Site Loader

Основные свойства электрического заряда — fiziku5.ru

Основные свойства электрического заряда:

1.  Заряд инвариантен – его величина одинакова при измерении в любой инерциальной системе отсчёта.

2.  Заряд сохраняется – суммарный заряд изолированной систе-мы тел не изменяется.

3.  Заряд аддитивен – заряд системы тел равен сумме зарядов отдельных тел.

4.  Заряд дискретен – заряд любого тела по величине кратен ми-нимальному заряду, который обозначается символом e и ра —

вен 1,6 10 19 Кл.

12

5.  Существуют заряды двух разных «сортов». Заряды одного «сорта» названы положительными, а другого «сорта» – отрицательными. Одноимённые заряды отталкиваются, а раз-ноимённые – притягиваются.

Если вблизи одной заряженной частицы (заряда q1 ), располо-

женной в начале координат, будет находиться вторая заряженная час-тица (заряд q2 ), то на второй заряд будет действовать электрическая

(кулоновская) F , определяемая законом Кулона:

F 4 q1q2r 2 er ,

0

где r – радиус-вектор точки наблюдения;

er – единичный радиус-вектор, направленный в точку наблюде-ния;

0 – электрическая постоянная; – диэлектрическая проницаемость среды (в вакууме 1).

Напряжённость электрического поля – характеристика силового действия электрического поля на заряд. Напряжённость электриче-ского поля, создаваемого зарядом q1 , есть векторная величина, обо-

значаемая символом E(q1 ) и определяемая соотношением:

F

,

E(q )

1

q2

где

– сила, действующая на заряд q2 .

F

Силовые линии или линии напряжённости – линии, в любой точке которых вектор напряжённости электрического поля направлен по касательной к ним.

Электрическое поле подчиняется принципу суперпозиции: на-пряжённость электрического поля нескольких источников является суммой векторов напряжённости поля, создаваемого независимо каж-дым источником:

E Ei .

i

Потоком электрического поля называется интеграл по некото-рой поверхности S от скалярного произведения напряжённости элек-трического поля на элемент поверхности:

ФЕ EdS ,

S

где вектор dS направлен по нормали к поверхности.

13

плечо диполя).

Дипольный (электрический) момент есть произведение

Закон Гаусса для электрического поля: поток электрического поля через замкнутую поверхность S0 пропорционален суммарному

заряду, расположенному внутри объёма, ограниченного поверхно-стью интегрирования потока

V (S0 ) :

Линии напряжённости электрического поля точечного заряда представляют собой прямые линии, идущие от заряда (положительно-го) или к заряду.

Потенциалом данной точки r электрического поля называется скалярная величина, численно равная работе сил поля по перемеще-нию единичного положительного заряда из данной точки в другую

фиксированную точку r0 , в которой потенциал принят за 0 (напри-мер, в бесконечность):

(r ) Edr .

r

Уравнение, выражающее напряжённость через потенциал:

E grad( ) , где оператор градиента grad

;

;

.

x

y

z

Диполь есть два одинаковых по величине, но противоположных по знаку точечных заряда q , расположенных на расстоянии L ( L

| pe | qL .

Вектор дипольного момента направлен от отрицательного к положи-тельному заряду.

На линии, проходящей через центр диполя, перпендикулярно электрическому моменту диполя и на большом расстоянии r от его центра напряжённость равна:

Методика и порядок измерений

Рассмотрите рисунок 2.1 и зарисуйте необходимое в конспект.

14

Рис. 2.1. Взаимодействие зарядов

Эксперимент 1. Исследование поля точечного заряда

1. Запустите эксперимент «Взаимодействие электрических заря-

дов».

2. Зацепив мышью, перемещайте заряд q1 и зафиксируйте его

вблизи левой границы экспериментального поля. Зацепив мышью, перемещайте движок регулятора величины первого заряда и устано-вите величину заряда q1 , указанную в таблице 2.1, для вашей брига-

ды. Заряд q3 поместите под первым, а его величину установите рав-ной 0. Заряд q2 установите равным 10-8 Кл.

3. Перемещайте, нажав левую кнопку мыши, заряд q2 вправо, устанавливая расстояния r12 до первого заряда, указанные в табли-

це 2.1. Измеренные в данных точках значения E1

F12 / q2 занесите в

соответствующую строку таблицы 2.2.

Таблица 2.1

Значения величины заряда q 10 8

Кл (не перерисовывать)

1

Бригада

q1, Кл

1 и 5

4

6

8

10

2 и 6

4

5

9

10

3 и 7

-4

-5

-7

-9

4 и 8

-4

-6

-8

-10

15

1. Электрический заряд и его свойства. Закон Кулона

Электрический заряд – физическая величина, определяющая интенсивность электрических взаимодействий. Электрический заряд –фундаментальное свойство материи. Заряд – инвариантная величина, т.е. не зависит от скорости движения заряженного тела.

Положительные и отрицательные заряды по-разному проявляют себя в парном взаимодействии: тела, обладающие зарядами одного типа, отталкиваются друг от друга, а тела, обладающие зарядами разных типов, притягиваются друг к другу.

Поскольку электрический заряд – это мера воздействия на тело других заряженных тел или электрических полей, то он всегда связан с определенным телом или частицей. Электрический заряд дискретен, т.е. существует минимальная величина электрического заряда (элементарный заряд), а электрический заряд любого тела может быть представлен как алгебраическая сумма целого числа элементарных зарядов. Элементарный положительный заряд – это заряд протона, элементарный отрицательный заряд – это заряд электрона (в дальнейшем будем обозначать их р и е соответственно).

Для количественного измерения электрических зарядов в СИ существует единица измерения, называемая кулон (обозначается Кл). 1 кулон – это электрический заряд, переносимый через поперечное сечение проводника за 1 с при силе тока в проводнике, равной 1 ампер.

В результате точных электрических измерений было установлено, что Кл,.

Система тел или частиц называется электрически изолированной, если между ней и внешними телами нет обмена электрическими зарядами (заряженными частицами). В такой системе могут образовываться новые электрически заряженные частицы, например, электроны при ионизации атомов и молекул. Однако всегда при этом рождаются частицы, заряды которых противоположны по знаку и в сумме равны нулю. Для электрически изолированной системы тел справедлив фундаментальный закон физики –

закон сохранения электрического заряда: алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

Силы взаимодействия неподвижных электрических зарядов подчиняются основному закону электростатического взаимодействия, который был экспериментально установлен Г. Кавендишем в 1773 г. Впервые этот закон был опубликован в 1785 г. Ш. Кулоном, который исследовал взаимодействие заряженных маленьких шариков с помощью крутильных весов. Такие шарики в опыте Кулона можно было считать материальными точками. Назовем электри-чески заряженную материальную точку

точечным электрическим зарядом.

Закон Кулона утверждает, что сила электростатического взаимодействия двух неподвижных точечных электрических зарядов, находящихся в вакууме, прямо пропорциональна произведению этих зарядов, обратно пропорциональна квадрату расстояния между зарядами и направлена вдоль соединяющей их прямой (рис.1.1):

, , (1.1)

где – сила, действующая на зарядсо стороны заряда;–радиус-вектор, соединяющий зарядс зарядом;;k – коэффициент пропорциональности; – сила, действующая на зарядсо стороны заряда;– радиус-вектор, соединяющий зарядс зарядом. Из (1.1) следует, чтопри(рис.1.1,а) – одноименно заряженные тела отталкиваются. При (рис.1.1,б) – разноименно заряженные тела притягиваются.

Коэффициент пропорциональности k в формуле (1.1) зависит от выбора системы единиц. В СИ принимается, что

Нм2Кл–2, (1.2)

где – коэффициент, определяемый из экспериментальных данных, называемыйэлектрической постоянной:

Кл2Н–1м–2. (1.3)

Электрическое поле, создаваемое заряженными телами, неподвижными относительно инерциальных систем отсчета, называется электростатическим полем.

Элеком37, Электрический заряд и его свойства, физика.

Электрический заряд и его свойства.


Электрический заряд это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q. В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10–6 Кл), нанокулонами (1 нКл = 10–9 Кл) и пикокулонами (1 пКл = 10–12 Кл).

Электрический заряд обладает следующими свойствами:.

1. Электрический заряд является видом материи.
2. Электрический заряд не зависит от движения частицы и от ее скорости.
3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.
4. Существует два рода электрических зарядов, условно названных положительными и отрицательными.
5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.
6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом. Его значение:

e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

Электрический заряд любого тела всегда кратен элементарному заряду:

где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е; 1,7е; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.

7. Закон сохранения электрического заряда. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q1 и q2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит.

Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

где: L – длина нити. Измеряется в Кл/м.

2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

где: S – площадь поверхности тела. Измеряется в Кл/м2.

3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

где: V – объем тела. Измеряется в Кл/м3.

Обратите внимание на то, что масса электрона равна:

me = 9,11∙10–31 кг.



Электрический заряд и его свойства. Электрическое поле и его характеристики. Закон Кулона. Электрическое поле точечного заряда. Принцип суперпозиции

Электростатика.

Электростатика – это учение о свойствах и взаимодействии электрических зарядов, неподвижных по отношению к избранной инерциальной системе отсчёта.

 

Закон сохранения электрического заряда. Проводники, диэлектрики, полупроводники.

Существуют два типа заряда: положительный и отрицательный. Опытным путём было установлено, что элементарный заряд дискретен, то есть заряд любого тела составляет целое, кратное от некоторого электрического заряда. Электрон и протон являются носителями элементарных отрицательного и положительного зарядов. Из обобщённых опытных данных был установлен фундаментальный закон природы, впервые сформулированный английским физиком Фарадеем.

Закон сохранения электрического заряда: алгебраическая сумма электрических зарядов любой замкнутой системы остаётся неизменной, какие бы процессы не проходили внутри этой системы.

Система называется замкнутой, если она не обменивается электрическими зарядами с внешними телами.

Электрический заряд – величина релятивистская, инвариантная, то есть не зависит от выбранной системы отсчёта. А значит, не зависит от того, движется этот заряд или покоится.

Наличие носителя заряда (электронов и ионов) является условием того, что тело проводит электрический ток. В зависимости от способности проводить электрический ток, тела делятся на:

— проводники

— диэлектрики

— полупроводники.

Проводники – тела, в которых электрический заряд может перемещаться по всему его объёму. Проводники делятся на две группы:

1) проводники первого рода (металлы) – перенос в них электрических зарядов (свободных электронов) не сопровождается химическими превращениями;

2) проводники второго рода (расплавы солей, растворы солей и кислот и другие) – перенос в них зарядов (положительно и отрицательно заряженных ионов) ведёт к химическим изменениям.

Диэлектрики (стекло, пластмасса) – тела, которые не проводят электрический ток, если к этим телам не приложено сильное внешнее электрическое поле; в них практически отсутствуют свободные заряды.



Полупроводники(германий, кремний) – занимают промежуточное положение между проводниками и диэлектриками. Их проводимость сильно зависит от внешних условий (температура, ионизирующее излучение и т.д.).

Единица электрического заряда – Кулон (Кл) – электрический заряд, проходящий через поперечное сечение проводника при токе в 1 ампер за время 1 секунда.

 

Электрический заряд и его свойства. Электрическое поле и его характеристики. Закон Кулона. Электрическое поле точечного заряда. Принцип суперпозиции.

Электрическим зарядом называется величина, характеризующая взаимодействия между частицами и телами посредством электрических и магнитных полей (электромагнитное взаимодействие).

Особенностью электромагнитных взаимодействий является то, что они являются более интенсивными, чем гравитационные. Они занимают второе место (после ядерных сил) по взаимодействию.

1 – ядерные взаимодействия 1

2 – электромагнитные взаимодействия 0,1

3 – слабо ядерные взаимодействия

4 – гравитационные взаимодействия

Электрический заряд является неотъемлемым свойством элементарных частиц. Все элементарные частицы являются носителями положительного или отрицательного электрических зарядов. Кл. Заряд любого тела обусловлен суммой электрических зарядов, входящих в него.

Появление зарядов у тел происходит в результате взаимодействия тел между собой или со средой (передача электрических зарядов от заряженных тел – электризация; передача электрических зарядов между разнородными телами, при этом они заряжаются положительно или отрицательно; передача электрических зарядов на расстояние – электрическая индукция).

В замкнутой системе суммарный заряд не изменяется входе любых химических и физических процессов.

Электрический заряд – инвариантная физическая характеристика (не зависит от выбора системы отсчёта).

Взаимодействие электрических зарядов осуществляется посредством электромагнитных полей. Движущиеся электрические заряды создают в пространстве электрические и магнитные поля, что приводит к возникновению электрических и магнитных сил и взаимодействий (Кулоновские силы и силы Лоренца). Наиболее простое взаимодействие осуществляется для неподвижных по отношению друг к другу – статическое взаимодействие.

Поля, которые создают заряды – электростатические. Характеристиками электростатических полей являются напряжённость и потенциал.

Напряжённость электростатического поля – величина, равная отношению силы, действующей на пробный заряд, помещённый в другую точку поля к величине этого заряда.

, где — пробный заряд.

Потенциалом называется величина, равная отношению потенциальной энергии пробного заряда, помещённого в данную точку поля к величине этого заряда.

Реферат

На тему Електростатистика

 

Підготовив Учень

Групи ТМ-11

Бора В.В

Перевірила; Данку Габріела С

 

 

Электрический заряд — это… Что такое Электрический заряд?

Электри́ческий заря́д — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9·109H, т.е. с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн.

История

Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.

Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным». Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда

Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) — численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6·10−19Кл[1] в системе СИ или 4,8·10−10 ед. СГСЭ[2]. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11·10−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон[3]. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67·10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени ее жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

Взаимодействие зарядов: одноименно заряженные тела отталкиваются, разноименно — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Электрический заряд замкнутой системы[5] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолированна, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения заряда — один из основополагающих законов физики. Закон сохранения заряда был впервые экспериментально подтверждён в 1843 году великим английским ученым Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — это тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.

Измерение

Простейший электроскоп

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стрежнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

См. также

Литература

  • М. Ю. Хлопов. Заряд // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. — М.: Советская энциклопедия, 1988—1998.

Примечания

  1. Или, более точно, 1,602176487(40)·10−19 Кл.
  2. Или, более точно, 4,803250(21)·10−10 ед СГСЭ.
  3. Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

Электрический заряд и его свойства

К оглавлению…

Электрический заряд – это физическая величина, характеризующая способность частиц или тел вступать в электромагнитные взаимодействия. Электрический заряд обычно обозначается буквами q или Q. В системе СИ электрический заряд измеряется в Кулонах (Кл). Свободный заряд в 1 Кл – это гигантская величина заряда, практически не встречающаяся в природе. Как правило, Вам придется иметь дело с микрокулонами (1 мкКл = 10–6 Кл), нанокулонами (1 нКл = 10–9 Кл) и пикокулонами (1 пКл = 10–12 Кл). Электрический заряд обладает следующими свойствами:

1. Электрический заряд является видом материи.

2. Электрический заряд не зависит от движения частицы и от ее скорости.

3. Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

4. Существует два рода электрических зарядов, условно названных положительными и отрицательными.

5. Все заряды взаимодействуют друг с другом. При этом одноименные заряды отталкиваются, разноименные – притягиваются. Силы взаимодействия зарядов являются центральными, то есть лежат на прямой, соединяющей центры зарядов.

6. Существует минимально возможный (по модулю) электрический заряд, называемый элементарным зарядом. Его значение:

e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

Электрический заряд любого тела всегда кратен элементарному заряду:

где: N – целое число. Обратите внимание, невозможно существование заряда, равного 0,5е; 1,7е; 22,7е и так далее. Физические величины, которые могут принимать только дискретный (не непрерывный) ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда.



7. Закон сохранения электрического заряда. В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Из закона сохранения заряда так же следует, если два тела одного размера и формы, обладающие зарядами q1 и q2 (совершенно не важно какого знака заряды), привести в соприкосновение, а затем обратно развести, то заряд каждого из тел станет равным:

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроныи нейтральные частицы – нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному (то есть минимально возможному) заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов, или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион. Обратите внимание, что положительные протоны входят в состав ядра атома, поэтому их число может изменяться только при ядерных реакциях. Очевидно, что при электризации тел ядерных реакций не происходит. Поэтому в любых электрических явлениях число протонов не меняется, изменяется только число электронов. Так, сообщение телу отрицательного заряда означает передачу ему лишних электронов. А сообщение положительного заряда, вопреки частой ошибке, означает не добавление протонов, а отнимание электронов. Заряд может передаваться от одного тела к другому только порциями, содержащими целое число электронов.

Иногда в задачах электрический заряд распределен по некоторому телу. Для описания этого распределения вводятся следующие величины:

1. Линейная плотность заряда. Используется для описания распределения заряда по нити:

где: L – длина нити. Измеряется в Кл/м.

2. Поверхностная плотность заряда. Используется для описания распределения заряда по поверхности тела:

где: S – площадь поверхности тела. Измеряется в Кл/м2.

3. Объемная плотность заряда. Используется для описания распределения заряда по объему тела:

где: V – объем тела. Измеряется в Кл/м3.

Обратите внимание на то, что масса электрона равна:

me = 9,11∙10–31 кг.

 

Закон Кулона

К оглавлению…

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь. На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных точечных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

где: ε – диэлектрическая проницаемость среды – безразмерная физическая величина, показывающая, во сколько раз сила электростатического взаимодействия в данной среде будет меньше, чем в вакууме (то есть во сколько раз среда ослабляет взаимодействие). Здесь k – коэффициент в законе Кулона, величина, определяющая численное значение силы взаимодействия зарядов. В системе СИ его значение принимается равным:

k = 9∙109 м/Ф.

Силы взаимодействия точечных неподвижных зарядов подчиняются третьему закону Ньютона, и являются силами отталкивания друг от друга при одинаковых знаках зарядов и силами притяжения друг к другу при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называютэлектростатикой.

Закон Кулона справедлив для точечных заряженных тел, равномерно заряженных сфер и шаров. В этом случае за расстояния r берут расстояние между центрами сфер или шаров. На практике закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними. Коэффициент k в системе СИ иногда записывают в виде:

где: ε0 = 8,85∙10–12 Ф/м – электрическая постоянная.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Запомните также два важных определения:

Проводники – вещества, содержащие свободные носители электрического заряда. Внутри проводника возможно свободное движение электронов – носителей заряда (по проводникам может протекать электрический ток). К проводникам относятся металлы, растворы и расплавы электролитов, ионизированные газы, плазма.

Диэлектрики (изоляторы) – вещества, в которых нет свободных носителей заряда. Свободное движение электронов внутри диэлектриков невозможно (по ним не может протекать электрический ток). Именно диэлектрики обладают некоторой не равной единице диэлектрической проницаемостью ε.

Для диэлектрической проницаемости вещества верно следующее (о том, что такое электрическое поле чуть ниже):

 


Лекция 12. Электростатическое поле

[1] гл. 11, §77-79,81,82

План лекции

  1. Электрические заряды, их свойства и классификация. Закон Кулона.

  2. Напряженность электростатического поля. Принцип суперпозиции электрических полей. Поток вектора .

  3. Теорема Гаусса для потока вектора и ее применение для расчета полей протяженных зарядов в вакууме.

  1. Электрические заряды, их свойства и классификация. Закон Кулона.

Электрический заряд — физическая величина, характеризующая интенсивность электромагнитного взаимодействия тел. Сам по себе электрический заряд не существует, его носителем может быть только частица вещества.

Основные свойства

  1. Двойственность: в природе существуют заряды двух знаков, одноименные отталкиваются, разноименные притягиваются. В связи с этим заряды условного разделены на положительные и отрицательные.

Положительным назван заряд, которым обладает стеклянная палочка, потертая о шелк или бумагу.

Отрицательный — заряд, которым обладает янтарная или эбонитовая палочка, потертая о мех или шерсть.

  1. Квантование: если физическая величина принимает только определенные дискретные значения, говорят, что она квантуется (дискретна). Опыт показывает, что любой электрический заряд квантуется, т.е. состоит из целого числа элементарных зарядов.

,

где =1,2,…целое число; e =1,6·10-19Кл — элементарный заряд.

Наименьшим (элементарным ) отрицательным зарядом обладает электрон, положительным — протон.

[q]=1Кл

1 кулон — заряд, проходящий через поперечное сечение проводника за одну секунду, когда по проводнику идет постоянный ток силой один ампер.

  1. Сохранение заряда.

Электрические заряды могут исчезать и возникать вновь только парами. В каждой такой паре заряды равны по величине и противоположны по знаку. Например, электрон и позитрон при встрече аннигилируют, т.е. превращаются в нейтральные — фотоны, при этом исчезают заряды –e и +e. В ходе процесса, называемого рождением пары,  — фотон, попадая в поле атомного ядра, превращается в пару частиц электрон и позитрон, при этом возникают заряды +e и –e.

Закон сохранения заряда: в изолированной системе алгебраическая сумма зарядов остается постоянной величиной при всех изменениях внутри системы.

Изолированной называется система тел, которая не обменивается зарядами с внешней средой.

  1. Инвариантность заряда к различным инерциальным системам отсчета.

Опыт показывает, что величина заряда не зависит от скорости движения заряженного тела. Один и тот же заряд, измеренный в разных инерциальных системах отчета, одинаков.

  1. Аддитивность.

Классификация зарядов.

В зависимости от размеров заряженного тела заряды делят на точечные и протяженные.

  • Точечными зарядом называют заряженное тело, размерами которого можно пренебречь в условиях данной задачи.

  • Протяженным называется заряд тела, размерами которого в условиях данной задачи пренебречь нельзя. Протяженные заряды делятся на линейные, поверхностные и объемные.

По способности смещаться относительно положения равновесия под действием внешнего эл. поля заряды условно делят на свободные, связанные и сторонние.

Свободными называют заряды, способные свободно перемещаться в теле под действием внешнего эл. поля.

Связанными называют заряды, входящие в состав молекул диэлектриков, которые под действие эл. поля могут лишь смещаться из своего положения равновесия, но покинуть молекулу не могут.

Сторонними называются заряды, находящиеся на диэлектрике, но не входящие в состав его молекул.

Закон, которому подчиняется сила взаимодействия точечных зарядов, был установлен экспериментально в 1785г. Кулоном.

Закон Кулона сила взаимодействия двух неподвижных точечных зарядов прямо пропорциональна зарядам, обратно пропорциональна квадрату расстояния между ними, направлена вдоль прямой, соединяющей заряды, и зависит от среды, в которой они находятся.

где q1,q2— величины зарядов; r — расстояние между зарядами;

=8,85·10-12 Кл2/(Н·м2) — электрическая постоянная,

 — диэлектрическая проницаемость среды.

диэлектрическая проницаемость вещества показывает, во сколько раз сила взаимодействия зарядов в данном диэлектрике меньше, чем в вакууме, вакуума=1, — безразмерная величина.

Объясним причину этого ослабления, для чего рассмотрим заряженный шарик, окруженный диэлектриком. Поле шарика ориентирует молекулы диэлектрика, и на поверхности диэлектрика, примыкающей к шарику, появляются отрицательные связанные заряды.

Поле в любой точке диэлектрика будут создавать две противоположно заряженные сферы: поверхность шарика, заряженная положительно, и примыкающая к ней отрицательно заряженная поверхность диэлектрика, при этом из поля свободных зарядов вычитается поле связанных зарядов, и суммарное поле будет более слабым, чем поле одного шара.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.