Site Loader

Проводники, полупроводники и диэлектрики — КиберПедия

Навигация:

Главная Случайная страница Обратная связь ТОП Интересно знать Избранные

Топ:

Определение места расположения распределительного центра: Фирма реализует продукцию на рынках сбыта и имеет постоянных поставщиков в разных регионах. Увеличение объема продаж…

Характеристика АТП и сварочно-жестяницкого участка: Транспорт в настоящее время является одной из важнейших отраслей народного хозяйства…

Оснащения врачебно-сестринской бригады.

Интересное:

Средства для ингаляционного наркоза: Наркоз наступает в результате вдыхания (ингаляции) средств, которое осуществляют или с помощью маски…

Национальное богатство страны и его составляющие: для оценки элементов национального богатства используются…

Что нужно делать при лейкемии: Прежде всего, необходимо выяснить, не страдаете ли вы каким-либо душевным недугом.

..

Дисциплины:

Автоматизация Антропология Археология Архитектура Аудит Биология Бухгалтерия Военная наука Генетика География Геология Демография Журналистика Зоология Иностранные языки Информатика Искусство История Кинематография Компьютеризация Кораблестроение Кулинария Культура Лексикология Лингвистика Литература Логика Маркетинг Математика Машиностроение Медицина Менеджмент Металлургия Метрология Механика Музыкология Науковедение Образование Охрана Труда Педагогика Политология Правоотношение Предпринимательство Приборостроение Программирование Производство Промышленность Психология Радиосвязь Религия Риторика Социология Спорт Стандартизация Статистика Строительство Теология Технологии Торговля Транспорт Фармакология Физика Физиология Философия Финансы Химия Хозяйство Черчение Экология Экономика Электроника Энергетика Юриспруденция

⇐ ПредыдущаяСтр 2 из 8Следующая ⇒

Все вещества, существующие в природе, принято делить на три группы: проводники, полупроводники и диэлектрики. Данные группы веществ имеют разную зонную структуру и обладают разным электрическим сопротивлением. При рассмотрении зонной структуры веществ выделяют три основные зоны, играющие роль в создании электропроводности веществ.

Электроны располагаются по разным энергетическим уровням, которые объединяются в зоны. В соответствии с зонной теорией твёрдого тела электроны внешней оболочки атома заполняют энергетические уровни, составляющие валентную зону. Более низкие энергетические уровни составляют другие зоны, которые не играют роли в явлениях электропроводности.

Металлы и полупроводники обладают большим количеством электронов, находящихся на более высоких энергетических уровнях. Эти уровни составляют зону проводимости. Высокая электропроводность металлов обеспечивается электронами проводимости. Эти электроны совершают беспорядочное движение внутри вещества, переходя от одних атомов к другим.

Третья зона располагается между зоной проводимости и валентной зоной. Это запрещённая зона, которую составляют уровни энергии, на которых электроны не могут находиться.

Ширина запрещённой зоны — разность между энергией нижнего уровня зоны проводимости и верхнего уровня валентной зоны, составляет несколько электрон – вольт (энергия, которую приобретает электрон, разгоняясь в электрическом поле с разностью потенциалов в один вольт).

Понятно, что проводящие свойства вещества зависят от ширины запрещенной зоны. Чем шире запрещённая зона, тем меньше количество электронов, которые смогут проникнуть из валентной зоны в зону проводимости, тем меньше проводимость кристалла.

Рассмотрение зонных энергетических диаграмм наглядно показывает проводящие свойства вех веществ (рис.1).

а) б) в)

Рис. 1. Зонные энергетические диаграммы различных веществ: а)проводник б)полупроводник в) диэлектрик. 1 – валентная зона, 2 –зона проводимости, 3 – запрещённая зона.

Проводники.Валентная зона и зона проводимости у проводников не разделены, электроны свободно переходят из валентной зоны в зону проводимости и приобретают упорядоченную скорость под воздействием внешнего приложенного напряжения (в проводнике протекает электрический ток).

Удельное электрическое сопротивление проводников Ом м. При увеличении температуры сопротивление проводника увеличивается.

Полупроводники.Валентная зона и зона проводимости разделены узкой запрещённой зоной . У полупроводников проводимость определяется количеством электронов, преодолевших запрещённую зону и проникших в зону проводимости. Удельное электрическое сопротивление полупроводников Ом∙м. Сопротивление полупроводников уменьшается с увеличением температуры. При низких температурах полупроводники являются диэлектриками.

Диэлектрики.Валентная зона и зона проводимости разделены широкой запрещённой зоной ∆W=6 эВ. Удельное электрическое сопротивление диэлектриков Ом∙м. При нормальной температуре у диэлектриков в зоне проводимости имеется небольшое количество электронов, поэтому диэлектрик обладает ничтожно малой проводимостью. При нагревании электроны из валентной зоны получают добавочную энергию и переходят в зону проводимости. Диэлектрик при этом приобретает заметную проводимость.

⇐ Предыдущая12345678Следующая ⇒

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства…

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций…

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)…

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни…



Проводник в электростатическом поле. Проводники, полупроводники, диэлектрики

Веществом, имеющим свободные частицы с зарядом, двигающиеся по телу за счет действующего электрического поля упорядоченно, называют проводник в электростатическом поле. А заряды частиц называют свободными. Диэлектрики, напротив, их не имеют. Проводники и диэлектрики имеют разную природу и свойства.

Проводник

В электростатическом поле проводники — металлы, щелочные, кислые и солевые растворы, а также ионизированные газы. Носители свободных зарядов в металлах — это свободные электроны.

При поступлении в однородное электрическое поле, где металлы — проводники без заряда, начнется движение в направлении, которое противоположно вектору напряжения поля. Скапливаясь на одной стороне, электроны создадут отрицательный заряд, а на другой стороне недостаточное их количество станет причиной появления избыточного положительного заряда. Получится, что заряды разделятся. Некомпенсированные разные заряды возникают под воздействием внешнего поля. Таким образом, они индуцированы, а проводник в электростатическом поле остается без заряда.

Нескомпенсированные заряды

Электризация, когда заряды перераспределяются между частями тела, называется электростатической индукцией. Нескомпенсированные электрические заряды образуют свое тело, напряженности внутренние и внешние противоположны друг другу. Разделяясь и затем накапливаясь на противоположных частях проводника, напряженность внутреннего поля возрастает. В результате оно становится нулевым. Тогда заряды уравновешиваются.

При этом весь нескомпенсированный заряд находится снаружи. Этот факт используют, чтобы получить электростатическую защиту, предохраняющую приборы от влияния полей. Их помещают в сетки или заземленные корпуса из металла.

Диэлектрики

Вещества без свободных электрических зарядов в стандартных условиях (то есть, когда температура не слишком высокая и не низкая) называются диэлектриками. Частицы в этом случае не могут передвигаться по телу и смещаются только чуть-чуть. Поэтому электрические заряды здесь связаны.

Диэлектрики подразделяются на группы в зависимости от молекулярного строения. Молекулы диэлектриков первой группы асимметричны. К ним относится и обычная вода, и нитробензол, и спирт. Их положительные и отрицательные заряды не совпадают. Они выступают в роли электрических диполей. Такие молекулы считаются полярными. Их электрический момент равен конечному значению при всех разных условиях.

Вторая группа состоит из диэлектриков, у которых молекулы имеют симметричное строение. Это парафин, кислород, азот. Положительные и отрицательные заряды у них имеют схожее значение. Если внешнего электрического поля нет, то и электрический момент тоже отсутствует. Это неполярные молекулы.

Разноименные заряды в молекулах во внешнем поле имеют смещенные центры, направленные в разные стороны. Они превращаются в диполи и получают еще один электрический момент.

Диэлектрики третьей группы имеют кристаллическое строение из ионов.

Интересно, как ведет себя диполь во внешнем однородном поле (ведь он является молекулой, состоящей из неполярных и полярных диэлектриков).

Любой заряд диполя наделен силой, каждая из которых имеет один и тот же модуль, но различное направление (противоположное). Образуются две силы, имеющие вращательный момент, под действием которого диполь стремится повернуться таким образом, чтобы направление векторов совпадало. В результате он получает направление внешнего поля.

В неполярном диэлектрике внешнего электрического поля нет. Поэтому молекулы лишены электрических моментов. В полярном диэлектрике тепловое движение образуется в полном беспорядке. Из-за этого электрические моменты имеют различное направление, а их векторная сумма — нулевая. То есть диэлектрик не имеет электрического момента.

Диэлектрик в однородном электрическом поле

Поместим диэлектрик в однородное электрическое поле. Мы уже знаем, что диполи — это молекулы полярных и неполярных диэлектриков, которые направлены в зависимости от внешнего поля. Их векторы упорядочены. Тогда сумма векторов не является нулевой, и диэлектрик имеет электрический момент. Внутри него имеются положительные и отрицательные заряды, которые взаимокомпенсирумы и находятся близко друг от друга. Поэтому диэлектрик и не получает заряд.

Противоположные поверхности имеют нескомпенсированные поляризационные заряды, которые равны, то есть диэлектрик поляризуется.

Если взять ионный диэлектрик и поместить в электрическое поле, то решетка кристаллов из ионов в нем слегка сместится. В результате диэлектрик ионного типа получит электрический момент.

Поляризационные заряды образуют свое электрическое поле, которое имеет противоположное направление с внешним. Поэтому напряженность электростатического поля, которое образуется зарядами, помещенными в диэлектрик, получается меньше, чем в вакууме.

Проводник

Иная картина сложится с проводниками. Если проводники электрического тока внести в электростатическое поле, в нем возникнет кратковременный ток, так как действующие на свободные заряды электрические силы будут способствовать возникновению движения. Но также всем известен закон термодинамической необратимости, когда любой макропроцесс в замкнутой системе и движение должны в итоге закончиться, а система уравновеситься.

Проводник в электростатическом поле — это тело из металла, где электроны начинают движение против силовых линий и начнут накапливаться слева. Проводник справа потеряет электроны и получит положительный заряд. При разделении зарядов он обретет свое электрическое поле. Это называется электростатической индукцией.

Внутри проводника напряженность электростатического поля нулевая, что легко доказать, двигаясь от обратного.

Особенности поведения заряда

Заряд проводника скапливается на поверхности. Кроме того, он распределяется таким образом, что плотность заряда ориентируется на кривизну поверхности. Здесь она будет больше, чем в других местах.

Проводники и полупроводники имеют кривизну больше всего на остриях угла, кромках и закруглениях. Здесь же наблюдается и большая плотность заряда. Наряду с ее увеличением растет и напряженность рядом. Поэтому здесь создается сильное электрическое поле. Появляется коронный заряд, из-за чего стекаются заряды от проводника.

Если рассмотреть проводник в электростатическом поле, у которого изъята внутренняя часть, обнаружится полость. От этого ничего не изменится, потому что поля как не было, так и не будет. Ведь в полости оно отсутствует по определению.

Заключение

Мы рассмотрели проводники и диэлектрики. Теперь вы можете понять их различия и особенности проявления качеств в схожих условиях. Так, в однородном электрическом поле они ведут себя совсем по-разному.

В чем разница между диэлектриком и полупроводником?

спросил

Изменено 3 года, 11 месяцев назад

Просмотрено 2к раз

$\begingroup$

Было бы очень хорошо, если бы вы могли дать уравнение для различения двух классов материалов.

Пожалуйста, не давайте ответ, основанный на размере запрещенной зоны, поскольку в последние годы алмаз (у которого большая ширина запрещенной зоны) может рассматриваться как полупроводник, в зависимости от области, в которой вы работаете.

  • физика полупроводников
  • диэлектрик

$\endgroup$

$\begingroup$

Уравнения не требуются. Диэлектрик всегда изолятор. Полупроводник может быть изолятором или проводником в зависимости от таких условий, как наличие электрического поля. Например, транзистор можно использовать в качестве переключателя, подавая на него напряжение или нет. Если напряжение есть, оно позволяет току течь, а если напряжение выключено, то нет.

$\endgroup$

4

$\begingroup$

Пожалуйста, не давайте ответ, основанный на размере запрещенной зоны, так как в последние годы алмаз (у которого большая ширина запрещенной зоны) может рассматриваться как полупроводник, в зависимости от области, в которой вы работаете.

К сожалению, по вашему запросу оказывается, что ключевой величиной, определяющей, является ли материал изолятором или полупроводником, очень часто является ширина запрещенной зоны и термодинамические условия. Даже типичные полупроводники, такие как Si или Ge, при очень низких температурах ведут себя как изоляторы.

Конечно, надо учитывать, что к термодинамическим условиям, помимо очевидных значений температуры и давления, следует отнести также электрические и магнитные поля. Это замечание должно сделать понятным, почему, помимо

внешних параметров, единственным существенным внутренним свойством материала остается зонная структура и, в частности, ширина запрещенной зоны.

$\endgroup$

2

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

Что такое диэлектрический материал и как он работает?

По

  • Рахул Авати

Что такое диэлектрический материал?

Диэлектрический материал плохо проводит электричество, но эффективно поддерживает электростатические поля. Он может накапливать электрические заряды, иметь высокое удельное сопротивление и отрицательный температурный коэффициент сопротивления.

Подробнее о диэлектрических материалах

Диэлектрические материалы являются плохими проводниками электричества, потому что они не имеют свободно связанных или свободных электронов, которые могут дрейфовать через материал. Электроны необходимы для поддержания потока электрического тока. Ток течет от положительного вывода к отрицательному и в обратном направлении в виде свободных электронов, которые текут от отрицательного вывода к положительному.

Диэлектрические материалы поддерживают диэлектрическую поляризацию, что позволяет им действовать как диэлектрики, а не как проводники. Это явление возникает, когда диэлектрик помещается в электрическое поле и положительные заряды смещаются в направлении электрического поля, а отрицательные заряды смещаются в противоположном направлении. Такая поляризация создает сильное внутреннее поле, которое уменьшает общее электрическое поле внутри материала.

Важные сведения о диэлектрических материалах

Важным фактором для диэлектрического материала является его способность поддерживать электростатическое поле, рассеивая при этом минимальную энергию в виде тепла. Это рассеянное тепло или потеря энергии известны как диэлектрические потери . Чем меньше диэлектрические потери, тем эффективнее вещество как диэлектрический материал.

Еще одним соображением является диэлектрическая проницаемость , , который представляет собой степень, в которой вещество концентрирует электростатические линии потока. К веществам с низкой диэлектрической проницаемостью относятся идеальный вакуум, сухой воздух и самые чистые, сухие газы, такие как гелий и азот. К материалам с умеренными диэлектрическими постоянными относятся керамика, дистиллированная вода, бумага, слюда, полиэтилен и стекло. Оксиды металлов, как правило, имеют высокие диэлектрические постоянные.

Свойства диэлектрических материалов

Это наиболее важные свойства диэлектрических материалов.

Электрическая восприимчивость

Относится к относительной мере того, насколько легко диэлектрический материал может быть поляризован под воздействием электрического поля. Это также относится к электрической проницаемости материала.

Диэлектрическая поляризация

Это количество электрической энергии, хранящейся в электрическом поле, когда к нему приложено напряжение. Поскольку это заставляет положительные заряды и отрицательные заряды течь в противоположных направлениях, это может свести на нет общее электрическое поле.

Электрический дипольный момент

Степень разделения отрицательных и положительных зарядов в системе относится к электрическому дипольному моменту. Атомы содержат как положительно, так и отрицательно заряженные частицы и расположены в материале в виде диполей. Приложение электрического заряда создает дипольный момент. Связь между дипольным моментом и электрическим полем придает материалу его диэлектрические свойства.

Электронная поляризация

Электронная поляризация возникает, когда диэлектрические молекулы, образующие дипольный момент, состоят из нейтральных частиц.

Время релаксации

После снятия приложенного электрического поля атомы в диэлектрическом материале возвращаются в исходное состояние после некоторой задержки. Это время задержки называется временем релаксации .

Пробой диэлектрика

Если напряжение на диэлектрическом материале становится слишком большим, а электростатическое поле становится слишком интенсивным, материал начинает проводить ток. Это явление называется пробоем диэлектрика .

В компонентах, в которых в качестве диэлектрической среды используются газы или жидкости, это условие меняется на противоположное, если напряжение падает ниже критической точки. Но в компонентах, содержащих твердые диэлектрики, пробой диэлектрика обычно приводит к необратимому повреждению.

Диэлектрическая дисперсия

Этот термин относится к максимальной поляризации, достигаемой диэлектрическим материалом. На это влияет время релаксации.

Типы диэлектрических материалов

Диэлектрические материалы основаны на типе молекул, присутствующих в материале.

Полярный диэлектрик

В полярном диэлектрике центры масс положительных и отрицательных частиц не совпадают. Молекулы имеют асимметричную форму, и в материале существует дипольный момент. Когда к материалу прикладывается электрическое поле, молекулы выравниваются с электрическим полем. Когда поле снимается, суммарный дипольный момент в молекулах становится равным нулю.

Примеры: вода и соляная кислота

Неполярный диэлектрик

В неполярных диэлектрических материалах центр масс положительных и отрицательных частиц совпадает. Молекулы имеют симметричную форму, а диэлектрический материал не имеет дипольного момента.

Примеры: водород, кислород и азот

Большинство диэлектрических материалов твердые. Примеры следующие:

  • фарфор (керамика)
  • слюда
  • стекло
  • пластик
  • многие оксиды металлов

Некоторые жидкости и газы также являются хорошими диэлектрическими материалами. Сухой воздух является отличным диэлектриком и используется в конденсаторах переменной емкости и некоторых типах линий передачи. Азот и гелий являются хорошими диэлектрическими газами. Дистиллированная вода является хорошим диэлектриком. Вакуум является исключительно эффективным диэлектриком.

Различия между диэлектриками и изоляторами

Диэлектрики часто путают с изоляторами, хотя между этими типами материалов есть различия. Например, все диэлектрики являются изоляторами, но не все изоляторы являются диэлектриками. Некоторые различия выделены на этом рисунке.

Диэлектрики часто путают с изоляторами. Однако между этими типами материалов есть различия.

Применение диэлектрических материалов

Диэлектрические материалы используются во многих областях. Из-за их способности накапливать заряды они чаще всего используются для хранения энергии в конденсаторах и для построения линий радиопередачи.

Диэлектрические материалы с высокой диэлектрической проницаемостью часто используются для улучшения характеристик полупроводников. В трансформаторах, реостатах, шунтирующих и заземляющих реакторах диэлектрические материалы, такие как минеральные масла, действуют как хладагенты и изоляторы.

Диэлектрики также используются в жидкокристаллических дисплеях, резонаторных генераторах и перестраиваемых микроволновых устройствах. В некоторых приложениях специально обработанные диэлектрики служат электростатическим эквивалентом магнитов. Совсем недавно для отвода тепла от технологической инфраструктуры для поддержания желаемой температуры окружающей среды использовалось погружение оборудования центра обработки данных в диэлектрический жидкий охлаждающий агент.

См. также: конденсатор , picofarad per meter , flash storage , resistive RAM , floating gate transistor , inductor , ultracapacitor , transducer and жидкостное иммерсионное охлаждение .

Последнее обновление: июнь 2022 г.

Продолжить чтение О диэлектрическом материале
  • Масштабирование новых технологий памяти, используемых для постоянной памяти
  • Выберите планировку центра обработки данных: фальшполы или подвесные кабели
  • Составьте план обеспечения непрерывности бизнеса при отключении электроэнергии с помощью этих советов
  • Как использовать Интернет вещей для повышения энергоэффективности и устойчивого развития
  • Системы и технологии охлаждения центров обработки данных и принципы их работы
неизменяемая инфраструктура

Неизменяемая инфраструктура — это подход к управлению службами и развертыванием программного обеспечения на ИТ-ресурсах, при котором компоненты заменяются, а не изменяются.

ПоискСеть

  • восточно-западный трафик

    Трафик Восток-Запад в контексте сети — это передача пакетов данных с сервера на сервер в центре обработки данных.

  • CBRS (Гражданская широкополосная радиослужба)

    Служба широкополосной радиосвязи для граждан, или CBRS, представляет собой набор операционных правил, заданных для сегмента общего беспроводного спектра и …

  • частный 5G

    Private 5G — это технология беспроводной сети, которая обеспечивает сотовую связь для случаев использования частных сетей, таких как частные …

ПоискБезопасность

  • Что такое модель безопасности с нулевым доверием?

    Модель безопасности с нулевым доверием — это подход к кибербезопасности, который по умолчанию запрещает доступ к цифровым ресурсам предприятия и …

  • RAT (троянец удаленного доступа)

    RAT (троян удаленного доступа) — это вредоносное ПО, которое злоумышленник использует для получения полных административных привилегий и удаленного управления целью . ..

  • атака на цепочку поставок

    Атака на цепочку поставок — это тип кибератаки, нацеленной на организации путем сосредоточения внимания на более слабых звеньях в организации …

ПоискCIO

  • пространственные вычисления

    Пространственные вычисления широко характеризуют процессы и инструменты, используемые для захвата, обработки и взаимодействия с трехмерными данными.

  • Пользовательский опыт

    Дизайн взаимодействия с пользователем (UX) — это процесс и практика, используемые для разработки и внедрения продукта, который обеспечит положительные и …

  • соблюдение конфиденциальности

    Соблюдение конфиденциальности — это соблюдение компанией установленных правил защиты личной информации, спецификаций или …

SearchHRSoftware

  • Поиск талантов

    Привлечение талантов — это стратегический процесс, который работодатели используют для анализа своих долгосрочных потребностей в талантах в контексте бизнеса . ..

  • удержание сотрудников

    Удержание сотрудников — организационная цель сохранения продуктивных и талантливых работников и снижения текучести кадров за счет стимулирования …

  • гибридная рабочая модель

    Гибридная модель работы — это структура рабочей силы, включающая сотрудников, работающих удаленно, и тех, кто работает на месте, в офисе компании…

SearchCustomerExperience

  • CRM (управление взаимоотношениями с клиентами) аналитика

    Аналитика CRM (управление взаимоотношениями с клиентами) включает в себя все программные средства, которые анализируют данные о клиентах и ​​представляют…

  • разговорный маркетинг

    Диалоговый маркетинг — это маркетинг, который вовлекает клиентов посредством диалога.

  • цифровой маркетинг

    Цифровой маркетинг — это общий термин для любых усилий компании по установлению связи с клиентами с помощью электронных технологий.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *