тока, было решено установить два одинаковых трансформатора. Трансформаторы подключаются параллельно.

Детали для регулируемого блока питания

  1. Стабилизатор LM317 ТО-220 корпусе.
  2. Кремниевый транзистор, p-n-p КТ818.
  3. Резистор 62 Ом.
  4. Конденсатор электролитический 1 мкф*43В.
  5. Конденсатор электролитический 10 мкф*43В.
  6. Резистор 0,2 Ом 5W.
  7. Резистор 240 Ом.
  8. Подстроечный резистор 6.8 Ком.
  9. Конденсатор электролитический 2200 мкф*35В.
  10. Любой светодиод.

Схема блока питания

Схема блока защиты

Схема блока выпрямителя

Детали для построения защиты от КЗ

  1. Кремниевый транзистор, n-p-n КТ819.
  2. Кремниевый транзистор, n-p-n КТ3102.
  3. Резистор 2 Ом.
  4. Резистор 1 Ком.
  5. Резистор 1 Ком.
  6. Любой светодиод.

Для корпуса регулируемого блока питания, были использованы два корпуса, от обычного компьютерного блока питания. В места из под кулера, были поставлены вольтметр и амперметр.

Для дополнительного охлаждения, был установлен кулер.

Но можно спаять схему просто навесным монтажом. Соединяются корпуса, с помощью двух болтов.

Гайки были приклеены, к крышке корпуса термо клеем. Для охлаждения стабилизатора и транзисторов был использован радиатор от компьютера, который обдувал кулер.

Для удобства переноса блока питания, была прикручена ручка от шуфлядки письменного стола. В общем, получившийся блок питания очень нравится. Мощности его хватает для питания почти всех схем, проверки микросхем, и зарядки небольших аккумуляторов.

Схема ИП не нуждается в настройке, и при правильной спайке она заработает сразу. Автор статьи 4ei3 e-mail [email protected]

Обсудить статью БП НА LM317 С БЛОКОМ ЗАЩИТЫ

Лабораторный блок питания на LM317

Лабораторный блок питания необходим радиолюбителю, без него как без рук. Для начинающих радиолюбителей я предлагаю собрать схему простого стабилизатора с регулировкой по напряжению на микросхеме LM317, на очень распространенных и не дорогих радиоэлементах. Диапазон выходного напряжения от 1,5 до 37В. Ток может достигать 5А, зависит от используемого силового транзистора и теплоотвода. Входной трансформатор можно использовать любой выдающий нужный вам ток и напряжение до 37В. Стабилизатор не боится короткого замыкания, однако держать длительное время выводы замкнутыми не рекомендуется, так как КТ818 и LM317 при этом начинают достаточно ощутимо греться и при неэффективном теплоотводе могут выйти из строя.

Принципиальная схема стабилизатора с регулировкой по напряжению

Печатная плата стабилизатора с регулировкой по напряжению

Скачать печатную плату стабилизатора на LM317

Достоинства данного стабилизатора.

  • простота в изготовлении
  • надежность
  • дешевизна
  • доступность компонентов

Недостатки

  • низкий КПД.
  • необходимость использования массивных радиаторов.
  • не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.

Для изготовления данного устройства Вам понадобится:

  • Стабилизатор LM317 -1шт.
  • Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
  • Диод КД522 или аналогичный -1шт.
  • Резистор R1 -47ОМ желательно от 1Вт -1шт.
  • Резистор R3 220Ом от 0.25 Вт -1шт.
  • Переменный резистор линейный — 5кОм -1шт.
  • Конденсатор электролитический 1000мФ от 50В -1шт.
  • Конденсатор электролитический 100мФ от 50В -1шт.
  • Диодный мост током от 5А

Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.

Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.

Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.

Сборка стабилизатора на LM317

Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.

Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.

Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.

На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.

У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.

Готовый блок питания выглядит так.

Простой двух полярный стабилизатор напряжения на LM317.

За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.

Характеристики и достоинства двух полярного стабилизатора

  • напряжение стабилизации от 1,2 до 36 В;
  • максимальный ток до 5 А;
  • используется малое количество элементов;
  • простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;

Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.

Скачать печатную плату

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Блок питания – необходимая вещь в арсенале любого радиолюбителя. И я предлагаю собрать очень простую, но в то же время стабильную схему такого устройства. Схема не трудная, а набор деталей для сборки – минимален. А теперь от слов к делу.

Для сборки нужны следующие комплектующие:

НО! Эти все детали представлены точно по схеме, и выбор комплектующих зависит от характеристики трансформатора, и прочих условий. Ниже представлены компоненты согласно схеме, но их мы будем сами подбирать!

Трансформатор (12-25 В.)
Диодный мост на 2-6 А.
C1 1000 мкФ 50 В.
C2 100 мкФ 50 В.
R1 (номинал подбирается в зависимости от от трансформатора, он служит для запитки светодиода)
R2 200 Ом
R3 (переменный резистор, подбирается тоже, его номинал зависит от R1, но об этом позже)
Микросхема LM317T
А также инструменты, которые понадобятся в ходе работы.

Сразу привожу схему:

Микросхема LM317 является регулятором напряжения. Именно на ней я и буду собирать данное устройство.
И так, приступаем к сборке.

Шаг 1. Для начала нужно определить сопротивление резисторов R1 и R3. Дело в том, какой трансформатор вы выберете. То есть, нужно подобрать правильные номиналы, и в этом нам поможет специальный онлайн-калькулятор. Его можно найти вот по этой ссылке: Калькулятор онлайн
Я надеюсь, вы разберетесь. Я рассчитывал резистор R2, взяв R1=180 Ом, а выходное напряжение 30 В. Итого получилось 4140 Ом. То есть мне нужен резистор на 5 кОм.

Шаг 2. С резисторами разобрались, теперь дело за печатной платой. Её я делал в программе Sprint Layout, скачать можно тут: скачать плату

Шаг 3. Сначала поясню, что куда впаивать. К контактам 1 и 2 – светодиод. 1 – это катод, 2 – анод. А резистор для него (R1) считаем тут: рассчитать резистор
К контактам 3, 4, 5 – переменный резистор. А 6 и 7 не пригодились. Это было задумано для подключения вольтметра. Если вам это не нужно, то просто отредактируйте скачанную плату. Ну а если понадобится, то установите перемычку между 8 и 9 контактами. Плату я делал на гетинаксе, методом ЛУТ, травил в перекисе водорода (100 мл перекиси + 30 г. Лимонной кислоты + чайная ложка соли).
Теперь о трансформаторе. Я взял силовой трансформатор ТС-150-1. Он обеспечивает напряжение в 25 вольт.

Шаг 4. Теперь нужно определиться с корпусом. Недолго думая, мой выбор пал на корпус от старого компьютерного блока питания. Кстати, в этом корпусе раньше был мой старый бп.

В переднюю панель я взял от бесперебойника, которая очень хорошо подошла по размерам.

Вот так примерно она будет установлена:

Далее нужно выломать переднюю часть корпуса, для закрепления панели. После чего обработать острые края напильником.

Чтобы закрыть дыру в центре, я вклеил небольшой кусок ДВП, и просверлил все нужные отверстия. Ну и установил разъемы Banana.

Кнопка включения питания осталась сзади. Её на фото пока нет. Трансформатор я закрепил его «родными» гайками к задней решетки вентилятора. Он точно подошел по размерам.

А на место где будет плата, тоже приклеил кусок ДВП, дабы избежать замыкания.

Шаг 5. Теперь нужно установить плату и радиатор, припаять все необходимые провода. И не забываем про предохранитель. Его я прикрепил сверху на трансформатор. На фото это всё выглядит, как-то страшно и не красиво, но наделе это совсем не так.

Шаг 6. Далее устанавливаем переднюю панель. Её я приклеил на термоклей. В просверленные отверстия вставляем светодиод, прикручиваем переменный резистор, разъемы banana я уже установил ранее.

Остается только закрыть верхнюю крышку. Её я тоже немного приклеил на термоклей к панели. И теперь наш блок питания готов! Остается его только протестировать.

Этот блок способен выдавать максимальное напряжение в 32 В и силу тока до 2 ампер. Минимальное напряжение – 1,1 В, а максимальное 32 В.

Отсутствует

Код 404 страница не найдена. К сожалению, страница отсутствует или перемещена.

Ниже приведены основные подразделы этого сайта.


  • Главная страница общей электроники
  • Мой канал YouTube Electronics
  • Проекты микроконтроллеров Arduino
  • Raspberry Pi и Linux
  • Возвращение к регистрам порта Arduino
  • Digispark ATtiny85 с MCP23016 GPIO Expander
  • Программа безопасной сборки H-Bridge
  • Построить управление двигателем с H-мостом без фейерверков
  • MOSFET H-мост для Arduino 2
  • Гистерезис компаратора и триггеры Шмитта
  • Учебное пособие по теории компараторов
  • Принципы работы и использования фотодиодных схем
  • Оптопары MOSFET реле постоянного тока с фотоэлектрическими драйверами
  • Подключение твердотельных реле Crydom MOSFET
  • Photodiode Op-Amp Circuits Tutorial
  • Входные цепи оптопары для ПЛК
  • h21L1, 6N137A, FED8183, TLP2662 Оптопары с цифровым выходом
  • Цепи постоянного тока с LM334
  • LM334 Цепи CCS с термисторами, фотоэлементами
  • LM317 Цепи источника постоянного тока
  • TA8050P Управление двигателем с Н-мостом
  • Оптическая развязка органов управления двигателем с Н-мостом
  • Управление двигателем с Н-мостом на всех NPN-транзисторах
  • Базовые симисторы и тиристоры
  • Твердотельные реле переменного тока с симисторами
  • Светоактивированный кремниевый управляемый выпрямитель (LASCR)
  • Базовые схемы транзисторных драйверов для микроконтроллеров
  • ULN2003A Транзисторная матрица Дарлингтона с примерами схем
  • Учебное пособие по использованию силовых транзисторов Дарлингтона TIP120 и TIP125
  • Управление силовыми транзисторами 2N3055-MJ2955 с транзисторами Дарлингтона
  • Что такое биполярные транзисторные переключатели
  • Учебное пособие по переключению N-канального силового полевого МОП-транзистора
  • Учебное пособие по переключателю P-Channel Power MOSFET
  • Создание транзисторного управления двигателем с H-мостом
  • Управление двигателем по Н-мосту с силовыми МОП-транзисторами
  • Другие примеры цепей с двутавровым мостом силового полевого МОП-транзистора
  • Создание мощного транзисторного управления двигателем с H-мостом
  • Теория и работа конденсаторов
  • Построить вакуумную трубку 12AV6 AM-радио
  • Катушки для высокоселективного кристаллического радио
  • Добавление двухтактного выходного каскада к усилителю звука Lm386
  • Исправление источника питания
  • Основные силовые трансформаторы
  • Схема транзисторно-стабилитронного стабилизатора
  • Уловки и подсказки для регуляторов напряжения серии LM78XX
  • Биполярные источники питания
  • Создайте регулируемый источник питания 0-34 В с Lm317
  • Использование датчиков Холла с переменным током
  • Использование переключателей и датчиков на эффекте Холла
  • Использование ратиометрических датчиков на эффекте Холла
  • Использование датчиков Холла с Arduino-ATMEGA168
  • Простой преобразователь от 12-14 В постоянного тока до 120 В переменного тока
  • Глядя на схемы оконного компаратора
  • Автоматическое открытие и закрытие окна теплицы
  • La4224 Усилитель звука мощностью 1 Вт
  • Управление двигателем H-Bridge с силовыми МОП-транзисторами Обновлено
  • Обновлено в сентябре 2017 г .:
  • Веб-мастер
  • Раскрытие
  • Бристоль, Юго-Западная Вирджиния
  • Наука и технологии
  • 2017 Обновления и удаления веб-сайта
  • Электроника для хобби
  • Конституция США
  • Христианство 101
  • Религиозные темы
  • Электронная почта

»Главная » Электронное письмо »Пожертвовать » Преступление »Электроника для хобби
» Экологичность »Расизм »Религия »Бристоль VA / TN

»Архив 1 »Архив 2 »Архив 3 »Архив 4 »Архив 5
» Архив 6 »Архив 7 »Архив 8 »Архив 9


Веб-сайт Авторские права Льюис Лофлин, Все права защищены.

Создать переменный источник питания, регулятор тока LM317, LM317, регулятор напряжения

Создание регулируемого источника питания с использованием регуляторов LM317

Я жду детали для моего большого проекта многоканального источника питания PowerStation2, поэтому я подумал, что построю одноканальный блок для использования сейчас.

Мне нужно что-то, чтобы обеспечить полностью регулируемую мощность, как по току, так и по напряжению. Он должен быть в диапазоне примерно от 3,3 В при 30 мА для создания импульсов сигнала и до 24 В при 800 мА для питания двигателей и сервоприводов.

Как всегда, я хотел использовать утилизированные детали, чтобы устройство получало питание от старого блока питания принтера HP, который имеет 16 В при 625 мА на одном канале и 32 В при 940 мА на другом.


Регулятор напряжения и тока LM317

Я не буду вдаваться в подробности настройки LM317, вместо этого я направлю вас на удобный сайт, где я нашел нужную мне информацию. Щелкните здесь, чтобы получить отличное руководство по использованию LM317 в качестве регулятора тока. У них есть отличный онлайн-калькулятор, чтобы определить, какие резисторы вам нужны, чтобы получить желаемый ток.У них есть еще одна страница для использования LM317 в качестве регулятора напряжения. На этой странице также есть калькулятор номиналов резисторов для регулирования напряжения. Эти две страницы мне очень помогли.

Обратите внимание, что на большинстве принципиальных схем LM317 контакты не показаны в их фактическом порядке. Обратитесь к изображению выше, чтобы узнать фактическое положение штифтов.

Я кратко расскажу, что это за чипы и для чего они нужны. Это небольшая трехногая ИС. У них есть один вывод для напряжения на входе (Vin), один для вывода напряжения (Vout) и один вывод, называемый «Adjust».Вы подключаете эти контакты по-разному в зависимости от того, хотите ли вы регулировать напряжение или ток. Затем вы используете в схеме резисторы разных номиналов для регулировки выхода.

Одно соображение, как мне показалось в отношении этих микросхем, заключается в том, что они имеют автоматическое начальное падение напряжения независимо от того, какие значения резистора вы используете. Регулятор тока упадет примерно на 3 В, а регулятор напряжения упадет на 1,5 В. Это означает, что для одновременного использования регулятора тока и напряжения ваше входное напряжение должно быть равно 4.На 5 В выше максимального напряжения, которое вы надеетесь получить.

Однако я не замечаю ни одного места рядом с ожидаемым падением напряжения. Регулятор тока, используемый сам по себе, понижает мой входной сигнал с 16,1 В до 15,1 В. Это падение всего на 1v, в отличие от падения на 3v, которого я ожидал. Стабилизатор напряжения также, кажется, падает ниже указанного 1,5 В, ближе к 1,2 В. Эти цифры должны быть основаны на использовании микросхем LM317 при более высоких значениях тока или напряжения, чем предполагалось при моем тестировании.


Испытательная установка

Ниже представлена ​​моя тестовая установка, которую я использую, пока не буду готов смонтировать все в кейсе.

Как обычно, большая его часть переработана с других устройств. Основание — лоток для бумаги от принтера, а радиаторы извлечены из телевизора, который мы снесли на прошлой неделе.

Ниже приведена схема моей схемы.

Принципиальная схема моего двойного блока питания LM317 с регулируемым током и напряжением. Изображение: Энтони Хартап

В правом верхнем углу у меня есть небольшой вольтметр для измерения входного напряжения от блока питания. Положительный провод от этого идет к контакту Vin на первой микросхеме LM317, регулятору тока (вверху слева).Вывод Vout проходит через резистор (R1) перед тем, как соединиться с регулировочным выводом и присоединиться к выводу Vin второй микросхемы LM317, регулятора напряжения (внизу слева).

Вывод Vout на регуляторе напряжения становится положительным выходным проводом с линейным переходом, который отводится через резистор (VR1) перед соединением с регулировочным выводом. Регулировочный штифт подключается к земле через второй резистор (VR2).

Для своего первого теста я использовал резистор 4,7 Ом 1 Вт для регулятора тока R1.Я использовал резистор 220 Ом 5 ​​Вт для VR1 на регуляторе напряжения и резистор 1 кОм 5 Вт для VR2. Мощность на этих резисторах была немного избыточной, но это как раз то, что у меня было в моем комплекте. Резисторов на один ватт было бы достаточно.

Используя онлайн-калькулятор, о котором я упоминал ранее, я ожидал выхода 7,2 В при 260 мА, и это было почти то, что я получил.

Надеюсь, вы можете увидеть небольшой вольтметр на изображении выше, показывающий входную мощность 12 В. Желтый мультиметр показывает выходное напряжение 7.18в. Это неплохая первая попытка!

Переключение мультиметра на отображение тока произвело на меня еще большее впечатление. 260ma, как раз то, на что я надеялся. Это была именно та установка, которую я искал.

Выходное напряжение осталось прежним. Теперь у меня было гораздо больше уверенности в этих крошечных волшебных чипах, но я не был полностью уверен. В конце концов, эта установка на самом деле еще ничего не приводила в действие.

Я снял мультиметр и подключил контроллер мотора к моей выходной мощности.К этому я подключил блок сканера от принтера, который мы недавно снесли. Я подключил микроконтроллер Arduino Uno к контроллеру мотора и включил его. Головка сканера переместилась влево, но остановилась при попытке изменить направление.

Раньше я запускал это устройство с помощью настенного кабеля 7,5 В от маршрутизатора, поэтому я знал, что шаговый двигатель может работать при таком напряжении. Этот настенный кабель был больше похож на 700 мА, чем на 260 мА, на которые рассчитывала моя новая поставка. Очевидно, проблема была в токе.

Я вернулся к калькулятору и заменил резистор 4,7 Ом на регуляторе тока резистором 2,7 Ом, который у меня был под рукой. На этот раз я ожидал 460 мА.

Мультиметр показал ровно 460мА. Я снова проверил блок сканера, и на этот раз шаговый двигатель без усилий повел головку сканера влево, полностью вправо и обратно в центр. Как я и запрограммировал.

С тех пор я изменил значение резистора для R2 на регуляторе напряжения и получил довольно близкое выходное напряжение 9 В и снова 5 В.

Я очень доволен этой настройкой.

Затем мне нужно добавить два конденсатора, один до и один после второго LM317, регулятора напряжения. Кажется, все работает нормально, но кажется, что эти конденсаторы являются рекомендуемым дополнением. Говорят, что они сглаживают мощность, производимую системой. Поскольку в будущем я могу запускать чувствительные устройства, такие как Raspberry Pi, я думаю, что буду осторожнее. Первый конденсатор имеет размер 0,1 мкФ, а второй — 1 мкФ. Я планирую увеличить его до 1 мкФ и 4.7 мкФ, отчасти из-за того, что я люблю избыточное количество, а также из-за того, что в моем комплекте есть конденсаторы такого размера. Я люблю перерабатывать.

Последний тест — переключение с канала 16 В на блоке питания на канал 32 В. Думаю, все будет хорошо, но могу подождать, пока на всякий случай закажу запасную пару LM317. Я бы не хотел его жарить и ждать замены чипсов.

После этого я заменю пару резисторов на поворотные для облегчения настройки. Меня немного беспокоит их номинальная мощность для этой задачи.Похоже, что я не могу найти каких-либо поворотов мощностью более 0,5 Вт, и некоторые из комбинаций напряжения и тока, которые я планирую использовать, могут быть слишком тяжелыми для этих номиналов. В частности, резистор регулятора тока должен быть не менее 1,25 Вт, чтобы использовать ток более 1000 мА, поступающий от калькулятора, о котором я упоминал ранее. Даже ток 500 мА требует резистора 0,65 Вт.

Я буду искать ответ на этот вопрос.

Когда технические детали будут разобраны, я положу устройство целиком в спасенный мною футляр для приставки.Как только мой другой большой блок питания, PowerStation2, будет готов, этот компактный блок будет постоянно жить на моем столе.

Следите за обновлениями в ближайшее время.

Ура

Anth

_____________________________________________


Комментарии

Оставьте комментарий.

К этой статье сейчас нет комментариев.

Оставить комментарий к статье

Все комментарии модерируются вручную, поэтому на их появление может уйти несколько часов.

LM317 Регулируемый регулятор напряжения 1.25-37V / 1.5A

Описание

LM317 — это регулируемый линейный стабилизатор напряжения, который может выдавать 1,25–37 В при токе до 1,5 А с диапазоном входного напряжения 3–40 В.

В ПАКЕТЕ:

  • LM317 Регулируемый регулятор напряжения

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ РЕГУЛИРУЕМОГО РЕГУЛЯТОРА НАПРЯЖЕНИЯ LM317:
  • Линейный регулятор напряжения, регулируемый
  • Диапазон входного напряжения 3-40 В
  • 1.25 — 37В выходное напряжение
  • Постоянный ток 1,5 А с возможностью перенапряжения 2,2 А
  • ТО-220 упаковка

LM317 — самый популярный и один из старейших доступных регулируемых линейных регуляторов. Входное напряжение может составлять от 3 до 40 В, а выходное напряжение — от 1,25 до 37 В с выходным током до 1,5 А. Они имеют встроенное ограничение тока и защиту от перегрева и, как правило, являются довольно надежными устройствами.

LM317 может использоваться для замены ряда различных стабилизаторов постоянного напряжения при использовании в целях прототипирования.Их также можно легко подключить, чтобы сделать простой недорогой регулируемый источник питания для использования в прототипировании. Мы предлагаем простой небольшой модуль, созданный на основе LM317, который можно использовать для той же цели.

Основные операции

LM317 — это трехконтактный стабилизатор с плавающей точкой, не имеющий контакта заземления, как у большинства регуляторов. Это позволяет регулировать потенциально очень высокие напряжения до тех пор, пока не превышается максимальное номинальное напряжение между входом и выходом, равное 40 В.

Вместо контакта заземления он имеет контакт регулировки, который использует цепь резисторного делителя между выходным контактом и землей для установки выходного напряжения.Это могут быть два фиксированных резистора, если требуется фиксированное выходное напряжение, или один из резисторов может быть регулируемым потенциометром, позволяющим регулировать выходной сигнал в определенном диапазоне.

В отличие от типичных регуляторов типа 78XX, LM317 требует минимального тока нагрузки для полного регулирования. Обычно это менее 10 мА, поэтому для большинства приложений это не проблема. На выходе можно разместить небольшой нагрузочный резистор, чтобы гарантировать потребление 10 мА, если возникнет проблема.

Базовая система не обязательно требует байпасных конденсаторов, но если они используются на достаточном расстоянии от источника питания, обеспечивающего входное напряжение, тогда 0.Следует добавить керамический конденсатор входного фильтра 1 мкФ. При желании можно также добавить танталовый конденсатор емкостью 1,0 мкФ или 20 мкФ или больше для улучшения переходной характеристики.

Базовая схема подключения LM317 к регулируемому выходу показана ниже.

Рассеиваемая мощность

Линейные регуляторы имеют меньшую пульсацию на своих выходах по сравнению с преобразователями постоянного тока в постоянный, которые могут использоваться для той же основной цели, но компромисс заключается в том, что линейные регуляторы также имеют тенденцию рассеивать больше тепла в процессе.Причина в том, что линейный регулятор использует на выходе последовательно проходной транзистор для снижения избыточного напряжения.

Рассеиваемая мощность линейного регулятора зависит от разницы между входным напряжением (Vin) и выходным напряжением (Vout), а также от величины тока, потребляемого регулятором. Чем больше разница в напряжении между Vin и Vout, тем выше будет рассеиваемая мощность, что ограничивает ток, который может потребляться от устройства.

Рассеиваемая мощность устройства LM317 легко вычисляется как Рассеиваемая мощность = (Vin — Vout) * Iout .

Если вход LM317 составляет 15 В, а выход настроен на 10 В и обеспечивает ток 1 А, тогда рассеиваемая мощность = (15 В — 10 В) * 1 А = 5 Вт. Корпус LM317 TO-220 должен рассеивать 5 Вт мощности. В обычных условиях устройство может рассеивать около 1–1,25 Вт, прежде чем потребуется радиатор, поэтому в нашем примере здесь устройству определенно потребуется радиатор. Максимальный выходной ток без радиатора в этом случае будет ограничен примерно 250–300 мА, а устройство будет работать в диапазоне 85–95 ° C.

Если вместо этого вы запустили LM317 от входа 12 В, рассеиваемая мощность = (12 В — 10) * 1 А = 2 Вт. Все еще довольно теплый, но гораздо более управляемый, чем 5 Вт. Без радиатора можно было потреблять 500-700 мА.

Как правило, вы всегда хотите использовать как можно более низкое входное напряжение, чтобы минимизировать потери мощности через устройство и максимально увеличить доступный выходной ток.

Примечания:

  1. Язычок LM317 является общим с выходным контактом.
  2. При сильноточных нагрузках или при больших перепадах входного и выходного напряжения устройство может сильно нагреваться, поэтому будьте осторожны при обращении.

Технические характеристики

Максимальные характеристики
V IN Макс. Вход — выход, дифференциальное напряжение 40 В
I O Максимальный выходной ток 1,5 А (номинал)
I МАКС Пиковый импульсный ток (тип.) 2.2A
Эксплуатационные рейтинги
В О Выходное напряжение 1.25В — 37В
V I — V O Отключение напряжения 3,0 В (макс.) 1,75 В (тип.)
Упаковка К-220
Тип корпуса Пластиковый язычок, 3 вывода, сквозное отверстие
Производитель ON Semiconductor
Лист данных LM317

Регулятор напряжения — регулируемый выход, положительный 1.5 А

% PDF-1.4 % 1 0 объект > эндобдж 5 0 obj >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > ручей Acrobat Distiller 19.0 (Windows) BroadVision, Inc.2021-08-06T08: 46: 12 + 02: 002021-08-06T08: 45: 32 + 02: 002021-08-06T08: 46: 12 + 02: 00application / pdf

  • LM317 — Регулятор напряжения — Регулируемый выход, положительный 1,5 A
  • на полу
  • LM317 — это регулируемый трехконтактный стабилизатор положительного напряжения, способный подавать более 1.5 А в диапазоне выходного напряжения от 1,2 В до 37 В. Этот регулятор напряжения исключительно прост в использовании и требует всего два внешних резистора для установки выходного напряжения. Кроме того, в нем используется внутреннее ограничение тока, тепловое отключение и компенсация безопасной зоны, что делает его по существу устойчивым к взрыву.
  • uuid: 69e4f3e1-7e54-4a57-9d2e-c004183e2a66uuid: d7f2f65d-3786-4dc9-9b55-8b01119059da конечный поток эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > ручей H \ WK-7 * dy $} J * j۲% u = DJ} ~} G9 $ 吥% H +; ǖq / «R% -Nƞq 68-zӏsA- г [~ R Q U Z% Ղ /] o] IT $ rBufkLCj 2jǹl ^ 0Zq | $ 2t ^ [\ ŬFh [# 7PljbEY » FlNÔ5P V ~ 5 а K ۉ jЀg5 [: 7sbp`YS8IlG

    LM317 источник постоянного тока | LEDnique

    Источник постоянного тока LM317.

    Регулируемый регулятор напряжения LM317 может использоваться для создания простого источника постоянного тока. Этому устройству более сорока лет, но он до сих пор пользуется большой популярностью у новичков благодаря низкой стоимости, доступности и тысячам практических приложений. Лист данных LM317.

    Постоянный ток

    LM317 регулирует, регулируя выходное напряжение до тех пор, пока оно не станет на 1,25 В выше, чем напряжение на регулировочном штифте. Для источника постоянного тока нам просто нужно добавить резистор, чтобы сбросить 1.25 В при требуемом токе.

    LM317 может выдерживать токи до 1,5 А, но будьте осторожны, чтобы выполнить некоторые расчеты рассеиваемой мощности и использовать теплоотвод, если мощность превышает один или два ватта. (См. «Повышение температуры» ниже.)

    Падение напряжения и запас

    Для того, чтобы LM317 мог правильно регулировать, он должен иметь соответствующее напряжение питания, чтобы учесть сумму падений напряжения в цепи. Это:

    • Минимальное падение напряжения на самом регуляторе.Это указано в таблице как разница между входным и выходным напряжением, \ (V_I — V_O \) = 3 В.
    • Падение напряжения на R1. Это всегда 1,25 В.
    • Падение напряжения на нагрузке. Для светодиодов это будет \ (V_f \ times n \), где \ (V_f \) — прямое падение напряжения каждого светодиода, а \ (n \) — количество последовательных светодиодов.

    Объяснение «запаса по напряжению»

    Функциональная блок-схема LM317.
    1. Генератор опорного тока \ (I_ {adj} \) подает от 50 до 100 мкА через 1.Опорное напряжение 25 В.
    2. Встроенный стабилитрон означает, что входы операционного усилителя не будут выравниваться до тех пор, пока напряжение на выходе не станет на 1,25 В выше регулирующего контакта.
    3. Если выходное напряжение низкое, то входное напряжение инвертирующего операционного усилителя упадет ниже напряжения неинвертирующего входа, а выходное напряжение операционного усилителя возрастет.
    4. Когда (3) поднимается, транзистор Дарлингтона включается…
    5. … включение второго транзистора. Расположение Дарлингтона даст примерно 2 × 0,7 = 1.4 В падения напряжения между входом и выходом из-за прямого напряжения двух переходов база-эмиттер.
    6. Наконец, внутренний резистор считывания тока будет учитывать большую часть оставшейся части падения напряжения. (Операционному усилителю может потребоваться чуть больше 4, 5 и 6.)

    Пример расчета

    Рассчитайте значение R1 для подачи 100 мА на 5 последовательно соединенных синих светодиодов с \ (V_f \) = 3,1 В. Схема будет запитана от источника питания 24 В.

    Сначала резистор: \ (R = \ frac {V_ {REF}} {I} = \ frac {1.25} {0,1} = 12,5 \ \ Omega \).

    Теперь проверьте необходимое входное напряжение:

    \ (V_ {IN \ min} = 3 + 1,25 + 3,1 \ times 5 = 19,75 \ \ mathrm V \) минимум. Наше питание 24 В выше этого, так что все в порядке.

    Нам нужно сделать еще одну вещь: рассчитать мощность, рассеиваемую в LM317. Это будет напряжение на LM317, умноженное на ток:

    \ (P = (V_ {IN} — V_ {OUT}) I = (24 — 19,75) \ times 0,1 = 4,25 \ times 0,1 = 0,425 \ \ mathrm {W} \)

    Повышение температуры

    Тепловая информация LM317.

    Мы воспользуемся простым подходом и воспользуемся параметром \ (R _ {\ theta (JA)} \) LM317, параметром теплового сопротивления перехода к окружающей среде (и будем злоупотреблять им, как об этом говорится в отчете TI по ​​применению SPRA953C). Для пакета KCT TO-220 это 37,9 ° C / Вт. Это приводит к повышению температуры в \ (\) 37,9 \ раз 0,425 = 16,1 ° C. Даже при достаточно высоких температурах окружающей среды температура перехода не будет приближаться к максимуму 125 ° C.

    LM317 Регулируемый источник питания | REUK.co.uk

    В нашей статье Регулятор напряжения LM317 мы представили LM317, который может обеспечивать регулируемое выходное напряжение от 1,2 до 37 В при входном напряжении 3-40 В, при этом выходное напряжение устанавливается просто с помощью пары резисторов.

    В этой статье мы покажем, как эту ИС можно использовать для изготовления регулируемого источника питания путем замены одного из двух резисторов установки напряжения на потенциометр (переменный резистор).

    Регулируемый источник питания с LM317

    На рисунке выше представлена ​​принципиальная схема регулируемого источника питания .Два резистора, используемые для установки выходного напряжения LM317, называются R1 и R2. В этом регулируемом источнике питания R1 имеет фиксированное значение 220 Ом, а R2 — потенциометр 4k7, что означает, что R2 имеет диапазон 0–4700 Ом, который можно выбрать, вращая потенциометр.

    Используя наш калькулятор напряжения LM317 , можно увидеть, что если R1 = 220 и R2 = 0, выходное напряжение составляет 1,26 В, а если R1 = 220 и R2 = 4700, выходное напряжение составляет 28 В. Эти цифры сами по себе не дают полной картины, так как выходное напряжение всегда будет на 2-3 В ниже входного.Поэтому, например, если входное напряжение составляет 15 В, максимально возможное выходное напряжение будет около 12-13 В.

    Сильноточный источник питания с LM317T

    LM317T с правильным радиатором (см. Нашу статью LM317T Heatsinking ) может выдавать максимальный постоянный ток около 1,5 А . Если вам нужен больший ток, тогда схема должна быть расширена, чтобы включить один или несколько силовых транзисторов , чтобы снять большую часть нагрузки с LM317T.

    В нашей статье High Current Voltage Regulator мы показали один способ, которым LM317 может быть соединен с транзистором для подачи больших токов. Замена R2 в этой цепи на потенциометр позволила бы получить регулируемый источник питания с высоким током.

    Альтернативная схема схемы регулируемого сильноточного источника питания показана ниже:

    Здесь регулируемая схема источника питания была изменена с добавлением диода (6a4) и силового транзистора NPN (2N3055).Доступны различные типы 2N3055 (на фото ниже) с разными максимальными номинальными токами.

    Для блоков питания малых и средних размеров обычно можно собрать блок питания с одним силовым транзистором NPN с радиатором. Однако, если требуется сильноточный источник питания , эту схему можно расширить, просто добавив больше транзисторов параллельно первому. Чем больше транзисторов, тем больший ток может подаваться.

    На приведенной выше принципиальной схеме показан регулируемый источник питания с тремя силовыми транзисторами NPN, но для увеличения тока можно добавить еще больше транзисторов.

    Источник питания постоянного тока с использованием LM317

    Источник питания постоянного тока: Обычно мы используем фиксированный стабилизатор напряжения, когда нам нужно фиксировать напряжение для любой цепи. Часто нам нужен источник питания с переменным напряжением для управления напряжением в соответствии с нашим выбором, и здесь нам нужен источник питания с переменным напряжением.LM 317 — лучший выбор для этой цели. Недостатком lm 317 является то, что он может управлять и может использоваться при очень низких значениях тока. В этой статье я объясню, как кто-то может сделать источник переменного тока полной мощности постоянного тока с использованием из с добавлением еще одного транзистора.

    Источник питания переменного напряжения LM317

    LM317 — это полностью регулируемый стабилизатор положительного напряжения, который может управлять 1,5 А с выходным напряжением от 1.От 25 до 30 вольт. Используя соотношение двух сопротивлений, одно из которых имеет фиксированное значение, а другое — переменное или оба фиксированных, мы можем установить выходное напряжение на желаемый уровень. Общий входной сигнал на этот регулятор может составлять от 3 до 30 вольт постоянного тока.

    Регулятор LM 317 для источника питания постоянного тока

    Это тип регуляторов положительно-линейного напряжения, используемых для регулирования напряжения, разработанный Робертом С в 1976 году, когда он работал в National Semiconductor.

    Это трехконтактный регулируемый регулятор напряжения, который прост в использовании, потому что у него всего три клеммы для использования. Он в основном используется для местного и внутреннего регулирования. Если мы используем фиксирующие резисторы с этим регулятором, то его также можно использовать как фиксированный выход, например, 7805,7806,78XX и так далее,

    Источник переменного тока с использованием транзистора 2n3055

    Вышеуказанная схема может управлять постоянным током 1,5 А, но иногда нам нужно управлять большим количеством ампер, чтобы управлять нашими приборами постоянного тока.Чтобы управлять мощными приборами, мы должны использовать мощный источник питания, поэтому теперь мы преобразуем наш источник питания в источник питания с помощью другого транзистора 2n3055, он может управлять постоянным током 15 А в диапазоне 60 94a5c.

    Альтернативная схема показана выше для регулируемого источника питания с LM317 и параллельно соединенными силовыми транзисторами NPN. Насколько мне известно, он может контролировать 15 ампер, и если кому-то нужно больше усилителей, ниже также приводится другая схема.

    В этой схеме используется двойной усилитель, и поэтому вы можете управлять большим количеством усилителей с помощью этой схемы. Если вы обнаружите какие-либо ошибки в этой схеме, пожалуйста, поделитесь со мной своими знаниями, я буду очень доволен вами.

    Я сделал первую схему с одним транзистором (2n3055), которая работает очень идеально, но когда я использовал ее с двумя транзисторами, она не работала. В чем проблема, я не понял, если какой-либо эксперт прочитает мой пост, пожалуйста, объясните мне и моим зрителям?

    Статьи по теме .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *