Site Loader

Схема диодного моста на 12 вольт

Здравствуйте уважаемые читатели сайта sesaga. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода. В этой части мы рассмотрим устройство и работу выпрямительных диодов. Выпрямительный диод — это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.


Поиск данных по Вашему запросу:

Схема диодного моста на 12 вольт

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Как получить напряжение 12 Вольт
  • Диодный мост
  • Классическая схема диодного моста на 12 вольт
  • Cамодельный блок питания на 12 вольт
  • Устройство и работа выпрямительного диода. Диодный мост.
  • Как сделать диодный мост
  • Диодный мост – как он работает?
  • Схема диодного моста
  • Выпрямитель напряжения 12 вольт своими руками. Диодный мост
  • Устройство и схема простого блока питания

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как спаять диодный мост. Как сделать постоянный ток из переменного используя выпрямитель.

Как получить напряжение 12 Вольт


Мост бывает через реку, через овраг, а также через дорогу. Что за такой мост? А вот на этот вопрос мы с вами попробуем найти ответ. Получается, диодный мост должен состоять из диодов. Но если в диодном мосту есть диоды, значит, в одном направлении диод будет пропускать электрический ток, а в другом нет.

Это свойство диодов мы использовали, чтобы определить их работоспособность. Кто не помнит, как мы это делали, тогда вам сюда. Поэтому мост из диодов используется, чтобы из переменного напряжение получать постоянное напряжение. Как мы с вами видим, схема состоит из четырех диодов.

Но чтобы схемка диодного моста заработала, мы должны правильно соединить диоды, и правильно подать на них переменное напряжение.

На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов: с плюса и минуса.

Для того, чтобы превратить переменное напряжение в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок:. Переменное напряжение изменяется со временем. Диод пропускает через себя напряжение только тогда, когда напряжение выше нуля, когда же оно становится ниже нуля, диод запирается.

Думаю все элементарно и просто. Диод срезает отрицательную полуволну, оставляя только положительную полуволну, что мы и видим на рисунке выше. А вся прелесть этой немудреной схемки состоит в том, что мы получаем постоянное напряжение из переменного. Вся проблема в том, что мы теряем половину мощности переменного напряжения. Ее тупо срезает диод. Чтобы исправить эту ситуацию, была разработана схемка диодного моста. Тем самым мощность у нас сохраняется.

Прекрасно не правда ли? На выходе диодного моста у нас появляется постоянное пульсирующее напряжение с частой в два раза больше, чем частота сети: Гц. Думаю, не надо писать, как работает схема, Вам все равно это не пригодится, главное запомнить, куда цепляется переменное напряжение, а откуда выходит постоянное пульсирующее напряжение.

Я его выпаял из блока питания компа. Катод можно легко узнать по полоске. Почти все производители показывают катод полоской или точкой. Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из Вольт трансформирует 12 Вольт. Кто не знает как он это делает, можете прочитать статью устройство трансформатора. На первичную обмотку цепляем Вольт, со вторичной снимаем 12 Вольт.

Мультик показывает чуть больше, так как ко вторичной обмотке не подцеплена никакая нагрузка. Давайте же расмотрим осциллограмму, которая идет со вторичной обмотки транса. Максимальную амплитуду напряжение нетрудно посчитать.

Если не помните как расчитать, можно глянуть статейку Осциллограф. Основы эксплуатации. А если разделить максимальное значение амплитуда на корень из двух, то получим где то Это и есть действующее значение напряжения.

Осцилл не врет, все ОК. Еще раз повторюсь, можно было использовать и Вольт, но Вольт — это не шутки, поэтому я и понизил переменное напряжение. А где же нижняя часть изображения? Ее срезал диод. Диод оставил только верхнюю часть, то есть та, которая положительная. А раз он срезал нижнюю часть, то он следовательно срезал и мощность. С двух других концов снимаем постоянное пульсирующее напряжение щупами осцилла и смотрим на осцилл.

Чтобы не замарачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате получился очень компактный и удобный диодный мост. Думаю, вы догадаетесь, где импортный, а где советский. А как Вы догадались. Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменке, а с двух других контактов снимаем показания на осцилл.

В заключении хотелось бы добавить, что диодный мост используется почти во всей радиоаппаратуре, которая кушает напряжение из сети, будь то простой телевизор или даже зарядка для сотового телефона. Проверяются диодный мост исправностью всех его диодов. В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты.

Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов. Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение на рисунке путь тока показан линией красного цвета , а VD1 и VD4 будут заперты обратным напряжением.

При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 на рисунке путь тока показан синим цветом , а VD2 и VD3 будут заперты обратным напряжением. Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.

Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост. Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.

Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста. Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности. Элемент, используемый для преобразования переменного электрического тока в постоянный, называется диод или выпрямитель.

Такое определение может получить полупроводниковое, вакуумное, механическое или другое устройство, выполняющее выпрямление. Самым распространенным способом для преобразования переменного тока в пульсирующий постоянный является использование диодного моста.

Рассмотрим однофазную мостовую схему, а для простоты возьмем синусоидальное переменное напряжение. В мост входят 4 элемента. На входе подается переменный ток, который в каждый из полупериодов идет только через два диода. Оставшиеся два в это время закрыты.

Такой подход к преобразованию дает возможность получить на выходе с диодного моста пульсирующее напряжение, которое в два раза превышает частоту на входе. Это видно из приведенных на рисунке 3 графиков. На первом графике красным цветом указано синусоидальное напряжение, которое подается на вход.

На втором — зеленым показано напряжение, которое получается в результате однопериодного выпрямления. На последнем графике синим цветом нарисовано напряжение, которое получается при полупериодном выпрямлении. Такую схему впервые собрал немецкий физик Лео Гретц.

Данная схема очень часто используется. Связано это с тем, что у нее невысокий эквивалент активного внутреннего сопротивления. При этом используя ее можно получить высокий коэффициент от имеющейся габаритной мощности трансформатора. Есть еще один нюанс о котором стоит упомянуть. После выпрямления переменного напряжения, очень часто этот параметр имеет пульсирующий характер.

Чтобы сгладить пульсацию используется фильтр. Самым простым является электролитический конденсатор большой емкости. Его принято устанавливать на выходе с диодного моста. Теперь рассмотрим трехфазную схему диодного моста. Чаще всего используется трехфазный выпрямитель, собранный по схеме Миткевича на трех диодах рис. Если же говорить о схеме Ларионова, то она не является полномостовой, как принято считать. На самом деле выпрямитель является параллельным полумостовым.

Каждая из них имеет свое напряжение, сопротивление внутри конструкции и протекающие токи. Их применение зависит от схемы включения трансформатора или генератора. Это может быть звезда или треугольник. Какая бы схема трехфазного диодного моста не использовалась, в результате прохождения через нее тока, на выходе получается параметр с меньшими пульсациям, чем в случае с однофазным выпрямителем.


Диодный мост

В статье приводится как сделать из такого трансформатора простое зарядное устройство для аккумулятора своими руками. У ТС есть две вторичные обмотки, рассчитанные на напряжение 6. Этого напряжения достаточно, чтобы зарядить аккумулятор. На трансформаторе нужно соединить толстым проводом выводы 9 и 9 штрих, а к выводам 10 и 10 штрих, тоже толстыми проводами припаять диодный мост, состоящий из четырех диодов ДА или других рассчитанных на ток не менее 10 А. Диоды нужно установить на большие радиаторы.

Схема диодного моста на 12 вольт выполняет функцию по выпрямлению переменного тока. Это связано с тем, что для работы.

Классическая схема диодного моста на 12 вольт

Перейти к содержимому. Пройдя короткую регистрацию , вы сможете создавать и комментировать темы, зарабатывать репутацию, отправлять личные сообщения и многое другое! Отправлено 02 August — Вопщем покупаем 4 нужных нам диода можно выпаять с сгоревшой зарядки и впаеваем на плату таким образом : Как знать какой стороной впаять диод? Порядок работы На вход Input схемы подаётся переменное напряжение обычно, но не обязательно синусоидальное. Отправлено 08 August — Отправлено 28 October —

Cамодельный блок питания на 12 вольт

Мост бывает через реку, через овраг, а также через дорогу. Что за такой мост? А вот на этот вопрос мы с вами попробуем найти ответ. Получается, диодный мост должен состоять из диодов. Но если в диодном мосту есть диоды, значит, в одном направлении диод будет пропускать электрический ток, а в другом нет.

Как сделать диодный мост для преобразования переменного напряжения в постоянное, однофазный и трехфазный диодный мост.

Устройство и работа выпрямительного диода. Диодный мост.

Содержание: Получаем 12 Вольт из Понижение напряжения без трансформатора Гасящий конденсатор Блок питания на сетевом трансформаторе 12 Вольт из 24 Вольт или другого повышенного постоянного напряжения 12 Вольт из 5 Вольт или другого пониженного напряжения Как получить 12В из подручных средств. Наиболее часто стоит задача получить 12 вольт из бытовой электросети В. Это можно сделать несколькими способами:. Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:. Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

Как сделать диодный мост

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой. Как сделать выпрямитель и простейший блок питания. Выпрямитель — это устройство для преобразования переменного напряжения в постоянное.

Схема простого зарядного для аккумулятора авто Схема простого зарядного для аккумулятора авто Как спаять диодный мост на 12 вольт для зарядки.

Диодный мост – как он работает?

Схема диодного моста на 12 вольт

Во многих электронных приборах, работающих при переменном токе в вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток. Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста.

Схема диодного моста

ВИДЕО ПО ТЕМЕ: диодный мост генератора, вторая жизнь

Большинство электростанций вырабатывает переменный ток. Это связано с особенностью конструкции генераторов. Исключение составляют лишь солнечные панели, с которых снимается постоянный ток. Вообще, выбор между постоянным и переменным током с точки зрения производства, транспортировки и потребления — это борьба противоречий. Транспортировать экономически выгодно постоянный ток. Смена полупериодов переменного напряжения приводит к потерям.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт — лампочки, светодиодные ленты и другое низковольтное оборудование. Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками.

Выпрямитель напряжения 12 вольт своими руками. Диодный мост

Для питания различных электронных устройств нам в большинстве случаев необходимо постоянное напряжение определенной величины. Для этого кроме батареек и аккумулятором мы можем использовать вторичные источники напряжения, так называемые блоки питания, функция которых заключается в том, что бы преобразовать сетевое переменное напряжение в постоянное напряжение необходимой величины. Если рассмотреть схему простейшего блока питания, то увидим, что она состоит из трансформатора Т1, диодного моста D1 и сглаживающего конденсатора С1. Трансформатор Т1 необходим для преобразования переменного в данном случае сетевого напряжения в более низкое переменное напряжение. Кроме того трансформатор осуществляет гальваническую развязку между напряжением сети и выходным напряжением блока питания. Одним из параметров трансформатора является коэффициент трансформации, который показывает во сколько раз трансформатор увеличит или уменьшит выходное напряжение, то есть напряжение на вторичной обмотке.

Устройство и схема простого блока питания

В блоках питания радио- и электроаппаратуры почти всегда используются выпрямители, предназначенные для преобразования переменного тока в постоянный. Связано это с тем, что практически все электронные схемы и многие другие устройства должны питаться от источников постоянного тока. Выпрямителем может служить любой элемент с нелинейной вольт-амперной характеристикой, другими словами, по-разному пропускающий ток в противоположных направлениях.


Практическая схема диодного моста на напряжение 12 вольт

Комплект носков, Носки Omsa

349 ₽ Подробнее

Комплект носков, Носки Omsa

349 ₽ Подробнее

Моющиеся латексные краски

В блоках питания радио- и электроаппаратуры почти всегда используются выпрямители, предназначенные для преобразования переменного тока в постоянный. Связано это с тем, что практически все электронные схемы и многие другие устройства должны питаться от источников постоянного тока. Выпрямителем может служить любой элемент с нелинейной вольт-амперной характеристикой, другими словами, по-разному пропускающий ток в противоположных направлениях. В современных устройствах в качестве таких элементов, как правило, используются плоскостные полупроводниковые диоды.

Схема полупроводникового диода.

Плоскостные полупроводниковые диоды

Наряду с хорошими проводниками и изоляторами существует очень много веществ, занимающих по проводимости промежуточное положение между двумя этими классами. Называют такие вещества полупроводниками. Сопротивление чистого полупроводника с ростом температуры уменьшается в отличие от металлов, сопротивление которых в этих условиях возрастает.

Добавляя к чистому полупроводнику небольшое количество примеси, можно в значительной степени изменить его проводимость. Существует два класса таких примесей:

Рисунок 1. Плоскостной диод: а. устройство диода; б. обозначение диода в электротехнических схемах; в. внешний вид плоскостных диодов различной мощности.

  1. Донорные – превращающие чистый материал в полупроводник n-типа, содержащий избыток свободных электронов. Проводимость такого типа называют электронной.
  2. Акцепторные – превращающие такой же материал в полупроводник p-типа, обладающий искусственно созданным недостатком свободных электронов. Проводимость такого полупроводника называют дырочной. «Дырка» – место, которое покинул электрон, ведет себя аналогично положительному заряду.

Слой на границе полупроводников p- и n-типа (p-n переход) обладает односторонней проводимостью – хорошо проводит ток в одном (прямом) направлении и очень плохо в противоположном (обратном). Устройство плоскостного диода показано на рисунке 1а. Основа – пластинка из полупроводника (германий) с небольшим количеством донорной примеси (n-типа), на которую помещается кусочек индия, являющегося акцепторной примесью.

После нагрева индий диффундирует в прилегающие области полупроводника, превращая их в полупроводник p-типа. На границе областей с двумя типами проводимости и возникает p-n переход. Вывод, соединенный с полупроводником p-типа, называют анодом получившегося диода, противоположный – его катодом. Изображение полупроводникового диода на принципиальных схемах приведено на рис. 1б, внешний вид плоскостных диодов различной мощности – на рис. 1в.

Вернуться к оглавлению

Простейший выпрямитель

Рисунок 2. Характеристики тока в различных схемах.

Ток, протекающий в обычной осветительной сети, является переменным. Его величина и направление меняются 50 раз в течение одной секунды. График зависимости его напряжения от времени показан на рис. 2а. Красным цветом показаны положительные полупериоды, синим – отрицательные.

Поскольку величина тока изменяется от нуля до максимального (амплитудного) значения, вводится понятие действующего значения тока и напряжения. Например, в осветительной сети действующее значение напряжения 220 В – во включенном в эту сеть нагревательном приборе за одинаковые промежутки времени выделяется столько же тепла, сколько в том же устройстве, в цепи постоянного тока напряжением 220 В.

Но на самом деле напряжение в сети меняется за 0,02 с следующим образом:

  • первую четверть этого времени (периода) – увеличивается от 0 до 311 В;
  • вторую четверть периода – уменьшается от 311 В до 0;
  • третью четверть периода – уменьшается от 0 до 311 В;
  • последнюю четверть периода – возрастает от 311 В до 0.

В этом случае 311 В – амплитуда напряжения Uо. Амплитудное и действующее (U) напряжения связаны между собой формулой:

Uo = √2 *U.

Рисунок 3. Диодный мост.

При включении в цепь переменного тока последовательно соединенных диода (VD) и нагрузки (рис. 2б), ток через нее протекает только во время положительных полупериодов (рис. 2в). Происходит это благодаря односторонней проводимости диода. Называется такой выпрямитель однополупериодным – одну половину периода ток в цепи есть, во время второй – отсутствует.

Ток, протекающий через нагрузку в таком выпрямителе, не постоянный, а пульсирующий. Превратить его практически в постоянный можно, включив параллельно нагрузке конденсатор фильтра Cф достаточно большой емкости. В течение первой четверти периода конденсатор заряжается до амплитудного значения, а в промежутках между пульсациями разряжается на нагрузку. Напряжение становится почти постоянным. Эффект сглаживания тем сильнее, чем больше емкость конденсатора.

Вернуться к оглавлению

Схема диодного моста

Более совершенной является двухполупериодная схема выпрямления, когда используются и положительный, и отрицательный полупериод. Существует несколько разновидностей таких схем, но чаще всего используется мостовая. Схема диодного моста приведена на рис. 3в. На ней красная линия показывает, как протекает ток через нагрузку во время положительных, а синяя – отрицательных полупериодов.

Рисунок 4. Схема выпрямителя на 12 вольт с использованием диодного моста.

И первую, и вторую половину периода ток через нагрузку протекает в одном и том же направлении (рис. 3б). Количество пульсации в течение одной секунды не 50, как при однополупериодном выпрямлении, а 100. Соответственно, при той же емкости конденсатора фильтра эффект сглаживания будет более ярко выражен.

Как видно, для построения диодного моста необходимо 4 диода – VD1-VD4. Раньше диодные мосты на принципиальных схемах изображали именно так, как на рис. 3в. Ныне общепринятым считается изображение, показанное на рис. 3г. Хотя на ней только одно изображение диода, не следует забывать, что мост состоит из четырех диодов.

Мостовая схема чаще всего собирается из отдельных диодов, но иногда применяются и монолитные диодные сборки. Их проще монтировать на плате, но зато при выходе из строя одного плеча моста, заменяется вся сборка. Выбирают диоды, из которых монтируется мост, исходя из величины протекающего через них тока и величины допустимого обратного напряжения. Эти данные позволяет получить инструкция к диодам или справочники.

Полная схема выпрямителя на 12 вольт с использованием диодного моста приведена на рис. 4. Т1 – понижающий трансформатор, вторичная обмотка которого обеспечивает напряжение 10-12 В. Предохранитель FU1 – нелишняя деталь с точки зрения техники безопасности и пренебрегать им не стоит. Марка диодов VD1-VD4, как уже говорилось, определяется величиной тока, который будет потребляться от выпрямителя. Конденсатор С1 – электролитический, емкостью 1000,0 мкФ или выше на напряжение не ниже 16 В.

Напряжение на выходе – фиксированное, величина его зависит от нагрузки. Чем больше ток, тем меньше величина этого напряжения. Для получения регулируемого и стабильного выходного напряжения требуется более сложная схема. Получить регулируемое напряжение от схемы, приведенной на рис. 4 можно двумя способами:

  1. Подавая на первичную обмотку трансформатора Т1 регулируемое напряжение, например, от ЛАТРа.
  2. Сделав от вторичной обмотки трансформатора несколько отводов и поставив, соответственно, переключатель.

Остается надеяться, что описания и схемы, приведенные выше, окажут практическую помощь в сборке простого выпрямителя для практических нужд.

Описание полномостового выпрямителя

— инженерное мышление

Узнайте о полномостовом выпрямителе — как преобразовать переменный переменный ток в постоянный постоянный ток. Использование конденсаторов для фильтрации рифленой волны постоянного тока в гладкий постоянный ток с помощью экспериментов.

Помните, электричество опасно и может привести к летальному исходу. Вы должны быть квалифицированы и компетентны для выполнения любых электромонтажных работ.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube.

Наиболее распространенным методом является двухполупериодный мостовой выпрямитель. Здесь используются четыре диодных узла. Источник переменного тока подключается между первым и вторым диодами, а нейтраль между третьим и четвертым. Положительный выход постоянного тока подключается между вторым и третьим диодами, а отрицательный — между первым и четвертым диодами. В положительной половине синусоиды ток течет через диод номер два, через нагрузку, через диод номер четыре и обратно в трансформатор.

В отрицательной половине ток течет через третий диод, через нагрузку, через первый диод и обратно в трансформатор. Таким образом, трансформатор подает синусоидальную волну переменного тока, но нагрузка испытывает волнистую форму волны постоянного тока, потому что ток течет только в одном направлении. В этом примере схемы мы можем видеть выпрямленный сигнал на осциллографе, но это не плоский выход постоянного тока, поэтому нам нужно улучшить его, добавив некоторую фильтрацию.

Использование выпрямителя приведет к пульсациям сигнала. Чтобы сгладить это, нам нужно добавить немного приправ. Основной метод заключается в простом добавлении электролитического конденсатора параллельно нагрузке. Конденсатор заряжается при увеличении напряжения и сохраняет электроны. Затем он выпускает их во время уменьшения.

Таким образом, уменьшается пульсация. Осциллограф покажет пики каждого импульса, но теперь напряжение не падает до нуля. Он медленно снижается, пока импульс снова не зарядит конденсатор. Мы можем еще больше уменьшить это, используя конденсатор большей емкости или используя несколько конденсаторов. В этом простом примере вы можете увидеть, как светодиод гаснет, как только отключается питание.

Но если я поставил конденсатор параллельно светодиоду, он остается включенным, потому что теперь конденсатор разряжается и питает светодиод во время перерывов. В этой схеме у меня в качестве нагрузки подключена лампа. Осциллограф показывает волнистую форму сигнала. Когда я добавляю небольшой конденсатор на десять микрофарад, мы видим, что это очень мало меняет форму сигнала. Когда я использую конденсатор на 100 мкФ, мы видим, что провал больше не достигает 0 вольт.

При 1000 мкФ пульсации очень маленькие. При 2200 мкФ почти полностью гладкий. Это было бы хорошо для многих электронных схем, мы также могли бы использовать несколько конденсаторов. Здесь у нас есть конденсатор на 470 микрофарад, который имеет некоторое значение. Но если я использую два конденсатора параллельно, мы видим, что форма волны намного улучшается.

При использовании конденсатора необходимо разместить на выходе резистор для разрядки. Это высокоомный резистор, который разряжает конденсатор, когда цепь отключена, чтобы обеспечить нашу безопасность. Обратите внимание на эту схему: когда я включаю ее, конденсатор быстро заряжается до более чем 15 вольт. Но когда я его выключаю, выход постоянного тока все еще составляет 15 вольт, потому что нагрузки нет, поэтому энергия все еще хранится в конденсаторе.

Это может быть очень опасно, если напряжение высокое. В этом примере я подключаю к выходу резистор 4,7 кОм. Мы видим, что конденсатор заряжается до 15 вольт, и когда я его выключаю, конденсатор быстро разряжается. Электроны проходят через резистор, который разряжает конденсатор. Мы также можем видеть, что без конденсатора выходное напряжение ниже входного из-за падения напряжения на диодах.

Здесь у нас есть простой двухполупериодный мостовой выпрямитель на входе. Мы видим, что на выходе есть 12 вольт переменного тока. У нас есть десять 5 вольт постоянного тока. Напряжение на выходе ниже из-за диодов. Каждый диод имеет падение напряжения около нуля 7 вольт.

Если мы посмотрим на эту схему с диодом и светодиодом, мы можем измерить на диоде падение напряжения около нуля 7 вольт. Ток в нашем выпрямителе Fullbridge должен проходить через два диода в положительной половине и два диода в отрицательной половине. Таким образом, падение напряжения суммируется и составляет примерно от четырех до пяти вольт. Поэтому выход будет снижен. Однако, если бы мы подключили конденсатор к выходу, мы бы увидели, что выходное напряжение теперь выше, чем входное напряжение.

Как это возможно? Это связано с тем, что вход переменного тока измеряет среднеквадратичное значение напряжения или среднеквадратичное значение. Это не пиковое напряжение. Пиковое напряжение в 141 раз выше среднеквадратичного напряжения. Конденсаторы заряжаются до пикового напряжения, а затем освобождаются.

Из-за диодов будет небольшое падение напряжения, поэтому выходное напряжение меньше пикового входного, но все равно будет выше среднеквадратичного входного. Например, если бы у нас было среднеквадратичное значение 12 вольт на входе, пиковое напряжение было бы 12 вольт, умноженное на 1,41, что составляет 16,9.вольт. Здесь и здесь будет падение на 0,7 вольта. Таким образом, из 16,9 вольт вычесть 1,4 и получить 15,5 вольт. Конденсаторы заряжаются до этого напряжения. Однако это лишь приблизительный ответ. Количество пульсаций и фактическое падение напряжения на диодах в действительности будут немного отличаться, но мы видим, что выходное напряжение выше, чем входное. Другой распространенный фильтр представляет собой размещение двух конденсаторов параллельно с последовательным индуктором между ними.

Используется для цепей с большими нагрузками. Первый конденсатор сглаживает пульсации. Катушка индуктивности противостоит изменяющемуся току и пытается поддерживать его постоянным, а второй конденсатор, который намного меньше, затем сглаживает последние оставшиеся пульсации. Дополнительно к выходу можно подключить стабилизатор напряжения. Это очень распространено и допускает некоторые изменения на входе, но обеспечивает постоянное выходное напряжение.

По обеим сторонам стабилизатора снова установлены конденсаторы для обеспечения плавного выхода постоянного тока. Здесь мы видим реальную версию, которая подключена к источнику переменного тока на двенадцать вольт, и мы видим, что ее выход составляет около пяти вольт постоянного тока.


блок питания — простой выпрямитель от \$12V_{AC}\$ до \$12V_{DC}\$

спросил

Изменено 11 лет, 3 месяца назад

Просмотрено 5к раз

\$\начало группы\$

Я хочу переоборудовать выход блока питания \$12V_{AC}\$ для использования \$12V_{DC}\$ для питания некоторых наружных светодиодов.

Блок питания в его нынешнем виде будет зажигать светодиоды (с легким мерцанием из-за обратной полярности переменного тока), но мне сказали, что это может сократить срок службы светодиодов, если они перевернут полярность в течение длительного времени.

Итак, может ли кто-нибудь предложить простую схему выпрямителя, которую я мог бы построить, или указать мне правильное направление, для которого подходит один из этих выпрямителей Maplin (я не уверен, к чему именно относятся спецификации)?

  • блок питания
  • диоды
  • выпрямитель

\$\конечная группа\$

1

\$\начало группы\$

Вы можете посмотреть ответы на этот вопрос.

Подача переменного тока на светодиод не является хорошей идеей. Мерцание не является основной проблемой (может быть едва заметно), но светодиоды имеют ограниченное обратное напряжение, обычно около 5В. Таким образом, 12 В, которые вы используете, слишком высоки и могут вывести из строя ваш светодиод.
Вам нужен выпрямитель, за которым следует конденсатор (для выравнивания выпрямленного напряжения). Вы можете использовать выпрямитель, как в вашей ссылке Maplin, или использовать дискретные диоды.

Диоды 1A, такие как 1N4001, являются стандартными и прекрасно подходят для нескольких стандартных светодиодов. Для конденсатора я использую 2000 мкФ / А, как правило, поэтому, если ваши светодиоды потребляют 100 мА, вы можете использовать электролитический конденсатор 220 мкФ / 25 В. Убедитесь, что конденсатор установлен правильно; он может взорваться, если вы перевернете его.

Напряжение постоянного тока будет около 15 В (\$12 В \times \sqrt{2} — 2 В\$ ), поэтому в зависимости от типа используемого светодиода рекомендуется разместить несколько светодиодов последовательно, в противном случае у вас будет большое падение напряжения на последовательном резисторе = менее эффективное.

\$\конечная группа\$

6

\$\начало группы\$

Выпрямитель не нужен. Проблема в том, что светодиоды подвергаются слишком большому обратному напряжению, преобразование в 12 В постоянного тока — только одно из решений. Вы можете управлять светодиодами с помощью переменного напряжения, если вы реализуете некоторую схему, чтобы минимизировать их обратное напряжение.

Это можно сделать с помощью одного дополнительного диода одним из трех способов:

  1. Поместите диод встречно-параллельно светодиоду так, чтобы он проводил ток во время отрицательного полупериода. Это снижает обратное напряжение до 1 В или меньше, с чем светодиод может легко справиться.
  2. Разместите второй светодиод антипараллельно первому. Это позволяет светодиодам попеременно проводить положительные и отрицательные циклы. Если важна эффективность, это лучше, чем метод 1, поскольку мощность рассеивается в виде света, а не тепла от стандартного выпрямительного диода. Обратное напряжение, наблюдаемое любым светодиодом, будет равно прямому напряжению. Проверьте таблицу, это может быть или не быть в порядке.
  3. Поместите выпрямительный диод последовательно со светодиодом. Ток утечки светодиода при обратном смещении намного больше, чем у выпрямительного диода, поэтому напряжение на светодиоде будет низким.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *