Что такое светодиод
Дата публикации: .
Категория: Лампы.
Светодиод – это разновидность диода, электронного прибора обладающего односторонней проводимостью электрического тока. Диод, или как его еще называют выпрямительный диод, обладая своими уникальными свойствами изменять электрическое сопротивление в зависимости от полярности приложенного к нему напряжения, применяют для выпрямления переменного тока. Конструкция выпрямительного диода может строиться как на базе радиоэлектронных ламп, так и на базе полупроводниковых кристаллов.
Принцип действия светодиода
В отличие от выпрямительного диода светодиод выполняется только на базе полупроводниковых кристаллов. Принцип действия у обоих электронных приборов основан на инжекции (диффузии) электронов и дырок в области p—n перехода, то есть области контакта двух полупроводников с разным типом проводимости. Под инжекцией подразумевается переход избыточных электронов из области n-типа в область p-типа, а также переход избыточных дырок из области p-типа в область n-типа, где существует их недостаток. В результате инжекции в обеих областях, возле границы перехода, образуются не скомпенсированные слои электронов и дырок. На стороне n-перехода слой дырок, а на стороне p-перехода слой электронов. Эти слои образуют так называемый запирающий слой, внутреннее электрическое поле которого препятствует дальнейшей инжекции (рисунок 1).
Рисунок 1. Запирающий слой p—n перехода
Наступает определенное равновесие. При подаче отрицательного напряжения к области кристалла с проводимостью n-типа и положительного напряжения к области кристалла с проводимостью p-типа под действием внешнего электрического поля направленного против запирающего поля открывается путь основным носителям через p—n переход. Запирающий слой становится тоньше и его сопротивление уменьшается. Происходит массовое перемещение свободных электронов из n-области в p-область и дырок из p-области в n-область. В цепи возникает электрический ток (рисунок 2).
Рисунок 2. Включение в прямом направлении
Если подать обратное напряжение, то запирающий слой становится толще и электрическое сопротивление значительно увеличивается. Электрический ток при подаче обратного напряжения практически отсутствует (рисунок 3).
Рисунок 3. Включение в обратном направлении
Нужно помнить, что допустимая величина обратного напряжения у светодиодов, при которой не происходит его пробоя, значительно ниже, чем у выпрямительных диодов. Зачастую эта величина равна максимальному значению прямого напряжения. Поэтому, включая светодиод в электрическую цепь переменного тока, не следует забывать про амплитудное значение напряжения. Для синусоидального напряжения частотой 50 Гц его амплитудное значение в 1,41 раза больше чем действующее. Такие включения используются редко, так как назначение светодиода все-же «светиться», а не «выпрямлять». Обычно светодиод включается на постоянное напряжение.
При перемещении свободных электронов через p—n переход электроны и дырки излучают фотоны по причине их перехода с одного энергетического уровня на другой. Не все полупроводниковые материалы эффективно излучают свет при инжекции. Например, диоды, выполненные из кремния, германия, карбида кремния, свет практически не излучают. А диоды, выполненные из арсенида галлия или сульфида цинка, обладают наилучшими излучающими способностями.
Излучаемый свет не когерентен и лежит в узком спектре. В связи с этим у каждого светодиода свой спектр волн, со своей длиной и частотой, которые могут быть видны или не видны человеческому глазу. В качестве примера применения светодиодов с не видимым спектром излучения, можно привести светодиоды, применяемые в пультах дистанционного управления любой современной радио-электронной аппаратуры. Для того чтобы увидеть излучение возьмите пульт дистанционного управления и любой сотовый телефон имеющий фото-видео камеру. Переведите телефон в режим съемки видео, направьте объектив камеры на передний край пульта и нажмите на пульте любую из кнопок. При этом на экране телефона вы будете наблюдать свечение светодиода.
Спектр излучения зависит от химического состава кристалла полупроводника. Каждый спектр излучения имеет свой цвет. Поэтому светодиоды излучающие свет в видимом человеческому глазу спектре, воспринимаются разноцветными, красными, зелеными, синими.
История создания светодиодов
Свечение твердотельного диода впервые обнаружил британский экспериментатор Генри Раунд (Henry Round). В 1907 году, проводя свои исследовательские работы он случайно заметил, что вокруг точечного контакта работающего диодного детектора возникает свечение. Однако вывода о практическом применении этого явления им сделано не было.
Через несколько лет, в 1922 году, Олег Владимирович Лосев во время своих ночных радиовахт, точно также как и Генри раунд, случайно стал наблюдать за возникающим свечением кристаллического детектора. Для получения устойчивого свечения кристалла, он подавал на точечный контакт диодного детектора напряжение от гальванической батарейки и тем пропускал через него электрический ток. Это была первая попытка найти практическое применение работы светодиода.
В 1951 году в США начались исследовательские работы по разработке «полупроводниковых лампочек», действие которых было основано на «эффекте Лосева». В 1961 году, была открыта и запатентована технология изготовления инфракрасного светодиода, авторами которой стали Роберт Байард и Гари Питтман. Через год, в 1962 году, Ник Холоньяк (Nick Holonyak), работающий в компании General Electric, изготовил первый в мире красный светодиод, работающий в световом диапазоне и нашедший впоследствии первое практическое применение. Он имел низкую энерго-эффективность, потреблял сравнительно большой ток, но при этом имел тусклое свечение. Тем не менее, технология получилась перспективной и получила дальнейшее развитие.
Следующим шагом в развитии светодиодной техники явилось изобретение желтого светодиода. Бывший ученик Ника Холоньяка — Джордж Крафорд, в 1972 году вместе с изобретением желтого светодиода, увеличил в 10 раз яркость свечения красных и красно-оранжевых светодиодов. Практически одновременно с этими изобретениями, в начале 70-х годов, были получены светодиоды зеленого цвета. Свое применение они нашли в калькуляторах, наручных часах, электронных приборах, световых указателях и дорожных светофорах. Значительного увеличения светового потока, до 1 люмена (Лм), красных, желтых и зеленых светодиодов смогли достичь только к 1990 году.
В 1993 году, японский инженер, работник компании Nichia, Суджи Накамура (Shuji Nakamura), смог получить первый светодиод высокой яркости который излучал синий цвет. Это изобретение стало революцией в развитии светодиодной техники, так как были получены светодиоды трех основных цветов, красного, зеленого и синего. С этого момента можно было получить свечение любого цвета, включая белого.
В 1996 году появились первые белые светодиоды. Они состояли из двух светодиодов – синего и ультрафиолетового с люминофорным покрытием.
Светодиоды белого цвета
К 2011 году были построены конструкции светодиодов белого свечения, которые обеспечивали светоотдачу до 210 Лм/Вт. Каким же образом ученые и инженеры добились таких успехов. Для этого рассмотрим известные на сегодняшний день способы получения светодиодов белого цвета.
Известно, что все цвета и оттенки складываются из трех основных цветов – красного, зеленого, синего. Белый свет не исключение. Существует четыре варианта получения излучения светодиодами белого цвета (рисунок 4).
