Электрический ток. Сила тока — Класс!ная физика
Электрический ток. Сила тока
«Физика — 10 класс»
Электрический ток — направленное движение заряженных частиц. Благодаря электрическому току освещаются квартиры, приводятся в движение станки, нагреваются конфорки на электроплитах, работает радиоприемник и т. д.
Рассмотрим наиболее простой случай направленного движения заряженных частиц — постоянный ток.
Какой электрический заряд называется элементарным?
Чему равен элементарный электрический заряд?
Чем различаются заряды в проводнике и диэлектрике?
При движении заряженных частиц в проводнике происходит перенос электрического заряда из одной точки в другую. Однако если заряженные частицы совершают беспорядочное тепловое движение, как, например, свободные электроны в металле, то переноса заряда не происходит (рис. 15.1, а). Поперечное сечение проводника в среднем пересекает одинаковое число электронов в двух противоположных направлениях. Электрический заряд переносится через поперечное сечение проводника лишь в том случае, если наряду с беспорядочным движением электроны участвуют в направленном движении (рис. 15.1, б). В этом случае говорят, что по проводнику идёт
Электрическим током называют упорядоченное (направленное) движение заряженных частиц.
Электрический ток имеет определённое направление.
За направление тока принимают направление движения положительно заряженных частиц.
Если перемещать нейтральное в целом тело, то, несмотря на упорядоченное движение огромного числа электронов и атомных ядер, электрический ток не возникнет. Полный заряд, переносимый через любое сечение, будет при этом равным нулю, так как заряды разных знаков перемещаются с одинаковой средней скоростью.
Направление тока совпадает с направлением вектора напряжённости электрического поля. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению движения частиц.
Выбор направления тока не очень удачен, так как в большинстве случаев ток представляет собой упорядоченное движение электронов — отрицательно заряженных частиц. Выбор направления тока был сделан в то время, когда о свободных электронах в металлах ещё ничего не знали.
Действие тока.
Движение частиц в проводнике мы непосредственно не видим. О наличии электрического тока приходится судить по тем действиям или явлениям, которые его сопровождают.
Во-первых, проводник, по которому идёт ток, нагревается.
Во-вторых, электрический ток может изменять химический состав проводника: например, выделять его химические составные части (медь из раствора медного купороса и т. д.).
В-третьих, ток оказывает силовое воздействие на соседние токи и намагниченные тела. Это действие тока называется магнитным.
Так, магнитная стрелка вблизи проводника с током поворачивается. Магнитное действие тока в отличие от химического и теплового является основным, так как проявляется у всех без исключения проводников. Химическое действие тока наблюдается лишь у растворов и расплавов электролитов, а нагревание отсутствует у сверхпроводников.
В лампочке накаливания вследствие прохождения электрического тока излучается видимый свет, а электродвигатель совершает механическую работу.
Сила тока.
Если в цепи идёт электрический ток, то это означает, что через поперечное сечение проводника всё время переносится электрический заряд.
Заряд, перенесённый в единицу времени, служит основной количественной характеристикой тока, называемой силой тока.
Если через поперечное сечение проводника за время Δt переносится заряд Δq, то среднее значение силы тока равно:
Средняя сила тока равна отношению заряда Δq, прошедшего через поперечное сечение проводника за промежуток времени Δt, к этому промежутку времени.
Если сила тока со временем не меняется, то ток называют постоянным.
Сила переменного тока в данный момент времени определяется также по формуле (15.1), но промежуток времени Δt в таком случае должен быть очень мал.
Сила тока, подобно заряду, — величина скалярная. Она может быть как положительной, так и отрицательной. Знак силы тока зависит от того, какое из направлений обхода контура принять за положительное. Сила тока I > 0, если направление тока совпадает с условно выбранным положительным направлением вдоль проводника. В противном случае I < 0.
Термин сила тока нельзя считать удачным, так как понятие сила, применяемое к току, не имеет никакого отношения к понятию сила в механике. Но термин сила тока был введён давно и утвердился в науке.
Связь силы тока со скоростью направленного движения частиц.
Пусть цилиндрический проводник (рис. 15.2) имеет поперечное сечение площадью S.
За положительное направление тока в проводнике примем направление слева направо. Заряд каждой частицы будем считать равным q0. В объёме проводника, ограниченном поперечными сечениями 1 и 2 с расстоянием Δl между ними, содержится nSΔl частиц, где n — концентрация частиц (носителей тока). Их общий заряд в выбранном объёме q = q
В СИ единицей силы тока является ампер (А).
Эта единица установлена на основе магнитного взаимодействия токов.
Измеряют силу тока амперметрами. Принцип устройства этих приборов основан на магнитном действии тока.
Скорость упорядоченного движения электронов в проводнике.
Найдём скорость упорядоченного перемещения электронов в металлическом проводнике. Согласно формуле (15.2) где е — модуль заряда электрона.
Пусть, например, сила тока I = 1 А, а площадь поперечного сечения проводника S = 10-6 м2. Модуль заряда электрона е = 1,6 • 10-19 Кл. Число электронов в 1 м3 меди равно числу атомов в этом объёме, так как один из валентных электронов каждого атома меди является свободным. Это число есть n ≈ 8,5 • 1028 м-3 (это число можно определить, если решить задачу 6 из § 54). Следовательно,
Как видите, скорость упорядоченного перемещения электронов очень мала. Она во много раз меньше скорости теплового движения электронов в металле.
Условия, необходимые для существования электрического тока.
Для возникновения и существования постоянного электрического тока в веществе необходимо наличие свободных заряженных частиц.
Однако этого ещё недостаточно для возникновения тока.
Для создания и поддержания упорядоченного движения заряженных частиц необходима сила, действующая на них в определённом направлении.
Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за столкновений с ионами кристаллической решётки металлов или нейтральными молекулами электролитов и электроны будут двигаться беспорядочно.
На заряженные частицы, как мы знаем, действует электрическое поле с силой:
Обычно именно электрическое поле внутри проводника служит причиной, вызывающей и поддерживающей упорядоченное движение заряженных частиц.
Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.
Если внутри проводника имеется электрическое поле, то между концами проводника в соответствии с формулой (14.21) существует разность потенциалов. Как показал эксперимент, когда разность потенциалов не меняется во времени, в проводнике устанавливается постоянный электрический ток. Вдоль проводника потенциал уменьшается от максимального значения на одном конце проводника до минимального на другом, так как положительный заряд под действием сил поля перемещается в сторону убывания потенциала.
Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Законы постоянного тока — Физика, учебник для 10 класса — Класс!ная физика
Электрический ток. Сила тока — Закон Ома для участка цепи. Сопротивление — Электрические цепи. Последовательное и параллельное соединения проводников — Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» — Работа и мощность постоянного тока — Электродвижущая сила — Закон Ома для полной цепи — Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»
16. Электрический ток. Сила тока. Плотность тока
Электрический ток — направленное движение электрически заряженных частиц под воздействием электрического поля.
Сила тока (I) — скалярная величина, равная отношению заряда (q), прошедшего через поперечное сечение проводника, к промежутку времени (t), в течение которого шёл ток.
I=q/t, где I— сила тока, q — заряд, t — время.
Единица измерения силы тока в системе СИ: [I]=1A (ампер)
17. Источники тока. Эдс источника
Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.
ЭДС — энергетическая характеристика источника. Это физическая величина, равная отношению работы, совершенной сторонними силами при перемещении электрического заряда по замкнутой цепи, к этому заряду:
Измеряется в вольтах (В).
Источник ЭДС — двухполюсник, напряжение на зажимах которого не зависит от тока, протекающего через источник и равно его ЭДС. ЭДС источника может быть задана либо постоянным, либо как функция времени, либо как функция от внешнего управляющего воздействия.
18. Закон Ома: сила тока, текущего по однородному участку проводника, прямо пропорциональна падению напряжения на проводнике:
-закон Ома в интегральной форме R – электрическое сопротивление проводника
Величина, обратная сопротивлению, называется проводимостью. Величина, обратная удельному сопротивлению, называется удельной проводимостью: Единица, обратная Ом, называется Сименсом [См].
— закон Ома в дифференциальной форме.
19. Обобщенный закон Ома
Обобщенный закон Ома определяет связь между основными электрическими величинами на участке цепи постоянного тока, содержащем резистор и идеальный источник ЭДС (рис.1.2):
;
Формула справедлива для указанных на рис.1.2 положительных направлений падения напряжения на участке цепи (Uab), идеального источника ЭДС (Е) и положительного направления тока (I).
Закон Джоуля-Ленца
Выражение закона Джоуля — Ленца
Интегральная форма закона
Словесное определение закона Джоуля — Ленца
Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:
Применив закон Ома и алгебраические преобразования, получаем приведенные ниже эквивалентные формулы:
Эквивалентные выражения теплоты согласно закона Ома
Словесное определение закона Джоуля — Ленца
Если принять, что сила тока и сопротивление проводника не меняется в течение времени, то закон Джоуля — Ленца можно записать в упрощенном виде:
20.Магни́тное по́ле— силовое поле, действующее на движущиесяэлектрические заряды и на тела, обладающиемагнитным моментом, независимо от состояния ихдвижения; магнитная составляющаяэлектромагнитного поля
Магнитное поле может создаваться током заряженных частиц и/илимагнитными моментамиэлектроноватомах (и магнитными моментами другихчастиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).
Кроме этого, оно возникает в результате изменения во времени электрического поля.
Основной силовой характеристикой магнитного поля является вектор магнитной индукции(вектор индукции магнитного поля). С математической точки зрения— векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).
Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал.
Вместе, магнитное и электрическоеполя образуют электромагнитное поле, проявлениями которого являются, в частности свети все другие электромагнитные волны.
Магнитное поле создаётся (порождается) током заряженных частиц или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам)
Графическое изображение магнитных полей
Для графического изображения магнитных полей используются линии магнитной индукции. Линия магнитной индукции –это линия, в каждой точке которой вектор магнитной индукции направлен по касательной к ней.
Электрический ток. Сила тока
С понятием электрического тока вы познакомились еще в восьмом классе. Напомним, что электрический ток — это упорядоченное движение заряженных частиц.
Как мы знаем, все тела состоят из частиц, и эти частицы совершают беспорядочные движения. В частности, свободные электроны в металле участвуют в тепловом движении. В этом случае, через поперечное сечение проводника в среднем проходит одинаковое число электронов в обе стороны. Для того, чтобы все частицы начали двигаться направлено, в проводнике должно существовать электрическое поле. В этом случае, под действием электрического поля, свободные заряды начнут смещаться в определенном направлении. Как вы уже знаете, за направление электрического тока принято направление движения положительно заряженных частиц. Надо сказать, что это не очень удачный выбор, поскольку, чаще всего, ток представляет собой движение электронов, которые являются отрицательно заряженными частицами. Хотя, ток также может быть вызван движением положительных ионов.
В ближайшее время мы будем рассматривать простейший случай электрического тока, который называется постоянным током. Постоянный ток — это электрический ток, при котором заряженные частицы не изменяют ни направление, ни скорость своего движения.
Конечно, мы не имеем возможности увидеть движение частиц в проводнике. Об электрическом токе мы привыкли судить по его действиям. Напомним, что существует тепловое, химическое и магнитное действие электрического тока.
Как вы знаете, электрический ток сопровождается нагреванием проводников, то есть, тепловым действием. Это действие широко используется при создании электронагревательных приборов, таких, как, например, утюг, обогреватель или чайник. Также при протекании электрического тока по определенным проводникам, может измениться их состав (то есть ток оказывает химическое действие). Это действие успешно используется для очистки металлов от примеси, например, или для разложения солей и щелочей на составные части.
Кроме этого существует магнитное действие: вокруг любого проводника с током возникает магнитное поле. Примеров использования этого действия можно привести очень много: к примеру, на магнитном действии тока основан электромагнит, генератор и многие электроизмерительные приборы. Также, магнитное действие тока легло в основу единицы измерения силы тока, о которой мы и поговорим. Напомним, что сила тока определяется как отношение заряда, прошедшего через поперечное сечение проводника за определенный промежуток времени к этому промежутку времени:
Единицей измерения силы тока является ампер:
Как вы уже знаете, если по проводникам, находящимся вблизи пустить ток в одном направлении, то они начнут притягиваться, а если по ним пустить ток в разных направлениях, то они начнут отталкиваться. Это явление возникает как раз в результате магнитного действия тока. Так вот, если по очень длинным и тонким проводникам, находящимся на расстоянии 1 м друг от друга, проходит одинаковый ток, при котором сила их притяжения или отталкивания составляет 0,2 мкН, то сила тока в этих проводниках равна 1 А.
Конечно, нужно понимать, что, несмотря на подобное определение силы тока, слово «сила», применяемое к току, не имеет ничего общего с понятием силы в механике. Сила тока, скорее характеризует скорость прохождения электрического заряда через поперечное сечение проводника.
Давайте попытаемся установить связь между силой тока и скоростью движения электронов в металлическом проводнике цилиндрической формы.
Рассмотрим небольшой участок проводника длиной.
Применим формулу, по которой вычисляется сила тока:
Очевидно, что суммарный заряд, прошедший через поперечное сечение толщиной l, будет равен произведению количества частиц, находящихся в данном участке проводника, и величины заряда одной частицы:
Поскольку в нашем случае, частицы — это электроны, за заряд частицы следует принять модуль заряда электрона. Число частиц мы можем представить, как произведение концентрации и объема:
Не трудно догадаться, что объем, в данном случае, — это
Подставим полученное выражение в уравнение для силы тока:
Заметим теперь, что отношение длины к промежутку времени— это и есть скорость движения электронов:
Выразим скорость из полученного выражения:
Теперь мы можем заключить, что скорость движения частиц в проводнике прямо пропорциональна силе тока. Конечно, концентрация заряженных частиц в данном объеме проводника зависит от того, из какого вещества состоит проводник. Мы можем подсчитать скорость электронов в медном проводнике с поперечным сечением 1 мм2 при силе тока в 1 А. Наши расчеты будут основываться на предположении, что на каждый атом меди приходится один свободный электрон.
Если мы подсчитаем скорость движения электронов в других металлах, то она не будет сильно отличаться. Это говорит нам о том, что скорость движения электронов очень невелика. Возникает вопрос, как же тогда получается так, что когда мы включаем свет в комнате, лампочка загорается мгновенно? Дело в том, что скорость распространения электрического тока зависит не от скорости движения самих зарядов, а от скорости распространения электрического поля.
Как мы уже убедились ранее, эта скорость равна скорости света. Поэтому, смело можно считать, что при нажатии на выключатель, все электроны в цепи приходят в движение мгновенно, немедленно создавая электрический ток в лампочке.
Итак, теперь мы можем оговорить условия, необходимые для существования электрического тока: наличие свободных зарядов, наличие электрического поля и замкнутость цепи.
Как мы уже сказали, в первую очередь, необходимо наличие свободных зарядов, иначе никакого упорядоченного движения частиц не возникнет, ввиду отсутствия этих самых частиц. Второе условие — это наличие электрического поля. Чтобы заряды двигались в определенном направлении, на них должна действовать определенная сила. Эта сила, как мы знаем, прямо пропорциональна напряженности электрического поля. То есть для существования тока, необходимо наличие электрического поля, со стороны которого будет действовать сила, приводящая заряды в упорядоченное движение. Ну и, конечно, как мы только что убедились, для существования электрического тока, нужна замкнутая цепь. В противном случае, заряды просто накопятся на концах проводника и сами начнут создавать электрическое поле. То есть возникнет явление электростатической индукции и суммарная напряженность поля внутри проводника станет равной нулю, а, значит, перестанет существовать электрический ток. Поэтому, необходимо, чтобы цепь была замкнута, и заряды продолжали перемещаться. Заметим, однако, что при перемещении зарядов по замкнутому контуру, работа электрического поля равна нулю. Поэтому в цепь необходимо включить источник тока. Между полюсами источника существует определенная разность потенциалов, поэтому, в проводнике возникает электрический ток. Для измерения силы тока, как вы знаете, используется амперметр, который включается в цепь последовательно.
Следует отметить, что, все-таки, необходимость замкнутости электрической цепи для существования электрического тока, вызывает сомнения. Еще в 1897 году, величайший ученый и изобретатель Никола Тесла теоретически обосновал передачу электрического тока с помощью волновода и проводил соответствующие эксперименты. То есть, от одного заряженного тела энергия передавалась другому телу по одиночному проводу. Причем, этот провод, не являлся проводящим. Он, скорее, являлся направляющим проводом, который определял направление передачи электромагнитной энергии. На сегодняшний день российскими учеными разработана установка, позволяющая осуществить идею Николы Тесла, но, пока что, этот метод не торопятся внедрять в жизнь. Тем не менее, этот метод принципиально отличается от того, метода, который используется в настоящее время. Поэтому, при изучении законов постоянного тока мы, все же будем считать замкнутость электрической цепи необходимым условием для существования электрического тока.
Сила тока в проводнике и средах для новичков
Ремонт бытовой техники и электропроводки своими руками требует от домашнего мастера понимания физических процессов электричества. Но среди практиков встречается категория “забывчивых” людей.
Специально для напоминания им, а не только ученикам школ, я подготовил материал о том, как создается сила тока в проводнике и других различных средах.
Постарался изложить его немного упрощенным и понятным языком без сложных формул и выводов, но подробно. Читайте, знакомьтесь, вспоминайте.
Содержание статьи
При каких условиях возникает электрический ток и что такое сила тока простыми словами
Сразу обращаю внимание: определение электрического тока не относится к статическим, замершим явлениям. Оно напрямую связано с движением,динамическим состоянием.
Его создают не нейтральные, а активные частицы положительного или отрицательного электрического заряда.
И перемещаться они должны не хаотически, как жители мегаполиса во время часа пик, а направленно. Пример: движение массы автомобилей по многорядной дороге в одном направлении большого города.
Представили картину? Внутрь сплошного потока добавляются машины со стороны, какие-то водители съезжают с трассы на другие дороги. Но на общее движение эти процессы не особо влияют: направление сохраняется односторонним.
Так же происходит перемещение электрических зарядов. Внутри металлических проводников ток создают электроны. В обычном состоянии они там движутся довольно хаотически во все стороны.
Но стоит приложить к ним внешнюю силу электрического напряжения с положительными и отрицательными потенциалами на противоположных концах проводника, как начинается направленное движение зарядов.
Оно и является электрическим током. Обращаю внимание на последнее слово. Оно характеризует течение, перемещение, движение, динамику и связанные сними процессы, но не статику.
Именно величина приложенной внешней силы определяет качество направленного потока электронов в одну сторону. Чем выше ее значение, тем большая сила тока начинает протекать через проводник.
Однако здесь требуется учитывать несколько особенностей,связанных с:
- общепринятыми научными условностями;
- интенсивностью движения зарядов;
- Противодействием внутренней среды проводника.
В первом случае нам приходится преодолевать сложившиеся исторические стереотипы, когда люди смешивают общее направление электронов и электрического тока.
Все научные расчеты построены на том, что за направление тока взято движение заряженных частиц от плюса источника напряжения к его минусу.
Внутри металлов электрический ток
создается за счет перемещения электронов в обратную сторону: они отталкиваются от одноименного минусового полюса и движутся к положительному.
Недопонимание этого положения может привести к ошибкам. Но их просто избежать: достаточно только запомнить эту особенность и использовать при расчетах или анализе действий электрических схем.
Интенсивность движения заряженных частиц характеризуют количеством их заряда, протекающего через заданную площадь за определённый промежуток времени.
Ее называют силой тока, обозначают латинской буквой I, вычисляют отношением ∆Q/∆t.
Здесь ∆Q — это количество зарядов, проходящих сквозь проводник с площадью S и длиной ∆L, а ∆t — калиброванный промежуток времени.
Для увеличения силы тока нам необходимо повысить число зарядов, проходящих через проводник за единицу времени, а для снижения — уменьшить.
Опять же присмотритесь к термину “сила тока”, вернее к его первому слову. Я специально на самой верхней картинке показал для сравнения мощный бицепс и тлеющую лампочку.
Силовой запас источника энергии может колебаться от излишнего до недостаточного для потребителя. А нам всегда требуется питать нагрузку оптимально. Для этого и введено понятие силы тока.
Чтобы ее оценивать используется единица системы измерения: ампер, обозначаемая латинской буквой A.
Теоретически, чтобы оценить 1 ампер необходимо:
- взять два очень тонких, бесконечно длинных и совершенно ровных проводника;
- разместить их на плоскости строго параллельно друг другу на расстоянии 1 метр;
- пропускать по ним одинаковый ток, постепенно повышая его величину;
- замерять силу притяжения проводов и зафиксировать момент, когда она достигнет значения 2×10-7 Ньютона.
Вот тогда и станет протекать в проводах 1 ампер.
На практике никто так не поступает. Для измерения созданы специальные приборы: амперметры. Их конструкции работают в размерах дольности и кратности: мили-, микро- и кило-.
Еще одно определение ампера связано с единицей количества электричества: кулоном (Кл), который проходит сквозь поперечное сечение провода за 1 секунду.
1A = 1Кл / 1c
Сила тока в любом месте замкнутой электрической цепи, где он протекает, всегда одинакова, а при ее разрыве, где бы ни было, исчезает.
Это явление позволяет выполнять замеры в самых удобных местах любой электрической схемы.
Когда создается сложная разветвленная цепь для протекания нескольких токов, то последние тоже на всех отдельных участках остаются постоянными.
Третий случай противодействия среды тоже важен. Электроны в процессе движения сталкиваются с препятствиями в виде положительно и отрицательно заряженных частиц.
Такие столкновения связаны с затратами энергии, расходуемой на выделение тепла. Их обобщили термином электрического сопротивления и описали физическими законами в математической форме.
Внутренняя структура каждого металла оказывает различное противодействие протеканию тока. Наука давно изучила эти свойства и свела в таблицы, графики и формулы удельного электрического сопротивления.
При проведении расчетов нам остается только воспользоваться уже проверенными и подготовленными сведениями. Их можно выполнять на основе формул, представленных известной шпаргалкой электрика.
Но намного проще использовать онлайн калькулятор Закона Ома. Он позволит избежать совершения типичных математических ошибок.
Для любителей смотреть видео я рекомендую ролик Павла Виктор по основам теории электропроводности металлов.
Самые важные выводы из формул силы тока для домашнего мастера
Практическую пользу представляет только полное понимание процессов протекания тока по проводникам. В быту мы должны:
- Заранее предусмотреть токовые нагрузки на проводку. Эти сведения помогут грамотно спроектировать ее для прокладки внутри своей квартире. А если она уже проложена, то потребуется учитывать и не превышать подключаемые мощности.
- Исключить типовые ошибки монтажа проводов и оборудования, на которых происходит бесполезная потеря энергии электричества,создается излишний нагрев, возникают повреждения.
- Правильно эксплуатировать проводку.
- Предусмотреть систему защит, которые автоматически предохранят бытовую сеть от возникновения случайных повреждений как внутри схемы, так и приходящих со стороны питания.
Сейчас я не стану более подробно расшифровывать каждый из этих четырех пунктов. У меня в планах расписать их для вас более подробно сериями статей, опубликовать в рубриках сайта. Следите за информацией или подписывайтесь на рассылку, дабы быть в курсе.
Какие бывают виды электрического тока в быту
Форма сигнала токов зависит от работы источника напряжения и сопротивления среды, через которую проходит сигнал. Чаще всего на практике домашнему мастеру приходится сталкиваться со следующим видами:
- постоянный сигнал, вырабатываемый от аккумуляторов или гальванических элементов;
- синусоидальный, создаваемый промышленными генераторами частоты 50 герц;
- пульсирующий, образуемый за счет преобразований различных блоков питания;
- импульсный, проникающий в бытовую сеть за счет разряда молний в воздушные линии электропередач;
- произвольный.
Чаще всего встречается синусоидальный или переменный ток: им питаются все наши приборы.
Электрический ток в различных средах: что надо знать электрику
Заряженные частицы под действием приложенного напряжения перемещаются не только внутри металлов, как мы разобрали выше на примере электронов, но и в:
- переходном слое полупроводниковых элементов;
- жидкостях различных составов;
- среде газа;
- и даже внутри вакуума.
Все эти среды оценивают способностью пропускать ток термином, называемым проводимостью. Это величина, обратная сопротивлению. Она обозначается буквой G, оценивается через удельную проводимость, которую можно найти в таблицах.
Проводимость вычисляется по формулам:
G = 1 / R = I / U
Сила тока в проводнике из металла: как используется в бытовых условиях
Способность внутренней структуры металлов по-разному влиять на условия движения направленных зарядов применяется для реализации специфических задач.
Транспортировка электрической мощности
Чтобы передать электрическую энергию на большое расстояние используют металлические проводники повышенного сечения с высокой проводимостью: медь или алюминий. Более дорогие металлы серебро и золото работают внутри сложных электронных схемах.
Всевозможные конструкции проводов, шнуров и кабелей на их основе надежно эксплуатируются в домашней проводке.
Нагревательные элементы
Для обогревательных приборов применяют вольфрам и нихром,обладающие большим сопротивлением. Оно позволяет разогревать проводник до высоких температур при правильном подборе приложенной мощности.
Этот принцип воплотился в многочисленных конструкциях электрических нагревателей — ТЭН-ах.
Защитные устройства
Завышенная сила тока в проводнике из металла с хорошей проводимостью, но тонким сечением позволяет создавать предохранители,используемые как токовые защиты.
Они нормально работают в оптимальном режиме нагрузки, но быстро перегорают при бросках напряжения, коротких замыканиях или перегрузках.
Еще несколько десятков лет предохранители массово служили основной защитой домашней проводки. Сейчас их заменили автоматическими выключателями. Но внутри всех блоков питания они продолжают надежно работать.
Ток в полупроводниках и его характеристики
Электрические свойства полупроводников сильно зависят от внешних условий: температуры, облучения светом.
Для увеличения их собственной проводимости в состав структуры добавлены специальные примеси.
Поэтому внутри полупроводника ток создается за счет собственной и примесной проводимости внутреннего p-n перехода.
Носителями зарядов полупроводника выступают электроны идырки. Если плюсовой потенциал источника напряжения приложен к полюсу p, а минусовой — к n, то через p-n переход станет течь ток за счет созданного ими движения.
При обратном приложении полярности p-n переход остается закрытым. Поэтому на картинке выше в первом случае показана светящаяся лампочка, а во втором — потухшая.
Аналогичные p-n переходы работают в других полупроводниковых конструкциях: транзисторах, стабилитронах, тиристорах…
Все они рассчитаны на номинальное прохождение силы тока. Для этого прямо на их корпус наносится маркировка. По ней заходят в таблицы технических справочников и оценивают полупроводник по электрическим характеристикам.
Ток в жидкостях: 3 метода применения
Если металлы обладают хорошей проводимостью, то среда жидкостей может выступать как диэлектрик, проводник и даже полупроводник. Но, последний случай не для домашнего применения.
Изоляционные свойства
Высокими диэлектрическими свойствами обладает минеральное масло высокой степени очистки и заниженной вязкости, созданное для работы внутри промышленных трансформаторах.
Дистиллированная вода тоже имеет высокие изоляционные свойства.
Аккумуляторы и гальванопластика
Если в дистиллированную воду добавить немного соли, кислоты или щелочи, то она, за счет возникновения электролитической диссоциации, станет токопроводящей средой — электролитом.
Однако здесь надо понимать: ток, протекающий в металлах, не нарушает структуру их вещества. В жидкостях же происходят разрушительные химические процессы.
Поэтому принято считать металлы проводниками первого рода, а жидкости — второго.
Ток в жидкостях так же создается под действием приложенного напряжения. Например, когда к двум электродам, опущенным в водный раствор какой-то соли, подведены положительные и отрицательные потенциалы от батарейки или аккумулятора.
Молекулы раствора образуют положительно и отрицательно заряженные частицы — ионы. По знаку заряда их называют анионы (+) и катионы (-).
Под действием приложенного электрического поля анионы и катионы начинают движение к электродам противоположных знаков: катоду и аноду.
Такое встречное движение заряженных частиц образует электрический ток в жидкостях. При этом ионы, дойдя до своего электрода,разряжаются на нем и образуют осадок.
Наглядным примером могут быть гальванические процессы,проходящие в растворе медного купороса CuSO4 с опущенными в него медными электродами.
Ионы меди Cu заряжены положительно — это анионы. На катоде они теряют свой заряд и оседают тонким металлическим слоем.
Катионами выступает кислотный остаток SO4. Они приходят на анод, разряжаются, вступают в химическую реакцию с медью электрода, образуют молекулы медного купороса, поступают обратно в раствор.
По этому принципу за счет ионной проводимости работают все электролиты в гальванопластике, когда идет изменение структуры электродов, а состав жидкости не меняется.
С помощью этого метода создают тонкие покрытия из благородных металлов на ювелирных украшениях или защитный слой различных деталей от коррозии. Силу тока подбирают под скорость протекания химической реакции в зависимости от конкретных условий среды.
По этой же схеме работают все аккумуляторные батареи. Только они еще обладают возможностью накапливать заряд от приложенной энергии генератора и отдают электричество при разряде на потребитель.
Работу никель кадмиевого аккумулятора в режиме заряда от внешнего генератора и разряда на приложенную нагрузку демонстрирует простая схема.
Ток в газах: диэлектрические свойства среды и условия протекания разрядов
Обычная газовая среда обладает хорошими диэлектрическими свойствами: она состоит из нейтральных молекул и атомов.
Примером может служить воздушная атмосфера. Ее используют как изолирующий материал даже на высоковольтных линиях электропередач, передающих очень большие мощности.
Оголенные металлические провода закреплены на опоре через изоляторы и отделены от контура земли их высоким электрическим сопротивлением,а между собой — обычным воздухом. Так работают ВЛ всех напряжений, включая 1150кВ.
Однако диэлектрические свойства газов могут быть нарушены за счет воздействия внешней энергии: нагрева до большой температуры или приложения повышенной разности потенциалов. Только тогда происходит ионизация их молекул.
Она отличается от тех процессов, которые происходят внутри жидкостей. У электролитов молекулы расщепляются на две части: анионы и катионы.Молекула же газа во время ионизации выделяет электрон и остается в виде иона положительного заряда.
Как только внешние силы, создающие ионизацию газов,прекращают действовать, сразу исчезает проводимость газовой среды. Разряд молнии в воздухе является кратковременным явлением, подтверждающим это положение.
Ток в газах, кроме разряда молнии, может создаваться за счет поддержания электрической дуги. По этому принципу работают прожектора и проекционные аппараты яркого света, а также промышленные дуговые печи.
Неоновые и люминесцентные лампы используют свечение тлеющего разряда, протекающего в среде газа.
Еще один вид разряда в газах, применяемый в технике —искровой. Он создается газовыми разрядниками для замера величин больших потенциалов.
Ток в вакууме: как используется в радиоэлектронных приборах
Латинское слово вакуум трактуется на русском языке как пустота. Она создается практическим путем за счет откачки газов из закрытого пространства вакуумными насосами.
Носителей электрических зарядов в вакууме нет. Их необходимо внести в эту среду для того, чтобы создать ток. Здесь используется явление термоэлектронной эмиссии, которая возникает при нагреве металла.
Таким способом работают радиоэлектронные лампы, у которых катод подогревается нитью накала. Освобождающиеся из него электроны, под действием приложенного напряжения, движутся к аноду, образуют ток в вакууме.
По этому же принципу создана электронно лучевая трубка кинескопного телевизора, монитора, осциллографа.
Просто в ней добавлены управляющие электроды для отклонения луча и экран, указывающий на его положение.
Во всех перечисленных устройствах сила тока в проводнике среды должна рассчитываться, контролироваться и поддерживаться на определённом уровне оптимального режима.
На этом заканчиваю. Специально для вас сделан раздел комментариев. Он позволяет просто высказывать собственное мнение о прочитанной статье.
15. Электрический ток, сила и плотность тока
В электродинамике — разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроскопических заряженных тел, — важнейшим понятием является понятие электрического тока. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенного электрического поля Е свободные электрические заряды перемещаются: положительные — по полю, отрицательные — против поля (рис. 146, а), т. е. в проводнике возникает электрический ток, называемый током проводимости. Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела (рис. 146, б), то возникает так называемый конвекционный ток.
Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока — заряженных частиц, способных перемещаться упорядоченно, а с другой — наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов.
Количественной мерой электрического тока служит сила тока I скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:
Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Для постоянного тока
где Q — электрический заряд, проходящий за время t через поперечное сечение проводника. Единила силы тока — ампер (А).
Физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:
Выразим силу и плотность тока через скорость v упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обязательно для ионов), то за время dt через поперечное сечение S проводника переносится заряд dQ=ne v S dt. Сила тока
а плотность тока
(96.1)
Плотность тока — вектор, ориентированный по направлению тока, т. е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).
Сила тока сквозь произвольную поверхность S определяется как поток вектора j, т. е.
(96.2)
где dS=ndS (n — единичный вектор нормали к площадке dS, составляющей с вектором j угол ).
16. Сторонние силы. Электродвижущая сила и напряжение
Если в цепи на носители тока действуют только силы
электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.
Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.
Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (э.д.с.), действующей в цепи:
(97.1)
Эта работа производятся за счет энергии, затрачиваемой в источнике тока, поэтому величину можно также называть электродвижущей силой источника тока, включенного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует э.д.с.», т. е. термин «электродвижущая сила» употребляется как характеристика сторонних сил. Э.д.с., как и потенциал, выражается в вольтах (ср. (84.9) и (97.1)).
Сторонняя сила Fст, действующая на заряд Q0, может быть выражена как
где Е — напряженность поля сторонних сил. Работа же сторонних сил по перемещению заряда Q0 на замкнутом участке цепи равна
(97.2)
Разделив (97.2) на Q0, получим выражение для э. д. с., действующей в цепи:
т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 1—2, равна
(97.3)
На заряд Q0 помимо сторонних сил действуют также силы электростатического поля Fe=Q0E. Таким образом, результирующая сила, действующая в цепи на заряд Q0, равна
Работа, совершаемая результирующей силой над зарядом Q0 на участке 1—2, равна
Используя выражения (97.3) и (84.8), можем записать
(97.4)
Для замкнутой цепи работа электростатических сил равна нулю (см. § 83), поэтому в данном случае
Напряжением U на участке 1—2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (97.4),
Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует Э.д.с., т. е. сторонние силы отсутствуют.
Вопрос 2. Электрический ток (определение, сила тока, единицы измерения, направление тока, плотность тока), работа и мощность тока.
Электрический ток— направленное движение электрических зарядов под действием электрического поля. Для того чтобы шёл ток, нужна замкнутая цепь, которая состоит из источников электрической энергии, приёмников электроэнергии и соединительных проводов.
За направление тока принимают направление движения положительного заряда. Поэтому во внешней цепи ток направлен от зажима “+” к зажиму “–”, внутри источника — наоборот.
Сила тока— количество электричества, прошедшее через поперечное сечение проводника за 1 секунду.
— для постоянного тока
— для переменного тока (ток равен скорости изменения заряда)
Плотность тока:
Работа и мощность тока
При прохождении тока проводник нагревается и совершается работа:
—работатока
—мощностьтока
Вопрос 3. Источники напряжения и тока (определение, условно графическое обозначение, взаимное преобразование). Примеры источников напряжения и тока.
Электрическую энергию получают путём преобразования химической, механической и других видов энергии.
Устройство, которое даёт в цепь энергию, называется источником.
Источник тока— источник, ток которого не зависит от сопротивления нагрузки.
Источниками тока являются электронные лампы, транзисторы.
Схемное изображение источника тока:
На практике источник тока можно получить, если к источнику напряжения подключить очень большое внутренне сопротивление.
Можно при расчётах преобразовать источник напряжения в эквивалентный источник тока, если ток источника тока рассчитать по формуле
и внутренне сопротивление источника напряжения, включенное последовательно, включить к источнику тока параллельно.
Схема с источником напряжения:
Схема с эквивалентным источником тока:
Вопрос 4. Классификация электрических сигналов (простые и сложные, периодические и непериодические, детерминированные и случайные). Способы представления сигналов (математическая модель, временная, спектральная и векторная диаграммы).
Классификация электрических сигналов:
Периодические и непериодические
Периодические сигналыповторяются через определённый промежуток времени.
Непериодические сигналыпоявляются один раз и больше не повторяются.
Детерминированные и случайные
Детерминированные сигналы— сигналы, которые можно описать с помощью функции времени.
Случайные сигналы— сигналы, мгновенные значения которых заранее не может быть предсказано.
Простые и сложные
Простые сигналы— сигналы, токи и напряжения которых имеют одну частоту (синусоида).
Сложные сигналы— сигналы, которые состоят из суммы токов и напряжений нескольких частот.
Вопрос 5. Основные параметры детерминированных периодических сигналов (период, угловая и циклическая частота, амплитуда, размах, мгновенное и действующее значения, скважность). Примеры периодических сигналов различной формы.
Основные параметры детерминированных периодических сигналов:
Мгновенное значение— значение переменной в любой момент времени:
Максимальное (амплитудное) значение— наибольшее из мгновенных значений:
Размах сигнала— разность между максимальным и минимальным значениями сигнала:
Действующее значение переменного тока— такой постоянный ток, который за время равное периоду, выделяет сопротивлението же количество тепла, что и переменный ток:
Все приборы показывают действующие значения. Для гармонического сигнала максимальные и действующие значения связаны формулой:
Период— наименьший промежуток времени, через который значения переменной повторяются:
Циклическая частота— количество колебаний переменной за 1 с:
Угловая частота
Примеры периодических сигналов разной формы:
Сигнал, не изменяющийся во времени (постоянное напряжение или ток)
Гармонический сигнал
Изменяется по закону косинуса или синуса
Сигнал треугольной формы
Сигнал пилообразной формы
Сигнал прямоугольной формы
Биполярный импульс
Однополярный импульс
— длительность импульса
Скважность:
(безразмерная величина)
Скважность— отношение периода к длительности импульса.
Ток на выходе однополупериодного выпрямителя
Ток на выходе двухполупериодного выпрямителя
Вопрос 6. Двухполюсники и четырехполюсники, коэффициент передачи четырехполюсника по напряжению, току, мощности. Логарифмические единицы измерения коэффициента передачи. Понятие о воздействие и отклике.
Двухполюсник— участок цепи, который имеет 2 зажима:
Четырёхполюсник— участок цепи, который имеет 2 входных и 2 выходных зажима:
Коэффициент передачи по напряжению— отношение напряжения на выходе к напряжению на входе четырёхполюсника:
Коэффициент передачи по току — отношение тока на выходе к току на входе четырёхполюсника:
Коэффициент передачи по мощности— отношение мощности на выходе к мощности на входе четырёхполюсника:
Электрический ток. Сила и плотность тока
1. Электрическим током называют любое упорядоченное движение электрических зарядов. Существует два вида проводников металлы и электролиты. Электролиты представляют собой растворы солей, оснований и кислот в воде или расплавы солей. Опытным путём установлено, что носителями тока в электролитах являются положительные и отрицательные ионы, а в металлах свободные электроны, называемые электронами проводимости. Исторически сложилось, что за направление электрического тока принимается направление движения положительно заряженных частиц (положительных зарядов). Поэтому, если ток обусловлен упорядоченным движением отрицательно заряженных частиц, то направление тока считается противоположно направленным движению этих частиц.
2.Электрический ток характеризуется силой тока, т.е. величиной заряда, протекшего через поперечное сечение проводника, за единицу времени. Пусть за промежуток времениdtчерез поперечное сечение проводника протекает зарядdq. тогда сила тока равна
(11)
где dqэлементарный заряд, протекший за времяdt. Используя (10), находим зарядq, протекший за время t:
dq =I(t)·dt, (12)
В системе единиц СИ единицей силы тока является ампер (A).
3. Распределение силы тока по поперечному сечению проводника характеризуют плотностью тока. Плотность тока равна силе тока, протекающего через единицу поперечного сечения проводника.Если через элементарную площадкуdS, расположенную перпендикулярно к направлению протекания тока, протекает ток силойdI, то плотность тока равна:
(13)
Сила тока I, текущего через поперечное сечениеS, будет равна
. (14)
Сопротивление проводника. Закон ома для участка цепи
Если к концам проводника прикладывать различные напряжения, то и сила тока, текущего в нём, будет различной. Однако отношение напряжения U к силе тока I, возникающего в проводнике, остаётся постоянным независимо от величины напряжения. Поэтому это отношение принимают за характеристику способности проводника препятствовать протеканию тока. Её называют электрическим сопротивлением (или сопротивлением) и обозначают через R. Итак,
(15)
С точки зрения электронной теории сопротивление металлических проводников объясняется следующим. Металлы имеют кристаллическую решётку, в узлах которой находятся положительные ионы. Между ионами хаотически движутся свободные электроны. Если к проводнику приложить напряжение, то электроны проводимости приходят в упорядоченное движение, т.е. возникает электрический ток. При движении электроны проводимости сталкиваются с ионами кристаллической решётки. Это приводит к уменьшению количества упорядоченно движущихся электронов, т.е. к уменьшению силы тока, а следовательно, и к увеличению сопротивления проводника (см. (15)).
Сопротивление проводника зависит от его геометрических размеров и формы, а также от природы вещества, из которого он изготовлен. Для проводников с одинаковой площадью поперечного сечения сопротивление находится по формуле
(16)
где l и S — длина и площадь поперечного сечения проводника, — удельное электрическое сопротивление (или удельное сопротивление) проводника.
Обычно выражение (14) записывают в виде
(17)
т.е. сила тока в проводнике пропорциональна напряжению, приложенному к нему, и обратно пропорциональна его сопротивлению. Соотношение (17) носит название закона Ома для участка цепи.