Site Loader

Содержание

Радиоэлектроника для начинающих — статьи по основам радиоэлектроники для новичка

Переменный резистор: типы, устройство и принцип работы

20 Сентября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью299

#резистор

Тумблеры

25 Мая 2022 — Анатолий Мельник

Конструктивные особенности тумблеров. Типы, виды. Какие характеристики нужно учитывать при выборе. Как правильно подключить тумблер. Инструкция и советы в одной статье.

Читать полностью 335

Как проверять транзисторы тестером – отвечаем

14 Апреля 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра.

Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью 182

Как пользоваться мультиметром

21 Марта 2022 — Анатолий Мельник

Что такое и как устроен мультиметр. Как правильно пользоваться мультиметром: как измерить напряжение, силу тока и напряжение. Как проверить емкость и индуктивность

Читать полностью 681

Выпрямитель напряжения: принцип работы и разновидности

24 Февраля 2022 — Анатолий Мельник

Выпрямитель напряжения электрической сети: как устроен, применение, обозначение на схемах. Как работает и для чего предназначается выпрямитель напряжения.

Читать полностью 988

Переключатель фаз (напряжения): устройство, принцип действия, виды

20 Января 2022 — Анатолий Мельник

Подробная статья о переключателях фаз: устройство и разновидности. Рекомендации по подключению и настройке. Рекомендации по выбору: популярные модели.

Читать полностью 387

Как выбрать паяльник для проводов и микросхем

23 Декабря 2021 — Анатолий Мельник

Особенности выбора хорошего паяльника для проводов и микросхем: разновидности конструкций, требования. Какие существуют нагреватели и жала. Дополнительные возможности.

Читать полностью 590

Что такое защитный диод и как он применяется

20 Декабря 2021 — Анатолий Мельник

В статье разбираются особенности защитных диодов, их устройство и маркировка, а также применения в реальных условиях. Даны рекомендации по проверке и подбору супрессоров.

Читать полностью 2478

Варистор: устройство, принцип действия и применение

20 Сентября 2022 — Анатолий Мельник

В статье разбирается устройство варисторов: маркировка, основные параметры. Вы узнаете в чем заключаются достоинства и недостатки варисторов, а также как выбрать и проверить компоненты.

Читать полностью841

#варистор

Виды отверток по назначению и применению

21 Сентября 2021 — Анатолий Мельник

Виды отверток по сферам применения. В статье рассматриваются простые, ударные, диэлектрические и другие отвертки.

Читать полностью 643

Виды шлицов у отверток

14 Августа 2021 — Анатолий Мельник

В статье рассматривается, что такое шлицы и какие бывают виды, их маркировка, основные размеры: крестообразные, прямые, звездочки, наружные, комбинированные и другие виды шлицов.

Читать полностью 1151

Виды и типы батареек

14 Августа 2021 — Анатолий Мельник

Подробная статья о батарейках: виды и типы батереек, как различаются батарейки. Как обозначаются батарейки (маркировка)

Читать полностью 1122

Для чего нужен контактор и как его подключить

20 Сентября 2022 — Анатолий Мельник

Для чего нужен контактор и как он устроен. Как правильно выбрать и подключить контактор для управления в автоматическом режиме электрическими приборами.

Читать полностью2186

#контрактор

Как проверить тиристор: способы проверки

20 Сентября 2022 — Анатолий Мельник

Как самому проверить тиристор? Способы проверки тиристора мультиметром, тестером. Проверка тиристора без выпаивания. Пошаговые инструкции с фото.

Читать полностью915

#тиристор

Как правильно выбрать акустический кабель для колонок

20 Апреля 2021 — Анатолий Мельник

Статья про выбор акустического кабеля: типы и виды акустического кабеля. Как маркируется кабель. Как рассчитать сечение кабеля. Правила эксплуатации и советы по выбору.

Читать полностью 1115

Что такое цифровой осциллограф и как он работает

20 Сентября 2022 — Анатолий Мельник

Обзор принципа работы цифровых осциллографов. Виды осциллографов, их отличия от аналоговых. Применение цифрового осциллографа

Читать полностью1294

#осциллограф

Как проверить варистор: используем мультиметр и другие способы

20 Сентября 2022 — Анатолий Мельник

Статья-инструкция о том, как проверить варистор на исправность мультиметром или тестором. Принцип работы варистора и основные параметры варисторов, обнозначение на схеме.

Читать полностью3037

#варистор

Герконовые реле: что это такое, чем отличается, как работает

23 Января 2021 — Анатолий Мельник

Статья об устройстве герконовых реле: обзор конструкции, характеристик и принципа работы. Преимущества и недостатки. Назначение герконовых реле, где используются компоненты.

Читать полностью 4367

Диоды Шоттки: что это такое, чем отличается, как работает

17 Декабря 2020 — Анатолий Мельник

Статья ответит на вопросы: что такое диоды Шоттки, как они устроены, плюсы и минусы данного вида диодов. Обозначение диодов на схемах. Сферы применения.

Читать полностью 5096

Как правильно заряжать конденсаторы

13 Ноября 2020 — Анатолий Мельник

Способы зарядки и разрядки конденсаторов. Виды конденсаторов: основные параметры, принципы работы и области применения.

Читать полностью 2447

Светодиоды: виды и схема подключения

20 Июля 2022 — Анатолий Мельник

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode). На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер.

Читать полностью 4005

Микросборка

25 Мая 2022 — Анатолий Мельник

Микросборка (МСБ) – конструктивная составляющая радиоэлектронной аппаратуры микроминиатюрного исполнения, предназначенная для реализации определенной функции. МСБ обычно не выпускаются в качестве самостоятельных изделий, предназначенных для широкого применения.

Читать полностью 2777

Применение, принцип действия и конструкция фототиристора

20 Сентября 2022 — Анатолий Мельник

Фототиристор (ТФ) – полупроводниковое устройство со структурой, сходной с обычным тиристором, но с одним существенным отличием. Он включается не подачей напряжения, а с помощью света, падающего на него. Этот прибор сочетает функции управляемого тиристора и фотоприемника, преобразующего световую энергию в электрический управляющий импульс. Изготавливается обычно из кремния, имеет спектральную характеристику, аналогичную другим фоточувствительным элементам с кремниевой полупроводниковой структурой.

Читать полностью181

#тиристор #фототиристор

Схема подключения теплового реле – принцип работы, регулировки и маркировка

17 Мая 2022 — Анатолий Мельник

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключение в схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Читать полностью 5750

Динисторы – принцип работы, как проверить, технические характеристики

17 Мая 2022 — Анатолий Мельник

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Читать полностью 1519

Маркировка керамических конденсаторов

17 Мая 2022 — Анатолий Мельник

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Читать полностью 1208

Компактные источники питания на печатную плату

17 Мая 2022 — Анатолий Мельник

Выбор ИП печатной платы напрямую влияет на ее работоспособность. Главная задача такого прибора – получить переменное напряжение от питающей сети, преобразовать его в постоянное и подать на оборудование. Если компонент выбран неверно или неисправен, он может перегореть или не справиться с входным напряжением. В худшем случае пострадает и плата – ее придется либо ремонтировать, либо выбрасывать и покупать новую.

Читать полностью 802

SMD-резисторы: устройство и назначение

17 Мая 2022 — Анатолий Мельник

SMD-резисторы – это мелкие электронные компоненты, разработанные для поверхностного монтажа на печатную плату. Ранее при сборке радиоэлектронной аппаратуры осуществлялся навесной монтаж элементов или их продевание в печатную плату через предусмотренные отверстия.

Читать полностью 2799

Принцип работы полевого МОП-транзистора

17 Мая 2022 — Анатолий Мельник

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем).

Читать полностью 2598

Проверка микросхем мультиметром: инструкция и советы

29 Октября 2021 — Анатолий Мельник

Как проверить микросхему? Рассмотрим как проверить микросхему на исправность и работоспособность мультиметром, влияние разновидности микросхем на способы проверки.

Читать полностью 8401

Характеристики, маркировка и принцип работы стабилитрона

28 Июля 2022 — Анатолий Мельник

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении.

Читать полностью 7103

Что такое реле: виды, принцип действия и устройство

14 Октября 2020 — Анатолий Мельник

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. В этой статье мы подробно разберем, что такое реле, какие виды реле существуют и для чего они применяются.

Читать полностью 7105

Конденсатор: что это такое и для чего он нужен

20 Июля 2022 — Анатолий Мельник

Конденсатор – это устройство, способное накапливать и моментально отдавать электрический заряд. В статье подробно разберем, в чем суть конденсатора, что он делает, из чего состоит и какие его основные параметры.

Читать полностью 9020

Все о танталовых конденсаторах — максимально подробно

29 Октября 2021 — Анатолий Мельник

В этой статье я максимально подробно расскажу о назначении, видах, области применения танталовых конденсаторов. Покажу как они выглядят в живую и на схеме, объясню, как считать буквенную маркировку конденсаторов.

Читать полностью 13207

Как проверить резистор мультиметром

14 Октября 2020 — Анатолий Мельник

Рассказываем как правильно проверить резистор мультиметром на плате, как узнать его сопротивление и определить работоспособность не выпаивая. Узнайте, как настроить тестер для проверки резисторов.

Читать полностью 2760

Что такое резистор

14 Октября 2020 — Анатолий Мельник

Резистор (от латинского «resisto» — сопротивляюсь) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. Резисторы предназначены для линейного преобразования силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Читать полностью 1981

Как проверить диодный мост мультиметром

14 Октября 2020 — Анатолий Мельник

Подробная инструкция по проверке работоспособности диодного моста с помощью мультиметра или лампы.

Читать полностью 13583

Что такое диодный мост

05 Августа 2022 — Анатолий Мельник

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Читать полностью 844

Виды и принцип работы термодатчиков

17 Мая 2022 — Анатолий Мельник

Принцип работы и виды термодатчиков. Особенности различных типов датчиков.

Читать полностью 4274

Заземление: виды, схемы

17 Мая 2022 — Анатолий Мельник

Заземление – соединение проводящих элементов промышленного или бытового оборудования с грунтом или общим проводом электрической системы, относительно которого производят измерения электрического потенциала. Из нашей статьи вы узнаете о видах заземления и их изображении на схемах.

Читать полностью 2366

Как определить выводы транзистора

29 Октября 2021 — Анатолий Мельник

Способы определения выводов от базы, эмиттера и коллектора полупроводникового транзистора.

Читать полностью 1367

Назначение и области применения транзисторов

14 Октября 2020 — Анатолий Мельник

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. В этой статье мы кратко перечислим области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов.

Читать полностью 1962

Как работает транзистор: принцип и устройство

20 Февраля 2021 — Анатолий Мельник

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Читать полностью 6717

Виды электронных и электромеханических переключателей

17 Мая 2022 — Анатолий Мельник

Переключатель (свитчер) – устройство, служащее в радиоэлектронике для коммутации электроцепей постоянного и переменного тока и обеспечивающее требуемый рабочий режим. От функциональности этого компонента часто зависит работоспособность всего аппарата. В этой статье мы расскажем об основных видах переключателей

Читать полностью 752

Как устроен туннельный диод

20 Июля 2022 — Анатолий Мельник

Рассказываем про устройство туннельных диодов, их отличия от обычных, цветовую маркировку и обозначение туннельных диодов на схемах. Также из этой статьи вы узнаете об истории создания данного типа диодов.

Читать полностью 3698

Виды и аналоги конденсаторов

21 Мая 2020 — Анатолий Мельник

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

Читать полностью 5561

Твердотельные реле: подробное описание устройства

25 Мая 2022 — Анатолий Мельник

Твердотельное реле (ТТР) – полупроводниковое устройство, применяемое для создания контакта между низковольтными и высоковольтными цепями, является современной альтернативой традиционным пускателям и контакторам. Применяется в бытовой технике, промавтоматике, автомобильной электронике.

Читать полностью 3599

Конвертер единиц емкости конденсатора

29 Октября 2021 — Анатолий Мельник

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Читать полностью 1897

Графическое обозначение радиодеталей на схемах

14 Октября 2020 — Анатолий Мельник

Радиодетали – электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты. Если ранее детали изображались приближенно к их натуральному виду, то сегодня используются условные графические обозначения радиодеталей на схеме, разработанные и утвержденные Международной электротехнической комиссией.

Читать полностью 1031

Биполярные транзисторы: принцип работы, характеристики и параметры

17 Мая 2022 — Анатолий Мельник

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Читать полностью 3110

Как подобрать резистор по назначению и принципу работы

17 Мая 2022 — Анатолий Мельник

Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.

Читать полностью 303

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

20 Сентября 2022 — Анатолий Мельник

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т. е. ток пропускается только в одну сторону). Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока.

Читать полностью1389

#тиристор

Зарубежные и отечественные транзисторы

20 Января 2021 — Анатолий Мельник

Как подобрать отечественный аналог зарубежному транзистору? Читайте в нашей статье!

Читать полностью 2468

Исчерпывающая информация о фотодиодах

20 Июля 2022 — Анатолий Мельник

Обзор фотодиодной технологии с подробным описанием основ, принципа работы, а также различных типов фотодиодов и их применения.

Читать полностью 3627

Калькулятор цветовой маркировки резисторов

14 Октября 2020 — Анатолий Мельник

Резисторы – это элементы для построения электрических схем, предназначенные для контроля и регулирования величины силы тока. Разделяют на постоянные, переменные, подстроечные. Для идентификации постоянных резисторов SMD – устройств, монтируемых на поверхность, – все производители разработали буквенно-цифровые обозначения для крупных элементов и цветовой код для деталей очень маленьких размеров.

Читать полностью 2343

Область применения и принцип работы варикапа

14 Октября 2020 — Анатолий Мельник

Варикап – полупроводниковый диод, главным параметром которого является изменяемая под напряжением емкость. В устройстве применяется зависимость емкости p-n перехода и приложенного обратного напряжения.

Читать полностью 5542

Маркировка конденсаторов

14 Октября 2020 — Анатолий Мельник

Выбор конденсаторов по маркировке – процесс достаточно сложный, поскольку разные производители используют различные системы кодирования. Особенно трудно прочесть зашифрованную информацию на незначительной поверхности маленьких конденсаторов.

Читать полностью 6420

Виды и классификация диодов

14 Октября 2020 — Анатолий Мельник

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. В этой статье вы найдёте подробную классификацию диодов по видам, характеристикам, материалам изготовления и сфере использования.

Читать полностью 4585


Радиоэлектроника для начинающих — статьи по основам радиоэлектроники для новичка

Переменный резистор: типы, устройство и принцип работы

20 Сентября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью299

#резистор

Тумблеры

25 Мая 2022 — Анатолий Мельник

Конструктивные особенности тумблеров. Типы, виды. Какие характеристики нужно учитывать при выборе. Как правильно подключить тумблер. Инструкция и советы в одной статье.

Читать полностью 335

Как проверять транзисторы тестером – отвечаем

14 Апреля 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью 182

Как пользоваться мультиметром

21 Марта 2022 — Анатолий Мельник

Что такое и как устроен мультиметр. Как правильно пользоваться мультиметром: как измерить напряжение, силу тока и напряжение. Как проверить емкость и индуктивность

Читать полностью 681

Выпрямитель напряжения: принцип работы и разновидности

24 Февраля 2022 — Анатолий Мельник

Выпрямитель напряжения электрической сети: как устроен, применение, обозначение на схемах. Как работает и для чего предназначается выпрямитель напряжения.

Читать полностью 988

Переключатель фаз (напряжения): устройство, принцип действия, виды

20 Января 2022 — Анатолий Мельник

Подробная статья о переключателях фаз: устройство и разновидности. Рекомендации по подключению и настройке. Рекомендации по выбору: популярные модели.

Читать полностью 387

Как выбрать паяльник для проводов и микросхем

23 Декабря 2021 — Анатолий Мельник

Особенности выбора хорошего паяльника для проводов и микросхем: разновидности конструкций, требования. Какие существуют нагреватели и жала. Дополнительные возможности.

Читать полностью 590

Что такое защитный диод и как он применяется

20 Декабря 2021 — Анатолий Мельник

В статье разбираются особенности защитных диодов, их устройство и маркировка, а также применения в реальных условиях. Даны рекомендации по проверке и подбору супрессоров.

Читать полностью 2478

Варистор: устройство, принцип действия и применение

20 Сентября 2022 — Анатолий Мельник

В статье разбирается устройство варисторов: маркировка, основные параметры. Вы узнаете в чем заключаются достоинства и недостатки варисторов, а также как выбрать и проверить компоненты.

Читать полностью841

#варистор

Виды отверток по назначению и применению

21 Сентября 2021 — Анатолий Мельник

Виды отверток по сферам применения. В статье рассматриваются простые, ударные, диэлектрические и другие отвертки.

Читать полностью 643

Виды шлицов у отверток

14 Августа 2021 — Анатолий Мельник

В статье рассматривается, что такое шлицы и какие бывают виды, их маркировка, основные размеры: крестообразные, прямые, звездочки, наружные, комбинированные и другие виды шлицов.

Читать полностью 1151

Виды и типы батареек

14 Августа 2021 — Анатолий Мельник

Подробная статья о батарейках: виды и типы батереек, как различаются батарейки. Как обозначаются батарейки (маркировка)

Читать полностью 1122

Для чего нужен контактор и как его подключить

20 Сентября 2022 — Анатолий Мельник

Для чего нужен контактор и как он устроен. Как правильно выбрать и подключить контактор для управления в автоматическом режиме электрическими приборами.

Читать полностью2186

#контрактор

Как проверить тиристор: способы проверки

20 Сентября 2022 — Анатолий Мельник

Как самому проверить тиристор? Способы проверки тиристора мультиметром, тестером. Проверка тиристора без выпаивания. Пошаговые инструкции с фото.

Читать полностью915

#тиристор

Как правильно выбрать акустический кабель для колонок

20 Апреля 2021 — Анатолий Мельник

Статья про выбор акустического кабеля: типы и виды акустического кабеля. Как маркируется кабель. Как рассчитать сечение кабеля. Правила эксплуатации и советы по выбору.

Читать полностью 1115

Что такое цифровой осциллограф и как он работает

20 Сентября 2022 — Анатолий Мельник

Обзор принципа работы цифровых осциллографов. Виды осциллографов, их отличия от аналоговых. Применение цифрового осциллографа

Читать полностью1294

#осциллограф

Как проверить варистор: используем мультиметр и другие способы

20 Сентября 2022 — Анатолий Мельник

Статья-инструкция о том, как проверить варистор на исправность мультиметром или тестором. Принцип работы варистора и основные параметры варисторов, обнозначение на схеме.

Читать полностью3037

#варистор

Герконовые реле: что это такое, чем отличается, как работает

23 Января 2021 — Анатолий Мельник

Статья об устройстве герконовых реле: обзор конструкции, характеристик и принципа работы. Преимущества и недостатки. Назначение герконовых реле, где используются компоненты.

Читать полностью 4367

Диоды Шоттки: что это такое, чем отличается, как работает

17 Декабря 2020 — Анатолий Мельник

Статья ответит на вопросы: что такое диоды Шоттки, как они устроены, плюсы и минусы данного вида диодов. Обозначение диодов на схемах. Сферы применения.

Читать полностью 5096

Как правильно заряжать конденсаторы

13 Ноября 2020 — Анатолий Мельник

Способы зарядки и разрядки конденсаторов. Виды конденсаторов: основные параметры, принципы работы и области применения.

Читать полностью 2447

Светодиоды: виды и схема подключения

20 Июля 2022 — Анатолий Мельник

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode). На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер.

Читать полностью 4005

Микросборка

25 Мая 2022 — Анатолий Мельник

Микросборка (МСБ) – конструктивная составляющая радиоэлектронной аппаратуры микроминиатюрного исполнения, предназначенная для реализации определенной функции. МСБ обычно не выпускаются в качестве самостоятельных изделий, предназначенных для широкого применения.

Читать полностью 2777

Применение, принцип действия и конструкция фототиристора

20 Сентября 2022 — Анатолий Мельник

Фототиристор (ТФ) – полупроводниковое устройство со структурой, сходной с обычным тиристором, но с одним существенным отличием. Он включается не подачей напряжения, а с помощью света, падающего на него. Этот прибор сочетает функции управляемого тиристора и фотоприемника, преобразующего световую энергию в электрический управляющий импульс. Изготавливается обычно из кремния, имеет спектральную характеристику, аналогичную другим фоточувствительным элементам с кремниевой полупроводниковой структурой.

Читать полностью181

#тиристор #фототиристор

Схема подключения теплового реле – принцип работы, регулировки и маркировка

17 Мая 2022 — Анатолий Мельник

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключение в схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Читать полностью 5750

Динисторы – принцип работы, как проверить, технические характеристики

17 Мая 2022 — Анатолий Мельник

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Читать полностью 1519

Маркировка керамических конденсаторов

17 Мая 2022 — Анатолий Мельник

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Читать полностью 1208

Компактные источники питания на печатную плату

17 Мая 2022 — Анатолий Мельник

Выбор ИП печатной платы напрямую влияет на ее работоспособность. Главная задача такого прибора – получить переменное напряжение от питающей сети, преобразовать его в постоянное и подать на оборудование. Если компонент выбран неверно или неисправен, он может перегореть или не справиться с входным напряжением. В худшем случае пострадает и плата – ее придется либо ремонтировать, либо выбрасывать и покупать новую.

Читать полностью 802

SMD-резисторы: устройство и назначение

17 Мая 2022 — Анатолий Мельник

SMD-резисторы – это мелкие электронные компоненты, разработанные для поверхностного монтажа на печатную плату. Ранее при сборке радиоэлектронной аппаратуры осуществлялся навесной монтаж элементов или их продевание в печатную плату через предусмотренные отверстия.

Читать полностью 2799

Принцип работы полевого МОП-транзистора

17 Мая 2022 — Анатолий Мельник

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем).

Читать полностью 2598

Проверка микросхем мультиметром: инструкция и советы

29 Октября 2021 — Анатолий Мельник

Как проверить микросхему? Рассмотрим как проверить микросхему на исправность и работоспособность мультиметром, влияние разновидности микросхем на способы проверки.

Читать полностью 8401

Характеристики, маркировка и принцип работы стабилитрона

28 Июля 2022 — Анатолий Мельник

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении.

Читать полностью 7103

Что такое реле: виды, принцип действия и устройство

14 Октября 2020 — Анатолий Мельник

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. В этой статье мы подробно разберем, что такое реле, какие виды реле существуют и для чего они применяются.

Читать полностью 7105

Конденсатор: что это такое и для чего он нужен

20 Июля 2022 — Анатолий Мельник

Конденсатор – это устройство, способное накапливать и моментально отдавать электрический заряд. В статье подробно разберем, в чем суть конденсатора, что он делает, из чего состоит и какие его основные параметры.

Читать полностью 9020

Все о танталовых конденсаторах — максимально подробно

29 Октября 2021 — Анатолий Мельник

В этой статье я максимально подробно расскажу о назначении, видах, области применения танталовых конденсаторов. Покажу как они выглядят в живую и на схеме, объясню, как считать буквенную маркировку конденсаторов.

Читать полностью 13207

Как проверить резистор мультиметром

14 Октября 2020 — Анатолий Мельник

Рассказываем как правильно проверить резистор мультиметром на плате, как узнать его сопротивление и определить работоспособность не выпаивая. Узнайте, как настроить тестер для проверки резисторов.

Читать полностью 2760

Что такое резистор

14 Октября 2020 — Анатолий Мельник

Резистор (от латинского «resisto» — сопротивляюсь) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. Резисторы предназначены для линейного преобразования силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Читать полностью 1981

Как проверить диодный мост мультиметром

14 Октября 2020 — Анатолий Мельник

Подробная инструкция по проверке работоспособности диодного моста с помощью мультиметра или лампы.

Читать полностью 13583

Что такое диодный мост

05 Августа 2022 — Анатолий Мельник

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Читать полностью 844

Виды и принцип работы термодатчиков

17 Мая 2022 — Анатолий Мельник

Принцип работы и виды термодатчиков. Особенности различных типов датчиков.

Читать полностью 4274

Заземление: виды, схемы

17 Мая 2022 — Анатолий Мельник

Заземление – соединение проводящих элементов промышленного или бытового оборудования с грунтом или общим проводом электрической системы, относительно которого производят измерения электрического потенциала. Из нашей статьи вы узнаете о видах заземления и их изображении на схемах.

Читать полностью 2366

Как определить выводы транзистора

29 Октября 2021 — Анатолий Мельник

Способы определения выводов от базы, эмиттера и коллектора полупроводникового транзистора.

Читать полностью 1367

Назначение и области применения транзисторов

14 Октября 2020 — Анатолий Мельник

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. В этой статье мы кратко перечислим области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов.

Читать полностью 1962

Как работает транзистор: принцип и устройство

20 Февраля 2021 — Анатолий Мельник

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Читать полностью 6717

Виды электронных и электромеханических переключателей

17 Мая 2022 — Анатолий Мельник

Переключатель (свитчер) – устройство, служащее в радиоэлектронике для коммутации электроцепей постоянного и переменного тока и обеспечивающее требуемый рабочий режим. От функциональности этого компонента часто зависит работоспособность всего аппарата. В этой статье мы расскажем об основных видах переключателей

Читать полностью 752

Как устроен туннельный диод

20 Июля 2022 — Анатолий Мельник

Рассказываем про устройство туннельных диодов, их отличия от обычных, цветовую маркировку и обозначение туннельных диодов на схемах. Также из этой статьи вы узнаете об истории создания данного типа диодов.

Читать полностью 3698

Виды и аналоги конденсаторов

21 Мая 2020 — Анатолий Мельник

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

Читать полностью 5561

Твердотельные реле: подробное описание устройства

25 Мая 2022 — Анатолий Мельник

Твердотельное реле (ТТР) – полупроводниковое устройство, применяемое для создания контакта между низковольтными и высоковольтными цепями, является современной альтернативой традиционным пускателям и контакторам. Применяется в бытовой технике, промавтоматике, автомобильной электронике.

Читать полностью 3599

Конвертер единиц емкости конденсатора

29 Октября 2021 — Анатолий Мельник

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Читать полностью 1897

Графическое обозначение радиодеталей на схемах

14 Октября 2020 — Анатолий Мельник

Радиодетали – электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты. Если ранее детали изображались приближенно к их натуральному виду, то сегодня используются условные графические обозначения радиодеталей на схеме, разработанные и утвержденные Международной электротехнической комиссией.

Читать полностью 1031

Биполярные транзисторы: принцип работы, характеристики и параметры

17 Мая 2022 — Анатолий Мельник

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Читать полностью 3110

Как подобрать резистор по назначению и принципу работы

17 Мая 2022 — Анатолий Мельник

Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.

Читать полностью 303

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

20 Сентября 2022 — Анатолий Мельник

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т. е. ток пропускается только в одну сторону). Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока.

Читать полностью1389

#тиристор

Зарубежные и отечественные транзисторы

20 Января 2021 — Анатолий Мельник

Как подобрать отечественный аналог зарубежному транзистору? Читайте в нашей статье!

Читать полностью 2468

Исчерпывающая информация о фотодиодах

20 Июля 2022 — Анатолий Мельник

Обзор фотодиодной технологии с подробным описанием основ, принципа работы, а также различных типов фотодиодов и их применения.

Читать полностью 3627

Калькулятор цветовой маркировки резисторов

14 Октября 2020 — Анатолий Мельник

Резисторы – это элементы для построения электрических схем, предназначенные для контроля и регулирования величины силы тока. Разделяют на постоянные, переменные, подстроечные. Для идентификации постоянных резисторов SMD – устройств, монтируемых на поверхность, – все производители разработали буквенно-цифровые обозначения для крупных элементов и цветовой код для деталей очень маленьких размеров.

Читать полностью 2343

Область применения и принцип работы варикапа

14 Октября 2020 — Анатолий Мельник

Варикап – полупроводниковый диод, главным параметром которого является изменяемая под напряжением емкость. В устройстве применяется зависимость емкости p-n перехода и приложенного обратного напряжения.

Читать полностью 5542

Маркировка конденсаторов

14 Октября 2020 — Анатолий Мельник

Выбор конденсаторов по маркировке – процесс достаточно сложный, поскольку разные производители используют различные системы кодирования. Особенно трудно прочесть зашифрованную информацию на незначительной поверхности маленьких конденсаторов.

Читать полностью 6420

Виды и классификация диодов

14 Октября 2020 — Анатолий Мельник

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. В этой статье вы найдёте подробную классификацию диодов по видам, характеристикам, материалам изготовления и сфере использования.

Читать полностью 4585


Радиоэлектроника для начинающих — статьи по основам радиоэлектроники для новичка

Переменный резистор: типы, устройство и принцип работы

20 Сентября 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью299

#резистор

Тумблеры

25 Мая 2022 — Анатолий Мельник

Конструктивные особенности тумблеров. Типы, виды. Какие характеристики нужно учитывать при выборе. Как правильно подключить тумблер. Инструкция и советы в одной статье.

Читать полностью 335

Как проверять транзисторы тестером – отвечаем

14 Апреля 2022 — Анатолий Мельник

Рассказываем и показываем как правильно проверить работу транзисторов с помощью цифрового мультиметра. Магазин электронных компонентов и радиодеталей «Радиоэлемент»

Читать полностью 182

Как пользоваться мультиметром

21 Марта 2022 — Анатолий Мельник

Что такое и как устроен мультиметр. Как правильно пользоваться мультиметром: как измерить напряжение, силу тока и напряжение. Как проверить емкость и индуктивность

Читать полностью 681

Выпрямитель напряжения: принцип работы и разновидности

24 Февраля 2022 — Анатолий Мельник

Выпрямитель напряжения электрической сети: как устроен, применение, обозначение на схемах. Как работает и для чего предназначается выпрямитель напряжения.

Читать полностью 988

Переключатель фаз (напряжения): устройство, принцип действия, виды

20 Января 2022 — Анатолий Мельник

Подробная статья о переключателях фаз: устройство и разновидности. Рекомендации по подключению и настройке. Рекомендации по выбору: популярные модели.

Читать полностью 387

Как выбрать паяльник для проводов и микросхем

23 Декабря 2021 — Анатолий Мельник

Особенности выбора хорошего паяльника для проводов и микросхем: разновидности конструкций, требования. Какие существуют нагреватели и жала. Дополнительные возможности.

Читать полностью 590

Что такое защитный диод и как он применяется

20 Декабря 2021 — Анатолий Мельник

В статье разбираются особенности защитных диодов, их устройство и маркировка, а также применения в реальных условиях. Даны рекомендации по проверке и подбору супрессоров.

Читать полностью 2478

Варистор: устройство, принцип действия и применение

20 Сентября 2022 — Анатолий Мельник

В статье разбирается устройство варисторов: маркировка, основные параметры. Вы узнаете в чем заключаются достоинства и недостатки варисторов, а также как выбрать и проверить компоненты.

Читать полностью841

#варистор

Виды отверток по назначению и применению

21 Сентября 2021 — Анатолий Мельник

Виды отверток по сферам применения. В статье рассматриваются простые, ударные, диэлектрические и другие отвертки.

Читать полностью 643

Виды шлицов у отверток

14 Августа 2021 — Анатолий Мельник

В статье рассматривается, что такое шлицы и какие бывают виды, их маркировка, основные размеры: крестообразные, прямые, звездочки, наружные, комбинированные и другие виды шлицов.

Читать полностью 1151

Виды и типы батареек

14 Августа 2021 — Анатолий Мельник

Подробная статья о батарейках: виды и типы батереек, как различаются батарейки. Как обозначаются батарейки (маркировка)

Читать полностью 1122

Для чего нужен контактор и как его подключить

20 Сентября 2022 — Анатолий Мельник

Для чего нужен контактор и как он устроен. Как правильно выбрать и подключить контактор для управления в автоматическом режиме электрическими приборами.

Читать полностью2186

#контрактор

Как проверить тиристор: способы проверки

20 Сентября 2022 — Анатолий Мельник

Как самому проверить тиристор? Способы проверки тиристора мультиметром, тестером. Проверка тиристора без выпаивания. Пошаговые инструкции с фото.

Читать полностью915

#тиристор

Как правильно выбрать акустический кабель для колонок

20 Апреля 2021 — Анатолий Мельник

Статья про выбор акустического кабеля: типы и виды акустического кабеля. Как маркируется кабель. Как рассчитать сечение кабеля. Правила эксплуатации и советы по выбору.

Читать полностью 1115

Что такое цифровой осциллограф и как он работает

20 Сентября 2022 — Анатолий Мельник

Обзор принципа работы цифровых осциллографов. Виды осциллографов, их отличия от аналоговых. Применение цифрового осциллографа

Читать полностью1294

#осциллограф

Как проверить варистор: используем мультиметр и другие способы

20 Сентября 2022 — Анатолий Мельник

Статья-инструкция о том, как проверить варистор на исправность мультиметром или тестором. Принцип работы варистора и основные параметры варисторов, обнозначение на схеме.

Читать полностью3037

#варистор

Герконовые реле: что это такое, чем отличается, как работает

23 Января 2021 — Анатолий Мельник

Статья об устройстве герконовых реле: обзор конструкции, характеристик и принципа работы. Преимущества и недостатки. Назначение герконовых реле, где используются компоненты.

Читать полностью 4367

Диоды Шоттки: что это такое, чем отличается, как работает

17 Декабря 2020 — Анатолий Мельник

Статья ответит на вопросы: что такое диоды Шоттки, как они устроены, плюсы и минусы данного вида диодов. Обозначение диодов на схемах. Сферы применения.

Читать полностью 5096

Как правильно заряжать конденсаторы

13 Ноября 2020 — Анатолий Мельник

Способы зарядки и разрядки конденсаторов. Виды конденсаторов: основные параметры, принципы работы и области применения.

Читать полностью 2447

Светодиоды: виды и схема подключения

20 Июля 2022 — Анатолий Мельник

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode). На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер.

Читать полностью 4005

Микросборка

25 Мая 2022 — Анатолий Мельник

Микросборка (МСБ) – конструктивная составляющая радиоэлектронной аппаратуры микроминиатюрного исполнения, предназначенная для реализации определенной функции. МСБ обычно не выпускаются в качестве самостоятельных изделий, предназначенных для широкого применения.

Читать полностью 2777

Применение, принцип действия и конструкция фототиристора

20 Сентября 2022 — Анатолий Мельник

Фототиристор (ТФ) – полупроводниковое устройство со структурой, сходной с обычным тиристором, но с одним существенным отличием. Он включается не подачей напряжения, а с помощью света, падающего на него. Этот прибор сочетает функции управляемого тиристора и фотоприемника, преобразующего световую энергию в электрический управляющий импульс. Изготавливается обычно из кремния, имеет спектральную характеристику, аналогичную другим фоточувствительным элементам с кремниевой полупроводниковой структурой.

Читать полностью181

#тиристор #фототиристор

Схема подключения теплового реле – принцип работы, регулировки и маркировка

17 Мая 2022 — Анатолий Мельник

Электродвигатели и прочее электрооборудование в процессе эксплуатации могут испытывать высокие нагрузки, вызывающие их перегрев. Частые перегревы обмоток силовых установок приводят к разрушению изоляционных материалов и значительному сокращению срока службы, поэтому в конструкции таких устройств предусматривают защитное тепловое реле (ТР). Подключение в схему теплового реле обеспечивает обесточивание электрооборудования при возникновении нештатных ситуаций и предотвращает его выход из строя.

Читать полностью 5750

Динисторы – принцип работы, как проверить, технические характеристики

17 Мая 2022 — Анатолий Мельник

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Читать полностью 1519

Маркировка керамических конденсаторов

17 Мая 2022 — Анатолий Мельник

Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Читать полностью 1208

Компактные источники питания на печатную плату

17 Мая 2022 — Анатолий Мельник

Выбор ИП печатной платы напрямую влияет на ее работоспособность. Главная задача такого прибора – получить переменное напряжение от питающей сети, преобразовать его в постоянное и подать на оборудование. Если компонент выбран неверно или неисправен, он может перегореть или не справиться с входным напряжением. В худшем случае пострадает и плата – ее придется либо ремонтировать, либо выбрасывать и покупать новую.

Читать полностью 802

SMD-резисторы: устройство и назначение

17 Мая 2022 — Анатолий Мельник

SMD-резисторы – это мелкие электронные компоненты, разработанные для поверхностного монтажа на печатную плату. Ранее при сборке радиоэлектронной аппаратуры осуществлялся навесной монтаж элементов или их продевание в печатную плату через предусмотренные отверстия.

Читать полностью 2799

Принцип работы полевого МОП-транзистора

17 Мая 2022 — Анатолий Мельник

МОП-транзистор (MOSFET, «металл-оксид-полупроводник») – полевой транзистор с изолированным затвором (канал разделен с затвором тонким диэлектрическим слоем).

Читать полностью 2598

Проверка микросхем мультиметром: инструкция и советы

29 Октября 2021 — Анатолий Мельник

Как проверить микросхему? Рассмотрим как проверить микросхему на исправность и работоспособность мультиметром, влияние разновидности микросхем на способы проверки.

Читать полностью 8401

Характеристики, маркировка и принцип работы стабилитрона

28 Июля 2022 — Анатолий Мельник

Полупроводниковый стабилитрон, или диод Зенера, представляет собой диод особого типа. При прямом включении обычный диод и стабилитрон ведут себя аналогично. Разница между ними проявляется при обратном включении.

Читать полностью 7103

Что такое реле: виды, принцип действия и устройство

14 Октября 2020 — Анатолий Мельник

Реле – одно из наиболее распространенных устройств, применяемых для автоматизации процессов в электротехнике. В этой статье мы подробно разберем, что такое реле, какие виды реле существуют и для чего они применяются.

Читать полностью 7105

Конденсатор: что это такое и для чего он нужен

20 Июля 2022 — Анатолий Мельник

Конденсатор – это устройство, способное накапливать и моментально отдавать электрический заряд. В статье подробно разберем, в чем суть конденсатора, что он делает, из чего состоит и какие его основные параметры.

Читать полностью 9020

Все о танталовых конденсаторах — максимально подробно

29 Октября 2021 — Анатолий Мельник

В этой статье я максимально подробно расскажу о назначении, видах, области применения танталовых конденсаторов. Покажу как они выглядят в живую и на схеме, объясню, как считать буквенную маркировку конденсаторов.

Читать полностью 13207

Как проверить резистор мультиметром

14 Октября 2020 — Анатолий Мельник

Рассказываем как правильно проверить резистор мультиметром на плате, как узнать его сопротивление и определить работоспособность не выпаивая. Узнайте, как настроить тестер для проверки резисторов.

Читать полностью 2760

Что такое резистор

14 Октября 2020 — Анатолий Мельник

Резистор (от латинского «resisto» — сопротивляюсь) – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. Резисторы предназначены для линейного преобразования силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Читать полностью 1981

Как проверить диодный мост мультиметром

14 Октября 2020 — Анатолий Мельник

Подробная инструкция по проверке работоспособности диодного моста с помощью мультиметра или лампы.

Читать полностью 13583

Что такое диодный мост

05 Августа 2022 — Анатолий Мельник

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Читать полностью 844

Виды и принцип работы термодатчиков

17 Мая 2022 — Анатолий Мельник

Принцип работы и виды термодатчиков. Особенности различных типов датчиков.

Читать полностью 4274

Заземление: виды, схемы

17 Мая 2022 — Анатолий Мельник

Заземление – соединение проводящих элементов промышленного или бытового оборудования с грунтом или общим проводом электрической системы, относительно которого производят измерения электрического потенциала. Из нашей статьи вы узнаете о видах заземления и их изображении на схемах.

Читать полностью 2366

Как определить выводы транзистора

29 Октября 2021 — Анатолий Мельник

Способы определения выводов от базы, эмиттера и коллектора полупроводникового транзистора.

Читать полностью 1367

Назначение и области применения транзисторов

14 Октября 2020 — Анатолий Мельник

Полупроводниковый транзистор – радиоэлемент, изготавливаемый из полупроводникового материала, чаще всего кремния. Основное назначение транзистора – управление током в электрической цепи. В этой статье мы кратко перечислим области применения полупроводниковых транзисторов, присутствующих практически во всех электронных компонентах современных приборов и аппаратов.

Читать полностью 1962

Как работает транзистор: принцип и устройство

20 Февраля 2021 — Анатолий Мельник

Транзистор – прибор, предназначенный для управления током в электрической цепи. Применяется практически во всех моделях видео- и аудио аппаратуры. В этой статье мы постараемся простыми словами изложить, что такое транзистор, как он устроен и что делает.

Читать полностью 6717

Виды электронных и электромеханических переключателей

17 Мая 2022 — Анатолий Мельник

Переключатель (свитчер) – устройство, служащее в радиоэлектронике для коммутации электроцепей постоянного и переменного тока и обеспечивающее требуемый рабочий режим. От функциональности этого компонента часто зависит работоспособность всего аппарата. В этой статье мы расскажем об основных видах переключателей

Читать полностью 752

Как устроен туннельный диод

20 Июля 2022 — Анатолий Мельник

Рассказываем про устройство туннельных диодов, их отличия от обычных, цветовую маркировку и обозначение туннельных диодов на схемах. Также из этой статьи вы узнаете об истории создания данного типа диодов.

Читать полностью 3698

Виды и аналоги конденсаторов

21 Мая 2020 — Анатолий Мельник

Конденсаторы – электронные компоненты, состоящие из двух проводников-обкладок и находящимся между ними диэлектриком. Существует множество видов конденсаторов, имеющих сходную конструкцию, но различных по материалам, из которых изготавливаются обкладки и диэлектрический слой, и функциям в электронных схемах. Тип изделия определяется по форме, цвету, маркировке на корпусе.

Читать полностью 5561

Твердотельные реле: подробное описание устройства

25 Мая 2022 — Анатолий Мельник

Твердотельное реле (ТТР) – полупроводниковое устройство, применяемое для создания контакта между низковольтными и высоковольтными цепями, является современной альтернативой традиционным пускателям и контакторам. Применяется в бытовой технике, промавтоматике, автомобильной электронике.

Читать полностью 3599

Конвертер единиц емкости конденсатора

29 Октября 2021 — Анатолий Мельник

Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.

Читать полностью 1897

Графическое обозначение радиодеталей на схемах

14 Октября 2020 — Анатолий Мельник

Радиодетали – электронные компоненты, собираемые в аналоговые и цифровые устройства: телевизоры, измерительные приборы, смартфоны, компьютеры, ноутбуки, планшеты. Если ранее детали изображались приближенно к их натуральному виду, то сегодня используются условные графические обозначения радиодеталей на схеме, разработанные и утвержденные Международной электротехнической комиссией.

Читать полностью 1031

Биполярные транзисторы: принцип работы, характеристики и параметры

17 Мая 2022 — Анатолий Мельник

Биполярные транзисторы – электронные полупроводниковые приборы, отличающиеся от полевых способом переноса заряда. В полевых (однополярных) транзисторах, используемых в основном в цифровых устройствах, заряд переносится или дырками, или электронами. В биполярных же в процессе участвуют и электроны, и дырки. Биполярные транзисторы, как и другие типы транзисторов, в основном используются в качестве усилителей сигнала. Применяются в аналоговых устройствах.

Читать полностью 3110

Как подобрать резистор по назначению и принципу работы

17 Мая 2022 — Анатолий Мельник

Характеристики самых распространенных видов резисторов по типу, материалу, назначению, принципу работы. Какие параметры необходимо учитывать при работе. Номинальное и реальное сопротивление.

Читать полностью 303

Тиристоры: принцип работы, назначение, характеристики, проверка работоспособности

20 Сентября 2022 — Анатолий Мельник

Тиристор представляет собой вид полупроводниковых приборов, предназначенный для однонаправленного преобразования тока (т. е. ток пропускается только в одну сторону). Прибор выполняет функции коммутатора разомкнутой цепи и ректификационного диода в сетях постоянного тока.

Читать полностью1389

#тиристор

Зарубежные и отечественные транзисторы

20 Января 2021 — Анатолий Мельник

Как подобрать отечественный аналог зарубежному транзистору? Читайте в нашей статье!

Читать полностью 2468

Исчерпывающая информация о фотодиодах

20 Июля 2022 — Анатолий Мельник

Обзор фотодиодной технологии с подробным описанием основ, принципа работы, а также различных типов фотодиодов и их применения.

Читать полностью 3627

Калькулятор цветовой маркировки резисторов

14 Октября 2020 — Анатолий Мельник

Резисторы – это элементы для построения электрических схем, предназначенные для контроля и регулирования величины силы тока. Разделяют на постоянные, переменные, подстроечные. Для идентификации постоянных резисторов SMD – устройств, монтируемых на поверхность, – все производители разработали буквенно-цифровые обозначения для крупных элементов и цветовой код для деталей очень маленьких размеров.

Читать полностью 2343

Область применения и принцип работы варикапа

14 Октября 2020 — Анатолий Мельник

Варикап – полупроводниковый диод, главным параметром которого является изменяемая под напряжением емкость. В устройстве применяется зависимость емкости p-n перехода и приложенного обратного напряжения.

Читать полностью 5542

Маркировка конденсаторов

14 Октября 2020 — Анатолий Мельник

Выбор конденсаторов по маркировке – процесс достаточно сложный, поскольку разные производители используют различные системы кодирования. Особенно трудно прочесть зашифрованную информацию на незначительной поверхности маленьких конденсаторов.

Читать полностью 6420

Виды и классификация диодов

14 Октября 2020 — Анатолий Мельник

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. В этой статье вы найдёте подробную классификацию диодов по видам, характеристикам, материалам изготовления и сфере использования.

Читать полностью 4585


Полупроводники (Диоды). Виды и особенности. Неисправности

Существуют полупроводники в зависимости от их применения и назначения. Рассмотрим основные виды диодов.

Эти полупроводниковые диоды имеют незначительное падение напряжения, имеют высокую скорость работы, в отличие от обычных диодов, которые не смогут заменить в действии диод Шоттки и выйдут из строя. Свое название диод имеет по изобретателю из Германии. В конструкции в качестве потенциального барьера используется переход «металл-полупроводник» вместо р-n перехода.

Его допустимое напряжение при обратном подключении 1200 В. Практически они применяются в цепях низкого напряжения.
Стабилитроны

Они предотвращают увеличение напряжения свыше допустимого значения на участке схемы, могут защищать и ограничивать схему от повышенных значений тока. Стабилитроны могут работать только на постоянном токе, поэтому при включении их в цепь соблюдение полярности является обязательным. Стабилитроны одного типа можно соединять по последовательной схеме для увеличения напряжения, либо создания делителя напряжения.

Основным свойством таких полупроводников является стабилизирующее напряжение.

Варикапы

Этот полупроводник еще называют емкостным диодом. Он изменяет значение сопротивления при изменении напряжения питания. Используется в качестве управляемого конденсатора с изменяемой емкостью. Может применяться для настраивания контуров колебаний высокой частоты.

Тиристоры
Полупроводники могут находиться в двух устойчивых положениях:
  1. Закрытое (низкая проводимость).
  2. Открытое (высокая проводимость).

То есть, он может переходить под воздействием сигнала из одного состояния в другое.

У тиристора имеется три электрода. Кроме обычных катода и анода, есть еще и электрод управления, который служит для подачи сигнала управления для перевода полупроводника в состояние включения. Современные тиристоры иностранного производства производятся в различных корпусах.

Такие полупроводники включают в схемы для регулирования мощности, плавного запуска электромоторов, подключения освещения. Тиристоры дают возможность включать большие токи, достигающие наибольшего тока 5 кА, напряжением до 5 киловольт в закрытом виде. Мощные силовые приборы на основе тиристоров используются в управляющих панелях электромоторами и других устройствах.

Симисторы

Эти полупроводники применяются в схемах, подключенных к переменному напряжению. Прибор условно состоит из двух тиристоров, подключенных встречно-параллельно, и пропускающих ток в любую сторону.

Светодиоды

Они испускают световой поток при подключении к ним напряжения, используются для создания индикации параметров, в электронных схемах, различных электронных гаджетах, дисплеях, в качестве источников света, при этом бывают многоцветными и одного цвета.

Инфракрасные диоды

Это светодиоды, выдающие световой поток в инфракрасном спектре. Они используются для измерительных и контрольных приборов оптического вида, в пультах управления, коммутационных устройствах, линиях связи без проводов и т.д. Обозначаются на схемах как обычные светодиоды. Инфракрасные лучи не видны человеку. Их можно увидеть с помощью смартфона в камеру.

Фотодиоды

Они работают при попадании на их чувствительный элемент света, преобразуя его в электрический ток. Используются для преобразования потока света в сигнал электрического тока.

Фотодиоды обычно сравнивают по принципу работы с батареями на солнечных элементах.

Неисправности диодов
Полупроводники иногда могут выходить из строя вследствие естественного старения и амортизации внутренних материалов, либо по другим причинам:
  • Пробивание перехода кристалла. Его следствием является то, что по сути полупроводник приобретает свойства обычного проводника, так как он лишен основных качеств полупроводимости и уже пропускает ток практически в любую сторону. Такая неисправность быстро обнаруживается с помощью обычного мультитестера. Измерительный прибор выдает сигнал звука и на дисплее видно значение очень малого сопротивления диода.
  • Обрыв. В этом случае действует обратный процесс – полупроводник не пропускает ток ни в каком направлении, так как внутри кристалла нарушена проводимость, вследствие полного обрыва проводника, то есть, диод, по сути, стал диэлектриком. Чтобы точно выяснить обрыв, нужно применять мультиметры с исправными щупами. Иначе можно получить ложную диагностику этой неисправности. У диодов на основе сплавов эта неисправность является редкой.
  • Утечка. Эта поломка возникает из-за повреждения корпуса полупроводника, вследствие чего нарушается герметичность корпуса диода, и его нормальное функционирование становится невозможным.
Пробой перехода

При чрезмерном повышении обратного напряжения может возникнуть пробой электронного прибора. Существуют специальные полупроводники, в которых используется это свойство, которые называются стабилитронами.

Такие неисправности возникают в случаях, когда величина обратного тока резко возрастает из-за достижения обратного напряжения чрезмерных значений, выше допустимых.

Существует несколько типов пробоя переходов:
  • Тепловые пробои. Они вызываются внезапным возрастанием температуры с дальнейшим перегревом.
  • Электрические пробои. Появляются от действия большого электрического тока на полупроводниковый переход.
Электрический пробой

Такой вид пробоя не является фатальным, и является обратимым процессом, так как при этом не произошло разрушения кристалла полупроводника. Поэтому при медленном снижении напряжения возможно восстановление характеристик диода и его рабочего состояния.

Такие пробои разделяют на два подвида:
  • Туннельные пробои. Они возникают при протекании повышенного напряжения по узким проходам кристалла полупроводника. Это позволяет отдельным электронам проскакивать через него. Чаще всего туннельные пробои образуются в случае наличия в полупроводнике большого числа различных недопустимых примесей. При таком пробое обратный ток внезапно стремится к возрастанию, а напряжение продолжает оставаться на прежнем уровне.
  • Лавинные пробои. Они могут возникнуть вследствие действия повышенных значений электрических полей, которые разгоняют электроны выше допустимой границы скорости. Поэтому они выбивают из атомов некоторое количество валентных электронов, вылетающих в область проводимости. Такой процесс происходит с лавинообразной скоростью, поэтому и получил такое название.
Тепловой пробой

Образование теплового пробоя может происходить из-за возникновения различных причин. Это может быть недостаточный отвод тепла от корпуса полупроводника, а также перегрева перехода кристалла, возникающего по причине прохождения электрического тока повышенной величины, выше допустимого.

Вследствие увеличения режима температуры в переходе полупроводника и областях, находящихся рядом, появляются такие отрицательные последствия:
  • Возрастание колебания атомов, которые входят в состав материала кристалла диода.
  • Залетание электронов в зону проводимости.
  • Чрезмерное внезапное возрастание температуры.
  • Повреждение и деформация кристаллической решетки полупроводника.
  • Неисправность и выход из строя диода.
Похожие темы:
  • Диоды (часть 1). Устройство и работа. Характеристики и особенности
  • Свойства полупроводников. Устройство и работа. Применение
  • Лазерные диоды. Виды. Устройство и работа. Подключение

Какими бывают виды диодов, характеристики, применение

Официальное определение диода гласит, что это элемент, который имеет различную проводимость, в зависимости от того, в каком направлении течёт электрический ток. Его использование необходимо в цепях, нуждающихся в ограничении пути его следования. Данная статья более подробно расскажет об устройстве диода, а также о том, какие существуют виды и как их различать.

История появления

Работы, связанные с диодами, начали вести параллельно сразу два учёных — британец Фредерик Гутри и немец Карл Браун. Открытия первого были основаны на ламповых диодах, второго — на твердотельных. Однако развитие науки того времени не позволило совершить большой рывок в этом направлении, но дали новую пищу для ума.

Затем через несколько лет открытие диодов заново произвёл Томас Эдисон и в дальнейшем запатентовал изобретение. Однако по каким-то причинам, в своих работах применения ему на нашлось. Поэтому развитие диодной технологии продолжали другие учёные в разные годы.

Кстати, до начала 20 века диоды назывались выпрямителями. Затем учёный Вильям Генри Иклс применил два корня слов — di и odos. Первое с греческого переводится как «два», второе — «путь». Таким образом, слово «диод» означает «два пути».

Принцип работы и основные сведения о диодах

Диод имеет два электрода — анод и катод. Если анод обладает положительным потенциалом по отношению к катоду, то диод становится открытым. То есть, ток проходит и имеет малое сопротивление диода.

Если же на катоде находится положительный потенциал, то значит диод не раскрыт, обладает большим сопротивлением и не пропускает электрический ток.

Как устроен диод?

В основном, корпус элемента изготовлен из стекла, металла или керамических соединений. Под покрытием расположены два электрода. Самый простой диод содержит в себе нить малого диаметра.

Внутри катода может находится особая проволока. Она обладает свойством нагреваться под воздействием электрического тока и называется «подогреватель».

Вещества, используемые при изготовлении, чаще всего кремний или германий. Одна сторона элемента обладает нехваткой электронов, вторая — наоборот их переизбытком. Между ними существует граница, которая и обеспечивает p-n переход. Именно он позволяет проводить ток в нужном направлении.

Характеристики диодов

При выборе элемента в основном ориентируются на два показателя — предельное обратное напряжение и максимальная сила тока.

Использование диодов в быту

Один из ярких примеров использования диодов — автомобильный генератор. В нем размещён комплекс из нескольких таких элементов, который называется «диодный мост».

Также элементы активно применяются в телевизорах или радиоприёмниках. В соединении с конденсаторами диоды могут выделять частоты из разнообразных модулированных сигналов.

Очень часто комплекс из диодов используется в схемах для защиты потребителей от поражения электрическим током.

Также стоит сказать о том, что любой блок питания многих электронных устройств обязательно содержит диоды.

Виды диодов

В основном, элементы можно разделить на две группы. Первая — вид полупроводниковых диодов, вторая — не полупроводниковые.

Широкое распространение получила именно первая группа. Название происходит от материалов, из которых изготовлен диод: два полупроводника либо полупроводник с металлом.

Также имеется целый ряд специальных видов диодов, которые применяются в особых схемах и приборах.

Диод Зенера или стабилитрон

Данный вид характерен тем, что при возникновении пробоя происходит резкое увеличение тока с высокой точностью. Эту особенность применяют в стабилизации напряжения.

Туннельный

Если говорить простыми словами, то данный вид диодов образует отрицательное сопротивление на вольт-амперной характеристике. Применяется в основном в усилителях и генераторах.

Обращённый диод

Обладает свойством значительно понижать напряжение в открытом режиме. Это также основано на туннельном эффекте, подобному предыдущему диоду.

Варикап

Относится к виду диодов полупроводниковых, которые обладают повышенной ёмкостью, управляемой электрически в случае изменения обратного напряжения. Используется в настройке и калибровке колебательных контуров.

Светодиод

Особенность данного типа диодов заключается в том, что он излучает свет при течении тока в прямом направлении. В современном мире применяется практически везде, где требуется освещение с экономичным источником света.

Фотодиод

Имеет обратные предыдущему экземпляру свойства. То есть, начинает вырабатывать электрический заряд при попадании на него света.

Маркировка

Для того чтобы определить вид, узнать характеристику полупроводникового диода, производители наносят специальные обозначения на корпус элемента. Она состоит из четырёх частей.

На первом месте — буква или цифра, означающая материал, из которого изготовлен диод. Может принимать следующие значения:

  • Г (1) — германий;
  • К (2) — кремний;
  • А (3) — арсенид галлия;
  • И (4) — индий.

На втором — типы диода. Они тоже могут иметь разное значение:

  • Д — выпрямительные;
  • В — варикап;
  • А — сверхвысокочастотные;
  • И — туннельные;
  • С — стабилитроны;
  • Ц — выпрямительные столбы и блоки.

На третьем месте располагается цифра, указывающая на область применения элемента.

Четвёртое место — числа от 01 до 99, означающее порядковый номер разработки.

Также на корпус могут быть нанесены и дополнительные обозначения. Но, как правило, они используются в специализированных приборах и схемах.

Для удобства восприятия диоды могут маркироваться также и разнообразными графическими символами, например, точками и полосками. Особой логики в таких рисунках нет. То есть, чтобы определить, что это за диод, придется заглянуть в специальную таблицу соответствия.

Триоды

Данный вид электронных элементов чем-то схож с диодом, однако выполняет другие функции и имеет свою конструкцию.

Основное различие между диодом и триодом в том, что последний имеет три вывода и в его отношении чаще используется название «транзистор». Принцип работы основан на управлении токами в выходных цепях с помощью небольшого сигнала.

Диоды и триоды (транзисторы) применяются практически в каждом электронном устройстве. В том числе и процессорах.

Плюсы и минусы

Перед заключением можно обобщить всю информацию о диодах и составить список их преимуществ и недостатков.

Плюсы:

  • Невысокая цена диодов.
  • Отличный КПД.
  • Высокий ресурс работы.
  • Маленькие размеры, что позволяет удобно их размещать на схемах.
  • Возможность использования диода в переменном токе.

Из минусов, пожалуй, можно выделить то, что не существует полупроводникового типа для высоких напряжений в несколько киловольт. Поэтому придется применять более старые ламповые аналоги. Также воздействие высоких температур неблагоприятно сказывается на работе и состоянии элемента.

Немного интересных сведений о диодах

Первые экземпляры выпускались с применением малой точности. Поэтому разброс получившихся характеристик диодов был очень большим, вследствие чего уже готовые приборы приходилось, что называется, «разбраковывать». То есть, некоторые диоды, казалось бы, одной серии могли получить совершенно разные свойства. После отсева, элементы маркировались в соответствии с фактическими характеристиками.

Диоды, изготовленные в стеклянном корпусе, имеют одну интересную особенность — чувствительность к свету. То есть если прибор, в составе которого имеется такой элемент, имеет открывающуюся крышку, то работать вся схема может по-разному в закрытом и открытом состоянии.

Заключение

В общем, чтобы полностью понять и разобраться, как правильно применять и где использовать диоды, нужны изучить больше литературы. Для определения типа элемента на глазок потребуется соответствующий опыт. Ну а новичкам в этом могут помочь таблицы и справочники по маркировкам.

Также необходимо иметь хотя бы базовые представления об электрическом токе, его свойствах. Конечно, это все проходилось в школе, но кто сейчас навскидку сможет вспомнить даже закон Ома?

Поэтому без базовых знаний нырять в мир электроники будет очень проблематично.

Основные характеристики диодов, виды, параметры

 

Ниже приведены некоторые из часто используемых характеристик диодов.

  • Текущее уравнение
  • Сопротивление постоянному току
  • Сопротивление переменному току
  • Переходная емкость
  • Диффузионная емкость
  • Время хранения
  • Время перехода
  • Время восстановления

Полезные статьи:

Что такое светодиодный чип, виды, характеристики

ТОП-10 мировых производителей светодиодных чипов

Все статьи

 

Уравнение тока диода

Диод с PN-переходом широко известен тем, что пропускает электрический ток только в одном направлении. Величина тока, протекающего через диод с PN-переходом, в значительной степени зависит от типа используемого материала, а также от концентрации легирования при изготовлении диода с PN-переходом.

Основная причина протекания тока связана с генерацией или рекомбинацией основных носителей заряда в структуре диода с PN-переходом.

У нас будет три области, ответственные за протекание тока основных носителей заряда.  Эти области представляют собой квазинейтральную P-область, обедненную область, квазинейтральную N-область. Область квазинейтрального P-типа — это расстояние между краем обедненной области и краем диода на P-стороне.

Область квазинейтрального N — типа — это расстояние между краем обедненной области и краем диода на N — стороне. Для предположения, это расстояние разделения бесконечно. Концентрация носителей заряда не изменится по мере приближения к границам диода. В квазинейтральной области электрического поля не будет.

Δn p (х → -∞) = 0

Δp n (x → + ∞) = 0

Ток диода в прямом смещении возникает из-за рекомбинации основных носителей заряда. Рекомбинация носителей заряда происходит либо в квазинейтральных областях P — типа, либо в N — типах, в обедненной области или на омических контактах, т. Е. На контакте металла и полупроводника.

Ток в обратном смещении происходит из-за генерации носителей заряда. Этот тип процесса генерации носителей заряда дополнительно увеличивает ток как в прямом, так и в обратном смещении.

Протекание тока в диоде с PN-переходом определяется плотностью носителей заряда, электрическим полем в структуре диода с PN-переходом и энергиями квазиуровней Ферми P-типа и N-типа. Плотность носителей и электрическое поле используются для определения тока дрейфа и диффузионного тока PN-диода.

Энергии квазиуровней Ферми электронов и дырок в области обеднения и в квазинейтральных областях N-типа и P-типа предполагаются примерно равными при получении аналитического решения.

Когда внешнее напряжение не подается, состояние теплового равновесия достигается по приведенным выше уравнениям. Расстояние между уровнями Ферми увеличивается с увеличением внешнего приложенного напряжения. Это внешнее напряжение умножается на заряд электрона.

Избыточные носители заряда, присутствующие в любой из квазиобластей, сразу же рекомбинируют, когда достигают контакта металл-полупроводник. Процесс рекомбинации происходит быстро на омическом контакте и дополнительно усиливается в присутствии металла.  Поэтому допустимые граничные условия можно сформулировать следующим образом:

n (x = w n ) = p n0

p (x = -w p ) = n p0

Рассмотрим уравнение диффузионного тока как для квазинейтральных областей N-типа, так и для P-типа, выражение для тока идеального диода будет получено путем использования граничных условий к рассматриваемому уравнению диффузионного тока.

Преобразуя приведенные выше уравнения в терминах гиперболических функций, переписывая приведенные выше уравнения как

n (x≥x n ) = p n0 + A ch {(xx n ) / L p } + B sinh {(xx n ) / L p }

p (x ≤ -x p ) = n p0 + C ch {(x + x p ) / L n } + D sinh {(x + x p ) / L n }

Здесь A, B, C и D — постоянные значения, которые необходимо определить.  Если к приведенным выше гиперболическим уравнениям применить граничные условия, то мы будем иметь.

Где ширина квазинейтральной области N — типа и P — типа задается как

w´ n = w n — x n

w´ p = w p — x p

Плотность тока носителей заряда в каждой квазинейтральной области рассчитывается из уравнения диффузионного тока как

Величина электрического тока, протекающего по всей структуре диода с PN-переходом, всегда должна быть постоянной, потому что никакой заряд не может исчезнуть или накапливаться во всей структуре диода.

Следовательно, полный ток через диод равен сумме максимального дырочного тока в n-области, максимального электронного тока в p-области и тока из-за рекомбинации носителей заряда в обедненной области. Максимальные токи в квазинейтральных областях возникают по бокам от обедненной области.

Постоянный ток или статическое сопротивление

Статическое сопротивление или сопротивление постоянному току диода с PN переходом определяет резистивную природу диода, когда к нему подключен источник постоянного тока.  Если внешнее постоянное напряжение подается на схему, в которую входит полупроводниковый диод, это приводит к появлению точки Q или рабочей точки на характеристической кривой диода с PN переходом, которая не изменяется со временем.

Статическое сопротивление в изгибе кривой и ниже ее будет намного больше, чем значения сопротивления участка вертикального подъема характеристической кривой. Минимум — это ток, проходящий через диод, максимум — это уровень сопротивления постоянному току.

DC = В постоянного тока / I постоянного тока

AC или динамическое сопротивление

Динамическое сопротивление выводится из уравнения диода Шокли. Он определяет резистивную природу диода, когда к нему подключен источник переменного тока, который зависит от поляризации постоянного тока диода с PN переходом.

Если внешний синусоидальный сигнал подается на схему, состоящую из диода, изменяющий вход будет немного сдвигать мгновенную точку Q относительно текущего положения в характеристиках и, следовательно, определяет определенное изменение напряжения и тока.

Когда внешний переменный сигнал не подается, рабочей точкой будет точка Q (или точка покоя), которая определяется уровнями подаваемого сигнала постоянного тока. Сопротивление диода переменному току увеличивается за счет понижения точки Q срабатывания. Короче говоря, это эквивалентно наклону напряжение-ток PN-диода.

d = ΔV d / ΔI d

Среднее сопротивление переменному току

Если входного сигнала достаточно для создания большого колебания, то сопротивление диода для этой области называется средним сопротивлением переменного тока. Он определяется прямой линией, соединяющей точку пересечения минимального и максимального значений внешнего входного напряжения.

ср = (ΔV d / ΔI d ) pt к pt

Переходная емкость

Емкость перехода также может быть названа емкостью обедненного слоя или емкостью пространственного заряда. Это в основном наблюдается в конфигурации с обратным смещением, где области P-типа и N-типа имеют более низкое сопротивление, а обедненный слой может действовать как диэлектрическая среда.

Этот тип емкости возникает из-за изменений внешнего напряжения, когда неподвижные заряды изменяются на краях слоя обедненной области. Это зависит от диэлектрической проницаемости и ширины обедненного слоя. Если ширина обедненного слоя увеличивается, переходная емкость уменьшается.

T = ε s / w = √ {[qε s / 2 (ϕ i — V D )] [N a N d / (N a + N d )]}

Диффузионная емкость

Диффузионную емкость также можно назвать накопительной емкостью, которая в основном наблюдается в конфигурации с прямым смещением. Это емкость, вызванная переносом носителей заряда между двумя выводами диода, то есть от анода к катоду в конфигурации с прямым смещением диода с PN переходом.

Если позволить электрическому току проходить через полупроводниковое устройство, в какой-то момент на нем будет образовываться заряд. В случае, если приложенное внешнее напряжение и ток изменятся на другое значение, при передаче будет создаваться другое количество заряда.

Отношение переходного заряда, созданного к дифференциальному изменению напряжения, и будет диффузионной емкостью. Если уровень тока увеличивается, уровни диффузионной емкости автоматически увеличиваются.

Повышенный уровень тока приведет к снижению уровня сопутствующего сопротивления, а также постоянной времени, что важно в высокоскоростных приложениях. Значение диффузионной емкости намного больше, чем значение переходной емкости, и оно прямо пропорционально величине постоянного тока.

diff = dQ / dV = [dI (V) / dV] Γ F

Время хранения

Диод с PN-переходом действует как идеальный проводник в конфигурации с прямым смещением и действует как идеальный изолятор в конфигурации с обратным смещением. Во время переключения из состояния прямого смещения в обратное поток тока переключается и остается постоянным на том же уровне. Это время, в течение которого ток меняет направление и поддерживает постоянный уровень, называется временем хранения (T s ).

Время, необходимое электронам, чтобы перейти от P-типа обратно к N-типу и дыркам, чтобы перейти от N-типа обратно к P-типу, является временем хранения. Это значение можно определить по геометрии PN-перехода. В течение этого времени хранения диод ведет себя как короткое замыкание.

Время перехода

Время, в течение которого ток уменьшится до значения обратного тока утечки после того, как он останется на постоянном уровне, называется временем перехода. Обозначается, поскольку значение времени перехода определяется геометрией PN перехода и концентрацией уровней легирования материалов P — типа и N — типа.

Время обратного восстановления

Сумма времени хранения и времени перехода называется временем обратного восстановления. Это время, необходимое диоду для повышения подаваемого токового сигнала до 10% от значения постоянного состояния от обратного тока утечки. Значение времени обратного восстановления для диода с PN переходом обычно составляет порядка микросекунд.

 

  Каталог светильников ФОКУС

Различные типы диодов и принцип их работы


Меган Танг

Диод представляет собой электрическое устройство с двумя выводами. Диоды изготавливаются из полупроводника, чаще всего из кремния, но иногда и из германия. Существуют различные типы диодов, но здесь обсуждаются стабилитрон, выпрямитель, диод Шоттки, подавитель переходного напряжения, тиристор, выпрямитель с кремниевым управлением и симистор. Затвор выбора транзистора импульсно «включен», вызывая большой ток стока. Высокое напряжение на соединении затвора притягивает электроны, которые проникают через тонкий оксид затвора и сохраняются на плавающем затворе. EPROM можно стереть, подвергнув его воздействию сильного источника ультрафиолетового света, что означает, что их можно перезаписывать много раз (в отличие от PROM). СППЗУ не подходят для хранения информации, которая будет часто меняться, потому что чип необходимо будет удалить из устройства, в котором он находится, чтобы перепрограммировать его.

Стабилитроны

Зенеровские диоды

представляют собой кремниевые полупроводниковые устройства, которые позволяют току течь либо в прямом (от анода к катоду), либо в обратном направлении. Высоколегированный p-n переход позволяет устройству работать в обратном направлении, когда достигается напряжение пробоя. Обратный пробой Зенера происходит из-за квантового туннелирования электронов, вызванного сильным электрическим полем. В режиме прямого смещения стабилитроны работают как обычные диоды. При подключении в обратном режиме может протекать небольшой ток утечки. При приближении обратного напряжения к напряжению пробоя через диод начинает протекать ток. Максимальный ток определяется последовательным резистором. Как только достигается максимум, ток стабилизируется и остается постоянным в широком диапазоне приложенных напряжений.

Выпрямители

Выпрямители представляют собой двухпроводные полупроводники, пропускающие ток только в одном направлении. Выпрямитель состоит из одного или нескольких диодов, которые преобразуют переменный ток (AC) в постоянный ток (DC). Однополупериодный выпрямитель — это когда на вход подается питание переменного тока, на нагрузке становится виден только положительный полупериод, а отрицательный полупериод скрыт (заблокирован или потерян). В однополупериодном выпрямителе используется только один диод. Двухполупериодные выпрямители преобразуют полный входной сигнал переменного тока (положительный полупериод и отрицательный полупериод) в пульсирующий выходной сигнал постоянного тока. Для двухполупериодного выпрямителя используются два или четыре диода. КПД однополупериодного выпрямителя ниже, потому что показана только положительная часть формы входного сигнала. Выпрямители используются в различных устройствах, включая источники питания постоянного тока, радиосигналы или детекторы, высоковольтные системы передачи постоянного тока и несколько бытовых приборов (ноутбуки, игровые системы и телевизоры).

Диоды Шоттки

Диоды Шоттки представляют собой полупроводниковые устройства, образованные соединением кремниевого полупроводника (n-типа) с металлическим электродом. Диоды Шоттки известны своим быстрым переключением и малым падением напряжения в прямом направлении. Прямое падение напряжения значительно меньше, чем у обычного кремниевого диода с p-n переходом. Падение напряжения на диодах Шоттки обычно находится в пределах 0,15-0,45В. При прямом смещении электроны перемещаются от материала n-типа к металлическому электроду, позволяя течь току. Диоды Шоттки не имеют обедненного слоя, а значит, они униполярны.

Ограничитель переходного напряжения

Диоды

Transient Voltage Suppressor (TVS) используются для защиты электроники от скачков напряжения. Переходные процессы — это временные всплески или скачки напряжения или тока, которые могут негативно повлиять на цепи. Диоды TVS шунтируют избыточный ток, когда наведенное напряжение превышает потенциал лавинного пробоя. Благодаря своей способности подавлять все перенапряжения выше напряжения пробоя, TVS является зажимным устройством. TVS может быть однонаправленным или двунаправленным. Однонаправленный допускает только напряжение выше или ниже земли (положительное или отрицательное напряжение). Двунаправленный выбирается, когда ожидается, что защищенный сигнал будет колебаться над или под землей, как при напряжении переменного или постоянного тока, предназначенном для работы как положительное, так и отрицательное напряжение. Некоторые приложения включают в себя линии передачи данных и сигнальные линии, микропроцессоры и МОП-память, линии электропередач переменного тока, телекоммуникационное оборудование и отвод/фиксацию в цепях/системах с низким энергопотреблением.

Тиристорные диоды

Тиристорные диоды представляют собой три оконечных устройства. Три клеммы — затвор, анод и катод. Затвор управляет током, протекающим между анодом и катодом. В тиристорном диоде небольшой ток на затворе вызывает гораздо больший ток между анодом и катодом. Даже если ток затвора удален, больший ток продолжает течь от анода к катоду. Диод остается в этом состоянии до сброса схемы. В семействе тиристоров есть несколько типов диодов, включая SCR и TRIAC.

Кремниевые управляемые выпрямители

Кремниевые управляемые выпрямители (SCR) — это тип диода в семействе тиристоров. SCR представляют собой четырехслойные твердотельные устройства управления током. Четыре слоя полупроводника P-N-P-N. Есть три вывода: анод, катод и затвор. Устройство изготовлено из кремниевого материала, который контролирует высокую мощность и преобразует большой переменный ток в постоянный (выпрямление). SCR являются однонаправленными, электрический ток допускается только в одном направлении. SCR используются в приложениях управления мощностью, таких как питание электродвигателей, управление системой освещения, управление реле или индукционные нагревательные элементы.

Симисторы

Симисторы

— это три оконечных устройства, также входящие в семейство тиристоров. Первый терминал — это ворота, которые действуют как триггер для включения устройства. Две другие клеммы называются анодом 1 и анодом 2 (также называемые основной клеммой 1 и основной клеммой 2). Эти две клеммы не взаимозаменяемы, ток затвора должен поступать со стороны анода 2 схемы. Компоновка аналогична двум SCR, соединенным параллельно друг с другом; однако симисторы фактически сконструированы из цельного куска полупроводникового материала, который соответствующим образом легирован и слоистый. Симисторы коммутируют высокие напряжения и высокие уровни тока. Это двунаправленные переключатели, поэтому ток может проходить в обоих направлениях после срабатывания затвора. Некоторые из приложений включают управление питанием переменного тока, регуляторы освещенности, управление двигателем и другие простые схемы с низким энергопотреблением, где требуется переключение питания.


Меган Танг проходит летнюю стажировку в Jameco Electronics , учится в Калифорнийском университете в Санта-Барбаре (UCSB). Ее интересы включают фотографию, музыку, бизнес и инженерное дело.

Поставщики беспроводных радиочастот и ресурсы

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов RF и Wireless. На сайте представлены статьи, учебные пособия, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тесты и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, оптоволокно, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, Bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. д. Эти ресурсы основаны на стандартах IEEE и 3GPP. Он также имеет академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и дисциплинам MBA.

Статьи о системах на основе IoT

Система обнаружения падения для пожилых людей на основе IoT : В статье рассматривается архитектура системы обнаружения падения для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падения IoT. Подробнее➤
См. также другие статьи о системах на основе IoT:
• Система очистки туалетов AirCraft. • Система измерения удара при столкновении • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной розничной торговли • Система мониторинга качества воды • Система интеллектуальной сети • Умная система освещения на основе Zigbee • Умная система парковки на базе Zigbee • Умная система парковки на базе LoRaWAN.


Изделия для беспроводных радиочастот

Этот раздел статей охватывает статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE/3GPP и т. д. , стандарты. Он также охватывает статьи, связанные с испытаниями и измерениями, посвященные испытаниям на соответствие, используемым для испытаний устройств на соответствие RF/PHY. СМ. УКАЗАТЕЛЬ СТАТЕЙ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH была рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Подробнее➤


Основные сведения о повторителях и типы повторителей : В нем объясняются функции различных типов повторителей, используемых в беспроводных технологиях. Подробнее➤


Основы и типы замираний : В этой статье рассматриваются мелкомасштабные замирания, крупномасштабные замирания, медленные замирания, быстрые замирания и т. д., используемые в беспроводной связи. Подробнее➤


Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Подробнее➤


Основы помех и типы помех: В этой статье рассматриваются помехи по соседнему каналу, помехи в Электромагнитные помехи, ICI, ISI, световые помехи, звуковые помехи и т. д. Подробнее➤


Раздел 5G NR

В этом разделе рассматриваются функции 5G NR (новое радио), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. д. 5G NR Краткий справочный указатель >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • БАЗОВЫЙ НАБОР 5G NR • Форматы 5G NR DCI • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Опорные сигналы 5G NR • 5G NR m-Sequence • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • MAC-уровень 5G NR • Уровень 5G NR RLC • Уровень PDCP 5G NR


Руководства по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводным сетям. Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, беспроводная сеть, волновод, антенна, фемтосота, испытания и измерения, IoT и т. д. См. ИНДЕКС УЧЕБНЫХ ПОСОБИЙ >>


Учебное пособие по 5G — В этом учебном пособии по 5G также рассматриваются следующие подтемы, посвященные технологии 5G:
Учебник по основам 5G Диапазоны частот учебник по миллиметровым волнам Рамка волны 5G мм Зондирование канала миллиметровых волн 5G 4G против 5G Испытательное оборудование 5G Архитектура сети 5G Сетевые интерфейсы 5G NR звучание канала Типы каналов 5G FDD против TDD Нарезка сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G ТФ


В этом учебнике по GSM рассматриваются основы GSM, сетевая архитектура, сетевые элементы, системные спецификации, приложения, Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM или настройка вызова или процедура включения питания, Вызов MO, вызов MT, модуляция VAMOS, AMR, MSK, GMSK, физический уровень, стек протоколов, основы мобильного телефона, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Читать дальше.

LTE Tutorial , описывающий архитектуру системы LTE, включая основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он предоставляет ссылку на обзор системы LTE, радиоинтерфейс LTE, терминологию LTE, категории LTE UE, структуру кадра LTE, физический уровень LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, Voice Over LTE, расширенный LTE, Поставщики LTE и LTE vs LTE advanced.➤Подробнее.


РЧ-технологии Материалы

На этой странице мира беспроводных радиочастот описывается пошаговое проектирование преобразователя частоты на примере повышающего преобразователя частоты 70 МГц в диапазон C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, амортизирующие прокладки. ➤Читать дальше.
➤ Проектирование и разработка радиочастотного приемопередатчика ➤Дизайн радиочастотного фильтра ➤Система VSAT ➤Типы и основы микрополосковых ➤Основы волновода


Секция испытаний и измерений

В этом разделе рассматриваются ресурсы по контролю и измерению, контрольно-измерительное оборудование для тестирования тестируемых устройств на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE. ИНДЕКС испытаний и измерений >>
➤Система PXI для контрольно-измерительных приборов. ➤ Генерация и анализ сигналов ➤ Измерения физического уровня ➤ Тестирование устройства WiMAX на соответствие ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤ Тест на соответствие TD-SCDMA


Волоконно-оптические технологии

Волоконно-оптический компонент основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д. Эти компоненты используются в оптоволоконной связи. ИНДЕКС оптических компонентов >>
➤Руководство по оптоволоконной связи ➤APS в SDH ➤Основы SONET ➤ Структура кадра SDH ➤ SONET против SDH


Поставщики беспроводных радиочастот, производители

Сайт RF Wireless World охватывает производителей и поставщиков различных радиочастотных компонентов, систем и подсистем для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики ВЧ-компонентов, включая ВЧ-изолятор, ВЧ-циркулятор, ВЧ-смеситель, ВЧ-усилитель, ВЧ-адаптер, ВЧ-разъем, ВЧ-модулятор, ВЧ-трансивер, PLL, VCO, синтезатор, антенну, осциллятор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексер, дуплексер, чип-резистор, чип-конденсатор, чип-индуктор, ответвитель, ЭМС, программное обеспечение RF Design, диэлектрический материал, диод и т. д. Поставщики радиочастотных компонентов >>
➤Базовая станция LTE ➤ РЧ-циркулятор ➤РЧ-изолятор ➤Кристаллический осциллятор


MATLAB, Labview, Embedded Исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. СМОТРИТЕ ИНДЕКС ИСТОЧНИКОВ >>
➤ 3–8 код VHDL декодера ➤Скремблер-дескремблер Код MATLAB ➤32-битный код ALU Verilog ➤ T, D, JK, SR триггер коды labview


*Общая медико-санитарная информация*

Сделайте эти пять простых вещей, чтобы помочь остановить коронавирус (COVID-19).
ВЫПОЛНИТЕ ПЯТЬ
1. РУКИ: Мойте их чаще
2. ЛОКТ: кашляйте в него
3. ЛИЦО: Не прикасайтесь к нему
4. НОГИ: Держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВУЙТЕ: Болен? Оставайтесь дома

Используйте технологию отслеживания контактов >> , следуйте рекомендациям по социальному дистанцированию >> и установить систему наблюдения за данными >> спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таких стран, как США и Китай, чтобы остановить распространение COVID-19так как это заразное заболевание.


Радиочастотные калькуляторы и преобразователи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц измерения. Они охватывают беспроводные технологии, такие как GSM, UMTS, LTE, 5G NR и т. д. СМ. КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤ 5G NR ARFCN и преобразование частоты ➤ Калькулятор скорости передачи данных LoRa ➤ LTE EARFCN для преобразования частоты ➤ Калькулятор антенны Yagi ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

В разделе, посвященном IoT, рассматриваются беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth с низким энергопотреблением (BLE), NFC, RFID, INSTEON, X10, KNX, ANT+, Wavenis, Dash7, HomePlug и другие. Он также охватывает датчики IoT, компоненты IoT и компании IoT.
См. главную страницу IoT>> и следующие ссылки.
➤РЕЗЬБА ➤EnOcean ➤ Учебник LoRa ➤ Учебник по SIGFOX ➤ WHDI ➤6LoWPAN ➤Зигби RF4CE ➤NFC ➤Лонворкс ➤CEBus ➤УПБ



СВЯЗАННЫЕ ПОСТЫ


Учебники по беспроводным радиочастотам

GSM ТД-СКДМА ваймакс LTE UMTS GPRS CDMA SCADA беспроводная сеть 802.11ac 802.11ad GPS Зигби z-волна Bluetooth СШП Интернет вещей Т&М спутник Антенна РАДАР RFID



Различные типы датчиков

Датчик приближения Датчик присутствия против датчика движения Датчик LVDT и RVDT Датчик положения, смещения и уровня датчик силы и датчик деформации Датчик температуры датчик давления Датчик влажности датчик МЭМС Сенсорный датчик Тактильный датчик Беспроводной датчик Датчик движения Датчик LoRaWAN Световой датчик Ультразвуковой датчик Датчик массового расхода воздуха Инфразвуковой датчик Датчик скорости Датчик дыма Инфракрасный датчик Датчик ЭДС Датчик уровня Активный датчик движения против пассивного датчика движения


Поделиться этой страницей

Перевести эту страницу

СТАТЬИ Раздел T&M ТЕРМИНОЛОГИИ Учебники Работа и карьера ПОСТАВЩИКИ Интернет вещей Онлайн калькуляторы исходные коды ПРИЛОЖЕНИЕ. ЗАМЕТКИ Всемирный веб-сайт T&M  

Что такое диод? — Определение, работа, типы, применение

Полупроводники имеют удельное сопротивление между проводниками и изоляторами. существует также влияние температуры на проводимость полупроводника, когда к нему добавляется подходящая металлическая примесь. Проводящие свойства полупроводника меняются. Полупроводники бывают двух типов: собственные полупроводники и внешние полупроводники.

Самая внешняя валентная оболочка атома содержит слабо связанный электрон. когда валентные электроны таких двух типов атомов расположены близко друг к другу, тогда валентные электроны обоих этих атомов объединяются, образуя « электронных пар ». Этот тип связи является ковалентной связью, потому что они слабы по своей природе.

Некоторые электроны имеют тенденцию смещаться со своего места и разрывать ковалентные связи из-за тепловой энергии, подводимой к кристаллу. Эти разорванные ковалентные связи создают свободное пространство из-за свободного электрона, который беспорядочно блуждает. это свободное пространство, созданное удалением электронов, называется отверстие .

Что такое диод?

Термин «диод» состоит из двух слов, т. е. «Di» означает «два», а «Ode» означает «электроды», что означает, что устройство или компонент имеет два электрода. (то есть катод и анод). Диод представляет собой электронное устройство с двухполюсным однонаправленным источником питания. Полупроводниковый диод — это первый диод, который появляется в полупроводниковых электронных устройствах, после чего появилось много новых инноваций. но чаще всего используется полупроводниковый диод.

Диод имеет две клеммы с низким сопротивлением протеканию тока в одном направлении, низкое сопротивление с одной стороны и высокое сопротивление с другой, что ограничивает протекание тока в одном направлении. Полупроводниковые диоды представляют собой двухвыводные устройства, состоящие из p-n перехода и металлических контактов на двух концах.

Материалы, которые используются для изготовления диода: германий, кремний, арсенид германия и т. д.

P-n переход известен как полупроводниковый диод. поскольку он проводит только в одном направлении, поэтому его используют с целью ректификации. Так как он сделан из кристаллоподобного кремния или германия. Он также известен как кристаллический диод. символ диода:

Конструкция диода

Мы знаем, что существует два типа полупроводниковых материалов: внутренние и внешние полупроводники. В собственных полупроводниках число электронов и концентрация дырок равны при комнатной температуре. Во внешнем полупроводнике к полупроводнику добавляют примеси, чтобы увеличить количество электронов или количество дырок. Эти примеси бывают пятивалентными (мышьяк, сурьма, фосфор) или трехвалентными (бор, индий, алюминий).

Полупроводниковый диод имеет два слоя. один слой — полупроводник p-типа, а другой — полупроводник n-типа.

  • Если мы добавим трехвалентные примеси в полупроводник (кремний и германий), то появится большее количество дырок и это положительный заряд. поэтому этот тип слоя известен как слой р-типа.
  • Если добавить пятивалентные примеси в полупроводники (кремний или германий), то из-за избытка электронов возникает отрицательный заряд. поэтому этот тип слоя известен как слой n-типа.

Работа диода

В области N-типа основными носителями заряда являются электроны, а неосновными носителями заряда являются дырки. Принимая во внимание, что в области P-типа большинство носителей заряда являются дырками, а носителями отрицательного заряда являются электроны. Из-за разницы концентраций диффузия происходит в основных носителях заряда, и они рекомбинируют с противоположным зарядом. Он образует положительный или отрицательный ион. они собираются возле перекрестка. и этот регион известен как область истощения .

  • Когда анод или диод p-типа подключен к отрицательной клемме, а n-тип или катод подключен к положительной клемме батареи, этот тип диода подключается в с обратным смещением.
  • , когда анод или клемма p-типа подключены к положительной клемме, а n-тип или катод подключены к отрицательной клемме батареи, диод этого типа подключается к прямому смещению.

Прямое смещение

Прямое смещение

При смещении полупроводник подключен к внешнему источнику. когда полупроводник p-типа подключен к положительной клемме источника или батареи, а отрицательная клемма к n-типу, то этот тип соединения называется прямым смещением. При прямом смещении направление встроенного электрического поля вблизи перехода и приложенного электрического поля противоположны по направлению. это означает, что результирующее электрическое поле имеет меньшую величину, чем встроенное электрическое поле. из-за этого меньше удельное сопротивление и, следовательно, область истощения тоньше. В кремнии при напряжении 0,6 В сопротивление области обеднения становится совершенно пренебрежимо малым.

Обратное смещение

Обратное смещение

При обратном смещении n-тип подключается к положительной клемме, а p-тип подключается к отрицательной клемме батареи. В этом случае приложенное электрическое поле и встроенное электрическое поле имеют одинаковое направление, и результирующая электрического поля имеет более высокую величину, чем встроенное электрическое поле, создавая более активное сопротивление, поэтому обедненная область толще. если приложенное напряжение становится больше, то область обеднения становится более резистивной и толстой.

Несмещенный диод

Когда к полупроводникам не подключен внешний источник, называется несмещенным диодом. электрическое поле создается поперек обедненного слоя между материалом p-типа и n-типа. это происходит из-за несбалансированного нет. электронов и дырок из-за легирования. При комнатной температуре для кремниевого диода барьерный потенциал составляет 0,7 В.

Типы полупроводниковых диодов

Существуют различные типы полупроводниковых диодов:-

  1. Светодиод — Термин «светодиод» означает «светоизлучающий диод». Это наиболее полезный тип диода.
  2. Стабилитрон — Зенеровский диод — это тип диода, он позволяет протекать току в прямом направлении, он также может работать в обратном направлении, но в состоянии пробоя. Зенеровский диод применяется для регулирования напряжения. использует p-n переход в режиме обратного смещения, чтобы получить эффект Зенера.
  3. Туннельный диод – Туннельный диод используется для СВЧ.
  4. Диод с переменной емкостью — этот тип диода также называется диодом VARICAP, хотя выход переменной емкости может иметь обычный диод с p-n переходом, но этот диод одобрен для обеспечения предпочтительного изменения емкости, поскольку они относятся к другому типу диода. .
  5. Фотодиод – Этот тип диода, который производит ток при определенном количестве энергии света, падает на него. два типа фотодиода, т. е. фотодиод PN и фотодиод PIN.
  6. Переключающий диод и т.д.

Применение полупроводникового диода

Применение полупроводникового диода: .

  • Светодиод – Светодиод используется для излучения инфракрасного спектра.
  • Стабилитрон – Стабилитрон используется для стабилизации тока и напряжения в электронных системах.
  • Фотодиод – работает как фотодетектор.
  • Переключающий диод- , который используется для быстрого переключения.
  • A Туннельный диод – Туннельный диод – это особый тип диода, который используется в области отрицательного сопротивления.
  • Пример вопроса

    Вопрос 1: Дайте определение термину «допинг».

    Ответ: 

    Легирование — это процесс добавления примесей в полупроводник, так что образуется больше электронно-дырочных пар. Добавляемые примеси, как правило, пятивалентные и трехвалентные. поэтому они являются полупроводниками p-типа и n-типа.

    Вопрос 2: Что происходит, когда –

    • Положительное напряжение диода приложено к аноду.
    • Отрицательное напряжение диода подается на анод.

    Ответ:

    • Этот тип диода имеет прямое смещение.
    • Этот тип диода имеет обратное смещение.

    Вопрос 3: Как влияет температура на полупроводники:

    Ответ:

    • Для собственных полупроводников проводимость увеличивается с повышением температуры, потому что генерируется большее количество электронно-дырочных пар.
    • Для внешних полупроводников – при повышении температуры количество электронно-дырочных пар увеличивается, что приводит к меньшему эффекту легирования и большему количеству этих пар нейтрализуется.

    Вопрос 4: Дайте определение термину напряжение пробоя p-n перехода.

    Ответ:

    В условиях обратного смещения, когда приложенное напряжение постепенно увеличивается в определенный момент, наблюдается увеличение обратного тока, это пробой перехода, соответствующее приложенное напряжение известно как напряжение пробоя диода p-n перехода.

    Вопрос 5: Каково соотношение электронов и дырок в собственном полупроводнике?

    Ответ:

    Количество электронов = n e

    Number of holes = n h

    In intrinsic semiconductor, ne = n h

    ne/n h = 1 


    Different types of diodes

    A diode is the most элементарное полупроводниковое устройство. Тем не менее, у него есть бесконечное количество приложений. В полупроводниковой электронике p-n переход как базовый диод служит основой для всех других сложных полупроводниковых компонентов и их конструкции. Принципы проектирования, применимые к полупроводниковым диодам, такие же, как и к транзисторам и другим компонентам.

    Интересно, что когда мы даем определение любому электронному компоненту, это определение обычно не основывается на его конструкции. Вместо этого любой электронный компонент определяется его уникальными электрическими характеристиками. Придерживаясь того же соглашения, мы можем определить диод как управляемый напряжением двухконтактный односторонний переключатель. Часто термин диод относится к полупроводниковому диоду. Полупроводниковый диод — не единственный диодный прибор. Существует множество различных типов диодов, и многие из них представляют собой полупроводниковые диоды, специально разработанные для того, чтобы иметь определенные физические или электрические свойства. Существуют также диоды, которые не являются простым p-n переходом и имеют другую конструкцию и конструкцию. В этой статье мы кратко рассмотрим различные диоды.

    Диоды малой мощности

    Диоды малой мощности представляют собой полупроводниковые диоды общего назначения с малой допустимой нагрузкой по току. Эти диоды, как правило, изготавливаются из кремния или германия и предназначены для маломощных высокочастотных приложений. Малые сигнальные диоды меньше типичных выпрямительных диодов и обычно покрыты стеклом для защиты от загрязнения. Вот почему они также известны как Стеклянные пассивированные диоды . Катодный вывод диода обозначен красной или черной полосой с одной стороны. Поскольку эти диоды имеют минимальную пропускную способность по току, их номинальная мощность также очень мала. Небольшой сигнальный диод с номинальным током 150 мА может иметь номинальную мощность всего 500 мВт. Диоды с малым сигналом используются в высокочастотных или пульсирующих слаботочных приложениях, таких как радио, телевидение, цифровые логические схемы, схемы ограничителя и фиксатора, высокоскоростное переключение и параметрические усилители. Важными характеристиками, на которые следует обратить внимание в техническом описании слабосигнального диода, являются пиковое обратное напряжение, обратный ток, пиковый прямой ток, пиковое прямое напряжение и обратное время восстановления.

    \

    Большие сигнальные диоды/выпрямительные диоды

    Большие сигнальные диоды отличаются от малых сигнальных диодов площадью p-n перехода. Большие сигнальные диоды имеют большую площадь p-n перехода. Это увеличивает пропускную способность по току, а также пиковое обратное напряжение. Они имеют очень низкое отношение прямого сопротивления к обратному сопротивлению, при этом прямое сопротивление обычно составляет несколько Ом, а обратное сопротивление составляет мегаомы. Именно поэтому эти диоды не подходят для высокочастотных цепей. Они имеют большой номинал PIV, малое прямое сопротивление и большую пропускную способность по току. Они обычно используются для выпрямления переменного напряжения в постоянное или для подавления высоких пиковых напряжений. На самом деле большие сигнальные диоды в основном являются выпрямительными диодами.

    И маленькие, и большие сигнальные диоды имеют тот же символ, что и обычные диоды.

    Стабилитрон

    Стабилитроны представляют собой полупроводниковые диоды, разработанные с сильным легированием для использования пробоя Зенера в их работе. Когда к нормальному диоду приложено обратное напряжение, превышающее его номинал PIV, он необратимо повреждается и размыкается. С другой стороны, из-за сильного легирования, когда на стабилитрон подается обратное напряжение, превышающее его «напряжение стабилитрона», он начинает проводить ток в обратном направлении без повреждений из-за пробоя стабилитрона и лавинного пробоя. Зенеровский диод имеет управляемый пробой в обратной области. Он проводит ток выше «напряжения Зенера». Он в основном используется в качестве выпрямителя напряжения в приложениях постоянного тока. Различные стабилитроны имеют напряжение Зенера в диапазоне от 2 до 200 В. Эти диоды также используются в качестве защитных диодов в некоторых полупроводниковых схемах.

    Стабилитрон имеет следующий символ.

    Светоизлучающий диод

    Светоизлучающие диоды — это специальные диоды, излучающие видимый свет при прямом смещении. При обратном смещении, как и обычный диод, они находятся в состоянии непроводимости и не излучают никакого света. Это полупроводниковые диоды, состоящие из арсенида галлия и аналогичных полупроводниковых подложек с большой шириной запрещенной зоны между их зонами проводимости и валентной зоной. Из-за большой ширины запрещенной зоны, когда электроны и дырки объединяются вблизи p-n перехода, излучаемая энергия имеет форму видимого или инфракрасного света, а не тепла.

    Существует много разных светодиодов. Их обычно классифицируют по свету, который они пропускают. Например, ИК-светодиоды — это светоизлучающие диоды, излучающие свет в инфракрасном диапазоне. Светодиоды разных цветов имеют разные полупроводниковые подложки, номинальное напряжение включения и обратное напряжение. Светодиоды используются как в приложениях переменного, так и постоянного тока. Важно следить за максимальным прямым напряжением, номиналом PIV и максимальным прямым током светодиода, прежде чем использовать его в качестве приложения. Светодиоды довольно чувствительны и могут быть легко повреждены. Номинальные значения PIV светодиодов, как и сигнальных диодов, обычно измеряются десятками вольт, тогда как максимальное прямое напряжение составляет всего несколько вольт.

    Светодиоды имеют следующий символ.

    Диод Шоттки

    Диоды Шоттки отличаются от типичных p-n диодов. Диод Шоттки строится путем образования соединения между полупроводниковым материалом N-типа и металлом, таким как платина, хром или вольфрам. Благодаря переходу металл-полупроводник эти диоды обладают высокой пропускной способностью по току и малым временем переключения. Металлический переход также снижает напряжение включения и повышает энергоэффективность диода. Благодаря всем этим преимуществам диоды Шоттки используются для высокочастотного выпрямления и высокочастотного переключения.

    Диод Шоттки имеет следующий символ.

    Диод Шокли

    Так же, как обычный диод имеет два слоя, диод Шокли имеет четыре слоя. Его также называют диодом PNPN. Это похоже на тиристор без клеммы затвора. Он идентифицируется как диод, так как имеет только две клеммы и два электрических состояния устройства — проводимость и непроводимость. Он может перейти в состояние проводимости только при приложении к нему прямого напряжения. PNPN-диод — это, по сути, один PNP- и один NPN-транзистор, соединенные вместе. Другой транзистор открывается, когда есть достаточное напряжение для смещения первого. Следовательно, диод PNPN требует достаточного прямого напряжения, чтобы перейти в состояние проводимости. Если прямое напряжение падает или подается обратное напряжение, Shockley переходит в состояние отсутствия проводимости. Говорят, что в состоянии проводимости диод Шокли включен, а в состоянии отсутствия проводимости — выключен. Двумя наиболее распространенными применениями диода Шокли являются триггерный переключатель для SCR и генератор релаксации или генератор пилы. Эти диоды используются в схемах усилителей звука.

    Ниже приведен электрический символ Shockley Diode.

    Туннельный диод

    Туннельные диоды — это сильно легированные полупроводниковые диоды — в 1000 раз больше, чем у большого сигнального диода. В этих диодах используется квантовое явление, называемое резонансным туннелированием. Эти диоды демонстрируют странное отрицательное сопротивление в своих прямых характеристиках. При прямом смещении ток увеличивается с напряжением и достигает пика. Это называется пиковым током, а напряжение в этой точке называется пиковым напряжением. Затем, с увеличением напряжения, ток уменьшается и падает до нижней точки, называемой током впадины. Напряжение в этой точке называется напряжением долины. При увеличении приложенного напряжения за пределы напряжения долины ток растет экспоненциально без дальнейшего падения. Эти диоды имеют очень быстрое время переключения порядка наносекунд. Их переходная характеристика ограничена только емкостью перехода и емкостью паразитного провода. Туннельные диоды используются в качестве быстродействующих переключателей в генераторах и усилителях СВЧ. Эти диоды можно настраивать как электрически, так и механически.

    Ниже приведен электрический символ туннельного диода.

    Варакторный диод

    Варакторный диод работает как переменный конденсатор, поэтому эти диоды также называют варикапными диодами. Они включены через обратное смещение в цепь постоянного напряжения. Их особенность в том, что их обедненный слой можно увеличивать или уменьшать, изменяя приложенное обратное напряжение. Изменение обедненного слоя изменяет емкость диода. Емкость варакторного диода можно варьировать до очень больших значений. Эти диоды используются в генераторах, управляемых напряжением, конденсаторах, управляемых напряжением, умножителях частоты, параметрических усилителях, контурах фазовой автоподстройки частоты и FM-передатчиках.

    Варакторный диод имеет следующий электрический символ.
    Лазерный диод

    Лазерные диоды являются разновидностью светоизлучающих диодов. Аббревиатура «лазер» означает усиление света за счет стимулированного излучения. P-N переход лазерного диода имеет полированные концы. При прямом смещении переход излучает фотоны, а затем испускаемые фотоны отражаются туда и обратно между полированными концами диода. В результате образуется больше электронно-дырочных пар. Их рекомбинация производит больше фотонов в фазе с предыдущим фотоном. Это приводит к генерации узконаправленного луча из полупроводниковой области диода, монохроматического и монофазного. Излучаемый лазерный луч может находиться в видимом или инфракрасном диапазоне. Эти диоды также известны как инжекционные, полупроводниковые и диодные лазеры. Лазерные диоды используются в оптоволоконной связи, лазерных принтерах, считывателях оптических дисков, системах обнаружения вторжений, приложениях дистанционного управления и считывателях штрих-кодов.

    Лазерный диод имеет следующий электрический символ.
    Ступенчатый восстанавливающий диод / Щелчковый диод

    Ступенчатые восстанавливающие диоды или мгновенные диоды предназначены для работы на высоких частотах. Их также называют отщелкивающими диодами и диодами с накоплением заряда. Эти диоды используются в схемах умножителей и формирователей импульсов более высокого порядка. Когда на них подается синусоидальный сигнал, они накапливают заряд в положительном импульсе и используют этот заряд в отрицательном импульсе. Время нарастания импульса тока остается таким же, как и время привязки. Вот почему они называются диодами с ступенчатым восстановлением. Частота среза этих диодов находится в диапазоне от 200 до 300 ГГц. Чем выше частота сигнала, тем лучше их эффективность.

    Ниже приведен электрический символ ступенчатого восстанавливающего диода.
    Диод Ганна

    Диоды Ганна изготавливаются только из полупроводникового материала n-типа. Два материала n-типа соединяются, образуя обедненную область между ними. Область обеднения материалов n-типа очень мала. При подаче прямого напряжения ток увеличивается и достигает пикового уровня. Затем, по мере дальнейшего увеличения прямого напряжения, ток начинает экспоненциально уменьшаться. Это называется отрицательным дифференциальным сопротивлением. Диоды Ганна также называют устройствами с переносом электронов. В состоянии проводимости они производят микроволновые радиочастотные сигналы. Диоды Ганна используются в усилителях СВЧ.

    Ниже приведен электрический символ диода Ганна.
    PIN-диод

    PIN-диоды имеют слой собственного материала между материалами p-типа и n-типа. При прямом смещении электроны и дырки инжектируются в собственный слой из материала n-типа и p-типа соответственно. Наличие собственного слоя увеличивает обедненный слой и создает электрическое поле между материалом р-типа и n-типа. Ток течет через диод из-за этого электрического поля. Увеличенный обедненный слой уменьшает емкость диода и увеличивает скорость отклика. Это также увеличивает светочувствительную область диода. PIN-диоды используются в высокоскоростных устройствах с высокой чувствительностью, таких как фотодетекторы, радиочастотные переключатели и аттенюаторы.

    PIN-диод имеет следующий электрический символ.
    Фотодиод

    Фотодиоды представляют собой полупроводниковые диоды, предназначенные для выработки электрического тока в ответ на облучение видимым, инфракрасным и ультрафиолетовым светом. Диод состоит из тонкого материала p-типа и сильно легированного материала n-типа. Между ними находится узкая обедненная область, которая подвергается воздействию света через материал р-типа. Из-за конструкции диода воздействие света вызывает образование большого количества электронно-дырочных пар в обедненной области. Электроны и дырки рассеиваются в материалах p-типа и n-типа из-за встроенного электрического поля, создающего электрический ток от анода (материал p-типа, подвергающийся воздействию света) к катоду (металлический контакт).

    Фотодиод имеет следующий электрический символ.
    Солнечный элемент

    Солнечные элементы — это просто фотодиоды, оптимизированные для подачи питания на нагрузку. Они работают в фотоэлектрическом режиме. Напряжение на сопротивлении нагрузки вызывает прямое смещение солнечного элемента. Существует множество различных типов солнечных батарей, основанных на конструкционном материале и дизайне. Кремниевые солнечные батареи являются наиболее популярными. Другие материалы, используемые для создания солнечных элементов, включают поликристаллический кремний, теллурид кадмия и диселенид кадмия, индия, галлия.

    Солнечный элемент, также известный как фотогальванический элемент, имеет следующий электрический символ.
    IMPATT диод

    Ударно-лавинный диод называется IMPATT Diode. Эти диоды используются для генерации мощных радиочастот в диапазоне от 3 до 100 ГГц. Эти диоды включены в цепи обратного смещения в цепи генератора. Из-за лавинного эффекта они производят большой ток сверх пикового обратного напряжения. В схеме генератора ток через диод IMPATT отстает от напряжения. Благодаря эффекту отрицательного сопротивления и резонансному контуру из диода вырабатываются мощные радиоволны.

    Диод IMPATT имеет тот же электрический символ, что и обычный диод.

    Диоды постоянного тока

    Диоды постоянного тока также известны как токоограничивающие диоды и токорегулирующие диоды. Они используются в качестве регуляторов тока. Они имеют конструкцию, аналогичную JFET, но представляют собой двухполюсное устройство. Диод постоянного тока имеет прямую характеристику, в которой сначала ток растет экспоненциально, как у обычного диода. Затем, за пределами точки регулирования тока, ток насыщается. Диод достигает насыщения по току, сбрасывая на него больше напряжения. Диоды постоянного тока используются в зарядке аккумуляторов, цепях питания и схемах лазерных диодов.

    Диод постоянного тока имеет следующий электрический символ.
    Силовой диод

    Силовые диоды представляют собой большие сигнальные диоды. Они специально используются для выпрямления напряжения. Наиболее важным параметром силовых диодов является их рейтинг PIV. Номинальное значение PIV силовых диодов обычно находится в диапазоне от 50 до 1000 В. Максимальный прямой ток и отношение прямого сопротивления к обратному сопротивлению — два других важных фактора, которые необходимо проверить в техническом описании силового диода.

    Силовой диод имеет тот же символ, что и обычный диод.
    Диоды с точечным контактом

    Диоды с точечным контактом используются для обнаружения высокочастотных сигналов. Они производятся путем создания PN-перехода между золотой или вольфрамовой проволокой и германиевым материалом n-типа. Золотой провод позволяет пропускать большой ток через соединение. Прямые характеристики этого диода аналогичны характеристикам обычного диода; однако при обратном смещении диод действует как изолятор. Это заставляет диод работать как конденсатор в условиях обратного смещения и блокировать постоянный ток при прохождении высокочастотного сигнала переменного тока. Корпус диода заключен в стеклянную колбу.

    Диод с точечным контактом имеет тот же символ, что и обычный диод.

    Кремниевый выпрямитель

    Кремниевый выпрямитель (SCR) подобен диоду Шокли с дополнительной клеммой затвора. Прямая и обратная характеристики SCR аналогичны диоду, за исключением того, что он переходит в состояние проводимости в прямой области, когда затвор срабатывает. Они в основном используются в приложениях управления мощностью.

    Кремниевый управляемый выпрямитель имеет следующий электрический символ.
    Кристаллический диод

    Кристаллические диоды аналогичны диодам с точечным контактом. Они также известны как кошачий ус. Они созданы путем прижатия металлической проволоки к полупроводниковому кристаллу. Их использование ограничено микроволновыми детекторами и приемниками.

    Кристаллический диод имеет тот же электрический символ, что и обычный диод.

    Диод для подавления переходных напряжений

    Диоды для подавления переходных напряжений аналогичны диодам Зенера. Они используются для фиксации переходных напряжений и предназначены для обеспечения низкого импеданса в ответ на переходное напряжение путем непосредственного входа в область лавинного пробоя. Время отклика диода в пикосекундах. Эти диоды рассчитаны на минимальное напряжение фиксации. Диоды подавления напряжения используются в различных приложениях, в основном связанных с обработкой сигналов или передачей данных.

    Диоды подавления напряжения имеют следующий электрический символ.
    Супербарьерный диод

    Супербарьерные диоды используются в качестве выпрямительных диодов. Они рассчитаны на низкое прямое напряжение, как у диода Шоттки, и низкий обратный ток утечки, как у обычного диода. Эти диоды имеют быстрое время переключения и могут работать с высокой мощностью с минимальными потерями.

    Супербарьерный диод имеет тот же электрический символ, что и диод Шоттки.

    Лавинный диод

    Лавинный диод работает по принципу лавинного пробоя. Они рассчитаны на точное обратное напряжение пробоя. Эти диоды используются в радио- и микроволновых устройствах.

    Лавинный диод имеет следующий электрический символ.
    Диод Пельтье

    Диоды Пельтье имеют переход из двух материалов. В этих диодах поток тепла идет в одном направлении вдоль направления тока. Эти диоды используются в качестве датчиков и тепловых двигателей в системах отопления и охлаждения.

    Диоды, легированные золотом

    В этих диодах в качестве легирующей примеси используется золото. Эти диоды быстрее, чем сигнальные диоды, а также имеют низкий обратный ток утечки.

    Вакуумные диоды

    Это простейшая электровакуумная лампа с двумя электродами – катодом и анодом. Катод испускает электроны, а анод их собирает. Эти диоды имеют высокое номинальное обратное напряжение. Они используются в аудиофилах, усилителях, полевой электронной эмиссии, флуоресцентных дисплеях и выпрямителях.

    Вакуумный диод имеет следующий электрический символ.


    Рубрики: Светодиодное освещение, Технические статьи
    С тегами: Лавинный диод, Диод постоянного тока, Кристаллический диод, Типы диодов, Диод, легированный золотом, Диод Ганна, Диод IMPATT, Диод большого сигнала, Лазерный диод, Светоизлучающий диод, Диод Пельтье, фотодиод, PIN-диод, диод с точечным контактом, силовой диод, выпрямительный диод, диод Шоттки, диод Шокли, кремниевый управляемый выпрямитель, малосигнальный диод, импульсный диод, солнечная батарея, ступенчатый диод восстановления, супербарьерный диод, диод подавления переходного напряжения , Туннельный диод, Вакуумный диод, Варакторный диод, Стабилитрон
     


    Какие существуют типы диодов

    Из нашего предыдущего поста мы знаем, что такое диод? Эта статья о различных типах диодов. Когда дело доходит до понимания схемы питания в ваших электронных устройствах, диод является ключевым компонентом, который нужно изучить в первую очередь. Существует несколько типов диодов с разной функциональностью, номинальным напряжением и током. Давайте обсудим их.

    Сигнальные диоды: –

    Сигнальные или стандартные диоды представляют собой простейшие диоды с P-N переходом. По нагрузочной способности и мощности стандартные диоды бывают двух типов; малый сигнал и большой сигнальный диод. Эти диоды используются в приложениях ограничения напряжения и переключения. У 1N4148, например, В F = 1 В и I F = 200 мА, также 1N914 имеет В F = 1 В и I F

    8 = 304419 мА.

    Символ цепи и примеры стандартных диодов

    Диоды с большим сигналом также известны как выпрямительные или силовые диоды. Они имеют более высокое напряжение и номинальный ток для использования в источниках питания. Например, 1N4007 имеет В F = 1,1 В и I F = 1 А.

    Стабилитроны: –

    Зенеровский диод отличается от диодов других типов тем, что обычно проводит обратный ток . При прямом смещении он работает как обычный диод. При обратном смещении, когда обратный ток через стабилитрон увеличивается до номинального значения, падение напряжения на диоде становится постоянным. Это падение напряжения известно как напряжение стабилитрона (обратное напряжение пробоя). Ток может течь в обратном направлении, когда увеличение напряжения пересекает напряжение стабилитрона. Диод Зенера создает известное опорное напряжение для регулирования напряжения, ограничения формы сигнала в регулируемом источнике питания.

    Символы схемы стабилитрона

    Давайте разберемся в работе стабилитрона с помощью моделирования схемы. Рассмотрим следующий пример регулятора напряжения с источником переменного тока 30 В и стабилитроном (с В Z = 15 В, В F = 0,7 В).

    Пример регулирования напряжения с помощью стабилитрона

    В приведенной выше схеме стабилитрон имеет обратное смещение для положительного полупериода. При напряжении более 15 В включается диод. Увеличение входного напряжения выше 15 В просто появится на последовательном резисторе. Поскольку источником является переменный ток, выходное напряжение ( V Z ) остается постоянным в течение определенного времени, пока положительное напряжение не начнет уменьшаться.

    Выходные характеристики регулирования напряжения с помощью стабилитрона

    В отрицательный полупериод стабилитрон смещается в прямом направлении. Увеличение отрицательного напряжения до прямого порогового напряжения ( В F ) включает стабилитрон. Отрицательная сторона выходного напряжения находится при пороговом напряжении, равном 0,7В.

    Примеры стабилитронов: 1N746, 1N4728A и т. д. Важными факторами при выборе стабилитрона являются напряжение источника, напряжение нагрузки, ток нагрузки цепи. Стабилитрон доступен в различных номиналах напряжения и мощности.

    Светодиоды: – Символ и полярность светодиода

    Светодиод представляет собой диод с P-N переходом, который излучает свет при включении. Подобно стандартным диодам, светодиоды являются однонаправленными и имеют прямое напряжение В, номинал (напряжение, необходимое для включения). Прямое напряжение ( В F ) светодиода выше, чем у стандартного диода. V F зависит от цвета, излучаемого светодиодом, а цвет светодиода зависит от состава его материала. прямой ток ( I F ) является вторым важным параметром для светодиода. Это количество тока, проходящего через светодиод, и оно прямо пропорционально яркости светодиода. Значение I F указано в миллиамперах; но увеличение значения I F за указанные пределы повреждает светодиод. Это причина всегда использовать резистор последовательно со светодиодом. Светодиоды

    разных размеров

    Полярность светодиода важна при проектировании схем. Полярность светодиодов можно определить, внимательно наблюдая за ней. Длинная клемма или закругленная сторона — это анод, а короткая клемма или плоская сторона — это катод. Светодиоды бывают разных размеров, и по размеру светодиоды различаются по диаметру (выражается в миллиметрах-мм). Светодиоды диаметром 3 мм, 5 мм и 10 мм предназначены для использования в целях индикации, освещения и индикации/подсветки соответственно.

    Основными факторами при выборе светодиода являются размер, цвет и назначение. Спецификация светодиода содержит информацию о длине волны (точно указывает, какой цвет будет излучать светодиод), прямом напряжении — В F (напряжение, необходимое для включения светодиода при некоторых I F ), обратном токе / напряжении и физических характеристиках. размеры и т. д.

    Диоды Шоттки: – Символ схемы и пример диода Шоттки

    Диод Шоттки – это уникальный полупроводниковый диод, образованный переход металл-полупроводник . Эта специальная конструкция дает более низкое прямое падение напряжения (в пределах 0,15-0,40 В), что обеспечивает высокую скорость переключения. Диоды Шоттки имеют низкое обратное напряжение номиналов (обычно 50 В или меньше), относительно высокий обратный ток утечки и высокую стоимость. Диоды Шоттки с высоким обратным напряжением всегда имеют большее падение прямого напряжения, чем другие типы диодов. Дидоы Шоттки подходят для низковольтных приложений из-за меньшего рассеивания мощности. Некоторые другие применения диодов Шоттки — фотоэлектрические (PV) системы, схемы ограничения напряжения, радиочастотные цепи.

    Давайте сравним диод Шоттки MBD101 со стандартным диодом PN-перехода 1N4148 со следующей схемой.

    Цепь с диодом MBD101 и 1N4148

    В технических характеристиках MBD101 и 1N4148 указано типичное прямое напряжение 0,5 В и 1 В соответственно. Мы можем сравнить эти параметры с помощью программного моделирования, как показано ниже.

    Графическое сравнение прямых напряжений диода MBD101 и 1N4148
    Варакторные диоды: – Символ цепи варикапного диода

    Варакторный диод — это уникальный тип диода. Его П-Н 9Емкость перехода 0035 можно изменить приложенным обратным напряжением . Варакторный диод известен как варикап/настроечный диод/диод с переменной емкостью. Области типа P и N в диоде действуют как заряженные пластины, а обедненная область — как диэлектрик или изолятор. Изменение напряжения обратного смещения изменяет емкость диода. Этот эффект аналогичен изменению расстояния между пластинами конденсатора. Варакторный диод специально используется для обратного смещения. Следующее математическое соотношение объясняет работу варакторного диода.

    Принцип работы варакторного диода Работа сигнального, варакторного и стабилитронного диодов

    При прямом смещении варакторный диод не очень полезен и имеет очень низкое сопротивление. Важными техническими параметрами для выбора варакторного диода являются межполюсная емкость или емкость диода, обратное напряжение пробоя, коэффициент емкости и т. Д. Варакторный диод имеет характеристики с низким уровнем шума, низкой стоимостью, высокой надежностью и небольшими размерами. Варакторный диод присутствует в цепи настройки генератора, в качестве ВЧ-фазосдвигателя, в LC-цепи переменного резонансного резервуара и т. Д. Примером варакторного диода является NTE618.

    Емкость диода относительно обратного напряжения Vericap

    Это все для этого поста. Я полагаю, что теперь вы знакомы с различными типами диодов и их значением. В следующем посте мы узнаем о защите от обратного тока с помощью диода. Спасибо за чтение.

    О Рошанкумар Бхамаре

    Рошанкумар Бхамаре получил степень магистра в области электроники и телекоммуникаций. В настоящее время преподает в инженерном колледже. Он является пожизненным членом Индийского общества технического образования (ISTE). Он также является соавтором BINARYUPDATES.COM. Его текущие интересы включают инструменты автоматизации проектирования электроники (EDA), схемы на основе микроконтроллеров.

    Назад Что такое диод?

    Next Защита от обратного тока с использованием диода

    2.5: Другие типы диодов

    1. Последнее обновление
    2. Сохранить как PDF
  • Идентификатор страницы
    25386
    • Джеймс М. Фиоре
    • Муниципальный колледж Mohawk Valley
    Диоды

    были разработаны для использования различных аспектов PN-переходов. Помимо основного использования в качестве переключающего или выпрямительного устройства, диоды доступны для регулирования напряжения, переменной емкости, освещения и светочувствительного датчика. Схематические символы ряда популярных типов диодов показаны на рисунке \(\PageIndex{1}\). Обратите внимание на сходство символов. Часть «полоса» представляет собой катод для всех из них.

    Рисунок \(\PageIndex{1}\): Условные обозначения диодов: a) переключающий или выпрямляющий b) стабилитрон c) Шоттки d) варактор e) светодиод f) фотодиод

    2.5.1: Стабилитрон

    Стабилитрон ведет себя как обычный сигнальный диод при прямом смещении. Однако обычно стабилитроны используются в условиях обратного смещения. Вспомните из нашего предыдущего обсуждения, что если обратный потенциал достаточно высок, диод может выйти из строя, что приведет к быстрому увеличению тока. Это было вызвано одним из двух эффектов: зенеровской проводимостью или лавиной. Диод Зенера использует это преимущество для получения стабильного напряжения 1 . Стабилитроны определяются их обратным потенциалом (обычно называемым «напряжением Зенера») и предназначены для работы с большими токами и мощностями, чем у среднего сигнального диода. Напряжения Зенера стандартизированы почти так же, как и резисторы, поэтому следует ожидать таких значений, как 3,9 вольт, 5,1 вольт и 6,8 вольт. Напряжение Зенера измеряется при \(I_{ZT}\), испытательном токе Зенера. Более низкий ток может не полностью перевести диод в проводимость, что приведет к более низкому, чем ожидалось, потенциалу диода.

    Рисунок \(\PageIndex{2}\): Схематическое обозначение стабилитрона.

    Вместо того, чтобы моделировать стабилитрон как открытый ключ при обратном смещении, вместо этого мы моделируем его как открытый, когда его напряжение меньше номинального напряжения, и как источник напряжения, равный номинальному значению, если его напряжение пытается превысить это значение. ценность. При анализе схем на основе стабилитрона первое, что нужно сделать, это определить, смещен ли диод в прямом направлении. Если да, то относитесь к нему как к обычному коммутационному диоду. Если, с другой стороны, он имеет обратное смещение, то обращайтесь с ним как с разомкнутым переключателем. Если результирующее напряжение на диоде больше, чем напряжение Зенера, пересчитайте схему, но на этот раз мысленно замените стабилитрон источником напряжения, равным напряжению Зенера. Наш следующий пример проиллюстрирует этот метод.

    Пример \(\PageIndex{1}\)

    Определите циркулирующий ток для цепи на рисунке \(\PageIndex{3}\). Также найдите напряжения диода и резистора. Предположим, что источник питания составляет 9 вольт, напряжение стабилитрона составляет 5,1 вольт, а сопротивление составляет 3,3 кОм\(\Омега\).

    Рисунок \(\PageIndex{3}\): Схема для примера \(\PageIndex{1}\).

    Диод имеет обратное смещение. Если мы будем рассматривать его как обрыв, тогда упадет все напряжение источника, или 9 вольт. Это больше, чем потенциал Зенера, поэтому устройство должно иметь проводимость Зенера. Это означает, что обычный ток будет относительно легко течь по часовой стрелке. Напряжение на диоде будет равно номинальному значению 5,1 вольт, + к — от катода к аноду. По КВЛ падение резистора должно быть 9В — 5,1 В или 3,9 вольта.

    \[I = \frac{E−V_{Zener}}{R} \nonumber \]

    \[I = \frac{9V−5.1V}{3.3k \Omega} \nonumber \]

    \ [I = 1,182 мА \номер\]

    Если бы диод был перевернут, то он был бы смещен в прямом направлении и показал бы ожидаемые 0,7 вольта с 8,3 вольта на резисторе.

    Компьютерное моделирование

    Цепь стабилитрона моделируется, как показано на рисунке \(\PageIndex{4}\).

    Рисунок \(\PageIndex{4}\): Моделирование схемы на стабилитроне.

    Без стабилитрона два резистора просто делили бы напряжение питания поровну, получая по 5 вольт каждый. Если бы использовался обычный диод, он был бы смещен в обратном направлении и действовал как открытый. Результирующие напряжения будут одинаковыми. В этом случае, однако, стабилитрон активируется при напряжении 3,6 вольт (типично включать напряжение стабилитрона как часть номера модели с буквой «V», заменяющей десятичную точку, когда это необходимо). Таким образом, мы видим примерно 3,6 вольта на стабилитроне и параллельном втором резисторе (узел 3 на землю). Точное значение напряжения будет зависеть от величины тока диода. Если симуляция повторяется с источником более высокого напряжения, повышенный ток приведет к несколько более высокому напряжению в узле 3. Это связано с тем, что кривая пробоя не становится бесконечно крутой после того, как она превышает номинальное напряжение Зенера. Эффект аналогичен эффекту \(R_{bulk}\) в диоде с прямым смещением. В технических характеристиках это значение называется дифференциальным сопротивлением или \(R_{dif}\).

    Зенер можно использовать для ограничения или регулирования напряжения. Когда стабилитрон размещается параллельно с другими компонентами, мы можем гарантировать, что эти компоненты не будут видеть потенциал выше номинального напряжения стабилитрона. Мы рассмотрим это более подробно в следующей главе.

    2.5.2: Светодиод (LED) и фотодиод

    Светодиод (LED) и фотодиод дополняют друг друга. В то время как светодиод излучает свет с электрическим входом, фотодиод вырабатывает ток при воздействии света. Оба устройства могут работать в пределах видимого человеком спектра, а также могут быть разработаны для работы на длинах волн за пределами этого диапазона, в инфракрасном (ИК) и ультрафиолетовом (УФ) диапазонах. На самом деле, большинство пультов дистанционного управления телевизорами полагаются на пары ИК-излучатель/детектор для связи 9.0890 2 .

    Рисунок \(\PageIndex{5}\): Схематическое обозначение светоизлучающего диода (LED).

    Светодиод вытеснил традиционные лампы накаливания (на основе нити накала) во многих приложениях благодаря своей высокой эффективности преобразования входной электрической энергии в выходной свет. Они маленькие, физически прочные, работают относительно прохладно и доступны в различных цветах. Схематический символ показан на рисунке \(\PageIndex{5}\). Основная идея его работы довольно проста. В PN-переходе с прямым смещением, когда свободные электроны рекомбинируют и «падают» на валентные дырки с более низкой энергией, они должны каким-то образом отказаться от этой разности энергий. В большинстве диодов эта энергия выделяется в виде тепла. В светодиодах энергетический переход разработан таким образом, что он излучается на более коротких длинах волн (т. Е. Видимый свет). Чтобы достичь этого, светодиоды не формируются только из кремния, как в типичном переключающем диоде. Вместо этого используются несколько более экзотические материалы. С точки зрения анализа или проектирования важно помнить, что прямое напряжение имеет тенденцию быть заметно выше, чем падение кремния на 0,7 вольта. Точное значение будет зависеть от материала, который, в свою очередь, влияет на цвет. Обычный красный светодиод, скорее всего, будет демонстрировать прямое падение напряжения около 1,8 вольта или около того. Другие цвета имеют тенденцию быть несколько выше по мере того, как мы движемся по радуге, заканчиваясь синими и УФ-светодиодами (а также версиями с высокой яркостью) примерно на 3-4 вольта. В лаборатории легко определить приблизительное прямое падение данного диода, подключив его последовательно с источником напряжения и токоограничивающим резистором. Питание увеличивается до тех пор, пока не будет достигнута желаемая яркость, а затем с помощью цифрового мультиметра можно измерить падение напряжения на диоде. При обратном смещении светодиод ведет себя как переключающий диод, то есть выглядит как разомкнутый ключ. В отличие от коммутационных и выпрямительных диодов, максимальные обратные потенциалы светодиодов имеют тенденцию быть относительно низкими, возможно, всего несколько вольт.

    Техническое описание светодиодов серии Cree C566D представлено на рисунке \(\PageIndex{6}\). Обратите внимание, что цвета указаны в терминах длины волны (в нанометрах), а сила света (яркость) указана в милликанделлах (мкд).

    Рисунок \(\PageIndex{6a}\): Спецификация светодиодов. Предоставлено Cree, Inc.

    Эти устройства соответствуют требованиям RoHS, что означает ограничение использования опасных веществ. Это директива ЕС, которая ограничивает использование токсичных материалов, таких как свинец, кадмий и ртуть. Продолжая, находим максимальные оценки устройства:

    Рисунок \(\PageIndex{6b}\): Спецификация светодиодов (продолжение).

    Обратите внимание на разные значения для разных цветов. Прямой ток указан как 50 мА для красного/желтого и 35 мА для зеленого/синего. Номинальные рабочие токи составляют от 10 до 30 мА. Обратное напряжение составляет 5 вольт, типичное для многих светодиодов, хотя и намного ниже, чем у среднего переключающего диода. Прямое напряжение обычно составляет 2,1 вольта для красного конца спектра и, как и ожидалось, 3,4 вольта для зелено-синего конца. Ожидаемая сила света также зависит от цвета. Кроме того, следует отметить, что светодиоды не излучают свет «чистого цвета», как лазер. Скорее, они создают диапазон длин волн, сгруппированных в определенной области. Длина волны, обеспечивающая максимальный выходной сигнал в этой области, называется пиковой или доминирующей длиной волны. Человеческое зрение охватывает диапазон примерно от 400 нанометров (фиолетовый) до 700 нанометров (красный) 3 .

    Рисунок \(\PageIndex{6c}\): Спецификация светодиодов (продолжение).

    На рисунке \(\PageIndex{6c}\) представлены соответствующие графические данные. Мы наблюдаем примерно линейное увеличение силы света с увеличением тока. Также обратите внимание на разницу в графиках обратного напряжения/тока между синим/зеленым и красным/желтым. Особый интерес представляет окончательный график, показывающий диаграмму направленности или угол луча. Вы можете думать об этом с точки зрения того, насколько узким или широким является шаблон освещения. При сравнении светодиодов разных моделей полезно помнить, что осевую яркость можно увеличить за счет сужения угла. Этот график разделен пополам с использованием двух разных способов отображения данных. Слева у нас есть линейный график, показывающий относительную яркость, когда мы удаляемся от центральной оси (ноль градусов). Справа мы видим полярную версию тех же данных.

    Пример \(\PageIndex{2}\)

    Определите циркулирующий ток для цепи на рисунке \(\PageIndex{7}\). Предположим, что источник питания составляет 5 вольт, прямое напряжение светодиода составляет 2,1 вольта, а резистор равен 330 \(\Омега\).

    Рисунок \(\PageIndex{7}\): Схема для примера \(\PageIndex{2}\).

    Светодиод смещен в прямом направлении, и поскольку источник больше, чем потенциал светодиода, он должен загореться. Используя KVL,

    \[I = \frac{E−V_{LED}}{R} \nonumber \]

    \[I = \frac{5V−2.1V}{330 \Omega} \nonnumber \]

    \[I = 8,788 мА \nonnumber \]

    Это должно привести к относительно яркому светодиоду. Резистор можно использовать для эффективного программирования яркости путем изменения уровня тока (меньшее сопротивление дает более высокий ток и, следовательно, более яркий светодиод). Учитывая прямой потенциал 2,1 В, вполне вероятно, что это желтый или желтый светодиод. Если бы использовался другой цвет, скажем, красный на 1,6 В или синий на 3,2 В, произошло бы изменение тока и, скорее всего, изменение яркости. Изменение яркости может не полностью отражать изменение тока, поскольку эффективность преобразования для двух диодов может быть разной (см. рисунок \(\PageIndex{7b}\), чтобы сравнить силу света при 20 мА для разных длин волн). .

    Рисунок \(\PageIndex{8}\): Приложение с двумя светодиодами.

    На рисунке \(\PageIndex{8}\) показана интересная схема с использованием двух светодиодов разного цвета. Источник переменного тока используется для управления светодиодами. Только один из двух будет смещен в прямом направлении в любой момент времени. При положительном напряжении источника \(D_1\) будет включено, а \(D_2\) будет выключено. Для отрицательных напряжений источника будет верно обратное. Резистор \(R\) служит для ограничения тока для них обоих. Предположим, что \(D_1\) красный, а \(D_2\) синий. Кроме того, предположим, что частота источника относительно низкая, скажем, 1 герц. Для положительного полупериода (0,5 секунды) загорится красный светодиод, а для отрицательного полупериода загорится синий светодиод. Эта чередующаяся картина продолжается до тех пор, пока применяется источник, но любопытная вещь происходит, когда мы увеличиваем частоту. Сначала частота мигания будет увеличиваться, а красный и синий будут мигать все быстрее и быстрее. В какой-то момент, возможно, около 30 Гц или около того, будет казаться, что оба светодиода горят постоянно. Это связано с тем, что человеческое зрительное восприятие стремится интегрировать быстрое движение, и мы эффективно видим «среднюю» интенсивность. На самом деле, этот прием «вкл-выкл» часто используется в цифровых схемах для управления яркостью светодиодов или скоростью двигателей. Двухцветные светодиоды доступны в одном корпусе. Используя общий провод и два контрольных провода (по одному на каждый цвет), можно добиться смешения цветов.

    Логическим аналогом светодиода является фотодиод, условное обозначение которого показано на рисунке \(\PageIndex{9}\). Фотодиод включает в себя какой-то порт, который позволяет свету попадать на переход. Достаточно энергичный фотон света может выбить электрон. Это создает электронно-дырочную пару, которая приводит к протеканию тока. Чем больше световой энергии добавляется в систему, тем больше ток или напряжение будет 4 .

    Рисунок \(\PageIndex{9}\): условное обозначение фотодиода.

    Фотодиоды могут работать в одном из двух режимов. Первый режим — фотоэлектрический режим. Он использует нулевое смещение (то есть отсутствие внешнего потенциала смещения). В этом режиме фотодиод работает как источник напряжения. Это режим, используемый фотоэлектрическими солнечными батареями. Их можно рассматривать как очень большие фотодиоды. Второй режим работы — фотопроводящий. Этот режим требует обратного смещения диода внешним потенциалом. В этом режиме диод действует больше как источник тока. Преимущество заключается в том, что отклик быстрее, чем в фотогальваническом режиме. Недостатком является то, что шум и темновой ток хуже. Темновой ток — это ток, создаваемый даже тогда, когда на фотодиод не падает свет. В идеале это будет ноль. Большой темновой ток снижает эффективный динамический диапазон прибора.

    2.5.3: Диоды Шоттки и варакторы

    Диод Шоттки является устройством специального назначения. Он назван в честь Вальтера Шоттки, немецкого физика. В отличие от других диодов, в которых используется переход полупроводник-полупроводник, диод Шоттки состоит из контакта полупроводник-металл. Диод Шоттки имеет два основных преимущества по сравнению с традиционными диодами. Во-первых, у них очень быстрое время переключения, возможно, на несколько порядков лучше. Во-вторых, они демонстрируют относительно низкое напряжение включения. Вместо 0,6–0,7 вольт, наблюдаемых с кремниевым диодом, диод Шоттки может включиться при напряжении всего 0,2–0,3 вольт. Следовательно, диоды Шоттки используются, когда важны очень высокая скорость переключения и/или минимизация прямого падения напряжения. Примеры включают шунтирующие диоды в импульсных источниках питания и схемах ВЧ-детекторов. Его условное обозначение показано на рисунке \(\PageIndex{10}\).

    Рисунок \(\PageIndex{10}\): условное обозначение диода Шоттки.

    Варакторный диод — еще одно устройство специального назначения. Его условное обозначение показано на рисунке \(\PageIndex{11}\). Он используется как электрически управляемая емкость (обратите внимание, что схематический символ выглядит как гибрид обычных символов диода и конденсатора).

    Рисунок \(\PageIndex{11}\): Обозначение варакторного диода.

    Варакторы используются в режиме обратного смещения. Ключом к пониманию их работы является рассмотрение конструкции диода и сравнение ее с конструкцией конденсатора. Считайте область обеднения диэлектриком конденсатора с анодом и катодом, являющимися пластинами конденсатора. Следовательно, все переходные диоды обладают некоторой емкостью. Обычно дизайнеры стараются свести к минимуму этот эффект, но он используется с варакторами. Как отмечалось в нашем предыдущем обсуждении, увеличение потенциала обратного смещения на диоде приводит к расширению его области обеднения. При прочих равных условиях увеличение расстояния между пластинами конденсатора уменьшает его емкость. Таким образом, увеличивая потенциал обратного смещения, мы увеличиваем эффективное расстояние между пластинами и уменьшаем емкость диодного перехода. Теперь у нас есть емкость, значение которой определяется постоянным напряжением смещения. Эта емкость может использоваться как часть электронных схем настройки для таких приложений, как генераторы и фильтры. По сравнению с постоянными конденсаторами значения имеют тенденцию быть небольшими, от десятков до сотен пикофарад, но этого достаточно для многих работ на радиочастотах. Преимущества перед механически регулируемыми конденсаторами многочисленны, включая малые размеры, высокую надежность, низкую стоимость и возможность быстрого изменения емкости 5 .

    Каталожные номера

    1 Хотя они и называются стабилитронами, в зависимости от величины напряжения они основаны либо на эффекте Зенера, либо на лавинном эффекте.

    2 Использование инфракрасного спектра имеет преимущества перед видимым спектром для этого приложения. Он, как правило, менее чувствителен к условиям освещения в помещении, и нет потенциально раздражающих видимых вспышек света, исходящих от пульта дистанционного управления.

    3 Интересно отметить, что зрительная система человека работает в диапазоне частот менее 2:1, в то время как слуховая система человека работает в диапазоне частот примерно 1000:1 (от 20 до 20 000 герц). Если бы человеческий слух имел диапазон, эквивалентный нашему зрению, мы бы услышали в общей сложности менее полной октавы. Другими словами, do-re-mi-fa-sol-la-ti-do оканчивалось бы на ti, и все остальное было бы неслышно. В таком случае ясно одно: фортепианные клавиатуры были бы намного короче.

    4 В качестве примечания: в зависимости от конструкции некоторые светодиоды можно использовать в качестве примитивных фотодиодов. Хотя они не оптимизированы для такого использования, может быть интересно посветить на светодиод и посмотреть, как он производит напряжение.

    5 Механическая версия потребует поворотного регулируемого конденсатора, подключенного к небольшому двигателю или соленоиду для перемещения пластин конденсатора. Хотя это может работать на более низких частотах, если необходимы быстрые изменения, возникающее в результате тепло, выделяемое трением, может привести к тому, что это хитрое изобретение загорится. Вообще говоря, это не то, что мы хотим, чтобы наши схемы делали.


    Эта страница под названием 2.5: Other Types of Diodes распространяется под лицензией CC BY-NC-SA 4.0 и была создана, изменена и/или курирована Джеймсом М. Фиоре посредством исходного контента, который был отредактирован в соответствии со стилем и стандартами платформа LibreTexts; подробная история редактирования доступна по запросу.

    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или страница
        Автор
        Джеймс М.

      alexxlab

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *