Site Loader

Содержание

Урок «Понятие системы счисления. Двоичная система счисления»

Понятие системы счисления.

Двоичная система счисления

Цель урока: ввести понятие системы счисления, позиционной и непозиционной системы счисления, двоичной системы счисления, рассмотреть правила перевода чисел из одной системы счисления в другую.

Задачи урока:

  • образовательные: формирование представлений о позиционных и непозиционных системах счисления; формирование знаний о двоичной системе счисления; формирование способности для применения правил перевода чисел из одной системы счисления в другие;

  • развивающие: развитие познавательного интереса, логического и алгоритмического мышления, самооценки, навыков самоконтроля;

  • воспитательные: воспитание чувства ответственности, коммуникативности, самостоятельности, информационной культуры учащихся.

Тип урока: урок усвоения новых знаний.

Оборудование: карточки с заданиями.

Эпиграф к уроку:

«Все есть число»,

— так говорили пифагорейцы, подчеркивая необычайно важную роль чисел в практической деятельности.

Ход урока

I. Организационный момент

— Здравствуйте, ребята! Прочитав эпиграф к нашему уроку, вы, наверное, догадались, что речь сегодня пойдет о числе. Каждый день нас окружает множество чисел, а сегодня вы узнаете о них еще больше полезной информации.

II. Проверка домашнего задания. Актуализация опорных знаний

— На прошлом уроке вы узнали, что такое кодирование информации. Ответьте на вопросы:

1) Что такое код, кодирование информации, декодирование информации?

2) Приведите примеры кодирования информации в различных сферах деятельности человека.

3) Что такое двоичный код?

4) Для чего необходимо кодирование различных видов информации в компьютере?

III. Постановка темы и целей урока

(На доске заранее записана тема урока, но не в явном виде, а с помощью кода.)

— Используя знания предыдущего урока и кодовую таблицу символов, расшифруйте тему нашего урока. В таблицу добавлен знак пробела между словами (номер 34), запятая (35) и точка (36).

Кодовая таблица символов (заранее записана на доске):

А

Б

В

Г

Д

Е

Ё

Ж

З

И

Й

К

Л

М

Н

О

П

Р

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

С

Т

У

Ф

Х

Ц

Ч

Ш

Щ

Ь

Ы

Ъ

Э

Ю

Я

,

.

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Зашифрованная тема урока:

17 16 15 33 20 10 6 34 19 10 19 20 6 14 29 34 19 25 10 19 13 6 15 10 33 36 34 5 3 16 10 25 15 1 33 34 19 10 19 20 6 14 1 34 19 25 10 19 13 6 15 10 33

— Итак, тема нашего урока «Понятие системы счисления. Двоичная система счисления». Запишите число и тему в тетради.

— Сегодня мы с вами познакомимся с системами счисления и научимся работать с двоичными числами:

  • переводить из двоичной в десятичную систему счисления;

  • переводить из десятичной в двоичную систему счисления.

IV. Историческая справка

Люди научились считать еще в незапамятные времена. Сначала они просто различали один предмет перед ними или нет. Если предмет был не один, то говорили «много». Постепенно появилось слово для обозначения двух предметов. Счет парами очень удобен.

Наиболее древней и простой «счетной машиной» издавна являются пальцы рук и ног. И даже в наше время еще пользуются этим «счетным прибором», который всегда при нас. На пальцах можно решать примеры не только в пределах десяти. В древние времена люди ходили босиком. Поэтому они могли пользоваться для счета пальцами как рук, так и ног.

Записывали числа поначалу совсем просто: делали зарубки на куске дерева или кости. Когда понадобилось записывать большие числа, то для пятерок и десяток стали придумывать новые знаки.

Запомнить большие числа трудно, поэтому к «счетной машине» рук и ног добавляли механические приспособления. Веревочные счеты с узелками применялись и у нас, и во многих странах Европы. Остатками этого способа является практикуемое еще до сих пор завязывание узелков на носовых платках «на память». Так, одни пользовались для запоминания чисел камешками, зернами, веревкой с узелками, другие — палочками с зарубками. Это были первые счетные приборы, которые в конце концов привели к образованию различных систем счисления.

V. Изучение нового материала

— Что же такое система счисления? Система счисления — это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр (знаков), используемых для представления чисел называют основанием системы счисления. Например, мы с вами чаще всего пользуемся системой счисления, в которой при записи чисел используем десять цифр (от 0 до 9) такая система счисления называется десятичной и ее основанием является число 10. Запишите эти определения в тетради.

Система счисления, в которой значение цифры в числе не зависит от ее места в записи числа называется

непозиционной.

Примером непозиционной системы является римская система счисления. В ней для записи чисел используются буквы латинского алфавита. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, которые в него входят. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр.

По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов.

Систему счисления, в которой значение каждой цифры числа определяется ее позицией в записи числа называют

позиционной. Позиционные системы счисления результат длительного исторического развития непозиционных систем счисления. Примером позиционной системы является десятичная, которую мы чаще всего используем.

— Какие же бывают еще системы счисления? Чаще всего используют четыре основные системы счисления – двоичную, восьмеричную, десятичную и шестнадцатеричную. (Учитель раздает учащимся таблицу, в которой представлена информация о данных системах счисления.) Рассмотрите таблицу и ответьте на вопросы:

1) Назовите основание десятичной системы счисления? Двоичной? Восьмеричной? Шестнадцатеричной?

2) Сколько цифр может использоваться при записи чисел в десятичной системе счисления? Двоичной? Восьмеричной?

3) Какие символы используются при записи чисел в шестнадцатеричной системе счисления?

Таблица:

Система счисления

Основание

Алфавит цифр

Десятичная

10

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Двоичная

2

0, 1

Восьмеричная

8

0, 1, 2, 3, 4, 5, 6, 7

Шестнадцатеричная

16

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

A, B, C, D, E, F

— Остановимся подробнее на двоичной системе счисления. Ответьте на вопросы:

  • Какие символы используются при записи чисел в этой системе счисления?

  • Как вы думаете, где и для чего используется двоичная система счисления? (Для кодирования информации в компьютере.)

— Правильно. Самые умные машины – ЭВМ, работают с минимальной двоичной системой счисления. Для записи чисел используются только две цифры – 0 и 1. Выбор двоичной системы объясняется тем, что электронные элементы, из которых строятся ЭВМ, могут находиться только в двух состояниях. Эти элементы представляют собой выключатели. А выключатель либо включен, либо выключен. Одно из состояний обозначается цифрой 1, другое – 0. Благодаря таким особенностям двоичная система стала стандартом при построении ЭВМ.

— Рассмотрим, как же можно выполнять перевод чисел из десятичной системы счисления в двоичную и наоборот.

  1. Последовательно выполнять деление исходного целого десятичного числа и получаемых целых частных на основание системы (на 2) до тех пор, пока не получится частное, меньшее делителя, то есть меньшее 2.

  1. Записать полученные остатки в обратной последовательности.

(Учитель показывает пример на доске, ученики повторяют действия в тетрадях.)

— Запишем результат: 2710 = 110112. (Учитель поясняет, что индексы 10 и 2 – это основания чисел.)

  1. Записать двоичное число в виде суммы степеней двойки.

  2. Произвести вычисления.

(Учитель показывает пример на доске, ученики повторяют действия в тетрадях.)

— Запишем двоичное число 111010012 в виде суммы степеней двойки следующим образом:

111010012 = 1∙27 + 1∙26 + 1∙25 + 0∙24 + 1∙23 + 0∙22 + 0∙21 + 1∙20.

— Подсчитаем значение выражения в правой части равенства и получим, что 111010012 = 23310.

— Переводить числа из десятичной системы счисления в двоичную и наоборот можно также с помощью стандартного приложения ОС Windows Калькулятор. Для этого необходимо:

  • в команде главного меню Вид выбрать ту систему, из которой нужно перевести число;

  • ввести число в окно приложения;

  • в команде главного меню Вид выбрать ту систему, в которую нужно перевести число.

VI. Физкультминутка.

Мы топаем ногами,

Мы хлопаем руками,

Киваем головой.

Мы руки поднимаем,

Мы руки опускаем

И вновь писать начнем.

VII. Закрепление нового материала

— Присаживайтесь за компьютеры и выполните следующие задания с помощью приложения Калькулятор (учитель раздает карточки с заданиями (приложение 1)):

Задание 1. Переведите числа из десятичной системы счисления в двоичную:

1) 25610; 2) 18910; 3) 2710; 4) 34,9810.

Задание 2. Переведите числа из двоичной системы счисления в десятичную:

1) 1012; 2) 10011012; 3) 111012; 4) 11,011012.

— Присаживайтесь на свои места и выполните в тетрадях следующие задания (учитель раздает карточки с заданиями (приложение 2), вызывает учеников к доске для выполнения задания):

Задание 1. Переведите числа из десятичной системы счисления в двоичную, пользуясь алгоритмом перевода чисел:

1) 6110; 2) 8710.

Задание 2. Переведите числа из двоичной системы счисления в десятичную, пользуясь алгоритмом перевода чисел:

1) 11012; 2) 10010012.

Задание 3. Переведите в двоичную систему счисления:

а) ваш возраст;

б) год вашего рождения;

в) количество учеников вашего класса.

Задание 4. Отметьте и последовательно соедините на координатной плоскости точки, координаты которых приведены в двоичной системе счисления. Для этого сначала найдите координаты точек в десятичной системе счисления.

При выполнении последнего задания можно заметить, что в десятичную систему счисления нужно перевести только 12 двоичных чисел.

VIII. Подведение итогов урока

— Сегодня на уроке мы с вами провели большую работу и узнали много нового. Что для вас было новым? Что вы узнали?

— Все системы счисления делятся на две большие группы. Какие?

Выставляются и комментируются оценки.

IX. Рефлексия

Ученикам предлагается ответить на вопросы:

1. Что нового я узнал сегодня?

2. Доволен ли я своей работой?

X. Домашнее задание

1) § 3, вопросы 1-3;

2) задание по карточкам (приложение 3):

Задание 1. Расшифруйте стихотворение:

Ей было 1100 лет.

Она в 101 класс ходила

В портфеле по 100 книг носила

Все это правда, а не бред.

Когда пыля десятком ног,

Она шагала по дороге,

За ней всегда бежал щенок

С одним хвостом, зато стоногий.

Она ловила каждый звук

Своими десятью ушами,

И 10 загорелых рук

Портфель и поводок держали.

И 10 темно-синих глаз

Оглядывали мир привычно.

Но станет все совсем обычным,

Когда поймете наш рассказ.

Задание 2. Янине 11112 лет, ее брату Станиславу на 102 лет меньше, а их двоюродная сестра Наташа старше Станислава на 510 лет. Сколько лет Станиславу и Наташе в десятичной системе счисления?

Приложение 1

Задание 1. Переведите числа из десятичной системы счисления в двоичную:

1) 25610; 2) 18910; 3) 2710; 4) 34,9810.

Задание 2. Переведите числа из двоичной системы счисления в десятичную:

1) 1012; 2) 10011012; 3) 111012; 4) 11,011012.

Приложение 2

Задание 1. Переведите числа из десятичной системы счисления в двоичную, пользуясь алгоритмом перевода чисел:

1) 6110; 2) 8710.

Задание 2. Переведите числа из двоичной системы счисления в десятичную, пользуясь алгоритмом перевода чисел:

1) 11012; 2) 10010012.

Задание 3. Переведите в двоичную систему счисления:

а) ваш возраст;

б) год вашего рождения;

в) количество учеников вашего класса.

Задание 4. Отметьте и последовательно соедините на координатной плоскости точки, координаты которых приведены в двоичной системе счисления. Для этого сначала найдите координаты точек в десятичной системе счисления.

Приложение 3

Задание 1. Расшифруйте стихотворение:

Ей было 1100 лет.

Она в 101 класс ходила

В портфеле по 100 книг носила

Все это правда, а не бред.

Когда пыля десятком ног,

Она шагала по дороге,

За ней всегда бежал щенок

С одним хвостом, зато стоногий.

Она ловила каждый звук

Своими десятью ушами,

И 10 загорелых рук

Портфель и поводок держали.

И 10 темно-синих глаз

Оглядывали мир привычно.

Но станет все совсем обычным,

Когда поймете наш рассказ.

Задание 2. Янине 11112 лет, ее брату Станиславу на 102 лет меньше, а их двоюродная сестра Наташа старше Станислава на 510 лет. Сколько лет Станиславу и Наташе в десятичной системе счисления?

Двоичная система счисления


Двоичная система счисления  — это позиционная система записи чисел с основанием два.

В повседневной жизни мы привыкли пользоваться десятичной системой записи чисел с основанием 10. То есть для записи чисел у нас есть десять символов от 0 до 9, а место каждого символа (позиция) указывает его вес — единицы, десятки, сотни и т.д.

В двоичной системе счисления все устроено аналогичным образом, только для записи чисел у нас всего два символа — 0 и 1.
Из-за того, что для записи числа у нас только два символа (0 и 1), она нашла широкое применение в электронных устройствах и вычислительной технике. Несмотря на многочисленные попытки использования для вычислений аналоговых устройств, системы с троичной логикой (троичная система счисления с символами 0, 1 и 2), системы с двоичной логикой в настоящее время занимают доминирующее положение. Впрочем, с приходом квантовых вычислений, ситуация, скорее всего, изменится.

Как устроена запись чисел в двоичной системе

По аналогии с привычной десятичной системой, при переполнении разряда, добавляется следующий, который заполняется единицей.
В десятичной системе максимальное значение в одном разряде — число 9. Если нам нужно добавить единицу — то текущий разряд обнуляется, а в соседнем разряде появляется единица:
9
добавляем 1, получаем
10
(старший разряд стол единицей, младший — обнулился)

Теперь «посчитаем до десяти» в двоичной системе.

0. В двоичной системе так и будет — 0.

1. В двоичной системе так и будет — 1.

2. Символа 2 в двоичной системе нет. Поэтому младший разряд сбрасывается, а старший добавляется как 1. Получаем 10.

3. Добавляем единицу. Поскольку у нас было 10, младший разряд может быть увеличен на 1, получаем — 11.

4. Младший разряд снова достиг максимального значения, поэтому мы должны его сбросить, но следующий разряд тоже достиг максимального значения (1), его тоже сбрасываем и добавляем новый разряд. Получаем — 100.

5. Добавляем единицу в младший регистр. У нас было записано число 4 как 100, добавляем 1 в младший разряд и получаем 101.

6. Добавляем единицу в младший разряд, но он достиг максимального значения, сбрасываем его и добавляем единицу в следующий. Получаем 110.

7. Добавляем единицу в младший регистр. Получаем — 111.

8. Пытаемся добавить единицу к двоичному числу 111 и видим, что нам нужно последовательно сбросить уже целых три разряда и добавить еще один разряд. Получаем 1000.

9. Добавляем единицу к двоичному числу 1000, получаем — 1001.

10. Добавляем единицу к младшему разряду, но он достиг максимального значения, сбрасываем его и добавляем единицу к следующему. Получаем 1010.

Подведем итоги:

В десятичной
системе

В двоичной
системе
 

 0

0

1

 1

2

10

 

11

100

101

110

111

1000

1001

10 

 1010


Как видно из указанного выше, принцип записи чисел в двоичной системе точно такой же, просто используется меньшее количество символов в одном разряде.

Как различают числа, записанные в двоичной и десятичной системах

Для того, чтобы не перепутать число 100, записанное в десятичной системе с числом 100 в двоичной (которое эквивалентно 4 в десятичной) используют дополнительные символы в конце или в начале числа.

Например:
10010 и 1002.
В данном случае в виде нижнего индекса указывается основание системы счисления.

В литературе, посвященной программированию чаще всего используют обозначения чисел, применяемые в семействе языков программирования С (С. С#, C++). В этих языках принято обозначать двоичные числа префиксом 0b.
Тогда 100 в десятичной системе будет записано без изменений, а 100 в двоичной системе будет записано как 0b100.

Сложение и вычитание двоичных чисел

Сложение и вычитание двоичных чисел можно делать абсолютно аналогично принципам сложения и вычитания «в столбик» десятичных чисел.

Проведем сложение двух чисел 7 и 9.
В двоичной системе счисления
710 = 1112
910 = 10012

Тогда

      1
 +   1 0 0
   1  0  0  0

1610 = 100002 .

Как видим, сложение 1 и 1 в младшем разряде приведет к достижению максимального значения, то есть он должен быть сброшен ( в ноль ), а единица должна быть прибавлена к следующему разряду. Но там при сложении уже имеется единица и добавление единицы приведет нас к аналогичным действиям — снова сбрасываем разряд в ноль, переносим единицу в следующий и так далее.

Преобразование чисел из двоичной системы в десятичную

Для преобразования чисел, записанных в двоичной системе, в десятичную, нам потребуется таблица степеней числа 2.
Запишем степени двойки в виде следующей строки:
 256  128  64  32  16  8  4  2

Теперь любое двоичное число можно будет пересчитать в десятичное следующим образом:
+256 +128 +64 +32 +16 +8 +4 +2 +1 
 Результат пересчета
     1  64+8+4+1 = 77

То есть 10011012 = 7710. Содержание главы:

Описание курса | Хранение и кодирование информации 

   

Двоичная система счисления — это… Что такое Двоичная система счисления?

Системы счисления в культуре
Индо-арабская система счисления
Арабская
Индийские
Тамильская
Бирманская
Кхмерская
Лаоская
Монгольская
Тайская
Восточноазиатские системы счисления
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные системы счисления
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Эфиопская
Еврейская
Катапаяди
Другие системы
Вавилонская
Египетская
Этрусская
Римская
Аттическая
Кипу
Майская
Позиционные системы счисления
Десятичная система счисления (10)
2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 60
Нега-позиционная система счисления
Симметричная система счисления
Смешанные системы счисления
Фибоначчиева система счисления
Непозиционные системы счисления
Единичная (унарная) система счисления
Список систем счисления

Двоичная система счисления — позиционная система счисления с основанием 2.

Двоичные цифры

В этой системе счисления числа записываются с помощью двух символов (0 и 1).

История

  • В 1605 году Френсис Бэкон описал систему, буквы алфавита которой могут быть сведены к последовательностям двоичных цифр, которые в свою очередь могут быть закодированы как едва заметные изменения шрифта в любых случайных текстах. Важным шагом в становлении общей теории двоичного кодирования является замечание о том, что указанный метод может быть использован применительно к любым объектам.[7] (См. Шифр Бэкона)
  • Современная двоичная система была полностью описана Лейбницем в XVII веке в работе Explication de l’Arithmétique Binaire[8]. В системе счисления Лейбница были использованы цифры 0 и 1, как и в современной двоичной системе. Как человек, увлекающийся китайской культурой, Лейбниц знал о книге Перемен и заметил, что гексаграммы соответствуют двоичным числам от 0 до 111111. Он восхищался тем, что это отображение является свидетельством крупных китайских достижений в философской математике того времени.[9]
  • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в MIT, в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника.
  • В ноябре 1937 года Джордж Штибиц, впоследствии работавший в Bell Labs, создал на базе реле компьютер «Model K» (от англ. «Kitchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами. Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа. Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман, Джон Мокли и Норберт Винер, впоследствии писавшие об этом в своих мемуарах.

Запись двоичных чисел

Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Положительные целые числа (без знака) записываются в виде:

где:

  •  — представляемое число, первый индекс — основание системы кодирования (размерность множества цифр a={0,1}), второй индекс — основание весовой показательной функции b (в двоично-десятичном кодировании b=10),
  •  — запись числа, строка цифровых знаков,
  •  — обозначение основания системы кодирования и основания системы счисления,
  •  — количество цифр (знаков) в числе x2,2,
  •  — порядковый номер цифры,
  •  — цифры числа x2,2 из множества a={0,1}, в двоичной системе счисления основание системы кодирования равно 2,
  •  — основание показательной весовой функции, основание системы счисления,
  •  — весовая показательная функция, создающая весовые коэффициенты.

Количество записываемых кодов (чисел) зависит от основания системы кодирования — c, определяется в комбинаторике и равно числу размещений с повторениями:

где:

Количество записываемых кодов (чисел) от основания показательной функции — b не зависит.
Основание показательной функции — b определяет диапазон представляемых числами x2,b величин и разреженность представляемых чисел на числовой оси.

Целые числа являются частными суммами степенного ряда:

в котором коэффициенты an берутся из множества R=a{0,1}, X=2, n=k, а верхний предел в частных суммах ограничен с до — n-1.

Целые числа со знаком записываются в виде:

где:

  •  — знак числа из множества z={+,-}, у положительных целых чисел знак зачастую опускается.

Дробные числа записываются в виде:

где:

  •  — число цифр дробной части числа,
  •  — весовые коэффициенты из множества ,
  • основание системы кодирования равно 2,
  •  — основание показательной весовой функции, основание системы счисления.

Следует отметить, что число может быть записано в двоичном коде, а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование, в котором десятичные цифры записываются в двоичном виде, а система счисления — десятичная.

Сложение, вычитание и умножение двоичных чисел

Таблица сложения


Пример сложения «столбиком» (14 + 5 = 19):

1
+ 1 1 1 0
1 0 1
1 0 0 1 1


Таблица вычитания

0 1
0 0 1
1 (заём из старшего разряда) 1 0


Таблица умножения


Пример умножения «столбиком» (14 × 5 = 70):

× 1 1 1 0
1 0 1
+ 1 1 1 0
1 1 1 0
1 0 0 0 1 1 0

Преобразование чисел

Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:

512 256 128 64 32 16 8 4 2 1

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

Преобразование двоичных чисел в десятичные

Допустим, вам дано двоичное число 110001. Для перевода в десятичное просто запишите его справа налево как сумму по разрядам следующим образом:

.

Можно записать это в виде таблицы следующим образом:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +1

Точно так же, начиная с двоичной точки, двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа.
Таким образом, двоичное число 110001 равнозначно десятичному 49.

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Например, двоичное число 1011011 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+0=22 >> 22*2+1=45 >> 45*2+1=91 То есть в десятичной системе это число будет записано как 91. Или число 101111 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+1=23 >> 23*2+1=47 То есть в десятичной системе это число будет записано как 47. Перевод дробных чисел методом Горнера 1) 0,11012=0,X10 (рассматриваем цифры в обратном порядке)
1:2=0,5
0,5+0=0,5
0,5:2=0,25
0,25+1=1,25
1,25:2=0,625
0,625+1=1,625
1,625:2=0,8125
Ответ: 0,11012= 0,812510
2) 0,3568=0,X10 (рассматриваем цифры в обратном порядке)
6:8=0,75
0,75+5=5,75
5,75:8=0,71875
0,71875+3=3,71875
3,71875:8=0,46484375
Ответ: 0,3568=0,4648437510
3) 0,A6E16=0,X10 (рассматриваем цифры в обратном порядке)
14:16=0,875
0,875+6=6,875
6,875:16=0,4296875
0,4296875+10=10,4296875
10,4296875:16=0,65185546875
Ответ: 0,A6E16=0,6518554687510

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой :

19 /2 = 9  с остатком 1
9  /2 = 4  c остатком 1
4  /2 = 2  без остатка 0
2  /2 = 1  без остатка 0
1  /2 = 0  с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижнее число будет самым левым и.т.д. В результате получаем число 19 в двоичной записи: 10011.

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010,101 в десятичную систему. Запишем это число следующим образом:

Или по таблице:

64 32 16 8 4 2 1 0.5 0.25 0.125
1 0 1 1 0 1 0. .1 0 1
+64 +16 +8 +2 +0.5 +0.125

Преобразование дробных десятичных чисел в двоичные

Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Вначале переводится целая часть десятичной дроби в двоичную систему счисления;
  • Затем дробная часть десятичной дроби умножается на основание двоичной системы счисления;
  • В полученном произведении выделяется целая часть, которая принимается в качестве значения первого после запятой разряда числа в двоичной системе счисления;
  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются с предыдущего шага.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 20610=110011102 по ранее описанным алгоритмам; дробную часть умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:
0,116 • 2 = 0,232
0,232 • 2 = 0,464
0,464 • 2 = 0,928
0,928 • 2 = 1,856
0,856 • 2 = 1,712
0,712 • 2 = 1,424
0,424 • 2 = 0,848
0,848 • 2 = 1,696
0,696 • 2 = 1,392
0,392 • 2 = 0,784
и т. д.
Получим: 206,11610=11001110,00011101102

Применения

В цифровых устройствах

Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) — нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора, что не будет способствовать помехоустойчивости и надёжности хранения информации.[источник не указан 770 дней]
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения — основных действий над числами.

В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует (очевидно) один двоичный разряд двоичного регистра, то есть двоичный триггер с двумя состояниями (0,1).

В английской системе мер

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 715/16″, 311/32″ и т. д.

Интересные факты

См. также

Примеры чисел-степеней двойки

Степень Значение
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536
17 131072
18 262144
19 524288
20 1048576
21 2097152
22 4194304
23 8388608
24 16777216
25 33554432
26 67108864
27 134217728
28 268435456
29 536870912
30 1073741824
31 2147483648
32 4294967296
33 8589934592
34 17179869184
35 34359738368
36 68719476736
37 137438953472
38 274877906944
39 549755813888
40 1099511627776
41 2199023255552
42 4398046511104
43 8796093022208
44 17592186044416
45 35184372088832
46 70368744177664
47 140737488355328
48 281474976710656
49 562949953421312
50 1125899906842624
51 2251799813685248

Примечания

  1. Sanchez, Julio & Canton, Maria P. (2007), «Microcontroller programming: the microchip PIC», Boca Raton, Florida: CRC Press, с. 37, ISBN 0-8493-7189-9 
  2. W. S. Anglin and J. Lambek, The Heritage of Thales, Springer, 1995, ISBN 0-387-94544-X
  3. Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire. — New York: Barnes & Noble, 1996. — С. 80. — ISBN 0-88029-595-3
  4. Experts ‘decipher’ Inca strings. Архивировано из первоисточника 18 августа 2011.
  5. Carlos Radicati di Primeglio, Gary Urton Estudios sobre los quipus. — P. 49.
  6. Dale Buckmaster (1974). «The Incan Quipu and the Jacobsen Hypothesis». Journal of Accounting Research 12 (1): 178-181. Проверено 2009-12-24.
  7. Bacon, Francis, «The Advancement of Learning», vol. 6, London, сс. Chapter 1, <http://home.hiwaay.net/~paul/bacon/advancement/book6ch2.html> 
  8. http://www.leibniz-translations.com/binary.htm Leibniz Translation.com EXPLANATION OF BINARY ARITHMETIC
  9. Aiton, Eric J. (1985), «Leibniz: A Biography», Taylor & Francis, сс. 245–8, ISBN 0-85274-470-6 

Ссылки

Двоичная система счисления — это… Что такое Двоичная система счисления?

Системы счисления в культуре
Индо-арабская система счисления
Арабская
Индийские
Тамильская
Бирманская
Кхмерская
Лаоская
Монгольская
Тайская
Восточноазиатские системы счисления
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные системы счисления
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Эфиопская
Еврейская
Катапаяди
Другие системы
Вавилонская
Египетская
Этрусская
Римская
Аттическая
Кипу
Майская
Позиционные системы счисления
Десятичная система счисления (10)
2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 60
Нега-позиционная система счисления
Симметричная система счисления
Смешанные системы счисления
Фибоначчиева система счисления
Непозиционные системы счисления
Единичная (унарная) система счисления
Список систем счисления

Двоичная система счисления — позиционная система счисления с основанием 2.

Двоичные цифры

В этой системе счисления числа записываются с помощью двух символов (0 и 1).

История

  • В 1605 году Френсис Бэкон описал систему, буквы алфавита которой могут быть сведены к последовательностям двоичных цифр, которые в свою очередь могут быть закодированы как едва заметные изменения шрифта в любых случайных текстах. Важным шагом в становлении общей теории двоичного кодирования является замечание о том, что указанный метод может быть использован применительно к любым объектам.[7] (См. Шифр Бэкона)
  • Современная двоичная система была полностью описана Лейбницем в XVII веке в работе Explication de l’Arithmétique Binaire[8]. В системе счисления Лейбница были использованы цифры 0 и 1, как и в современной двоичной системе. Как человек, увлекающийся китайской культурой, Лейбниц знал о книге Перемен и заметил, что гексаграммы соответствуют двоичным числам от 0 до 111111. Он восхищался тем, что это отображение является свидетельством крупных китайских достижений в философской математике того времени.[9]
  • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в MIT, в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника.
  • В ноябре 1937 года Джордж Штибиц, впоследствии работавший в Bell Labs, создал на базе реле компьютер «Model K» (от англ. «Kitchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами. Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа. Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман, Джон Мокли и Норберт Винер, впоследствии писавшие об этом в своих мемуарах.

Запись двоичных чисел

Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Положительные целые числа (без знака) записываются в виде:

где:

  •  — представляемое число, первый индекс — основание системы кодирования (размерность множества цифр a={0,1}), второй индекс — основание весовой показательной функции b (в двоично-десятичном кодировании b=10),
  •  — запись числа, строка цифровых знаков,
  •  — обозначение основания системы кодирования и основания системы счисления,
  •  — количество цифр (знаков) в числе x2,2,
  •  — порядковый номер цифры,
  •  — цифры числа x2,2 из множества a={0,1}, в двоичной системе счисления основание системы кодирования равно 2,
  •  — основание показательной весовой функции, основание системы счисления,
  •  — весовая показательная функция, создающая весовые коэффициенты.

Количество записываемых кодов (чисел) зависит от основания системы кодирования — c, определяется в комбинаторике и равно числу размещений с повторениями:

где:

Количество записываемых кодов (чисел) от основания показательной функции — b не зависит.
Основание показательной функции — b определяет диапазон представляемых числами x2,b величин и разреженность представляемых чисел на числовой оси.

Целые числа являются частными суммами степенного ряда:

в котором коэффициенты an берутся из множества R=a{0,1}, X=2, n=k, а верхний предел в частных суммах ограничен с до — n-1.

Целые числа со знаком записываются в виде:

где:

  •  — знак числа из множества z={+,-}, у положительных целых чисел знак зачастую опускается.

Дробные числа записываются в виде:

где:

  •  — число цифр дробной части числа,
  •  — весовые коэффициенты из множества ,
  • основание системы кодирования равно 2,
  •  — основание показательной весовой функции, основание системы счисления.

Следует отметить, что число может быть записано в двоичном коде, а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование, в котором десятичные цифры записываются в двоичном виде, а система счисления — десятичная.

Сложение, вычитание и умножение двоичных чисел

Таблица сложения


Пример сложения «столбиком» (14 + 5 = 19):

1
+ 1 1 1 0
1 0 1
1 0 0 1 1


Таблица вычитания

0 1
0 0 1
1 (заём из старшего разряда) 1 0


Таблица умножения


Пример умножения «столбиком» (14 × 5 = 70):

× 1 1 1 0
1 0 1
+ 1 1 1 0
1 1 1 0
1 0 0 0 1 1 0

Преобразование чисел

Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:

512 256 128 64 32 16 8 4 2 1

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

Преобразование двоичных чисел в десятичные

Допустим, вам дано двоичное число 110001. Для перевода в десятичное просто запишите его справа налево как сумму по разрядам следующим образом:

.

Можно записать это в виде таблицы следующим образом:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +1

Точно так же, начиная с двоичной точки, двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа.
Таким образом, двоичное число 110001 равнозначно десятичному 49.

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Например, двоичное число 1011011 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+0=22 >> 22*2+1=45 >> 45*2+1=91 То есть в десятичной системе это число будет записано как 91. Или число 101111 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+1=23 >> 23*2+1=47 То есть в десятичной системе это число будет записано как 47. Перевод дробных чисел методом Горнера 1) 0,11012=0,X10 (рассматриваем цифры в обратном порядке)
1:2=0,5
0,5+0=0,5
0,5:2=0,25
0,25+1=1,25
1,25:2=0,625
0,625+1=1,625
1,625:2=0,8125
Ответ: 0,11012= 0,812510
2) 0,3568=0,X10 (рассматриваем цифры в обратном порядке)
6:8=0,75
0,75+5=5,75
5,75:8=0,71875
0,71875+3=3,71875
3,71875:8=0,46484375
Ответ: 0,3568=0,4648437510
3) 0,A6E16=0,X10 (рассматриваем цифры в обратном порядке)
14:16=0,875
0,875+6=6,875
6,875:16=0,4296875
0,4296875+10=10,4296875
10,4296875:16=0,65185546875
Ответ: 0,A6E16=0,6518554687510

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой :

19 /2 = 9  с остатком 1
9  /2 = 4  c остатком 1
4  /2 = 2  без остатка 0
2  /2 = 1  без остатка 0
1  /2 = 0  с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижнее число будет самым левым и.т.д. В результате получаем число 19 в двоичной записи: 10011.

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010,101 в десятичную систему. Запишем это число следующим образом:

Или по таблице:

64 32 16 8 4 2 1 0.5 0.25 0.125
1 0 1 1 0 1 0. .1 0 1
+64 +16 +8 +2 +0.5 +0.125

Преобразование дробных десятичных чисел в двоичные

Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Вначале переводится целая часть десятичной дроби в двоичную систему счисления;
  • Затем дробная часть десятичной дроби умножается на основание двоичной системы счисления;
  • В полученном произведении выделяется целая часть, которая принимается в качестве значения первого после запятой разряда числа в двоичной системе счисления;
  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются с предыдущего шага.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 20610=110011102 по ранее описанным алгоритмам; дробную часть умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:
0,116 • 2 = 0,232
0,232 • 2 = 0,464
0,464 • 2 = 0,928
0,928 • 2 = 1,856
0,856 • 2 = 1,712
0,712 • 2 = 1,424
0,424 • 2 = 0,848
0,848 • 2 = 1,696
0,696 • 2 = 1,392
0,392 • 2 = 0,784
и т. д.
Получим: 206,11610=11001110,00011101102

Применения

В цифровых устройствах

Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) — нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора, что не будет способствовать помехоустойчивости и надёжности хранения информации.[источник не указан 770 дней]
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения — основных действий над числами.

В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует (очевидно) один двоичный разряд двоичного регистра, то есть двоичный триггер с двумя состояниями (0,1).

В английской системе мер

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 715/16″, 311/32″ и т. д.

Интересные факты

См. также

Примеры чисел-степеней двойки

Степень Значение
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536
17 131072
18 262144
19 524288
20 1048576
21 2097152
22 4194304
23 8388608
24 16777216
25 33554432
26 67108864
27 134217728
28 268435456
29 536870912
30 1073741824
31 2147483648
32 4294967296
33 8589934592
34 17179869184
35 34359738368
36 68719476736
37 137438953472
38 274877906944
39 549755813888
40 1099511627776
41 2199023255552
42 4398046511104
43 8796093022208
44 17592186044416
45 35184372088832
46 70368744177664
47 140737488355328
48 281474976710656
49 562949953421312
50 1125899906842624
51 2251799813685248

Примечания

  1. Sanchez, Julio & Canton, Maria P. (2007), «Microcontroller programming: the microchip PIC», Boca Raton, Florida: CRC Press, с. 37, ISBN 0-8493-7189-9 
  2. W. S. Anglin and J. Lambek, The Heritage of Thales, Springer, 1995, ISBN 0-387-94544-X
  3. Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire. — New York: Barnes & Noble, 1996. — С. 80. — ISBN 0-88029-595-3
  4. Experts ‘decipher’ Inca strings. Архивировано из первоисточника 18 августа 2011.
  5. Carlos Radicati di Primeglio, Gary Urton Estudios sobre los quipus. — P. 49.
  6. Dale Buckmaster (1974). «The Incan Quipu and the Jacobsen Hypothesis». Journal of Accounting Research 12 (1): 178-181. Проверено 2009-12-24.
  7. Bacon, Francis, «The Advancement of Learning», vol. 6, London, сс. Chapter 1, <http://home.hiwaay.net/~paul/bacon/advancement/book6ch2.html> 
  8. http://www.leibniz-translations.com/binary.htm Leibniz Translation.com EXPLANATION OF BINARY ARITHMETIC
  9. Aiton, Eric J. (1985), «Leibniz: A Biography», Taylor & Francis, сс. 245–8, ISBN 0-85274-470-6 

Ссылки

Двоичная система счисления — это… Что такое Двоичная система счисления?

Системы счисления в культуре
Индо-арабская система счисления
Арабская
Индийские
Тамильская
Бирманская
Кхмерская
Лаоская
Монгольская
Тайская
Восточноазиатские системы счисления
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные системы счисления
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Эфиопская
Еврейская
Катапаяди
Другие системы
Вавилонская
Египетская
Этрусская
Римская
Аттическая
Кипу
Майская
Позиционные системы счисления
Десятичная система счисления (10)
2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 60
Нега-позиционная система счисления
Симметричная система счисления
Смешанные системы счисления
Фибоначчиева система счисления
Непозиционные системы счисления
Единичная (унарная) система счисления
Список систем счисления

Двоичная система счисления — позиционная система счисления с основанием 2.

Двоичные цифры

В этой системе счисления числа записываются с помощью двух символов (0 и 1).

История

  • В 1605 году Френсис Бэкон описал систему, буквы алфавита которой могут быть сведены к последовательностям двоичных цифр, которые в свою очередь могут быть закодированы как едва заметные изменения шрифта в любых случайных текстах. Важным шагом в становлении общей теории двоичного кодирования является замечание о том, что указанный метод может быть использован применительно к любым объектам.[7] (См. Шифр Бэкона)
  • Современная двоичная система была полностью описана Лейбницем в XVII веке в работе Explication de l’Arithmétique Binaire[8]. В системе счисления Лейбница были использованы цифры 0 и 1, как и в современной двоичной системе. Как человек, увлекающийся китайской культурой, Лейбниц знал о книге Перемен и заметил, что гексаграммы соответствуют двоичным числам от 0 до 111111. Он восхищался тем, что это отображение является свидетельством крупных китайских достижений в философской математике того времени.[9]
  • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в MIT, в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника.
  • В ноябре 1937 года Джордж Штибиц, впоследствии работавший в Bell Labs, создал на базе реле компьютер «Model K» (от англ. «Kitchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами. Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа. Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман, Джон Мокли и Норберт Винер, впоследствии писавшие об этом в своих мемуарах.

Запись двоичных чисел

Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Положительные целые числа (без знака) записываются в виде:

где:

  •  — представляемое число, первый индекс — основание системы кодирования (размерность множества цифр a={0,1}), второй индекс — основание весовой показательной функции b (в двоично-десятичном кодировании b=10),
  •  — запись числа, строка цифровых знаков,
  •  — обозначение основания системы кодирования и основания системы счисления,
  •  — количество цифр (знаков) в числе x2,2,
  •  — порядковый номер цифры,
  •  — цифры числа x2,2 из множества a={0,1}, в двоичной системе счисления основание системы кодирования равно 2,
  •  — основание показательной весовой функции, основание системы счисления,
  •  — весовая показательная функция, создающая весовые коэффициенты.

Количество записываемых кодов (чисел) зависит от основания системы кодирования — c, определяется в комбинаторике и равно числу размещений с повторениями:

где:

Количество записываемых кодов (чисел) от основания показательной функции — b не зависит.
Основание показательной функции — b определяет диапазон представляемых числами x2,b величин и разреженность представляемых чисел на числовой оси.

Целые числа являются частными суммами степенного ряда:

в котором коэффициенты an берутся из множества R=a{0,1}, X=2, n=k, а верхний предел в частных суммах ограничен с до — n-1.

Целые числа со знаком записываются в виде:

где:

  •  — знак числа из множества z={+,-}, у положительных целых чисел знак зачастую опускается.

Дробные числа записываются в виде:

где:

  •  — число цифр дробной части числа,
  •  — весовые коэффициенты из множества ,
  • основание системы кодирования равно 2,
  •  — основание показательной весовой функции, основание системы счисления.

Следует отметить, что число может быть записано в двоичном коде, а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование, в котором десятичные цифры записываются в двоичном виде, а система счисления — десятичная.

Сложение, вычитание и умножение двоичных чисел

Таблица сложения


Пример сложения «столбиком» (14 + 5 = 19):

1
+ 1 1 1 0
1 0 1
1 0 0 1 1


Таблица вычитания

0 1
0 0 1
1 (заём из старшего разряда) 1 0


Таблица умножения


Пример умножения «столбиком» (14 × 5 = 70):

× 1 1 1 0
1 0 1
+ 1 1 1 0
1 1 1 0
1 0 0 0 1 1 0

Преобразование чисел

Для преобразования из двоичной системы в десятичную используют следующую таблицу степеней основания 2:

512 256 128 64 32 16 8 4 2 1

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

Преобразование двоичных чисел в десятичные

Допустим, вам дано двоичное число 110001. Для перевода в десятичное просто запишите его справа налево как сумму по разрядам следующим образом:

.

Можно записать это в виде таблицы следующим образом:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +1

Точно так же, начиная с двоичной точки, двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа.
Таким образом, двоичное число 110001 равнозначно десятичному 49.

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Например, двоичное число 1011011 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+0=22 >> 22*2+1=45 >> 45*2+1=91 То есть в десятичной системе это число будет записано как 91. Или число 101111 переводится в десятичную систему так: 0*2+1=1 >> 1*2+0=2 >> 2*2+1=5 >> 5*2+1=11 >> 11*2+1=23 >> 23*2+1=47 То есть в десятичной системе это число будет записано как 47. Перевод дробных чисел методом Горнера 1) 0,11012=0,X10 (рассматриваем цифры в обратном порядке)
1:2=0,5
0,5+0=0,5
0,5:2=0,25
0,25+1=1,25
1,25:2=0,625
0,625+1=1,625
1,625:2=0,8125
Ответ: 0,11012= 0,812510
2) 0,3568=0,X10 (рассматриваем цифры в обратном порядке)
6:8=0,75
0,75+5=5,75
5,75:8=0,71875
0,71875+3=3,71875
3,71875:8=0,46484375
Ответ: 0,3568=0,4648437510
3) 0,A6E16=0,X10 (рассматриваем цифры в обратном порядке)
14:16=0,875
0,875+6=6,875
6,875:16=0,4296875
0,4296875+10=10,4296875
10,4296875:16=0,65185546875
Ответ: 0,A6E16=0,6518554687510

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой :

19 /2 = 9  с остатком 1
9  /2 = 4  c остатком 1
4  /2 = 2  без остатка 0
2  /2 = 1  без остатка 0
1  /2 = 0  с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижнее число будет самым левым и.т.д. В результате получаем число 19 в двоичной записи: 10011.

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010,101 в десятичную систему. Запишем это число следующим образом:

Или по таблице:

64 32 16 8 4 2 1 0.5 0.25 0.125
1 0 1 1 0 1 0. .1 0 1
+64 +16 +8 +2 +0.5 +0.125

Преобразование дробных десятичных чисел в двоичные

Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Вначале переводится целая часть десятичной дроби в двоичную систему счисления;
  • Затем дробная часть десятичной дроби умножается на основание двоичной системы счисления;
  • В полученном произведении выделяется целая часть, которая принимается в качестве значения первого после запятой разряда числа в двоичной системе счисления;
  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются с предыдущего шага.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 20610=110011102 по ранее описанным алгоритмам; дробную часть умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:
0,116 • 2 = 0,232
0,232 • 2 = 0,464
0,464 • 2 = 0,928
0,928 • 2 = 1,856
0,856 • 2 = 1,712
0,712 • 2 = 1,424
0,424 • 2 = 0,848
0,848 • 2 = 1,696
0,696 • 2 = 1,392
0,392 • 2 = 0,784
и т. д.
Получим: 206,11610=11001110,00011101102

Применения

В цифровых устройствах

Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) — нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора, что не будет способствовать помехоустойчивости и надёжности хранения информации.[источник не указан 770 дней]
  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения — основных действий над числами.

В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует (очевидно) один двоичный разряд двоичного регистра, то есть двоичный триггер с двумя состояниями (0,1).

В английской системе мер

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 715/16″, 311/32″ и т. д.

Интересные факты

См. также

Примеры чисел-степеней двойки

Степень Значение
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768
16 65536
17 131072
18 262144
19 524288
20 1048576
21 2097152
22 4194304
23 8388608
24 16777216
25 33554432
26 67108864
27 134217728
28 268435456
29 536870912
30 1073741824
31 2147483648
32 4294967296
33 8589934592
34 17179869184
35 34359738368
36 68719476736
37 137438953472
38 274877906944
39 549755813888
40 1099511627776
41 2199023255552
42 4398046511104
43 8796093022208
44 17592186044416
45 35184372088832
46 70368744177664
47 140737488355328
48 281474976710656
49 562949953421312
50 1125899906842624
51 2251799813685248

Примечания

  1. Sanchez, Julio & Canton, Maria P. (2007), «Microcontroller programming: the microchip PIC», Boca Raton, Florida: CRC Press, с. 37, ISBN 0-8493-7189-9 
  2. W. S. Anglin and J. Lambek, The Heritage of Thales, Springer, 1995, ISBN 0-387-94544-X
  3. Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire. — New York: Barnes & Noble, 1996. — С. 80. — ISBN 0-88029-595-3
  4. Experts ‘decipher’ Inca strings. Архивировано из первоисточника 18 августа 2011.
  5. Carlos Radicati di Primeglio, Gary Urton Estudios sobre los quipus. — P. 49.
  6. Dale Buckmaster (1974). «The Incan Quipu and the Jacobsen Hypothesis». Journal of Accounting Research 12 (1): 178-181. Проверено 2009-12-24.
  7. Bacon, Francis, «The Advancement of Learning», vol. 6, London, сс. Chapter 1, <http://home.hiwaay.net/~paul/bacon/advancement/book6ch2.html> 
  8. http://www.leibniz-translations.com/binary.htm Leibniz Translation.com EXPLANATION OF BINARY ARITHMETIC
  9. Aiton, Eric J. (1985), «Leibniz: A Biography», Taylor & Francis, сс. 245–8, ISBN 0-85274-470-6 

Ссылки

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *