Site Loader

трёхфазный переменный ток, линейные и фазные токи и напряжения

Система трёх синусоидальных токов, изменяющихся во времени и имеющих сдвиг по фазе, называется трёхфазным переменным током. При помощи этой системы создаются удобные и экономичные электродвигатели, производится передача электроэнергии на дальние расстояния, снижается материалоёмкость трансформаторов и силовых кабелей. На трёхфазном токе основана работа всех крупных электростанций и потребителей электроэнергии.

  • Историческая справка
  • Устройство генератора
  • Соединение обмоток электрической машины
  • Преимущества трёхфазных систем

Историческая справка

Трёхфазный ток — это частный случай многофазного тока. Впервые двухфазный ток был получен известным изобретателем Николой Теслой. Большой вклад в формирование трёхфазных систем внёс русский учёный М. О. Доливо-Добровольский. Он использовал трёх- и четырёхпроводную системы передачи переменного тока и на её основе построил асинхронный двигатель.

Главной особенностью его изобретения стал короткозамкнутый ротор типа «беличье колесо», который применяется в асинхронных электродвигателях и сейчас. Ещё одним достижением изобретателя была линия электропередачи, построенная им с использованием генератора и трансформаторов трёхфазного переменного тока. Длина линии составляла 170 км, что было огромным шагом вперёд для конца XIX века.

Устройство генератора

Трёхфазной системой считают состоящую из трёх электрических цепей конструкцию, в которой вырабатываются электродвижущие силы (ЭДС) одной и той же частоты, смещённые друг относительно друга на 120°. Синхронная электрическая машина большой мощности используется в качестве генератора. Она превращает механическую энергию вращения в электрическую. В пазах статора размещаются три обмотки, в которых индуцируются ЭДС, равные по амплитуде и отличающиеся по фазе на 1/3 периода.

Каждая обмотка (фаза) является самостоятельным источником электрической энергии. Ротор, выполненный в виде постоянного магнита, приводится во вращение электродвигателем. Магнитное поле вращающегося ротора индуцирует ЭДС в обмотках статора. Если присоединить к концам каждой обмотки провода, то получатся три независимые сети. В системе будет шесть проводов и никакого выигрыша по сравнению с тремя отдельными генераторами не происходит.

В современных трёхфазных сетях обычно используется три или четыре провода в зависимости от схемы подключения.

Соединение обмоток электрической машины

Обмотки генератора и нагрузок соединяются по схемам звезда или треугольник. При соединении в звезду образуется общая нулевая точка из связанных между собой концов обмоток, а к началам обмоток присоединяются линейные провода. Нейтрали или нулевые точки генератора и нагрузки связываются нулевым проводом. Напряжение, создающееся между линейным проводом и нулевым, называется фазным, а между двумя линейными проводами — линейным.

Нулевой провод предназначен для выравнивания напряжения на всех фазах при несимметричной нагрузке. Сила тока, протекающего в этом проводе меньше, чем в линейных проводах, что даёт возможность выбрать проводник меньшего сечения. Зависимости для линейных и фазных токов и напряжений при соединении звездой имеют вид: Iл = Iф, Uл = √3 Uф ≈ 1,73 Uф.

При выполнении схемы треугольник конец каждой обмотки соединяется с началом следующей. Для этой схемы используется три провода, ведущих от генератора к нагрузке. Соотношение между токами и напряжениями, линейным и фазным, равно: Uл = Uф, Iл = √3 Iф.

Обмотки генератора чаще соединяют по схеме звезда. При соединении треугольником каждая фаза должна рассчитываться на напряжение в 1,73 раза больше, чем при соединении звездой. Это влечёт за собой усиление изоляции обмоток, увеличение количества витков и удорожание машин.

В распределительных сетях, где присутствует много однофазных потребителей, обеспечение симметричной нагрузки на фазы становится невозможным. Такие сети исполняются четырехпроводными с нулевым проводником.

Проводники, принадлежащие различным фазам и нейтральные, имеют разные цвета. Это делается в целях обеспечения безопасности при электромонтажных работах и для удобства при ремонте и монтаже электрических сетей. В России нейтральный проводник обычно делается голубым, первая фаза — жёлтой, вторая — зелёной, третья — красной.

Выбор способа подключения для потребителя зависит от следующих характеристик:

  • номинального напряжения потребителей электрической энергии;
  • характера нагрузки;
  • подаваемого трёхфазного напряжения.

При практическом применении 3-фазных сетей важно помнить, что при подключении звездой на нагрузки действует фазное напряжение, а при подключении треугольником — линейное напряжение, которое в 1,73 раза больше, чем фазное.

Преимущества трёхфазных систем

Эти системы используются в промышленности, на транспорте, для электроснабжения жилых помещений. Такое широкое применение объясняется большими преимуществами, которые даёт эта система по сравнению с однофазной системой электроснабжения:

  • Требуется меньшее количество проводов, что даёт большую экономию при передаче электроэнергии на дальние расстояния.
  • Трёхфазные трансформаторы имеют меньшие размеры магнитопровода по сравнению с однофазными такой же мощности.
  • При работе создаётся вращающееся магнитное поле, необходимое для работы асинхронных двигателей.
  • Возможность использования двух рабочих напряжений.
  • Уравновешенность симметричных трёхфазных систем.

Распространение трёхфазных систем помогло решению многих задач электроснабжения, развитию передающих мощностей и совершенствованию технологических процессов. Использование трёхфазных трансформаторов, генераторов и электродвигателей значительно упростило и удешевило процесс генерации энергии и повысило доступность её для потребителей.

Что такое трехфазный ток

Трехфазная система переменного тока широко распространена и применяется во всем мире. При помощи трехфазной системы обеспечиваются оптимальные условия для передачи по проводам электроэнергии на большие расстояния, возможность для создания простых по устройству и удобных в эксплуатации электродвигателей.

Содержание

Трехфазная система переменного тока

Называется система, состоящая из трех цепей с действующими электродвижущими силами (ЭДС) одинаковой частоты. Эти ЭДС сдвинуты относительно друг друга по фазе на одну треть. Каждая отдельная цепь в системе называется фазой. Вся система трех переменных токов, сдвинутых по фазе, и называется трехфазным током.

Практически все генераторы, которые установлены на электростанциях – это генераторы трехфазного тока. В конструкции соединены в одном агрегате три генератора переменного тока. Электродвижущие силы, индуцированные в них, как сказано ранее, сдвинуты на одну треть периода относительно друг друга.

Как же осуществляется работа генератора

В генераторе трехфазного тока есть три отдельных якоря, располагающихся на статоре устройства. Они имеют смещение на 1200 между собой. В центре устройства вращается индуктор, общий для трех якорей. Переменная ЭДС одинаковой частоты индуцируется в каждой катушке. Однако, моменты прохождения этих электродвижущих сил через нуль в каждой из этих катушек оказываются сдвинуты на 1/3 периода, так как индуктор проходит возле каждой катушки на 1/3 времени позднее, чем предыдущей.

Все обмотки являются самостоятельными генераторами тока и источниками электроэнергии. Если присоединить провода к концам каждой обмотки, то получаются три независимые цепи. В данном случае, чтобы передать всю электроэнергию потребуется шесть проводов. Однако при других соединениях обмоток между собой вполне можно обойтись 3-4 проводами, что дает большую экономию провода.

Соединение – звездой

Концы всех обмоток соединяются в одной точке генератора, так называемой нулевой точке. Затем производится соединение с потребителями, используя четыре провода: три – линейные провода, которые идут от начала обмоток 1, 2, 3, один – нулевой (нейтральный) провод, идущий от нулевой точки генератора. Такую систему называют еще четырехпроводной.

Соединение треугольником

В этом случае конец предыдущей обмотки соединяется с началом последующей, образуя, тем самым треугольник. Линейные провода соединяются с вершинами треугольника – точками 1, 2, 3. При таком подключении фазное и линейное напряжения совпадают. В сравнении с подключением звездой, подключение треугольником снижает линейное напряжение примерно в 1,73 раза. Оно допускается лишь при условии одинаковой нагрузки фаз, иначе сила тока в обмотках может увеличиться, что представляет опасность для генератора.

Соединение типа звезда и треугольник для электродвигателей при помощи колодки для электродвигателей

Чем отличается фазное напряжение или ток, от линейного

Система запуска асинхронного двигателя: устройство и принцип работы, схема,

Как проверить электродвигатель мультиметром: проверка ротора и статора на межвитковое замыкание, прозвонка асинхронного и трехфазного двигателя

Мультиметр: назначение, виды, обозначение, маркировка, что можно измерить мультиметром

Подключение электродвигателя: схемы, проверка, видео

Трехфазный ток — простой расчет

К Стивен Макфадьен on

Расчет тока в трехфазной системе был поднят на нашем сайте и является дискуссией, в которую я, кажется, участвую время от времени. В то время как некоторые коллеги предпочитают запоминать формулы или коэффициенты, я предпочитаю решать задачу шаг за шагом, используя базовые принципы. Я подумал, что было бы хорошо написать, как я делаю эти вычисления. Надеюсь, это может оказаться полезным для кого-то еще.

 

Трехфазная мощность и ток

Мощность, потребляемая цепью (однофазной или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока представляет собой полную мощность и измеряется в ВА (или кВА). Соотношение между кВА и кВт представляет собой коэффициент мощности (pf):


что также может быть выражено как:

Однофазная система — с этим проще всего иметь дело. Учитывая мощность в кВт и коэффициент мощности, можно легко вычислить кВА.

Ток — это просто кВА, деленное на напряжение. В качестве примера рассмотрим нагрузку, потребляющую мощность 23 кВт при напряжении 230 В и коэффициенте мощности 0,86:9.0008


 

Примечание: вы можете выполнить эти уравнения либо в ВА, В и А, либо в кВА, кВ и кА, в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

Трехфазная система — Основное различие между трехфазной и однофазной системами заключается в напряжении. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные:


или альтернативно как:

чтобы лучше понять это или получить больше информации, вы можете прочитать сообщение «Введение в трехфазную электроэнергию»

.

Для меня самый простой способ решения трехфазных задач — преобразовать их в однофазные задачи. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную мощность кВт. кВт на обмотку (однофазную) нужно разделить на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), вырабатывающий заданное количество кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную проблему в однофазную, возьмите общее количество кВт (или кВА) и разделите на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и линейном напряжении 400 В (V LL ):

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу

Достаточно просто. Чтобы найти мощность при заданном токе, умножьте ее на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в Вт.

Для трехфазной системы умножьте ее на три, чтобы получить общую мощность.

Личная заметка о методе

Как правило, я запоминаю метод (не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или не уверен, правильно ли я их запоминаю. Я бы посоветовал всегда помнить метод, а не просто запоминать формулу. Конечно, если у вас есть какие-то сверхспособности к запоминанию формулы, вы всегда можете придерживаться этого подхода.

Использование формул

Вывод формулы – пример

Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением V L L  

Преобразовать в проблема с одной фазой:     
P1ph=P3

Полная мощность одной фазы S 1-фазная (ВА):     
S1ph=P1phpf=P3×pf

Фазный ток I (A) – полная мощность одной фазы, деленная на напряжение между фазой и нейтралью (при условии, что В LN = В LL / √3):     
I=S1phVLN=P3×pf3VLL

Упрощая (и с 3 = √3 x √3):     
I=P3×pf×VLL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании задачей для получения ответа.

Более традиционные формулы могут использоваться для получения того же результата. Их можно легко получить из приведенного выше, например:

I=W3×pf×VLL,   в A

Несимметричные трехфазные системы

Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаков, и каждая фаза отдает или потребляет одинаковое количество энергии. Это характерно для систем передачи энергии, электродвигателей и подобного оборудования.

Часто, когда используются однофазные нагрузки, например жилые и коммерческие помещения, система может быть несбалансированной, когда каждая фаза имеет разный ток и отдает или потребляет разное количество энергии.

Сбалансированные напряжения

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации и после небольшого размышления можно распространить вышеуказанный тип расчета на трехфазные системы с несимметричным током. Ключом к этому является то, что сумма мощностей в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 А, фаза 2 = 70 А, фаза 3 = 82 А

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18 400 ВА = 18,4 кВА     
Полная мощность фазы 2 = 70 x 230 = 16 100 ВА = 16,1 кВА     
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18,86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Точно так же, зная мощность в каждой фазе, можно легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете преобразовать кВА в кВт, как показано ранее.

Несимметричные напряжения

Если напряжения становятся несимметричными или есть другие причины (например, несбалансированный фазовый сдвиг), необходимо вернуться к более традиционному анализу сети. Системные напряжения и токи можно найти, подробно нарисовав схему и используя законы Кирхгофа и другие сетевые теоремы.

Сетевой анализ не является целью этой заметки. Если вас интересует введение, вы можете просмотреть нашу публикацию: Теория сетей — введение и обзор 

Эффективность и реактивная мощность

Другие факторы, которые необходимо учитывать при проведении расчетов, могут включать эффективность оборудования. Зная, что КПД энергопотребляющего оборудования — это выходная мощность, деленная на входную мощность, опять же это легко объяснить. Реактивная мощность в статье не обсуждается, более подробную информацию можно найти в других заметках (просто воспользуйтесь поиском по сайту).

Резюме

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной, любая трехфазная проблема может быть упрощена. Разделите кВт на коэффициент мощности, чтобы получить кВА. ВА — это просто произведение тока на напряжение, поэтому, зная это и напряжение, можно получить ток. При расчете тока используйте фазное напряжение, которое связано с линейным напряжением квадратным корнем из трех. Используя эти правила, можно решить любую трехфазную задачу без необходимости запоминать и/или прибегать к формулам.

Трехфазный ток — простой расчет

К Стивен Макфадьен on

Расчет тока в трехфазной системе был поднят на нашем сайте и является дискуссией, в которую я, кажется, участвую время от времени. В то время как некоторые коллеги предпочитают запоминать формулы или коэффициенты, я предпочитаю решать задачу шаг за шагом, используя базовые принципы. Я подумал, что было бы хорошо написать, как я делаю эти вычисления. Надеюсь, это может оказаться полезным для кого-то еще.

 

Трехфазная мощность и ток

Мощность, потребляемая цепью (однофазной или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока представляет собой полную мощность и измеряется в ВА (или кВА). Соотношение между кВА и кВт представляет собой коэффициент мощности (pf):


что также может быть выражено как:

Однофазная система — с этим проще всего иметь дело. Учитывая мощность в кВт и коэффициент мощности, можно легко вычислить кВА. Ток — это просто кВА, деленное на напряжение. В качестве примера рассмотрим нагрузку, потребляющую мощность 23 кВт при напряжении 230 В и коэффициенте мощности 0,86:9.0008


 

Примечание: вы можете выполнить эти уравнения либо в ВА, В и А, либо в кВА, кВ и кА, в зависимости от величины параметров, с которыми вы имеете дело. Чтобы преобразовать ВА в кВА, просто разделите на 1000.

Трехфазная система — Основное различие между трехфазной и однофазной системами заключается в напряжении. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные:


или альтернативно как:

чтобы лучше понять это или получить больше информации, вы можете прочитать сообщение «Введение в трехфазную электроэнергию»

.

Для меня самый простой способ решения трехфазных задач — преобразовать их в однофазные задачи. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную мощность кВт. кВт на обмотку (однофазную) нужно разделить на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), вырабатывающий заданное количество кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную проблему в однофазную, возьмите общее количество кВт (или кВА) и разделите на три.

В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0,86 и линейном напряжении 400 В (V LL ):

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу

Достаточно просто. Чтобы найти мощность при заданном токе, умножьте ее на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в Вт. Для трехфазной системы умножьте ее на три, чтобы получить общую мощность.

Личная заметка о методе

Как правило, я запоминаю метод (не формулы) и переделываю его каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или не уверен, правильно ли я их запоминаю. Я бы посоветовал всегда помнить метод, а не просто запоминать формулу. Конечно, если у вас есть какие-то сверхспособности к запоминанию формулы, вы всегда можете придерживаться этого подхода.

Использование формул

Вывод формулы – пример

Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением V L L  

Преобразовать в проблема с одной фазой:     
P1ph=P3

Полная мощность одной фазы S 1-фазная (ВА):     
S1ph=P1phpf=P3×pf

Фазный ток I (A) – полная мощность одной фазы, деленная на напряжение между фазой и нейтралью (при условии, что В LN = В LL / √3):     
I=S1phVLN=P3×pf3VLL

Упрощая (и с 3 = √3 x √3):     
I=P3×pf×VLL

Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании задачей для получения ответа.

Более традиционные формулы могут использоваться для получения того же результата. Их можно легко получить из приведенного выше, например:

I=W3×pf×VLL,   в A

Несимметричные трехфазные системы

Вышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаков, и каждая фаза отдает или потребляет одинаковое количество энергии. Это характерно для систем передачи энергии, электродвигателей и подобного оборудования.

Часто, когда используются однофазные нагрузки, например жилые и коммерческие помещения, система может быть несбалансированной, когда каждая фаза имеет разный ток и отдает или потребляет разное количество энергии.

Сбалансированные напряжения

К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации и после небольшого размышления можно распространить вышеуказанный тип расчета на трехфазные системы с несимметричным током. Ключом к этому является то, что сумма мощностей в каждой фазе равна общей мощности системы.

Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 А, фаза 2 = 70 А, фаза 3 = 82 А

напряжение между фазой и нейтралью В LN = 400/√3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18 400 ВА = 18,4 кВА     
Полная мощность фазы 2 = 70 x 230 = 16 100 ВА = 16,1 кВА     
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18,86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА

Точно так же, зная мощность в каждой фазе, можно легко найти фазные токи. Если вы также знаете коэффициент мощности, вы можете преобразовать кВА в кВт, как показано ранее.

Несимметричные напряжения

Если напряжения становятся несимметричными или есть другие причины (например, несбалансированный фазовый сдвиг), необходимо вернуться к более традиционному анализу сети. Системные напряжения и токи можно найти, подробно нарисовав схему и используя законы Кирхгофа и другие сетевые теоремы.

Сетевой анализ не является целью этой заметки. Если вас интересует введение, вы можете просмотреть нашу публикацию: Теория сетей — введение и обзор 

Эффективность и реактивная мощность

Другие факторы, которые необходимо учитывать при проведении расчетов, могут включать эффективность оборудования. Зная, что КПД энергопотребляющего оборудования — это выходная мощность, деленная на входную мощность, опять же это легко объяснить. Реактивная мощность в статье не обсуждается, более подробную информацию можно найти в других заметках (просто воспользуйтесь поиском по сайту).

Резюме

Помня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной, любая трехфазная проблема может быть упрощена. Разделите кВт на коэффициент мощности, чтобы получить кВА.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *