Сила, действующая на проводник с током в магнитном поле
План решения задач
1. При расчете силы Ампера, действующей на проводник с током в магнитном поле, решение следует начать с рисунка, на котором нужно отразить форму проводника и направление вектора магнитной индукции поля, в котором находится проводник.
2. Необходимо иметь в виду, что формула силы Ампера справедлива только для прямого проводника с током длиной , который находится в однородном магнитном поле с индукцией . В случае неоднородного МП, а также для проводника криволинейной формы, проводник следует разделить на элементы тока
.
Задача 32. По трем параллельным прямым проводникам, находящимся на одинаковом расстоянии друг от друга (рис. 63 а) текут одинаковые токи В двух проводниках направления токов совпадают. Вычислите для каждого проводника силу, действующую на единицу длины проводника.
Дано Решение
Сначала рассмотрим взаимодействие двух проводников – первого и второго (рис. 63 б). На второй проводник с током действует магнитное поле с индукцией , созданное током в первом проводе (соответственно, и на первый проводник действует магнитное поле , созданное вторым проводом). Выберем на втором проводнике элемент тока , проведем линию магнитной индукции
(1)
Модуль этой силы
, (2)
где угол между векторами
(3)
В формуле (3) индукция МП, созданная прямым длинным проводом с током
(4)
Направление силы определяем по правилу левой руки, располагая ладонь в плоскости рисунка: элемент тока притягивается к первому проводнику. По третьему закону Ньютона, на элемент тока первого проводника будет действовать сила
На каждый из проводников действуют магнитные поля двух других токов. Величину каждой силы парного взаимодействия -того и -того проводов запишем, подставляя индукцию магнитного поля, определяемую формулой (4) (в данной задаче ), в формулу (3):
. (5)
В соответствии с полученным выражением (5), величина силы парного взаимодействия на единицу длины одинакова для каждого проводника.
Результирующую силу, действующую на каждый проводник, находим с помощью принципа суперпозиции сил:
(6)
Покажем эти силы магнитного взаимодействия токов на рис. 63 в, учитывая, во-первых, взаимное направление токов, и во-вторых, равенство модулей всех сил парного взаимодействия . На рисунке заменим элементарную силу силой, действующей на весь i-тый провод со стороны
Согласно формулам (6), сложим по два вектора сил, действующих на каждый проводник, геометрически: по правилу параллелограмма (треугольника) (см. рис. 63 в). Так как треугольники, имеющие сторонами векторы сил , равносторонние, то модули этих сил
Модуль силы найдем по теореме косинусов:
(8)
Силы, действующие на единицу длины провода, с учетом формулы (5), представятся выражениями, соответствующими формулам (7) и (8):
; (9)
(10)
Вычисляем силы: а) на единицу длины первого и второго провода:
.
б) на единицу длины третьего провода:
.
Задача 33. Квадратная проволочная рамка со стороной расположена в одной плоскости с длинным прямым поводом (рис. 64 а). Расстояние от провода до ближайшей стороны рамки . Ток в проводе , в рамке . Определите силы , действующие на каждую сторону рамки, и силу, действующую на всю рамку.
Дано Решение
Индукция магнитного поля, создаваемого длинным прямым проводом с током в точке, находящейся на расстоянии от провода, определяется следующей формулой:
. (1)
Величина уменьшается по мере увеличения расстояния , следовательно, это магнитное поле неоднородное. Направление вектора определяем по такому вращению буравчика, чтобы винт перемещался бы вдоль тока . В области, где находится рамка, вектор направлен перпендикулярно плоскости рамки «от нас» (рис. 64 б).
Найдем силу , действующую на сторону , суммируя бесконечно малые силы , действующие на элементы тока :
; (2)
(3)
По правилу левой руки определяем, что все векторы , перпендикулярные вектору магнитной индукции , лежат в плоскости рамки, а в этой плоскости они перпендикулярны стороне . Силы являются сонаправленными, причем, сторона притягивается к проводу, так как ток в ней одинакового направления с током в проводе (см. рис. 64 б). Модуль силы :
(4)
Здесь величина (в соответствии с формулой (1), в которой для стороны ) одинакова во всех точках МП, где находится сторона рамки . Тогда действующая на нее сила
(5)
Аналогичный расчет будет и для силы , действующей на сторону рамки , так как вдоль этой стороны величина также одинакова, но меньше, чем для стороны , так как расстояние от провода больше: . Соответственно и модуль силы :
(6)
Вектор также перпендикулярен стороне рамки ( ), но он направлен от провода с током : токи в проводе и в стороне противоположных направлений, поэтому они отталкиваются (см. рис. 64 б).
Силы , действующие на стороны и рамки с током, также перпендикулярны элементам тока и вектору магнитной индукции , в соответствии с векторным произведением в формуле (2), и направления их определяем также по правилу левой руки (см. рис. 64 б). Стороны рамки и расположены одинаково по отношению к проводу с током , магнитное поле которого действует на ток в рамке. Следовательно, модули этих сил одинаковы: .
Рассчитаем, например, силу , суммируя элементарные силы по длине стороны :
. (7)
Здесь величина не одинакова вдоль стороны , но уменьшается по мере удаления элемента тока от провода, согласно формуле (1). В подинтегральном выражении (7) заменим (см. рис. 64 б), чтобы перейти к одной переменной – расстоянию элемента тока от провода; пределы по этой переменной: , – соответствуют начальному и конечному элементам тока на стороне . Продолжим расчет силы
(8)
Вычислим модули сил, действующих на стороны рамки, по формулам (5), (6) и (8):
.
.
.
Найдем результирующую силу, действующую на рамку в целом, складывая векторы сил, действующих на стороны рамки:
(9)
Здесь , так как и вектор (см. рис. 64 б). Так как сила , то модуль результирующей силы
Направление вектора результирующей силы совпадает с направлением большего из векторов сил – с вектором .
Таким образом, в неоднородном магнитном поле на данную рамку с током действует сила в направлении градиента индукции МП: , который направлен в область более сильного МП. Силы растягивают рамку с током, что соответствует данному случаю , где – магнитный момент рамки с током.
Задача 34.На оси контура с током, магнитный момент которого , находится другой такой же контур. Магнитный момент второго контура перпендикулярен оси первого контура. Расстояние межу контурами , причем, размеры контуров малы по сравнению с расстоянием Определите механический момент , действующий на второй контур.
Магнитный момент контура с током – это вектор , направленный по нормали к плоскости контура так, что направление вектора связано с направлением тока в контуре правилом буравчика (правого винта). Первый контур с током создает магнитное поле с индукцией . Величина в точках на оси кругового контура рассчитана в решении задачи 27:
, (1)
где – расстояние от точек контура до точки в МП, в которой определяется величина . Так как по условию задачи расстояние велико по сравнению с радиусом контура, то величина .
На второй контур с током в магнитном поле с индукцией действует механический (вращающий) момент , величина которого определяется следующей формулой:
. (2)
Так как размеры второго контура тоже малы, то величина несущественно изменяется вдоль плоскости второго контура. Поэтому примем ее равной , определяемой формулой (1), в которой . Согласно векторному произведению в формуле (2), вектор перпендикулярен плоскости, в которой лежат векторы и , т. е. он перпендикулярен плоскости рисунка (см. рис. 65). Этот механический момент будет стремиться повернуть второй контур до положения, в котором вектор (при этом величина обратится в нуль).
Модуль вращающего момента, согласно формуле (2),
, (3)
где – угол между векторами магнитного момента контура и индукцией магнитного поля . По условию задачи вектор , а последний создает магнитное поле , следовательно, вектор (см. рис. 65) и .
Подставляя величину магнитной индукции по формуле (1) в выражение (3), получаем следующую расчетную формулу:
. (4)
Вычисляем по формуле (4) механический момент, действующий на второй контур с током в магнитном поле, созданном первым контуром с током:
.
Задача 35.Два прямолинейных длинных параллельных проводника находятся на расстоянии друг от друга. По проводникам в одном направлении текут токи и . Какую работу (на единицу длины проводника) нужно совершить, чтобы раздвинуть эти проводники до расстояния ?
Дано Решение
Параллельные токи одинакового направления притягиваются друг к другу, т. е. второй проводник с током притягивается к первому силой Ампера . Чтобы его отодвинуть от первого проводника, нужно приложить внешнюю силу , незначительно превышающую силу притяжения проводников: . Работа этой внешней силы
(1)
Найдем силу Ампера – силу магнитного взаимодействия проводников с током, как силу, с которой магнитное поле первого проводника действует на ток во втором проводнике:
(2)
В уравнении (2) суммируются элементарные силы , действующие на элементы тока , расположенные по всей длине второго проводника с током. Направление сил определяем по правилу левой руки, размещая ладонь в плоскости рисунка (рис. 66), так как вектор магнитной индукции перпендикулярен плоскости рисунка (он направлен «к нам»). Силы , действующие на элементы тока , сонаправлены, поэтому можем складывать их модули:
(3)
Здесь , так как вектор ; – магнитная индукция поля, созданного прямым током , она определяется формулой
, (4)
где – расстояние от проводника с током до точки, в которой определяется индукция магнитного поля.
Подставим величину в подинтегральное выражение (3) и выполним интегрирование, отметив, что расстояние всех элементов тока второго проводника от первого одинаково, так как проводники параллельные:
(5)
Сила Ампера, действующая на единицу длины проводника, в соответствии с формулой (5), представится следующим выражением:
(6)
Согласно полученной формуле, эта сила уменьшается с увеличением расстояния между проводниками, т. е. имеем дело с работой переменной силы, которая определяется, как сумма элементарных работ, интегралом (1). Работу на единицу длины проводника найдем, подставляя силу по формуле (6) в подинтегральное выражение (1):
(7)
Вычислим работу, которую совершает внешняя сила при удалении от первого проводника с током второго проводника с током на единицу его длины, принимая, что магнитная проницаемость воздуха :
.
Задача 36.Тонкий проводник в виде полукольца радиусом находится в однородном магнитном поле с индукцией . Плоскость полукольца перпендикулярна линиям магнитной индукции, а подводящие провода расположены вдоль линий . По проводнику протекает ток . Определите силу , действующую на проводник.
Выделим на полукольце элемент тока и определим направление действующей на него силы Ампера
(1)
Для этого используем правило левой руки, располагая ладонь в плоскости рисунка (рис. 67). Так как элементы тока кольцевого проводника имеют различную ориентацию, то векторы , перпендикулярные элементам тока , образуют «веер векторов» в плоскости полукольца. Для сложения таких векторов каждый элементарный вектор силы разложим на составляющие по осям :
(2)
Силу, действующую на весь проводник длины , находим, суммируя по всей длине полукольца векторы сил, действующих на элементы тока:
(3)
Сила, действующая на проводник с током в магнитном поле
План решения задач
1. При расчете силы Ампера, действующей на проводник с током в магнитном поле, решение следует начать с рисунка, на котором нужно отразить форму проводника и направление вектора магнитной индукции поля, в котором находится проводник.
2. Необходимо иметь в виду, что формула силы Ампера справедлива только для прямого проводника с током длиной , который находится в однородном магнитном поле с индукцией . В случае неоднородного МП, а также для проводника криволинейной формы, проводник следует разделить на элементы тока и показать на рисунке векторы сил , действующих на элементы тока. Для этого необходимо выбрать два элемента тока, расположенных симметрично. Направление векторов определяем по правилу векторного произведения или по правилу левой руки: располагаем руку так, чтобы линии магнитной индукции входили в ладонь, четыре пальца направляем вдоль тока , тогда отогнутый большой палец покажет направление силы Сила, действующая на весь проводник, определяется как сумма векторов элементарных сил по всей длине проводника :
.
3. Свободный замкнутый контур с током (рамка или виток) устанавливается в магнитном поле так, чтобы его магнитный момент был сонаправлен с вектором магнитной индукции . При этом механический (вращающий) момент , а силы Ампера , действующие на элементы тока контура, растягивают его. Такое положение ( контура с током в однородном магнитном поле является состоянием устойчивого равновесия контура.
Задача 32. По трем параллельным прямым проводникам, находящимся на одинаковом расстоянии друг от друга (рис. 63 а) текут одинаковые токи В двух проводниках направления токов совпадают. Вычислите для каждого проводника силу, действующую на единицу длины проводника.
Дано Решение
Сначала рассмотрим взаимодействие двух проводников – первого и второго (рис. 63 б). На второй проводник с током действует магнитное поле с индукцией , созданное током в первом проводе (соответственно, и на первый проводник действует магнитное поле , созданное вторым проводом). Выберем на втором проводнике элемент тока , проведем линию магнитной индукции (это окружность радиусом ) и по касательной к ней направим вектор . Сила Ампера, действующая на выбранный элемент тока второго проводника со стороны МП первого тока
(1)
Модуль этой силы
, (2)
где угол между векторами и (линия магнитного поля расположена в плоскости, перпендикулярной проводу). Согласно формуле (2), сила, действующая со стороны первого провода на единицу длины второго провода:
(3)
В формуле (3) индукция МП, созданная прямым длинным проводом с током в точках на расстоянии от провода, определяется следующим выражением:
(4)
Направление силы определяем по правилу левой руки, располагая ладонь в плоскости рисунка: элемент тока притягивается к первому проводнику. По третьему закону Ньютона, на элемент тока первого проводника будет действовать сила , т. е. равная по модулю (см. формулу (3)) и противоположно направленная (см. рис. 63 б). Таким образом, параллельные токи одинакового направления притягиваются друг к другу. Изменим мысленно на рис. 63 б направление второго тока на противоположное (как ток ) и правило левой руки покажет, что сила, действующая на элемент тока , направлена вправо, т. е. параллельные токи противоположных направлений взаимно отталкиваются.
На каждый из проводников действуют магнитные поля двух других токов. Величину каждой силы парного взаимодействия -того и -того проводов запишем, подставляя индукцию магнитного поля, определяемую формулой (4) (в данной задаче ), в формулу (3):
. (5)
В соответствии с полученным выражением (5), величина силы парного взаимодействия на единицу длины одинакова для каждого проводника.
Результирующую силу, действующую на каждый проводник, находим с помощью принципа суперпозиции сил:
(6)
Покажем эти силы магнитного взаимодействия токов на рис. 63 в, учитывая, во-первых, взаимное направление токов, и во-вторых, равенство модулей всех сил парного взаимодействия . На рисунке заменим элементарную силу силой, действующей на весь i-тый провод со стороны -того тока, так как эти силы сонаправлены: .
Согласно формулам (6), сложим по два вектора сил, действующих на каждый проводник, геометрически: по правилу параллелограмма (треугольника) (см. рис. 63 в). Так как треугольники, имеющие сторонами векторы сил , равносторонние, то модули этих сил
(7)
Модуль силы найдем по теореме косинусов:
(8)
Силы, действующие на единицу длины провода, с учетом формулы (5), представятся выражениями, соответствующими формулам (7) и (8):
; (9)
(10)
Вычисляем силы: а) на единицу длины первого и второго провода:
.
б) на единицу длины третьего провода:
.
Задача 33. Квадратная проволочная рамка со стороной расположена в одной плоскости с длинным прямым поводом (рис. 64 а). Расстояние от провода до ближайшей стороны рамки . Ток в проводе , в рамке . Определите силы , действующие на каждую сторону рамки, и силу, действующую на всю рамку.
Дано Решение
Индукция магнитного поля, создаваемого длинным прямым проводом с током в точке, находящейся на расстоянии от провода, определяется следующей формулой:
. (1)
Величина уменьшается по мере увеличения расстояния , следовательно, это магнитное поле неоднородное. Направление вектора определяем по такому вращению буравчика, чтобы винт перемещался бы вдоль тока . В области, где находится рамка, вектор направлен перпендикулярно плоскости рамки «от нас» (рис. 64 б).
Найдем силу , действующую на сторону , суммируя бесконечно малые силы , действующие на элементы тока :
; (2)
(3)
По правилу левой руки определяем, что все векторы , перпендикулярные вектору магнитной индукции , лежат в плоскости рамки, а в этой плоскости они перпендикулярны стороне . Силы являются сонаправленными, причем, сторона притягивается к проводу, так как ток в ней одинакового направления с током в проводе (см. рис. 64 б). Модуль силы :
(4)
Здесь величина (в соответствии с формулой (1), в которой для стороны ) одинакова во всех точках МП, где находится сторона рамки . Тогда действующая на нее сила
(5)
Аналогичный расчет будет и для силы , действующей на сторону рамки , так как вдоль этой стороны величина также одинакова, но меньше, чем для стороны , так как расстояние от провода больше: . Соответственно и модуль силы :
(6)
Вектор также перпендикулярен стороне рамки ( ), но он направлен от провода с током : токи в проводе и в стороне противоположных направлений, поэтому они отталкиваются (см. рис. 64 б).
Силы , действующие на стороны и рамки с током, также перпендикулярны элементам тока и вектору магнитной индукции , в соответствии с векторным произведением в формуле (2), и направления их определяем также по правилу левой руки (см. рис. 64 б). Стороны рамки и расположены одинаково по отношению к проводу с током , магнитное поле которого действует на ток в рамке. Следовательно, модули этих сил одинаковы: .
Рассчитаем, например, силу , суммируя элементарные силы по длине стороны :
. (7)
Здесь величина не одинакова вдоль стороны , но уменьшается по мере удаления элемента тока от провода, согласно формуле (1). В подинтегральном выражении (7) заменим (см. рис. 64 б), чтобы перейти к одной переменной – расстоянию элемента тока от провода; пределы по этой переменной: , – соответствуют начальному и конечному элементам тока на стороне . Продолжим расчет силы
(8)
Вычислим модули сил, действующих на стороны рамки, по формулам (5), (6) и (8):
.
.
.
Найдем результирующую силу, действующую на рамку в целом, складывая векторы сил, действующих на стороны рамки:
(9)
Здесь , так как и вектор (см. рис. 64 б). Так как сила , то модуль результирующей силы
Направление вектора результирующей силы совпадает с направлением большего из векторов сил – с вектором .
Таким образом, в неоднородном магнитном поле на данную рамку с током действует сила в направлении градиента индукции МП: , который направлен в область более сильного МП. Силы растягивают рамку с током, что соответствует данному случаю , где – магнитный момент рамки с током.
Задача 34.На оси контура с током, магнитный момент которого , находится другой такой же контур. Магнитный момент второго контура перпендикулярен оси первого контура. Расстояние межу контурами , причем, размеры контуров малы по сравнению с расстоянием Определите механический момент , действующий на второй контур.
Магнитный момент контура с током – это вектор , направленный по нормали к плоскости контура так, что направление вектора связано с направлением тока в контуре правилом буравчика (правого винта). Первый контур с током создает магнитное поле с индукцией . Величина в точках на оси кругового контура рассчитана в решении задачи 27:
, (1)
где – расстояние от точек контура до точки в МП, в которой определяется величина . Так как по условию задачи расстояние велико по сравнению с радиусом контура, то величина .
На второй контур с током в магнитном поле с индукцией действует механический (вращающий) момент , величина которого определяется следующей формулой:
. (2)
Так как размеры второго контура тоже малы, то величина несущественно изменяется вдоль плоскости второго контура. Поэтому примем ее равной , определяемой формулой (1), в которой . Согласно векторному произведению в формуле (2), вектор перпендикулярен плоскости, в которой лежат векторы и , т. е. он перпендикулярен плоскости рисунка (см. рис. 65). Этот механический момент будет стремиться повернуть второй контур до положения, в котором вектор (при этом величина обратится в нуль).
Модуль вращающего момента, согласно формуле (2),
, (3)
где – угол между векторами магнитного момента контура и индукцией магнитного поля . По условию задачи вектор , а последний создает магнитное поле , следовательно, вектор (см. рис. 65) и .
Подставляя величину магнитной индукции по формуле (1) в выражение (3), получаем следующую расчетную формулу:
. (4)
Вычисляем по формуле (4) механический момент, действующий на второй контур с током в магнитном поле, созданном первым контуром с током:
.
Задача 35.Два прямолинейных длинных параллельных проводника находятся на расстоянии друг от друга. По проводникам в одном направлении текут токи и . Какую работу (на единицу длины проводника) нужно совершить, чтобы раздвинуть эти проводники до расстояния ?
Дано Решение
Параллельные токи одинакового направления притягиваются друг к другу, т. е. второй проводник с током притягивается к первому силой Ампера . Чтобы его отодвинуть от первого проводника, нужно приложить внешнюю силу , незначительно превышающую силу притяжения проводников: . Работа этой внешней силы
(1)
Найдем силу Ампера – силу магнитного взаимодействия проводников с током, как силу, с которой магнитное поле первого проводника действует на ток во втором проводнике:
(2)
В уравнении (2) суммируются элементарные силы , действующие на элементы тока , расположенные по всей длине второго проводника с током. Направление сил определяем по правилу левой руки, размещая ладонь в плоскости рисунка (рис. 66), так как вектор магнитной индукции перпендикулярен плоскости рисунка (он направлен «к нам»). Силы , действующие на элементы тока , сонаправлены, поэтому можем складывать их модули:
(3)
Здесь , так как вектор ; – магнитная индукция поля, созданного прямым током , она определяется формулой
, (4)
где – расстояние от проводника с током до точки, в которой определяется индукция магнитного поля.
Подставим величину в подинтегральное выражение (3) и выполним интегрирование, отметив, что расстояние всех элементов тока второго проводника от первого одинаково, так как проводники параллельные:
(5)
Сила Ампера, действующая на единицу длины проводника, в соответствии с формулой (5), представится следующим выражением:
(6)
Согласно полученной формуле, эта сила уменьшается с увеличением расстояния между проводниками, т. е. имеем дело с работой переменной силы, которая определяется, как сумма элементарных работ, интегралом (1). Работу на единицу длины проводника найдем, подставляя силу по формуле (6) в подинтегральное выражение (1):
(7)
Вычислим работу, которую совершает внешняя сила при удалении от первого проводника с током второго проводника с током на единицу его длины, принимая, что магнитная проницаемость воздуха :
.
Задача 36.Тонкий проводник в виде полукольца радиусом находится в однородном магнитном поле с индукцией . Плоскость полукольца перпендикулярна линиям магнитной индукции, а подводящие провода расположены вдоль линий . По проводнику протекает ток . Определите силу , действующую на проводник.
Выделим на полукольце элемент тока и определим направление действующей на него силы Ампера
(1)
Для этого используем правило левой руки, располагая ладонь в плоскости рисунка (рис. 67). Так как элементы тока кольцевого проводника имеют различную ориентацию, то векторы , перпендикулярные элементам тока , образуют «веер векторов» в плоскости полукольца. Для сложения таких векторов каждый элементарный вектор силы разложим на составляющие по осям :
(2)
Силу, действующую на весь проводник длины , находим, суммируя по всей длине полукольца векторы сил, действующих на элементы тока:
(3)
Покажем на рисунке вектор , действующий на элемент тока , расположенный симметрично элементу тока . По рисунку видно, что вектор , следовательно, они попарно компенсируются при суммировании и в результате этого Составляющие силы Ампера , действующие на все элементы тока, сонаправлены, поэтому векторное равенство (3) заменяем скалярным:
(4)
Здесь проекция силы (см. треугольник на рис. 67). Элементарная сила Ампера
, (5)
где – угол между векторами элемента тока и магнитной индукции ; по условию задачи , поэтому
Подставляя величину проекции силы в уравнение (4), перепишем его в следующем виде:
(6)
В подинтегральном выражении содержатся две переменные – элемент длины проводника и угол . Связь этих переменных находим из малого треугольника с гипотенузой (см. рис. 67): . Перейдем к переменной и запишем для нее пределы интегрирования. При сложении сил от всех элементов тока полукольца переменная изменяется от нуля (т. на рис. 67) до (т. на рис. 67), где – радиус полукольца. Тогда интеграл (6) принимает следующий вид:
(7)
Вычислим модуль силы Ампера, действующей в магнитном поле на полукольцо с током:
Вектор , а величина , следовательно, сила Ампера направлена вдоль оси (см. рис. 67).
Задача 37.Тонкий проводник в виде полукольца радиусом находится в однородном магнитном поле с индукцией . Вектор лежит в плоскости полукольца и перпендикулярен его диаметру (рис. 68). По проводнику течет ток . Определите силу , действующую на полукольцо.
Сделаем чертеж (см. рис. 68), на котором покажем элемент тока , лежащий в плоскости рисунка. Сила Ампера, действующая на данный элемент тока, определяется по закону Ампера:
(1)
Силу, действующую на все элементы тока полукольца, найдем, суммируя элементарные силы:
. (2)
Согласно векторному произведению (1), сила перпендикулярна элементу тока и магнитной индукции . Так как оба вектора лежат в плоскости рисунка, то вектор силы перпендикулярен плоскости рисунка и направлен «к нам». Для всех элементов тока векторы сонаправлены, следовательно, и вектор силы , действующей на полукольцо, также направлен перпендикулярно плоскости рисунка.
Модуль этого вектора находим, используя формулы (1) и (2):
Конспект «Действие магнитного поля на проводник с током»
«Действие магнитного поля на проводник с током»
Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.
Сила Ампера зависит от длины проводника с током, силы тока в проводнике, модуля магнитной индукции и расположения проводника относительно линий магнитной индукции: FA = BIlsinа.
Для определения направления силы Ампера применяют правило левой руки. Если левую руку расположить в магнитном поле так, чтобы силовые линии входили в ладонь, а четыре пальца были направлены по току, то отогнутый большой палец укажет направление силы, действующей на проводник.
Магнитное взаимодействие можно наблюдать между двумя параллельными токами (опыт Ампера): два параллельных проводника с током отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают.
Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника l и силе тока I в проводнике. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции В. Соответственно, F = BIl. В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записывается в том случае, если линии магнитной индукции перпендикулярны проводнику с током. Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.
Единица магнитной индукции [В] = 1Н / 1А • 1м = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1Н при силе тока в проводнике 1 А.
Магнитное поле действует также на движущиеся заряженные частицы. При этом сила (сила Лоренца) зависит от модуля магнитной индукции, заряда частицы, а также от модуля и направления её скорости.
Электрический двигатель
Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся, потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ab, противоположна силе, действующей на сторону cd.
Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.
В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.
Действие магнитного поля на проводник с током
Конспект урока по физике в 8 классе «Действие магнитного поля на проводник с током».
Следующая тема: «Электромагнитная индукция. Опыты Фарадея».
1. Действие магнитного поля на проводник с током. Сила Ампера
13
Лекция 9
Магнитное поле в вакууме
Вопросы
Действие магнитного поля на проводник с током. Сила Ампера.
Взаимодействие параллельных проводников с током.
Действие магнитного поля на движущийся заряд. Сила Лоренца.
Эффект Холла.
Действие магнитного поля на проводник с током изучалось Эрстедом и Ампером. Сила, действующая со стороны магнитного поля на проводник с током, называется силой Ампера.
Закон Ампера, (1)
, (2)
Раскрытие векторного произведения
Правило левой руки
Если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.
Правило буравчика (правого винта)
Воображаемый буравчик располагается перпендикулярно плоскости, содержащей вектор и проводник с током, затем его рукоятка поворачивается от направления тока к направлению вектора . Поступательное перемещение буравчика показывает направление силы Ампера .
Сила Ампера – нецентральная сила (в отличие от центральных сил (Кулона, тяжести и др.). При = /2 , отсюда
, . (3)
В системе единиц СИ за единицу магнитной индукции принята индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила Ампера 1 Н. Эта единица называется тесла (Тл).
Тесла – очень крупная единица. Магнитное поле Земли приблизительно равно 0,5·10–4 Тл. Большой лабораторный электромагнит может создать поле не более 5 Тл.
Принцип суперпозиции
Для нахождения результирующей силы, действующей на криволинейный участок проводника с током в магнитном поле, нужно разбить его на малые прямолинейные отрезки, затем определить силы Ампера, действующие на каждый такой отрезок и вычислить векторную сумму полученных сил, т.е. в пределе нужно взять интеграл вдоль всей длины провода :
. (4)
Пример 1. Определить результирующую силу Ампера, действующую на проводник ADC с током , находящийся в однородном магнитном поле с вектором индукции .Пусть , , . Тогда силы Ампера, действующие на участки проводника:
, .
Результирующая сила Ампера, действующая на проводник ADC:
.
Фактически при вычислении силы Ампера ломаный проводник ADC можно заменить прямолинейным проводником АС.
Отсюда следует важный вывод: сила Ампера, действующая на криволинейный участок проводника с током в однородном магнитном поле, не зависит от формы проводника, а зависит только от расстояния между началом и концом этого участка (т. е. фактически от координат начала и конца участка).
Результаты примера 1 позволяют сделать еще один вывод: сила Ампера, действующая на замкнутый проводник с током (рамку, виток с током) в однородном магнитном поле, равна нулю.
2. Взаимодействие параллельных проводников с током
Для бесконечно длинного проводника 1, (5)
. (6)
Аналогично
. (6а)
При ,
. (7)
Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются.
Из (7) следует эталон силы тока: 1Ампер – это сила постоянного тока при длине проводников и расстоянию между ними в 1 м в вакууме, равная 210-7 Н.
Из (7) следует также значение магнитной постоянной (при I1 = I2 = I)
,
где Гн – Генри, единица индуктивности.