Условия для существования электрического тока 10 класс онлайн-подготовка на Ростелеком Лицей
Введение
Мы изучаем электрический ток. Что нужно для его возникновения? Если в фонарик не вставить батарейку, он не будет работать, ток не потечет. Но и в батарейке, которая лежит на столе, ток тоже не течет. Почему? Разберемся в этом вопросе.
Электрический ток
Что такое электрический ток? В самом термине содержится указание – это течение электричества. Раньше, до открытия элементарных заряженных частиц, электрический заряд считали некой жидкостью, наполняющей заряженные тела. Перемещение этой жидкости и назвали электрическим током.
Сейчас, обладая знаниями о строении вещества, можно сказать, что сравнение оказалось достаточно точным и электрический ток можно действительно сравнить с течением некой жидкости (или более точное сравнение – с газом), только состоящей не из молекул, а из элементарных заряженных частиц.
На прошлом уроке мы разобрали, что такое электрический ток. Сегодня мы рассмотрим природу этого явления более подробно, чтобы понять, почему же оно возникает.
Дадим четкое определение. Мы знаем о носителях заряда, поэтому определим электрический ток как движение заряженных частиц. Вы помните из молекулярно-кинетической теории, что частицы, из которых состоит вещество, в том числе электроны, постоянно пребывают в тепловом хаотическом движении (см. рис. 1), но это не является электрическим током, как и тепловое движение молекул воды не создает течения. Все направления такого движения равновероятны, и суммарное перемещение при этом равно нулю. Течение наблюдается, когда движение направлено. Хаотическое движение при этом не прекращается, но оно складывается с направленным, и суммарное перемещение уже не равно нулю, система частиц в целом движется.
Рис. 1. Хаотическое движение
Поэтому определение тока дадим следующее.
Электрический ток – это направленное движение электрического заряда. Поскольку заряд не существует отдельно от носителя, ток можно определить как направленное движение заряженных частиц.
Скорость движения частиц
Частица обладает скоростью движения. В механике мы часто раскладывали скорость на составляющие и рассматривали их отдельно. То же можем сделать и сейчас для скоростей теплового направленного движения частицы.
Скорость ее теплового движения обычно составляет порядка сотен метров в секунду, но эта скорость нас сейчас не интересует, нас интересует направленное движение частиц.
Скорость направленного движения электронов в проводнике обычно составляет доли миллиметра в минуту, ее мы еще будем находить в одном из следующих уроков.
Заметьте: это не значит скорость распространения тока (это происходит почти мгновенно), это именно скорость движения частицы. То есть электрический ток возникает практически одновременно во всей цепи. Чтобы было понятно, проведем снова аналогию с током воды по трубе.
Например, есть труба длиной 1 метр. По ней течет вода со скоростью 10 . Суммарное перемещение молекул воды за секунду составит 10 см. Значит ли это, что ток распространится только на 10 см? Нет, вода течет по всей трубе, и любой элементарный объем воды внутри трубы переместится на 10 см (см. рис. 2).
Рис. 2. Перемещение любого объема воды в трубе
Таким образом, вода из одного конца трубы не переместится до второго конца, но течение распространится. Это произойдет потому, что по всему объему трубы по закону Паскаля распространяется давление, вызывающее ток, причем практически мгновенно. Так же в проводнике распространяется электрическое поле.
Носители заряда
Что может являться носителем заряда, образующим ток? Мы знаем два носителя электрического заряда: протон и электрон. Чтобы они могли создавать электрический ток, они также должны быть подвижными. Поэтому, например, в твердых веществах протоны, которые содержатся в ядрах атомов, не могут создавать электрический ток, поскольку атомы зафиксированы на своем месте в структуре вещества (см. рис. 3).
Рис. 3. Протоны в ядрах атомов твердых веществ
Электроны (это мы изучали на прошлом уроке) в диэлектриках не могут покидать атом, поэтому они тоже зафиксированы, а в проводниках один или несколько электронов в атоме слабо взаимодействуют с ядром и могут покидать атом. Такие электроны называются свободными.
Электрон может покинуть молекулу или атом газа, если сообщить ей достаточную для этого энергию. В этом случае получим свободный отрицательно заряженный электрон, а молекула или атом, потеряв электрон, приобретет положительный заряд и также станет свободным носителем заряда (см. рис. 4).
Рис. 4. Электрон покидает молекулу газа
Молекулы ряда веществ, которые называются электролитами, при растворении в воде распадаются на положительно и отрицательно заряженные части. Эти части называются ионами (см. рис. 5), они являются свободными носителями заряда в растворах электролитов.
Рис. 5. Свободные носители зарядов в растворах электролитов
Условия существования электрического тока
Рассмотрим протекание электрического тока на примере проводников. Какие условия должны выполняться, чтобы существовал электрический ток? Первое условие очевидно: чтобы существовало движение частиц, для этого нужно, чтобы были свободные частицы, способные передвигаться. В проводниках такими носителями тока являются свободные электроны.
Что заставляет частицу двигаться? Электрический заряд взаимодействует с электрическим полем, и на него действует сила (см. рис. 6). Эта сила и заставит электрон двигаться.
Рис. 6. Действие силы на электрический заряд
Второе условие существования электрического тока – наличие электрического поля в проводнике, которое характеризуется потенциалом в каждой точке или разностью потенциалов между двумя точками.
Достаточно ли этого? Проверим. Предположим, что у нас есть проводник со свободными носителями заряда и в проводнике есть электрическое поле (см. рис. 7).
Рис. 7. Проводник со свободными зарядами
Свободные электроны будут двигаться в сторону, противоположную вектору напряженности электрического поля, и будут скапливаться у одного из краев проводника, он станет заряжен отрицательно (см. рис. 8).
Рис. 8. Движение электронов в проводнике
У противоположного края при том же количестве атомов электронов будет меньше, поэтому он будет заряжен положительно. Этот процесс подробнее рассмотрен в ответвлении, скопившиеся заряды образуют свое электрическое поле, направленное противоположно внешнему и ослабляющее его. При ослаблении поля уменьшится и сила, которая разносит заряды по краям проводника, пока поля не уравновесятся. Эти процессы протекают быстро, и ток, как видим, быстро исчезает. Для его поддержания нужно, очевидно, чтобы электроны не накапливались на одном из краев проводника, а возвращались на противоположный край, т. е. цепь нужно замкнуть (см. рис. 9).
Рис. 9. Пример замкнутой цепи
Проводник во внешнем электрическом поле
Возьмем твердое тело – проводящую пластину – и поместим ее в однородное электрическое поле.
В первый момент, после внесения пластины в поле, возникнет электрический ток. Свободные носители заряда под действием силы со стороны внешнего электрического поля начнут движение и переместятся в соответствующую сторону проводника. Таким образом, один край пластины окажется заряженным положительно, другой – отрицательно (см. рис. 10).
Рис. 10. Перемещение свободных носителей заряда
Если бы мы разделили пластину на две части в момент, когда она находится в электрическом поле, то обе половинки оказались бы заряженными. Одна – положительно, другая – отрицательно. Эти области скопления зарядов создают свое электрическое поле, которое будет направлено в противоположную от внешнего сторону и будет стремиться скомпенсировать его (см. рис. 11).
Рис. 11. Электрическое поле зарядов
Движение носителей заряда прекратится лишь в тот момент, когда внутреннее и внешнее поле станут равны по модулю напряженности. То есть суммарное поле внутри проводника станет равно нулю:
Таким образом, внутри проводников электрическое поле отсутствует. На этом факте основана электростатическая защита. Приборы, которые необходимо защитить от электрического поля, помещают в специальные металлические ящики.
Итак, мы разобрали три условия возникновения электрического тока: наличие свободных носителей заряда; электрическое поле, которое будет вызывать движение заряженных частиц, и замкнутая цепь.
На следующих уроках мы продолжим изучение электрического тока. А сегодняшний урок окончен, спасибо за внимание!
Список литературы
- Соколович Ю. А., Богданова Г. С. Физика: Справочник с примерами решения задач. – 2-е издание, передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.
- Касьянов В. А. Физика. 10 кл.: Профильный уровень. 13-е издание. – М.: 2013 – 432 с.
- Мякишев Г. Я., Буховцев Б. Б., Сотский Н. Н. Физика: 10 кл., учебник для общеобразовательных учреждений, базовый и профильный уровни. – 19-е изд.– М.: «Просвещение», 2010.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал «examen. ru» (Источник)
- Портал Естественных Наук (Источник)
- Интернет-портал «tel-spb.ru» (Источник)
Домашнее задание
- Что такое электрический ток?
- Какие условия существования электрического тока?
Электрический ток | Справочник | Инженерные системы
В первую очередь, стоит выяснить, что представляет собой электрический ток. Электрический ток — это упорядоченное движение заряженных частиц в проводнике. Чтобы он возник, следует предварительно создать электрическое поле, под действием которого вышеупомянутые заряженные частицы придут в движение.
Первые сведения об электричестве, появившиеся много столетий назад, относились к электрическим «зарядам», полученным посредством трения. Уже в глубокой древности люди знали, что янтарь, потертый о шерсть, приобретает способность притягивать легкие предметы. Но только в конце XVI века английский врач Джильберт подробно исследовал это явление и выяснил, что точно такими же свойствами обладают и многие другие вещества. Тела, способные, подобно янтарю, после натирания притягивать легкие предметы, он назвал наэлектризованными. Это слово образовано от греческого электрон — «янтарь». В настоящее время мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами тела называются «заряженными».
Электрические заряды всегда возникают при тесном контакте различных веществ. Если тела твердые, то их тесному соприкосновению препятствуют микроскопические выступы и неровности, которые имеются на их поверхности. Сдавливая такие тела и притирая их друг к другу, мы сближаем их поверхности, которые без нажима соприкасались бы только в нескольких точках. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае тела называют «проводники», а во втором — «диэлектрики, или изоляторы». Проводниками являются все металлы, водные растворы солей и кислот и др. Примерами изоляторов могут служить янтарь, кварц, эбонит и все газы, находящиеся в нормальных условиях.
Тем не менее нужно отметить, что деление тел на проводники и диэлектрики весьма условно. Все вещества в большей или меньшей степени проводят электричество. Электрические заряды бывают положительными и отрицательными. Такого рода ток просуществует недолго, потому что в наэлектризованном теле кончится заряд. Для продолжительного существования электрического тока в проводнике необходимо поддерживать электрическое поле. Для этих целей используются источники электротока. Самый простой случай возникновения электрического тока — это когда один конец провода соединен с наэлектризованным телом, а другой — с землей.
Электрические цепи, подводящие ток к осветительным лампочкам и электромоторам, появились лишь после изобретения батарей, которое датируется примерно 1800 годом. После этого развитие учения об электричестве пошло так быстро, что менее чем за столетие оно стало не просто частью физики, но легло в основу новой электрической цивилизации.
Основные величины электрического тока
Количество электричества и сила тока.
От количества электричества зависит, в частности, химическое действие электрического тока, т. е. чем больший заряд прошел через раствор электролита, тем больше вещества осядет на катоде и аноде. В связи с этим количество электричества можно подсчитать, взвесив массу отложившегося на электроде вещества и зная массу и заряд одного иона этого вещества.
Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл), время измеряется в секундах (с). В этом случае единица силы тока выражается в Кл/с. Такую единицу называют ампером (А). Для того чтобы измерить силу тока в цепи, применяют электроизмерительный прибор, называемый амперметром. Для включения в цепь амперметр снабжен двумя клеммами. В цепь его включают последовательно.
Электрическое напряжение. Мы уже знаем, что электрический ток представляет собой упорядоченное движение заряженных частиц — электронов. Это движение создается при помощи электрического поля, которое совершает при этом определенную работу. Это явление называется работой электрического тока. Для того чтобы переместить больший заряд по электрической цепи за 1 с, электрическое поле должно выполнить большую работу. Исходя из этого, выясняется, что работа электрического тока должна зависеть от силы тока. Но существует и еще одно значение, от которого зависит работа тока. Эту величину называют напряжением.
Для того чтобы в электрической цепи возникло напряжение, нужен источник тока. При разомкнутой цепи напряжение имеется только на клеммах источника тока. Если этот источник тока включить в цепь, напряжение возникнет и на отдельных участках цепи. В связи с этим появится и ток в цепи. То есть коротко можно сказать следующее: если в цепи нет напряжения, нет и тока. Для того чтобы измерить напряжение, применяют электроизмерительный прибор, называемый вольтметром. Своим внешним видом он напоминает ранее упоминавшийся амперметр, с той лишь разницей, что на шкале вольтметра стоит буква V (вместо А на амперметре). Вольтметр имеет две клеммы, с помощью которых он параллельно включается в электрическую цепь.
Электрическое сопротивление. После подключения в электрическую цепь всевозможных проводников и амперметра можно заметить, что при использовании разных проводников амперметр выдает разные показания, т.
R = р * L/S
где коэффициент р называется удельным сопротивлением. Данный коэффициент выражает сопротивление проводника длиною в 1 м при площади поперечного сечения, равной 1 м2. Удельное сопротивление выражается в Ом х м. Поскольку провода, как правило, имеют довольно малое сечение, то обычно их площади выражают в квадратных миллиметрах. В этом случае единицей удельного сопротивления станет Ом х мм2/м. В нижеприведенной табл. 1 показаны удельные сопротивления некоторых материалов.
Удельное электрическое сопротивление некоторых материалов
Материал | р, Ом х м2/м | Материал | р, Ом х м2/м |
Медь | 0,017 | Платино-иридиевый сплав | 0,25 |
Золото | 0,024 | Графит | 13 |
Латунь | 0,071 | Уголь | 40 |
Олово | 0,12 | Фарфор | 1019 |
Свинец | 0,21 | Эбонит | 1020 |
Металл или сплав | |||
Серебро | 0,016 | Манганин (сплав) | 0,43 |
Алюминий | 0,028 | Константан (сплав) | 0,50 |
Вольфрам | 0,055 | Ртуть | 0,96 |
Железо | 0,1 | Нихром (сплав) | 1,1 |
Никелин (сплав) | 0,40 | Фехраль (сплав) | 1,3 |
Хромель (сплав) | 1,5 |
По данным таблицы становится понятно, что самое малое удельное электрическое сопротивление имеет медь, самое большое — сплав металлов. Кроме этого, большим удельным сопротивлением обладают диэлектрики (изоляторы).
Электрическая емкость. Мы уже знаем, что два изолированных друг от друга проводника могут накапливать электрические заряды. Это явление характеризуется физической величиной, которую назвали электрической емкостью. Электрическая емкость двух проводников — не что иное, как отношение заряда одного из них к разности потенциалов между этим проводником и соседним. Чем меньше будет напряжение при получении заряда проводниками, тем больше их емкость. За единицу электрической емкости принимают фарад (Ф). На практике используются доли данной единицы: микрофарад (мкФ) и пикофарад (пФ).
Если взять два изолированных друг от друга проводника, разместить их на небольшом расстоянии один от другого, то получится конденсатор. Емкость конденсатора зависит от толщины его пластин и толщины диэлектрика и его проницаемости. Уменьшая толщину диэлектрика между пластинами конденсатора, можно намного увеличить емкость последнего. На всех конденсаторах, помимо их емкости, обязательно указывается напряжение, на которое рассчитаны эти устройства.
Работа и мощность электрического тока. Из вышесказанного понятно, что электрический ток совершает определенную работу. При подключении электродвигателей электроток заставляет работать всевозможное оборудование, двигает по рельсам поезда, освещает улицы, обогревает жилище, а также производит химическое воздействие, т. е. позволяет выполнять электролиз и т. д. Можно сказать, что работа тока на определенном участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа. Работа измеряется в джоулях, напряжение — в вольтах, сила тока — амперах, время — в секундах. В связи с этим 1 Дж = 1В х 1А х 1с. Из этого получается, для того чтобы измерить работу электрического тока, следует задействовать сразу три прибора: амперметр, вольтметр и часы. Но это громоздко и малоэффективно. Поэтому, обычно, работу электрического тока замеряют электрическими счетчиками. В устройстве данного прибора имеются все вышеназванные приборы.
Мощность электрического тока равна отношению работы тока к времени, в течение которого она совершалась. Мощность обозначается буквой «Р» и выражается в ваттах (Вт). На практике используют киловатты, мегаватты, гектоватты и пр. Для того чтобы замерить мощность цепи, нужно взять ваттметр. Электротехники работу тока выражают в киловатт-часах (кВтч).
Основные законы электрического тока
Закон Ома. Напряжение и ток считаются наиболее удобными характеристиками электрических цепей. Одной из главных особенностей применения электричества является быстрая транспортировка энергии из одного места в другое и передача ее потребителю в нужной форме. Произведение разности потенциалов на силу тока дает мощность, т. е. количество энергии, отдаваемой в цепи на единицу времени. Как было сказано выше, чтобы замерить мощность в электрической цепи, понадобилось бы 3 прибора. А нельзя ли обойтись одним и вычислить мощность по его показаниям и какой-либо характеристике цепи, вроде ее сопротивления? Многим эта идея понравилась, они посчитали ее плодотворной.
Итак, что же такое сопротивление провода или цепи в целом? Обладает ли проволока, подобно водопроводным трубам или трубам вакуумной системы, постоянным свойством, которое можно было бы назвать сопротивлением? К примеру, в трубах отношение разности давления, создающей поток, деленное на расход, обычно является постоянной характеристикой трубы. Точно так же тепловой поток в проволоке подчиняется простому соотношению, в которое входит разность температур, площадь поперечного сечения проволоки и ее длина. Открытие такого соотношения для электрических цепей стало итогом успешных поисков.
В 1820-х годах немецкий школьный учитель Георг Ом первым приступил к поискам вышеназванного соотношения. В первую очередь, он стремился к славе и известности, которые бы позволили ему преподавать в университете. Только поэтому он выбрал такую область исследований, которая сулила особые преимущества.
Ом был сыном слесаря, поэтому знал, как вытягивать металлическую проволоку разной толщины, нужную ему для опытов. Поскольку в те времена нельзя было купить пригодную проволоку, Ом изготавливал ее собственноручно. Во время опытов он пробовал разные длины, разные толщины, разные металлы и даже разные температуры. Все эти факторы он варьировал поочередно. Во времена Ома батареи были еще слабые, давали ток непостоянной величины. В связи с этим исследователь в качестве генератора применил термопару, горячий спай которой был помещен в пламя. Кроме этого, он использовал грубый магнитный амперметр, а разности потенциалов (Ом называл их «напряжениями») замерял путем изменения температуры или числа термоспаев.
Учение об электрических цепях только-только получило свое развитие. После того как, примерно, в 1800 году изобрели батареи, оно стало развиваться намного быстрее. Проектировались и изготовлялись (довольно часто вручную) различные приборы, открывались новые законы, появлялись понятия и термины и т. д. Все это привело к более глубокому пониманию электрических явлений и факторов.
Обновление знаний об электричестве, с одной стороны, стало причиной появления новой области физики, с другой стороны, явилось основой для бурного развития электротехники, т. е. были изобретены батареи, генераторы, системы электроснабжения для освещения и электрического привода, электропечи, электромоторы и прочее, прочее.
Открытия Ома имели огромное значение как для развития учения об электричестве, так и для развития прикладной электротехники. Они позволили легко предсказывать свойства электрических цепей для постоянного тока, а впоследствии — для переменного. В 1826 году Ом опубликовал книгу, в которой изложил теоретические выводы и экспериментальные результаты. Но его надежды не оправдались, книгу встретили насмешками. Это произошло потому, что метод грубого экспериментирования казался мало привлекательным в эпоху, когда многие увлекались философией.
Ому не оставалось ничего другого, как оставить занимаемую должность преподавателя. Назначения в университет он не добился по этой же причине. В течение 6 лет ученый жил в нищете, без уверенности в будущем, испытывая чувство горького разочарования.
Но постепенно его труды получили известность сначала за пределами Германии. Ома уважали за границей, пользовались его изысканиями. В связи с этим соотечественники вынуждены были признать его на родине. В 1849 году он получил должность профессора Мюнхенского университета.
Ом открыл простой закон, устанавливающий связь между силой тока и напряжением для отрезка проволоки (для части цепи, для всей цепи). Кроме этого, он составил правила, которые позволяют определить, что изменится, если взять проволоку другого размера. Закон Ома формулируется следующим образом: сила тока на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению участка.
Закон Джоуля-Ленца. Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U). По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна i, то за время t пройдет заряд it, и поэтому работа электрического тока в этом участке будет:
А = Uit
Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т. е. работа в единицу времени, равна:
Р = A/t = Ui
Эту формулу применяют в системе СИ для определения единицы напряжения.
Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:
U = ir
где r — сопротивление проводника. В таком случае:
А = rt2t
Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.
Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них — осветительные лампы накаливания.
Закон электромагнитной индукции. В первой половине XIX века английский физик М. Фарадей открыл явление магнитной индукции. Этот факт, став достоянием многих исследователей, дал мощный толчок развитию электро- и радиотехники.
В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики — закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.
Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.
При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т. е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.
Правило Ленца. Как мы уже знаем, в проводнике возникает индукционный ток. В зависимости от условий своего появления он имеет разное направление. По этому поводу русский физик Ленц сформулировал следующее правило: индукционный ток, возникающий в замкнутом контуре, всегда имеет такое направление, что создаваемое им магнитное поле не дает магнитному потоку изменяться. Все это вызывает возникновение индукционного тока.
Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.
Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.
Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.
Как производится электричество? | Мистер Электрик
Каждый из нас зависит от электричества, чтобы нормально двигаться в течение дня. Наши сотовые телефоны, ноутбуки и бесчисленное множество других приборов работают от электричества. Наша потребность в электричестве совершенно очевидна и особенно осознается, когда что-то идет не так, что наиболее вероятно, когда вы звоните нам!
Вы знаете, что вам нужно электричество, но знаете ли вы, что это такое на самом деле и как оно производится? Присоединяйтесь к мистеру Электрику, когда мы вернемся к основам и поближе познакомимся с электричеством, которое питает нашу жизнь.
Что такое электричество?Прежде чем углубляться в то, как производится электричество, давайте начнем с небольшого «Электричества 101». Проще говоря, электричество — это поток электронов из одного места в другое, точнее, по цепи.
Вы, вероятно, можете вспомнить свой школьный урок химии (с любовью или отвращением — между ними не так много!), где вы узнали об атомах или «кирпичиках жизни». Электроны — это отрицательно заряженные субатомные частицы. Если один из этих электронов освободить от атома и заставить двигаться, будет произведено электричество.
Самые внешние электроны, или валентные электроны, требуют наименьшего количества силы, чтобы освободиться от атома. Когда свободные электроны находят новые атомы, чтобы зацепиться за них, они «выталкивают» существующий электрон, и процесс начинается сначала, производя электрический ток.
Такие элементы, как медь, серебро и золото, имеют очень подвижные электроны, что означает, что эти элементы являются отличными проводниками электричества. Эти знания играют значительную роль в том, как производится наша электроэнергия!
Как производится?Чтобы вы могли щелкнуть выключателем или нажать кнопку «вкл», за кулисами усердно работает электричество. Давайте рассмотрим путь электричества от электростанции к вам.
Электричество начинается с одного из трех основных видов топлива: ископаемое топливо (например, уголь, нефть и природный газ), ядерная энергия и возобновляемые альтернативы (например, энергия ветра, солнца и воды). Это топливо создает пар или жидкость, которая приводит в движение турбину, которая вращает магнит в генераторе. Это движение заставляет те электроны двигаться, что производит электричество!
Но это не останавливается на достигнутом — этому электрическому току еще предстоит пройти долгий путь, чтобы добраться до вас. Как только генератор вырабатывает электрический ток, он по толстым проводам передается на трансформаторы, которые усиливают напряжение. Это высоковольтное электричество передается в энергосистему. Одна в энергосистеме, электричество перемещается на разные подстанции, которые снижают напряжение для использования в больших условиях, таких как заводы.
Чтобы электроэнергия действительно поступала к вам, она распределяется между местными трансформаторами по линиям электропередач, которые либо проложены под землей, либо смонтированы. Эти местные трансформаторы дополнительно снижают напряжение, поэтому вы получаете электричество безопасно. Когда он, наконец, прибывает в ваш дом, и вы щелкаете выключателем или нажимаете кнопку «вкл», вы замыкаете цепь, и электричество течет.
Вот оно! Теперь, когда вы хорошо осведомлены об электричестве и о том, как оно доходит до вас, вы готовы решить любой вопрос по электричеству, который возникнет у вас на пути, что может пригодиться для школьного проекта по химии для ваших детей!
Нужно небольшое электрическое усиление? Дружелюбный технический специалист Mr. Electric готов помочь. Расписание и назначение с нами сегодня!
Кроме того, вам интересно узнать больше о том, как все работает? Прочтите этот блог от нашего коллеги по бренду Neighbourly, Mr. Appliance, о том, как ваш холодильник остается холодным.
Ищете специалиста по обслуживанию? Посетите GetNeighborly.com, чтобы найти решение для ремонта вашего дома.
Этот блог предоставлен компанией Mr. Electric в образовательных целях только для того, чтобы дать читателю общую информацию и общее представление о конкретном предмете, указанном выше. Блог не должен использоваться в качестве замены лицензированного специалиста по электротехнике в вашем штате или регионе. Перед выполнением любого домашнего проекта ознакомьтесь с законами города и штата.
Генерация электрического тока, Рон Куртус
SfC Home > Physics > Electricity >
Рон Куртус (обновлено 24 июня 2018 г.)
Электрический ток может быть генерирован перемещением металлической проволоки через магнитное поле. Это относится как к электричеству переменного тока (AC), так и к электричеству постоянного тока (DC). Это другой метод, чем тот, где постоянный ток создается батареей, в которой используются химические реакции. Это также отличается от статического электричества, которое представляет собой накопление зарядов на поверхности.
Электрические генераторы вращают катушку проводов через магнитное поле. Разница между генератором переменного тока и генератором постоянного тока заключается в том, что генератор переменного тока использует контактные кольца для передачи тока в электрическую цепь, а генератор постоянного тока использует коммутатор с разъемным кольцом. Генераторы могут быть очень маленькими или довольно огромными. Очень большие из них производят электроэнергию для сообщества. Электродвигатель очень похож на генератор, за исключением того, что мощность подается на вращение роторов.
Возможные вопросы:
- Что происходит, когда провод проходит через магнитное поле?
- Как используется проволочная петля в электрогенераторе?
- Как выглядят коммерческие генераторы?
Этот урок ответит на эти вопросы. Полезный инструмент: Преобразование единиц измерения
Движение провода в магнитном поле
Когда провод из проводящего материала пересекает магнитное поле, в проводе возникает электрический ток.
Провод должен быть частью цепи
Обратите внимание, что провод должен быть частью электрической цепи. В противном случае электронам некуда деваться. Другими словами, в проводе с открытыми концами не возникает электрического тока. Но если концы присоединить к лампочке, к электросчетчику или даже друг к другу, то цепь замыкается и возникает электрический ток.
Движение провода через магнитное поле создает электрический ток,
измеряется метражом, прикрепленным к концам провода
Направление тока
Направление магнитного поля и направление провода определяют направление тока в проводе. По соглашению, направление магнитного поля от севера к югу.
Несколько лет назад Бенджамин Франклин определил направление электрического тока как движение от плюса (+) к минусу (-). В то время ученые не знали о существовании отрицательно заряженных электронов и их роли в электрическом токе.
Таким образом, по соглашению ток идет от плюса (+) к минусу (-). Но учтите, что на самом деле отрицательно заряженные электронов движутся в направлении, противоположном направлению тока . Электроны движутся от (-) к (+).
Вам просто нужно помнить, что электроны движутся в направлении, противоположном направлению тока.
Другие конфигурации
Помимо перемещения провода через магнитное поле, вы также можете создать электрический ток в проводе, перемещая магниты и удерживая провод неподвижно.
Другой метод создания тока состоит в том, чтобы сохранять оба неподвижными, но изменять магнитное поле. Этот метод используется для изменения напряжения переменного тока в электрических трансформаторах.
(дополнительную информацию см. в разделе «Трансформаторы переменного тока»).
Петля закручена
Если из проволоки сделать петлю, которая затем закручена или вращается в магнитном поле, вы можете получить непрерывный ток. Поскольку каждая сторона петли движется в другом направлении в магнитном поле, ток течет по петле в зависимости от того, в каком направлении она вращается.
Ток передачи
Также должен быть какой-то способ передачи тока на остальную часть цепи. В генераторе переменного тока это достигается наличием кольца на каждом конце провода. Металлический контакт или щетка трется или скользит по каждому кольцу, позволяя электричеству течь по цепи. В генераторе постоянного тока это делается с помощью одного разъемного кольца, называемого коммутатором. Генератор переменного тока использует два контактных кольца.
Сравнение контуров и колец постоянного и переменного тока
Генератор в действии
Следующая анимация показывает генератор переменного тока в действии. При перемещении одной стороны петли к другому полюсу магнитного поля ток в ней меняет направление. Два токосъемных кольца генератора переменного тока позволяют току менять направление и становиться переменным током.
Простой генератор переменного тока
(Изображение из серии передач PBS American Experience: Внутри генератора переменного тока)
В генераторе постоянного тока коммутатор с разъемным кольцом приспосабливается к изменению направления тока в петле, создавая таким образом постоянный ток, проходящий через щетки в цепь.
Обратите внимание, что постоянный ток не является постоянным значением. Скорее это «ухабистый» сигнал, с нулевым напряжением при обрыве кольца. Мощность от тока может быть математически описана как квадрат синусоиды. Поскольку большинство генераторов постоянного тока имеют более одного контура, «удары» выравниваются и не замечаются.
Чем быстрее провод проходит через магнитное поле, тем больше сила тока.
Полноразмерные генераторы
Генераторы, используемые для подачи электроэнергии в дома и на предприятия, вместо одного контура имеют несколько магнитов и контуров, состоящих из проводов, намотанных на железный сердечник, подобно электромагниту. Чем больше витков провода проходит через магнитное поле, тем выше создаваемое напряжение.
Большой генератор с несколькими обмотками
Генераторы, используемые для обеспечения населения электричеством, огромны. Ротор может быть более 10 футов в диаметре.
Может использоваться в качестве двигателя
Обратите внимание, что когда провод генератора намотан на железный сердечник, его также можно использовать в качестве электродвигателя. Вместо того, чтобы вращать петли в магнитном поле для создания электричества, по проводам проходит ток, создавая электромагниты. Затем внешние магниты будут отталкивать электромагниты и вращать вал как электродвигатель.
Если ток постоянный, для создания двигателя постоянного тока требуются коммутаторы с разъемным кольцом. Если ток переменный, два токосъемных кольца необходимы для создания двигателя переменного тока.
Осмотрите отключенный от сети электродвигатель, чтобы увидеть, как мотор и генератор выглядят внутри.
Краткая информация
Движение провода через магнитное поле генерирует электрический ток. Электрические генераторы вращают катушку проводов через магнитное поле. Разница между генератором переменного тока и генератором постоянного тока заключается в том, что генератор переменного тока использует контактные кольца для передачи тока в электрическую цепь, а генератор постоянного тока использует коммутатор с разъемным кольцом. Очень большие генераторы производят электроэнергию для населения. Электродвигатель очень похож на генератор, за исключением того, что мощность подается на вращение роторов.
Зная, что вы сделали все возможное, чтобы вы почувствовали себя хорошо
Ресурсы и ссылки
Рон Куртус. Условия
Веб -сайты
DC и AC Electricity Resources
Physics Resource Примечание: Школа чемпионов может получать комиссионные за покупку книг)
Книги с самым высоким рейтингом по производству электроэнергии
.