Рисунок 4. Получение светодиодов излучающих белый свет
Первый вариант – использование в конструкции светодиода трех отдельных p—n переходов излучающих красный, зеленый и синий свет. При этом варианте для каждого p—n перехода требуется свой собственный источник питания. Регулируя напряжение на каждом p—n переходе добиваются создания белого свечения со своим оттенком (цветовой температурой).
Второй вариант – при этом варианте в конструкции светодиода используется один p—n переход синего свечения, покрытый желтым или желто-зеленым люминофором. Такой вариант применяется чаще всего, так как для работы светодиода требуется один источник питания. Однако цветовые характеристики этого светодиода уступают характеристикам светодиодов получаемых другими способами.
Третий вариант – здесь также используется один p—n переход синего свечения, но покрытый слоями люминофоров двух цветов – красного и зеленого. Конструкции светодиодов, изготавливаемые данным способом, позволяют получить лучшие цветовые характеристики.
Четвертый вариант – конструкция светодиода при этом варианте строится на основе ультрафиолетового светодиода покрываемого тремя слоями люминофоров красным, зеленым и синим. Конструкции таких светодиодов самые не экономичные, так как преобразование коротковолновых ультрафиолетовых лучей в длинноволновые видимые лучи, во всех трех слоях люминофора, сопровождается потерями энергии.
Значение светоотдачи сверхярких светодиодов белого цвета в 210 Лм/Вт пока было достигнуто только в лабораторных условиях. Максимальная же светоотдача ярких светодиодов доступных для общего применения не превышает 120 Лм/Вт. Такие светодиоды очень дороги и используются редко. Основная масса светодиодов имеет светоотдачу 60 – 95 Лм/Вт.
Светоотдача светодиода, так же как и любого другого источника света работающего под действием электрической энергии, зависит от величины проходящего через него тока. Чем больше ток, тем больше светоотдача. Но также как и любого другого источника света, большая часть энергии в нем превращается в тепло. Нагрев светодиодов сопровождается падением их светоотдачи. В связи с этим производители вынуждены использовать массивные металлические корпуса для охлаждения кристалла и рассеивания выделяющегося тепла в окружающую среду. Такие меры позволяют несколько повысить эффективность его использования.
Если сравнивать энергоэффективность различных источников света то выяснится, что светодиоды имея коэффициент полезного действия 40 – 45% являются самыми экономичными. К примеру, лапы накаливания имеют КПД равный 2 – 5%, люминесцентные лампы – 15 – 25%, газоразрядные лампы высокого давления – 24 – 30%.
Режим работы светодиода, когда кристалл имеет температуру близкую к комнатной, несомненно, благоприятно сказывается на его сроке службы. При таких режимах работы светодиод способен работать до 50000 часов не теряя светоотдачи. Если ставится цель повысить светоотдачу увеличивая ток, то это само собой пагубно сказывается на его сроке службы. В первую очередь к концу срока службы значительно падает светоотдача. Падение происходит плавно и достигает 70% от начального значения. Во вторых увеличивается вероятность его полного выхода из строя.
Этот факт говорит о том, что выбирая светильники и лампы при разработке проектов освещения необходимо каждый раз оценивать какой из них более выгоден с экономической точки зрения.
Светодиоды (led) — принцип работы, подключение и виды led
Светодиод – это устройство для освещение, ставшие крайне популярными в последнее десятилетие. Он имеет маленькие размеры, различный спектр света, долгий срок эксплуатации, минимальное энергопотребление. Любой светодиод состоит из кристалла, находящимся на токопроводящей основе. К этой пластинке подключены контакты и особая оптическая система. В английском языке светодиод называется LED и переводится как light emitting diode.
Для достижения большого пространства между линзой и кристаллом заполняется силиконом, а пластина является кроме базой, также теплоотводом. В статье подробно рассмотрены все особенности устройства светодиодов и принцип их работы. В качестве бонуса статья содержит два ролика и одну подробную статью.
Различные светодиоды.
Технические характеристики
Часто в руки попадает светодиод, параметры которого нам не известны. Подключение светодиода напрямую к источнику питания, при малейшем превышении номинального рабочего напряжения резко увеличит протекающий через него ток и выведет из строя. Обычно в таких случаях я “на глазок” включал последовательно с ним резистор 1- 1.5КОм (при низковольтном питании) и светодиод работал уже в довольно широких приделах напряжения. Но бывают случаи, когда необходимо более точно определить параметры неизвестного светодиода, а идентифицировать его марку нет возможности.
Светодиод это устройство с односторонней проводимостью на базе полупроводниковых кристаллов, преобразующее электрический ток в световое излучение в узком диапазоне спектра посредством диффузии электронно-дырочного перехода.
Более-менее точно определить параметры можно экспериментально, используя его стабилизирующие свойства по следующей методике, для ее реализации нам потребуется блок питания с плавной регулировкой выходного напряжения от нуля до 10-12в, тестер (мультиметр) и конечно же ваши очумелые ручки. Сразу оговорюсь что к лазерным светодиодам такая методика не подходит. Исследуемый светодиод в соответствии с полярностью (полярность можно прозвонить при помощи того-же мультиметра, но если ошибитесь – ничего страшного, светодиод просто не будет светится) подключают к регулируемому блоку питания включив последовательно в цепь резистор сопротивлением около 500 Ом.
Материал в тему: все о тепловом реле.
Постепенно увеличивают напряжение выдаваемое блоком питания, постоянно измеряя и сравнивая значения напряжения на выводах блока питания и ножках светодиода т.е. до токоограничивающего резистора и после него. Удобнее когда блок питания имеет собственную индикацию выдаваемого напряжения или проводить измерения двумя вольтметрами.
Таблица использования светодиодных источников с разной температурой свечения.
Если светодиод не светится возможно он инфракрасный (посмотрите на него через объектив цифрового фотоаппарата). Запоминаем это напряжение, добавляем процентов 15-20 (в зависимости от яркости свечения), это будет приближенное номинальное напряжение исследуемого светодиода. Если напряжение на ножках светодиода и выходе блока питания изменяется пропорционально от нуля до максимального значения выдаваемого вашим блоком питания (но не более 20 вольт), при этом свечения светодиода не наблюдается, значит вероятнее всего светодиод неисправный или неправильно соблюдена полярность при подключении.
Светодиодные лампы.
Если напряжение на ножках светодиода и выходе блока питания изменяется пропорционально от нуля до почти максимального значения, но светодиод нормально светится начиная с 3-5 вольт, то скорее всего токоограничивающий резистор находится внутри светодиода. В этом случае лучше просто ограничить значение тока протекающего через светодиод не более 17-20 мА ориентируясь по яркости свечения светодиода. Затем выставив на регулируемом блоке питания ноль вольт, подключаем к нему светодиод напрямую или для гарантии через резистор сопротивлением 10 ОМ, включив в цепь миллиамперметр (А) и плавно поднимаем напряжение до расcчитанного (измеренное плюс 10-15 %).
Таблица зависимости рабочего напряжения светодиода от его цвета.
Ток протекающий через светодиод в этом состоянии будет в пределах его номинального значения. Определенные таким образом значения параметры светодиода будут довольно “грубыми” но ими уже можно руководствоваться при расчете или попытке подобрать по ним светодиод из справочника. Чтобы “набить руку и глаз :-))” можно сначала поэкспериментировать со светодиодами с известным характеристиками.
Из чего состоит
Светодиод – диод с p-n переходом, испускающим определённый спектр при пропускании тока в прямом направлении. Цвет свечения напрямую зависит от материалов полупроводника. Важно помнить, что в обратном направлении светодиод ток не пропускает. Светодиод начинает испускать фотоны при переходе напряжения через определённое значение, причём для каждого цвета оно разное – именно поэтому каждому цвету желательно подбирать свой резистор, иначе мы сталкиваемся с частой ошибкой – подключение RGB-светодиода через одинаковые резисторы, что приводит к неравномерной интенсивности цветов. Важно помнить, что хоть светодиоду и необходимо некоторое конкретное напряжение для работы, более важным параметром является ток.
У каждого типа светодиодов он также свой, но имеются средние значения. Например, для большинства 3 – и 5 мм светодиодов максимальный ток чуть превышает 20 мА. Однако, лучше держать его чуть пониже для увеличения ресурса – около 10 мА. Если Вам не нужно освещать им конкретную площадь, то будет достаточно и меньшего тока, например, для индикации события.
Красный, синий, желтый, зеленый светодиоды.
Плюсы светодиодов:
- Яркие точные цвета
- Большой срок службы (стремится к бесконечности)
- Большой КПД, малый нагрев
- Миниатюрный размер кристалла
Недостатки:
- Необходима схема ограничения тока (сложнее, чем ограничение напряжения для ламп накаливания)
- Неизбежное повреждение при превышении тока
Разновидности
Светодиоды отличаются по:
- Размеру внешнего корпуса
- Форме корпуса (круглые – самые популярные, но прямоугольные тоже часто встречаются)
- Типу линзы (направленная – прозрачная – или рассеивающая, матовая)
По форме светодиоды бывают самые разнообразные, но кристалл в основе не зависит от внешней оболочки. По размеру – от самых мелких светодиодов в корпусе типоразмера 0402 (0.5×1мм) до 100-ваттных светодиодов размером 50×50 мм. В зависимости от эффекта, ставят несколько кристаллов одного или разных цветов.
Одного – для повышения мощности, в таком случае они подключаются параллельно и в итоге фокусируются как единый светодиод. Разных – для многоцветного эффекта, например, для индикации (обычно синий-красный, встречается во многих аккумуляторных устройствах как индикатор работы/зарядки) или для отображения большого спектра цветов (как например RGB-светодиод, способный отобразить все возможные цвета – состоит из 3 кристаллов, красного (R), зелёного (G), синего (B)).
Параметры редких светодиодов представлены в таблице ниже:
Таблица основных параметров редких светодиодов.
Светодиоды отличаются по длине волны – они способны точно испускать свет определённого спектра, в частности, ультрафиолетовыми светодиодами можно засвечивать фоторезист, а фидосветодиоды ускоряют рост растений. Граничное напряжение светодиода меняется от 1.9 В (инфракрасный) до 3.7 В (белый). Часто светодиоды собирают в последовательные сборки (например, в дешёвых светодиодных лентах), чтобы запитать, например, 5 2.2-вольтовых светодиодов от 12В, потеряв всего 1В на резисторе.
Если Вы используете светодиоды на большой ток, то, скорее всего, придётся ставить мощные резисторы, на которых всё равно будет теряться большое количество тепла. В таком случае можно использовать импульсные стабилизаторы тока (на основе DC-DC преобразователей или самодельные) – при большом КПД они обеспечивают большой ток и практически не греются! Светодиоды от 100 мА желательно подключать уже именно так. Понятно, что все светодиоды имеют различные характеристики, но как же найти нужный номинал резистора для правильного подключения светодиода? В этом деле нам поможет давно забытый школьный курс физики, а именно закон Ома.
Контакты светодиода
Для примера, возьмём светодиод с падением напряжения 2В, который нам нужно запитать от 3.3 В. Ток возьмём по среднему для всех «мелких» светодиодов значению – 20 мА, а чтобы не убить его раньше времени – 15 мА. Разница в напряжении между напряжением питания и напряжением, нужным для светодиода, составляет 3.3 – 2 = 1.3 В. Вспоминаем закон Ома для замкнутой цепи – I = U/R. Преобразуем её относительно сопротивления . Поделим 1.3 на 0.015 (15мА в А), получим 86.7 Ом. Значение крайне нестандартное, поэтому возьмём ближайшее удобное (в большую сторону) – например, 100 Ом. Светодиоду по режиму будет только лучше, а ток изменится незначительно (13 мА) – невооружённым взглядом вы вряд ли заметите это изменение.
Как подключить
В сети часто встречаются схемы параллельного или последовательного подключения светодиодов, при которых задействуется всего 1 резистор. Схемы имеют право на жизнь, но лишь в случае низкого тока через светодиоды и только при условии одинаковости всех диодов. Допустим, несколько светодиодов для индикации какого-либо события так подключить можно, но только обычных (часто применяемых, 3 или 5мм диодов с током до 20мА и напряжением примерно 2-3В) и с маленьким током (около 5мА). Мощные светики по 200мА не рекомендуется подключать таким образом – во-первых, у них могут сильнее различаться характеристики из-за неравномерного нагрева кристаллов, а вот-вторых понадобится мощный резистор, который и то, возможно, будет греться.
Материал по теме: Что такое реле времени
Лучше подключать каждый светодиод со своим резистором, или использовать линейные или импульсные стабилизаторы тока. Из-за уникальности каждого светодиода при подключении большого их количества может накопиться довольно большое отклонение от теоретических расчётов параметров, чему будут результатом сгоревшие диоды. Одно из интересных применений светодиодов – засветка фоторезиста для изготовления печатных плат. Если вы когда-либо занимались этой технологией или хотя бы читали о ней, Вы явно видели засветку с помощью лампы, похожей на энергосберегающую. Такие лампы малоэффективны, на засветку требуется порядка 10 минут, а с помощью самодельного устройства из 100 УФ-светодиодов мы достигли времени засветки 35 секунд! Для регулировки тока применялось 5 линейных стабилизаторов тока на 200мА, итоговый ток – 10мА на светодиоде, что продлит срок службы!
Свечение красного светодиода.
Использование
Единственный недостаток технологии – высокая стоимость. На данный момент цена одного люмена, излученного светодиодом, в 100 раз выше, чем люмена излученного лампой накаливания. Впрочем производители прогнозируют снижение этого показателя в ближайшие годы в 10 раз. Светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра были разработаны еще в 60-х – 70-х годах прошлого столетия. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Долго не существовало светодиодов синего, сине-зеленого и белого цвета.
Цвет светодиода зависит от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника и легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны. Голубые светодиоды удалось изготовить на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. Однако, у светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и оказались недолговечны. Первый голубой светодиод удалось изготовить на основе пленок нитрида галлия на сапфировой(!) подложке.
Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а ддя синих — 35%. Внешний квантовый выход — одна из основных характеристик эффективности светодиода.
Белый света от светодиодов можно получить несколькими способами. Первый — смешать цвета по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. По принципу люминесцентной лампы. Третий способ – это когда желто-зеленый или зелено-красный люминофор наносятся на голубой светодиод. При этом два или три излучения смешиваются, образуя белый или близкий к белому свет.
Материал в тему: Что такое кондесатор
У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Получается целый осветительный комплекс, которым можно управлять вручную или посредством программы. Такие эффекты широко используются дизайнерами и производителями елочных гирлянд и аналогичных устройств. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Недостатком системы является неодинаковый цвет в центре светового пятна и по краям. Кроме этого, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.
Светодиоды.
Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. Недостатки их: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод.
Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1 А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).
Заключение
Более подробно о светодиодах можно прочитать в статье Устройство современных светодиодов. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.sestek.ru
www.howitworks.iknowit.ru
www.optogid.ru
www.voltiq.ru
Предыдущая
ПолупроводникиНесколько фактов о лазерном диоде
СледующаяПолупроводникиЧем стабисторы отличаются от стабилитронов?
Светодиод — это… Что такое Светодиод?
Элемент — Светодиод | |
Тип — Активный электронный элемент | |
Принцип работы — Электролюминесценция | |
Изобретён — Олег Лосев (1927), Ник Холоньяк (1962) | |
Впервые создан — 1962 | |
Символьное обозначение — | |
Пин конфигурация — Анод и Катод |
Светодио́д или светоизлучающий диод (СД, СИД, LED англ. Light-emitting diode) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра. Его спектральные характеристики зависят во многом от химического состава использованных в нём полупроводников. Иными словами, кристалл светодиода излучает конкретный цвет (если речь идёт об СД видимого диапазона), в отличие от лампы, излучающей более широкий спектр и где конкретный цвет отсеивается внешним светофильтром.
В 1907 году Генри Джозеф Раунд впервые открыл и описал электролюминесценцию, обнаруженную им при изучении прохождения тока в паре металл — карбид кремния (карборунд, SiC), и отметил жёлтое, зелёное и оранжевое свечение на катоде.
Эти эксперименты были позже, независимо от Раунда, повторены О. В. Лосевым в 1923 году, который, экспериментируя с выпрямляющим контактом из пары карборунд — стальная проволока, обнаружил в точке контакта двух разнородных материалов слабое свечение — электролюминесценцию полупроводникового перехода (в то время понятия «полупроводниковый переход» ещё не существовало). Это наблюдение было опубликовано, но тогда весомое значение этого наблюдения не было понято и потому не исследовалось в течение многих десятилетий.
Вероятно, первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 году в Университете Иллинойса группой, которой руководил Ник Холоньяк.
При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).
Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).
Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ 101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.
История
Олег Лосев, советский физик, обнаруживший электролюминесценцию в карбиде кремнияПервое известное сообщение об излучении света твёрдотельным диодом было сделано в 1907 году британским экспериментатором Генри Раундом из Маркони Лабс.
В 1961 году Роберт Байард и Гари Питтман из компании Texas Instruments открыли и запатентовали технологию инфракрасного светодиода.
Первый в мире практически применимый светодиод, работающий в световом (красном) диапазоне, разработал Ник Холоньяк в компании General Electric в 1962 году. Холоньяк, таким образом, считается «отцом современного светодиода». Его бывший студент, Джордж Крафорд, изобрёл первый в мире жёлтый светодиод и улучшил яркость красных и красно-оранжевых светодиодов в 10 раз в 1972 году. В 1976 году Т.Пирсол создал первый в мире высокоэффективный светодиод высокой яркости для телекоммуникационных применений, изобретя полупроводниковые материалы, специально адаптированные к передачам через оптические волокна.
Светодиоды оставались чрезвычайно дорогими вплоть до 1968 года (около $200 за штуку), их практическое применение было ограничено. Компания «Монсанто» была первой, организовавшей массовое производство светодиодов, работающих в диапазоне видимого света и применимых в индикаторах. Компании «Хьюллет-Паккард» удалось использовать светодиоды в своих ранних массовых карманных калькуляторах.
Вплоть до начала 1970-х годов американскими учёными светодиоды назывались «Losev Light» «Свет Лосева». В силу того, что в СССР в 1960-е годы такие науки, как кибернетика, генетика были в загоне, то таким мелочам, как светодиоды не уделялось должного внимания как со стороны академии наук, так и со стороны патентных организаций СССР. Постепенно название «Losev Light» упоминалось реже и реже, и постепенно забылось.
Вклад советских учёных
Хотя люминесценцию в карбиде кремния впервые наблюдал Раунд в 1907 году, Олег Лосев в Нижегородской радиолаборатории в 1923 г. показал, что она возникает вблизи спая[1]. Теоретического объяснения явлению тогда не было.
Светодиодный фонарь (панель) для сценического направленного освещения. | Современный люминофорный светодиод в ручном электрическом фонаре. Яркость свечения сравнима с яркостью лампы накаливания мощностью 15 Вт. | Современные мощные сверх-яркие светодиоды на теплоотводящей пластине с контактами для монтажа. |
О. В. Лосев вполне оценил практическую значимость своего открытия, позволявшего создавать малогабаритные твёрдотельные (безвакуумные) источники света с очень низким напряжением питания (менее 10 В) и очень высоким быстродействием. Полученные им два авторских свидетельства на «Световое реле» (первое заявлено в феврале 1927 г.) формально закрепили за СССР приоритет в области светодиодов
Характеристики
Обозначение светодиода в электрических схемахВольт-амперная характеристика светодиодов в прямом направлении нелинейна. Диод начинает проводить ток начиная с некоторого порогового напряжения. Это напряжение позволяет достаточно точно определить материал полупроводника.
Современные сверхъяркие светодиоды обладают менее выраженной полупроводимостью, чем обычные диоды. Высокочастотные пульсации в питающей цепи (т.н. «иголки») и выбросы обратного напряжения приводят к ускоренному деградированию кристалла. Скорость деградирования также зависит от питающего тока (нелинейно) и температуры кристалла (нелинейно).
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. |
Цвета и материалы полупроводника
Обычные светодиоды изготавливаются из различных неорганических полупроводниковых материалов, в следующей таблице приведены доступные цвета с диапазоном длин волн, падение напряжения на диоде, и материал:
Цвет | длина волны (нм) | Напряжение (В) | Материал полупроводника | |
---|---|---|---|---|
Инфракрасный | λ > 760 | ΔU < 1.9 | Арсенид галлия (GaAs) Алюминия галлия арсенид (AlGaAs) | |
Красный | 610 < λ < 760 | 1.63 < ΔU < 2.03 | Алюминия-галлия арсенид (AlGaAs) Алюминия-галлия-индия фосфид (AlGaInP) Галлия(III) фосфид (GaP) | |
Оранжевый | 590 < λ < 610 | 2.03 < ΔU < 2.10 | Галлия фосфид-арсенид (GaAsP) Алюминия-галлия-индия фосфид (AlGaInP) Галлия(III) фосфид (GaP) | |
Жёлтый | 570 < λ < 590 | 2.10 < ΔU < 2.18 | Галлия арсенид-фосфид (GaAsP) Алюминия-галлия-индия фосфид (AlGaInP) Галлия(III) фосфид (GaP) | |
Зелёный | 500 < λ < 570 | 1.9[3] < ΔU < 4.0 | Индия-галлия нитрид (InGaN) / Галлия(III) нитрид (GaN) Алюминия-галлия-индия фосфид (AlGaInP) Алюминия-галлия фосфид (AlGaP) | |
Голубой | 450 < λ < 500 | 2.48 < ΔU < 3.7 | Селенид цинка (ZnSe) Индия-галлия нитрид (InGaN) Карбид кремния (SiC) в качестве субстрата Кремний (Si) в качестве субстрата — (в разработке) | |
Фиолетовый | 400 < λ < 450 | 2.76 < ΔU < 4.0 | Индия-галлия нитрид (InGaN) | |
Пурпурный | Смесь нескольких спектров | 2.48 < ΔU < 3.7 | Двойной: синий/красный диод, синий с красным люминофором, или белый с пурпурным пластиком | |
Ультрафиолетовый | λ < 400 | 3.1 < ΔU < 4.4 | Алмаз (235 nm)[4] Нитрид бора (215 nm)[5][6] | |
Белый | Широкий спектр | ΔU ≈ 3.5 | Синий/ультрафиолетовый диод с люминофором; |
Стоимость
Стоимость мощных светодиодов, применяемых в портативных прожекторах и автомобильных фарах, на сегодняшний день довольно высока — порядка 8-10$ и более за штуку. Как правило, в небольших фонариках и бытовых лампах-сборках используется несколько десятков не слишком мощных светодиодов.
К началу 2011 года стоимость мощных (1 Вт и более) светодиодов снизилась и начинается от 0,9 $. Стоимость сверхмощных (10Вт и более P7 и CREE M-CE 15-20$ CREE XM-L 10W 1000Lm) составляет порядка 10$.
Преимущества
По сравнению с другими электрическими источниками света (преобразователями электроэнергии в электромагнитное излучение видимого диапазона), светодиоды имеют следующие отличия:
- Высокая световая отдача. Современные светодиоды сравнялись по этому параметру с натриевыми газоразрядными лампами[9] и металлогалогенными лампами, достигнув 150 Люмен на Ватт.
- Высокая механическая прочность, вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих).
- Длительный срок службы — от 30000 до 100000 часов (при работе 8 часов в день — 34 года). Но и он не бесконечен — при длительной работе и/или плохом охлаждении происходит «отравление» кристалла и постепенное падение яркости.
- Спектр современных светодиодов бывает различным — от тёплого белого = 2700 К до холодного белого = 6500 К.
- Малая инерционность — включаются сразу на полную яркость, в то время как у ртутно-фосфорных (люминесцентных-экономичных) ламп время включения от 1 сек до 1 мин, а яркость увеличивается от 30% до 100% за 3-10 минут, в зависимости от температуры окружающей среды.
- Количество циклов включения-выключения не оказывают существенного влияния на срок службы светодиодов (в отличие от традиционных источников света — ламп накаливания, газоразрядных ламп).
- Различный угол излучения — от 15 до 180 градусов.
- Низкая стоимость индикаторных светодиодов, но относительно высокая стоимость при использовании в освещении, которая снизится при увеличении производства и продаж.
- Безопасность — не требуются высокие напряжения, низкая температура светодиода или арматуры, обычно не выше 60 градусов Цельсия.
- Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.
- Экологичность — отсутствие ртути, фосфора и ультрафиолетового излучения в отличие от люминесцентных ламп.
Применение светодиодов
Комнатное освещение | В светофорах | В автомобильных фарах |
- В уличном, промышленном, бытовом освещении (в т.ч. светодиодная лента)
- В качестве индикаторов — как в виде одиночных светодиодов (например, индикатор включения на панели прибора), так и в виде цифрового или буквенно-цифрового табло (например, цифры на часах)
- Массив светодиодов используется в больших уличных экранах, в бегущих строках. Такие массивы часто называют светодиодными кластерами или просто кластерами
- В оптопарах
- Мощные светодиоды используются как источник света в фонарях и светофорах
- Светодиоды используются в качестве источников модулированного оптического излучения (передача сигнала по оптоволокну, пульты ДУ, светотелефоны, интернет[10])
- В подсветке ЖК-экранов (мобильные телефоны, мониторы, телевизоры и т. д.)
- В играх, игрушках, значках, USB-устройствах и прочее.
- В светодиодных дорожных знаках.
- В гибких ПВХ световых шнурах Дюралайт.
Органические светодиоды — OLED
OLED дисплей Основная статья: OLEDМногослойные тонкоплёночные структуры, изготовленные из органических соединений, которые эффективно излучают свет при пропускании через них электрического тока. Основное применение OLED находит при создании устройств отображения информации (дисплеев). Предполагается, что производство таких дисплеев будет гораздо дешевле, чем жидкокристаллических.
Главная проблема для OLED — время непрерывной работы, которое должно быть не меньше 15 тыс. часов. Одна из проблем, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причём время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня «синий» OLED все-таки добрался до отметки в 17,5 тыс. часов непрерывной работы.
Дисплеи из органических светодиодов применяются в последних моделях сотовых телефонов, GPS-навигаторах, для создания приборов ночного видения.
Производство
Наиболее[источник не указан 41 день] крупным производителем светодиодов в мире является компания «Siemens» со своими дочерними предприятиями «Osram Opto Semiconductors» и «Osram Sylvania».
Также крупным производителем светодиодов является «Royal Philips Electronics», политика которого заключается в приобретении компаний, изготавливающих светодиоды. Так, «Hewlett-Packard» в 2005 году продал компании «Philips» своё подразделение Lumileds Lighting, а в 2006 были приобретены «Color Kinetics» и «TIR Systems» — компании с широкой технологической сетью по производству светодиодов с белым спектром излучения.
«Nichia Chemical» — подразделение компании Nichia Corporation, где были впервые разработаны белый и синий светодиоды. На текущий момент ей принадлежит лидерство в производстве сверхъярких светодиодов: белых, синих и зелёных. Помимо вышеперечисленных гигантов, следует также отметить следующие компании: Cree, Emcore Corp., Veeco Instruments, Seoul Semiconductor и Germany’s Aixtron, занимающиеся производством чипов и отдельных светодиодов.
Крупнейшими[11] производителями светодиодов в России и Восточной Европе являются компании «Оптоган» и «Светлана-Оптоэлектроника». «Оптоган» создана при поддержке ГК «Роснано». Производственные мощности компании расположены в Санкт-Петербурге. «Оптоган» занимается производством как светодиодов, так и чипов и матриц, а также участвует во внедрении светодиодов для общего освещения.
«Светлана-Оптоэлектроника» (г.Санкт-Петербург) — объединяет предприятия, которые осуществляют полный технологический цикл разработки и производства светодиодных систем освещения: от эпитаксиального выращивания полупроводниковых гетероструктур до сложных автоматизированных систем интеллектуального управления освещением.
Также крупным предприятием по производству светодиодов и устройств на их основе можно назвать завод Samsung Electronics в Калужской области.
См. также
Примечания
Ссылки
Что такое светодиоды и где они могу применяться?
В зависимости от эффекта, ставят несколько кристаллов одного или разных цветов. Одного – для повышения мощности, в таком случае они подключаются параллельно и в итоге фокусируются как единый светодиод. Разных – для многоцветного эффекта, например, для индикации (обычно синий-красный, встречается во многих аккумуляторных устройствах как индикатор работы/зарядки) или для отображения большого спектра
цветов (как например RGB-светодиод, способный отобразить все возможные цвета – состоит из 3 кристаллов, красного (R), зелёного (G), синего (B)).
Светодиоды отличаются по длине волны – они способны точно испускать свет определённого спектра, в частности, ультрафиолетовыми светодиодами можно засвечивать фоторезист, а фидосветодиоды ускоряют рост растений.
Граничное напряжение светодиода меняется от 1.9 В (инфракрасный) до 3.7 В (белый). Часто светодиоды собирают в последовательные сборки (например, в дешёвых светодиодных лентах), чтобы запитать, например, 5 2.2-вольтовых светодиодов от 12В, потеряв всего 1В на резисторе.
Если Вы используете светодиоды на большой ток, то, скорее всего, придётся ставить мощные резисторы, на которых всё равно будет теряться большое количество тепла. В таком случае можно использовать импульсные стабилизаторы тока (на основе DC-DC преобразователей или самодельные) – при большом КПД они обеспечивают большой ток и практически не греются! Светодиоды от 100 мА желательно подключать уже именно так.
Понятно, что все светодиоды имеют различные характеристики, но как же найти нужный номинал резистора для правильного подключения светодиода? В этом деле нам поможет давно забытый школьный курс физики, а именно закон Ома.
Для примера, возьмём светодиод с падением напряжения 2В, который нам нужно запитать от 3.3 В. Ток возьмём по среднему для всех «мелких» светодиодов значению – 20 мА, а чтобы не убить его раньше времени – 15 мА. Разница в напряжении между напряжением питания и напряжением, нужным для светодиода, составляет 3.3 – 2 = 1.3 В. Вспоминаем закон Ома для замкнутой цепи – I = U/R.
Преобразуем её относительно сопротивления . Поделим 1.3 на 0.015 (15мА в А), получим 86.7 Ом. Значение крайне нестандартное, поэтому возьмём ближайшее удобное (в большую сторону) – например, 100 Ом. Светодиоду по режиму будет только лучше, а ток изменится незначительно (13 мА) – невооружённым взглядом вы вряд ли заметите это изменение.
Органический светодиод — это… Что такое Органический светодиод?
Схема OLEDОрганический светодиод (англ. Organic Light-Emitting Diode (OLED) — органический светоизлучающий диод) — полупроводниковый прибор, изготовленный из органических соединений, который эффективно излучает свет, если пропустить через него электрический ток.
Основное применение технология OLED находит при создании устройств отображения информации (дисплеев). Предполагается, что производство таких дисплеев будет гораздо дешевле, нежели производство жидкокристаллических дисплеев.
1.5-дюймовый (3,8 сантиметра) OLED-дисплей медиаплеера Creative ZEN V.
Принцип действия
Для создания органических светодиодов (OLED) используются тонкопленочные многослойные структуры, состоящие из слоев нескольких полимеров. При подаче на анод положительного относительно катода напряжения, поток электронов протекает через прибор от катода к аноду. Таким образом катод отдает электроны в эмиссионный слой, а анод забирает электроны из проводящего слоя, или другими словами анод отдает дырки в проводящий слой. Эмиссионный слой получает отрицательный заряд, а проводящий слой положительный. Под действием электростатических сил электроны и дырки движутся навстречу друг к другу и при встрече рекомбинируют. Это происходит ближе к эмиссионному слою, потому что в органических полупроводниках дырки обладают большей подвижностью, чем электроны. При рекомбинации происходит понижение энергии электрона, которое сопровождается испусканием (эмиссией) электромагнитного излучения в области видимого света. Поэтому слой и называется эмиссионным.
Схема 2х слойной OLED-панели: 1. Катод(−), 2. Эмиссионный слой, 3. Испускаемое излучение, 4. Проводящий слой, 5. Анод (+)Прибор не работает при подаче на анод отрицательного относительно катода напряжения. В этом случае дырки движутся к аноду, а электроны в противоположном направлении к катоду, и рекомбинации не происходит.
В качестве материала анода обычно используется оксид индия, легированный оловом. Он прозрачный для видимого света и имеет высокую работу выхода, которая способствует инжекции дырок в полимерный слой. Для изготовления катода часто используют металлы, такие как алюминий и кальций, так как они обладают низкой работой выхода, способствующей инжекции электронов в полимерный слой.[1]
Преимущества и недостатки
Преимущества
В сравнении c плазменными дисплеями
- меньшие габариты и вес
- более низкое энергопотребление при той же яркости
- возможность создания гибких экранов
- возможность длительное время показывать статическую картинку без выгорания экрана
В сравнении c жидкокристаллическими дисплеями
- меньшие габариты и вес
- отсутствие необходимости в подсветке
- отсутствие такого параметра как угол обзора — изображение видно без потери качества с любого угла
- мгновенный отклик (на несколько порядков выше, чем у LCD) — по сути полное отсутствие инерционности
- более качественная цветопередача (высокий контраст)
- возможность создания гибких экранов
- большой диапазон рабочих температур (от −40 до +70 °C[2])
Яркость.
OLED-дисплеи обеспечивают яркость излучения от нескольких кд/м2 (для ночной работы) до очень высоких яркостей — свыше 100 000 кд/м2, причем их яркость может регулироваться в очень широком динамическом диапазоне. Так как срок службы дисплея обратно пропорционален его яркости, для приборов рекомендуется работа при более умеренных уровнях яркости до 1000 кд/м2.
Контрастность.
Здесь OLED также лидер. OLED-дисплеи обладают контрастностью 1000000:1[3] (Контрастность LCD до 2000:1[источник не указан 1299 дней], CRT до 5000:1)
Углы обзора.
Технология OLED позволяет смотреть на дисплей с любой стороны и под любым углом, причем без потери качества изображения. Впрочем, современные ЖК дисплеи (за исключением основанных на TN+Film матрицах) также сохраняют приемлемое качество картинки при больших углах обзора.
Энергопотребление.
Сложно сравнивать что-либо по потреблению с ЖК, так как жидкокристаллическая ячейка ток не потребляет. Однако вспомогательные средства для обеспечения ее работы (драйверы, подсветка) могут потреблять весьма много или наоборот, очень мало — определяется задачами для которых предназначен тот или иной дисплей. Потребление OLED прямо пропорционально яркости и площади свечения.
Недостатки
- маленький срок службы люминофоров некоторых цветов (порядка 2-3 лет)
- как следствие первого, невозможность создания долговечных полноценных TrueColor дисплеев
- дороговизна и неотработанность технологии по созданию больших матриц
Главная проблема OLED — время непрерывной работы должно быть более 15 тыс. часов. Одна проблема, которая в настоящее время препятствует широкому распространению этой технологии в мониторах и телевизорах, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причем время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня[когда?] «синий» OLED всё-таки добрался до отметки в 17,5 тыс. часов (примерно 2 года) непрерывной работы.
Дисплеям телефонов, фотокамер, планшетов и иных малых устройств этих показателей вполне достаточно в связи с быстрыми темпами устаревания аппаратуры и еë неактуальности уже через несколько лет. Средняя продолжительность непрерывной работы этих устройств составляет около 5 тысяч часов, поэтому OLED в них успешно применяется уже сегодня.
Можно считать это временными трудностями становления новой технологии, поскольку разрабатываются новые долговечные люминофоры. Также растут мощности по производству матриц.
Потребность в преимуществах, демонстрируемых органическими дисплеями с каждым годом растёт. Этот факт позволяет заключить, что в скором времени дисплеи произведëнные по OLED технологиям, с высокой вероятностью станут доминантными на рынке электроники народного потребления.
Применение
На сегодняшний день[когда?] OLED-технология применяется многими разработчиками узкой направленности, например, для создания приборов ночного видения. Органические дисплеи встраиваются в телефоны, цифровые фотоаппараты, автомобильные бортовые компьютеры, коммерческие OLED-телевизоры, выпускаются небольшие OLED-дисплеи для цифровых индикаторов, лицевых панелей автомагнитол, карманных цифровых аудиопроигрывателей и т. д.
Объём продаж
Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон. |
Рынок OLED-дисплеев медленно, но уверенно растёт. Основные производители: Samsung (27 %), Pioneer (20 %), RiTdisplay (18 %), LGE (18 %).
В данный момент ведётся разработка телевизионных OLED-систем. На сегодня единственные коммерческие OLED-телевизоры на мировом рынке пока выпускаются компанией Sony (~2 000 изделий в месяц.) К коммерческому производству готовятся Samsung, Toshiba, а также альянс компаний Matsushita Electric Industrial, Canon и Hitachi.
История
Французский учёный Андрэ Бернаноз (André Bernanose) и его сотрудники открыли электролюминесценцию в органических материалах в начале 1950-х, прикладывая переменный ток высокого напряжения к прозрачным тонким плёнкам красителя акридинового оранжевого и хинакрина. В 1960 году исследователи из компании Dow Chemical разрабатывали управляемые переменным током электролюминесцентные ячейки, используя легированный антрацен.
Низкая электрическая проводимость таких материалов ограничивала развитие технологии до тех пор пока не стали доступными более современные органические материалы, такие как полиацетилен и полипиррол. В 1963 году в ряде статей учёные сообщили о том, что они наблюдали высокую проводимость в допированном йодом полипирроле. Они достигли проводимости 1 См/см. К сожалению, это открытие было «потеряно». И только в 1974 году исследовали свойства бистабильного выключателя на основе меланина с высокой проводимостью во «включенном» состоянии. Этот материал испускал вспышку света во время включения.
В 1977 году другая группа исследователей сообщила о высокой проводимости в подобно окисленном и легированном йодом полиацетилене. В 2000 году Алан Хигер, Алан Мак-Диармид и Хидеки Сиракава получили Нобелевскую премию по химии за «открытие и развитие проводящих органических полимеров». Ссылок на более ранние открытия не было.
Первое диодное устройство было создано в 1980-х компанией Eastman Kodak.
В 1990 году в журнале Nature появляется статья учёных, в которой сообщается о полимере с зелёной светимостью и «очень высоким КПД».
Недавно[когда?] был разработан гибридный светоиспускающий слой, в котором используются непроводящие полимеры с примесью светоиспускающих проводящих молекул. Использование полимера даёт преимущества в механических свойствах без ухудшения оптических свойств. Светоиспускающие молекулы имеют ту же долговечность, как и в первоначальном полимере.
Основные направления исследований и разработок
Основные направления исследований разработчиков OLED-панелей, где на сегодняшний день есть реальные результаты:
PHOLED
PHOLED (англ.) (Phosphorescent OLED) — технология, являющаяся достижением Universal Display Corporation (UDC) совместно с Принстонским университетом и университетом Южной Калифорнии. Как и все OLED, PHOLED функционируют следующим образом: электрический ток подводится к органическим молекулам, которые испускают яркий свет. Однако, PHOLED используют принцип электрофосфоресценции, чтобы преобразовать до 100 % электрической энергии в свет. К примеру, традиционные флуоресцентные OLED преобразовывают в свет приблизительно 25-30 % электрической энергии.
Из-за их чрезвычайно высокого уровня эффективности энергии, даже по сравнению с другим OLED, PHOLED изучаются для потенциального использования в больших дисплеях типа телевизионных мониторов или экранов для потребностей освещения. Потенциальное использование PHOLED для освещения: можно покрыть стены гигантскими PHOLED-дисплеями. Это позволило бы всем комнатам освещаться равномерно, вместо использования лампочек, которые распределяют свет неравномерно по комнате. Или мониторы-стены или окна — удобно для организаций или любителей поэкспериментировать с интерьером.
Также к преимуществам PHOLED-дисплеев можно отнести яркие, насыщенные цвета, а также достаточно долгий срок службы.
TOLED
TOLED (Transparent and Top-emitting OLED) — технология, позволяющая создавать прозрачные (Transparent) дисплеи, а также достигнуть более высокого уровня контрастности.
Прозрачные TOLED-дисплеи: направление излучения света может быть только вверх, только вниз или в оба направления (прозрачный). TOLED может существенно улучшить контраст, что улучшает читаемость дисплея при ярком солнечном свете.
Так как TOLED на 70 % прозрачны при выключении, то их можно крепить прямо на лобовое стекло автомобиля, на витрины магазинов или для установки в шлеме виртуальной реальности. Также прозрачность TOLED позволяет использовать их с металлом, фольгой, кремниевым кристаллом и другими непрозрачными подложками для дисплеев с отображением вперед (могут использоваться в будущих динамических кредитных картах). Прозрачность экрана достигается при использовании прозрачных органических элементов и материалов для изготовления электродов.
За счёт использования поглотителя с низким коэффициентом отражения для подложки TOLED-дисплея контрастное отношение может на порядок превзойти ЖКИ (мобильные телефоны и кабины военных самолетов-истребителей).
По технологии TOLED также можно изготавливать многослойные устройства(например SOLED) и гибридные матрицы (Двунаправленные TOLED TOLED делают возможным удвоить отображаемую область при том же размере экрана — для устройств, у которых желаемый объём выводимой информации шире, чем существующий).
FOLED
FOLED (Flexible OLED) — главная особенность — гибкость OLED-дисплея. Используется пластик или гибкая металлическая пластина в качестве подложки с одной стороны, и OLED-ячейки в герметичной тонкой защитной пленке — с другой. Преимущества FOLED: ультратонкость дисплея, сверхнизкий вес, прочность, долговечность и гибкость, которая позволяет применять OLED-панели в самых неожиданных местах. (Раздолье для фантазии — область возможного применения OLED весьма велика).
SOLED
Staked OLED — технология экрана от UDC (сложенные OLED). SOLED используют следующую архитектуру: изображение подпикселей складывается (красные, синие и зеленые элементы в каждом пикселе) вертикально вместо того, чтобы располагаться рядом, как это происходит в ЖК-дисплее или электронно-лучевой трубке.
В SOLED каждым элементом подпикселя можно управлять независимо. Цвет пикселя может быть отрегулирован при изменении тока, проходящего через три цветных элемента (в нецветных дисплеях используется модуляция ширины импульса). Яркостью управляют, меняя силу тока.
Преимущества SOLED: высокая плотность заполнения дисплея органическими ячейками, посредством чего достигается хорошее разрешение, а значит, высококачественная картинка.
Passive/Active Matrix
Каждый пиксель цветного OLED-дисплея формируется из трех составляющих — органических ячеек, отвечающих за синий, зелёный и красный цвета.
В основе OLED — пассивные и активные матрицы управления ячейками.
Пассивная матрица представляет собой массив анодов, расположенных строками, и катодов, расположенных столбцами. Чтобы подать заряд на определённый органический диод, необходимо выбрать нужный номер катода и анода, на пересечении которых находится целевой пиксель, и пустить ток. Используется в монохромных экранах с диагональю 2-3 дюйма (дисплеи сотовых телефонов, электронных часов, различные информационные экраны техники).
Активная матрица: как и в случае LCD-мониторов, для управления каждой ячейкой OLED используются транзисторы, запоминающие необходимую для поддержания светимости пикселя информацию. Управляющий сигнал подается на конкретный транзистор, благодаря чему ячейки обновляются достаточно быстро. Используется технология TFT (Thin Film Transistor) — тонкопленочного транзистора. Создается массив транзисторов в виде матрицы, который накладывается на подложку прямо под органический слой дисплея. Слой TFT формируется из поликристального или аморфного кремния.
Также идут разработки O-TFT (Organic TFT) — технологии органических транзисторов.
Перспективы развития
Ожидается, что на смену OLED-дисплеям могут прийти более эффективные и экономичные дисплеи TMOS (Time-Multiplexed Optical Shutter, «оптический затвор с временным мультиплексированием») — технология, которая использует инерционность сетчатки человеческого глаза.[4]
Технологические события
Разработки Samsung и LG
- На выставке CES 2012, Samsung и LG представили телевизоры OLED с диагональю 55 дюймов толщиной 7,6 мм и 4 мм соответственно.[5]
Разработки Sony
Sony XEL-1 (вид спереди) Sony XEL-1 (вид сбоку)- В Лас Вегасе CES 2007, Sony представила 11-дюймовую (28 см, разрешение 1024 × 600) и 27-дюймовую (68.5 см, разрешение HD в 1920 × 1080) модели, с контрастностью «миллион к одному» и полной толщиной 5 мм. Sony выпустила коммерческую версию этих мониторов в Японии в декабре 2007.
- 25 мая 2007 Sony представила 2.5-дюймовый (6,3 см) гибкий экран FOLED, толщиной 0.3 миллиметра. Было продемонстрировано видео на согнутом экране.
- 16 апреля 2008 Sony представила дисплей OLED, толщиной 0.2 миллиметра и шириной 3.5-дюймов (9 см) с разрешением 320×200 пикселей и 11-дюймовый экран толщиной 0,3 мм с разрешением 960×540 пикселей.
Другие компании
Смартфон Nokia N85, анонсированный в августе 2008 года и поступивший в продажу в октябре 2008 года — первый смартфон от финской компании с AM-OLED дисплеем.
Клавиатура «Оптимус Максимус» (Студия Лебедева), выпущенная в начале 2008 г. (прототипы), использует 48×48-пиксельные OLED-дисплеи (10,1×10,1 мм), встроенные в клавиши.
OLED может использоваться в голографии с высокой разрешающей способностью (volumetric display). 12 мая 2007 года на ЭКСПО-Лиссабон было представлено трёхмерное видео (потенциальное применение этих материалов).
Органические светодиоды могут также использоваться как источники света. OLED находят применение как источники общего освещения (в ЕС — проект OLLA).
11 марта 2008 года GE Global Research продемонстрировала первый OLED, изготовленный в виде рулона.[6].
Chi Mei EL Corp of Tainan (Корпорация Тайнаня) продемонстрировала на конференции в Лос-Анджелесе (20-22 мая 2008 года) 25-дюймовые низкотемпературные прозрачные кремниевые OLED.
Epson в 2004 году выпустила 40-дюймовый дисплей (успех можно объяснить тем, что технология производства таких дисплеев похожа на технологию печати в струйном принтере[источник не указан 1260 дней], а в этом деле компания имеет большой опыт).
Южнокорейский производитель электроники LG Electronics сообщил о планах компании по началу коммерческого производства и продаж первого массового 15-дюймового телевизора, созданного по технологии органических светоизлучающих диодов. LG стала первым в мире производителем, освоившим технологию OLED для массового производства[7]. [8]
См. также
Примечания
- ↑ R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, W. R. Salaneck, Electroluminescence in conjugated polymers, Nature 1999, 397, 121.
- ↑ OLED (рус.) (20 апреля 2006). Архивировано из первоисточника 15 февраля 2012. Проверено 7 января 2010.
- ↑ Membrana: Созданы дисплеи для домашнего кинотеатра с контрастом миллион к одному (16 января 2006 г.)
- ↑ На смену LCD и OLED дисплеям идут более эффективные и экономичные дисплеи TMOS // NanoWeek, 27 октября — 2 ноября 2009г, No. 86
- ↑ CES 2012: Samsung и LG показали самые большие в мире OLED-панели (11 января 2012 г.)
- ↑ Органические световые панели теперь печатают как газеты (13 марта 2008 г.)
- ↑ CyberSecurity.ru: В ноябре LG Electronics начнет продажи AMOLED-телевизоров (31.08.2009)
- ↑ CNEWS о планах LG