Site Loader

Сила трения скольжения — это… Что такое Сила трения скольжения?

Сила трения скольжения — силы, возникающие между соприкасающимися телами при их относительном движении. Если между телами отсутствует жидкая или газообразная прослойка (смазка), то такое трение называется сухим. В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя.

Опытным путём установлено, что сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения и не зависит от площади соприкосновения. (Это можно объяснить тем, что никакое тело не является абсолютно ровным. Поэтому истинная площадь соприкосновения гораздо меньше наблюдаемой. Кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга.) Величина, характеризующая трущиеся поверхности, называется коэффициентом трения, и обозначается чаще всего латинской буквой «k» или греческой буквой «μ». Она зависит от природы и качества обработки трущихся поверхностей. Кроме того, коэффициент трения зависит от скорости. Впрочем, чаще всего эта зависимость выражена слабо, и если большая точность измерений не требуется, то «k» можно считать постоянным.

В первом приближении величина силы трения скольжения может быть рассчитана по формуле:

, где

 — коэффициент трения скольжения,

 — сила нормальной реакции опоры.

По физике взаимодействия трение принято разделять на:

  • Сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя.
  • Сухое с сухой смазкой (графитовым порошком)
  • Жидкостное, при взаимодействии тел, разделённых слоем жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость;
  • Смешанное, когда область контакта содержит участки сухого и жидкостного трения;
  • Граничное, когда в области контакта могут содержатся слои и участки различной природы (окисные плёнки, жидкость и т. д.) — наиболее распространённый случай при трении скольжения.

В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики.

При механических процессах всегда происходит в большей или меньшей степени преобразование механического движения в другие формы движения материи (чаще всего в тепловую форму движения). В последнем случае взаимодействия между телами носят названия сил трения.

Опыты с движением различных соприкасающихся тел (твёрдых по твёрдым, твёрдых в жидкости или газе, жидких в газе и т. п.) с различным состоянием поверхностей соприкосновения показывают, что силы трения проявляются при относительном перемещении соприкасающихся тел и направлены против вектора относительной скорости тангенциально к поверхности соприкосновения. При этом всегда происходит нагревание взаимодействующих тел.

Силами трения называются тангенциальные взаимодействия между соприкасающимися телами, возникающие при их относительном перемещении. Силы трения возникающие при относительном перемещении различных тел, называются силами внешнего трения.

Силы трения возникают и при относительном перемещении частей одного и того же тела. Трение между слоями одного и того же тела называется внутренним трением.

В реальных движениях всегда возникают силы трения большей или меньшей величины. Поэтому при составлении уравнений движения, строго говоря, мы должны в число действующих на тело сил всегда вводить силу трения F тр.

Тело движется равномерно и прямолинейно, когда внешняя сила уравновешивает возникающую при движении силу трения.

Для измерения силы трения, действующей на тело, достаточно измерить силу, которую необходимо приложить к телу, чтобы оно двигалось без ускорения.

Сила трения скольжения — Википедия

Материал из Википедии — свободной энциклопедии

Изображения сил действующих на скользящее тело. Изображения действующих сил на тело, находящееся на ровной и наклонной плоскости.

Сила трения скольжения — сила, возникающая между соприкасающимися телами при их относительном движении.

Опытным путём установлено, что сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения. Так как никакое тело не является абсолютно ровным, сила трения

не зависит от площади соприкосновения, и истинная площадь соприкосновения гораздо меньше наблюдаемой; кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга[1].

Величина, характеризующая трущиеся поверхности, называется коэффициентом трения, и обозначается латинской буквой k{\displaystyle k} или греческой буквой μ{\displaystyle \mu }. Она зависит от природы и качества обработки трущихся поверхностей. Кроме того, коэффициент трения зависит от скорости. Впрочем, чаще всего эта зависимость выражена слабо, и если большая точность измерений не требуется, то μ{\displaystyle \mu } можно считать постоянным. В первом приближении величина силы трения скольжения может быть рассчитана по формуле[1]:

F=μN{\displaystyle F=\mu N}

μ{\displaystyle \mu } —

коэффициент трения скольжения,

N{\displaystyle N} — сила нормальной реакции опоры.

Силами трения называются тангенциальные взаимодействия между соприкасающимися телами, возникающие при их относительном перемещении.

Опыты с движением различных соприкасающихся тел (твёрдых по твёрдым, твёрдых в жидкости или газе, жидких в газе и т. п.) с различным состоянием поверхностей соприкосновения показывают, что силы трения проявляются при относительном перемещении соприкасающихся тел и направлены против вектора относительной скорости тангенциально к поверхности соприкосновения. При этом всегда в большей или меньшей степени происходит преобразование механического движения в другие формы движения материи — чаще всего в тепловую форму движения, и происходит нагревание взаимодействующих тел.

Типы трения скольжения

Если между телами отсутствует жидкая или газообразная прослойка (смазочный материал), то такое трение называется

сухим. В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя.

По физике взаимодействия трение скольжения принято разделять на:

  • Сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазочными материалами — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя.
  • Сухое с сухой смазкой (графитовым порошком)
  • Жидкостное, при взаимодействии тел, разделённых слоем жидкости или газа (смазочного материала) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость;
  • Смешанное, когда область контакта содержит участки сухого и жидкостного трения;
  • Граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и т. д.) — наиболее распространённый случай при трении скольжения.

Также можно классифицировать трение по его области. Силы трения, возникающие при относительном перемещении различных тел, называются силами внешнего трения. Силы трения возникают и при относительном перемещении частей одного и того же тела. Трение между слоями одного и того же тела называется внутренним трением.

Измерение

В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики. Поэтому нет точной формулы для коэффициента трения. Его оценка производится на основе эмпирических данных: так как по первому закону Ньютона тело движется равномерно и прямолинейно, когда внешняя сила уравновешивает возникающую при движении силу трения, то для измерения действующей на тело силы трения достаточно измерить силу, которую необходимо приложить к телу, чтобы оно двигалось без ускорения.

Таблица коэффициентов трения скольжения

Значения таблицы взяты из справочника по физике[2]

Таблица коэффициентов трения скольжения, μ{\displaystyle \mu }
Трущиеся материалы (при сухих поверхностях) Коэффициенты трения
покоя при движении
Алюминий по алюминию 0,94
Бронза по бронзе 0,20
Бронза по чугуну 0,21
Дерево по дереву (в среднем) 0,65 0,33
Дерево по камню
0,46-0,60
Дуб по дубу (вдоль волокон) 0,62 0,48
Дуб по дубу (перпендикулярно волокнам) 0,54 0,34
Железо по железу 0,15 0,14
Железо по чугуну 0,19 0,18
Железо по бронзе (слабая смазка) 0,19 0,18
Канат пеньковый по деревянному барабану 0,40
Канат пеньковый по железному барабану 0,25
Каучук по дереву 0,80 0,55
Каучук по металлу 0,80 0,55
Кирпич по кирпичу (гладко отшлифованные) 0,5-0,7
Колесо со стальным бандажем по рельсу 0,16
Лед по льду 0,028
Метал по аботекстолиту
0,35-0,50
Метал по дереву (в среднем) 0,60 0,40
Метал по камню (в среднем) 0,42-0,50
Метал по металу (в среднем) 0,18-0,20
Медь по чугуну 0,27
Олово по свинцу 2,25
Полозья деревянные по льду 0,035
Полозья обитые железом по льду 0,02
Резина (шина) по твердому грунту 0,40-0,60
Резина (шина) по чугуну 0,83 0,8
Ремень кожаный по деревянному шкиву 0,50 0,30-0,50
Ремень кожаный по чугунному шкиву 0,30-0,50 0,56
Сталь по железу 0,19
Сталь (коньки) по льду 0,02-0,03 0,015
Сталь по райбесту 0,25-0,45
Сталь по стали 0,15-0,25 0,09 (ν = 3 м/с)

0,03 (ν = 27 м/с)

Сталь по феродо 0,25-0,45
Точильный камень (мелкозернистый) по железу 1
Точильный камень (мелкозернистый) по стали 0,94
Точильный камень (мелкозернистый) по чугуну 0,72
Чугун по дубу 0,65 0,30-0,50
Чугун по райбесту 0,25-0,45
Чугун по стали 0,33 0,13 (ν = 20 м/с)
Чугун по феродо 0,25-0,45
Чугун по чугуну 0,15

Примечания

  1. 1 2 Билимович Б. Ф. Законы механики в технике. — М., Просвещение, 1975. — Тираж 80000 экз. — с. 58
  2. Енохович А. С. Справочник по физике. — Просвещение, 1978. — С. 85. — 416 с.

Сила трения

Что такое сила трения

Тела взаимодействуют друг с другом по-разному. Один из видов взаимодействия  — трение. Прежде чем разбираться с тонкостями сухого и вязкого трения, ответим на два вопроса. Что такое сила трения, и когда она возникает? 

Что такое сила трения?

Сила трения — сила, возникающая при соприкосновении тел и препятствующая их относительному движению.

Трение возникает вследствие  взаимодействия между атомами и молекулами тел, когда они соприкасаются друг с другом.

Природа силы трения — электромагнитная.

Как и для любого другого взаимодействия, для трения справедлив третий закон Ньютона. Если на одно из двух взаимодействующих тел действует сила трения, то такая же по модулю сила действует на другое тело в противоположном направлении. 

Сила трения покоя и сила трения скольжения

Различают сухое и вязкое трение, силу трения покоя, силу трения скольжения, силу трения качения.

Сухое трение — это трение, которое возникает между твердыми телами при отсутствии между ними жидкой или газообразной прослойки. Силы трения направлена по касательной к соприкасающимся поверхностям.

Представим, что на тело, например, брусок, лежащий на столе, действует некоторая внешняя сила. Эта сила стремится сдвинуть брусок с места. Пока тела покоятся, на брусок действуют сила трения покоя и, собственно, внешняя сила. Сила трения покоя равна внешней силе и уравновешивает ее.

Когда внешняя сила превышает некоторое предельное значение Fтр. max, брусок сдвигается с места. На него так же действует сила трения, но это уже не сила трения покоя, а сила трения скольжения. Сила трения скольжения направлена в сторону, противоположную движению, и зависит от скорости движения тела.

Сила трения покоя и сила трения скольжения

При решении физических задач силу трения скольжения часто принимают равной максимальной силе трения покоя, а зависимостью от силы трения от относительной скорости движения тел пренебрегают. 

Сила трения покоя и сила трения скольжения

На рисунке выше показаны реальная и идеализированная характеристики сухого трения. Как видим, на самом деле сила трения скольжения меняется в зависимости от скорости, однако изменения не столь велики, чтобы ими нельзя было пренебречь.

Сила трения пропорциональна силе нормальной реакции опоры.

Fтр=Fтр. max=μN.

Что такое коэффициент трения скольжения?

μ

Сила трения скольжения — Википедия. Что такое Сила трения скольжения

Изображения сил действующих на скользящее тело. Изображения действующих сил на тело, находящееся на ровной и наклонной плоскости.

Сила трения скольжения — сила, возникающая между соприкасающимися телами при их относительном движении.

Опытным путём установлено, что сила трения зависит от силы давления тел друг на друга (силы реакции опоры), от материалов трущихся поверхностей, от скорости относительного движения. Так как никакое тело не является абсолютно ровным, сила трения не зависит от площади соприкосновения, и истинная площадь соприкосновения гораздо меньше наблюдаемой; кроме того, увеличивая площадь, мы уменьшаем удельное давление тел друг на друга[1].

Величина, характеризующая трущиеся поверхности, называется коэффициентом трения, и обозначается латинской буквой k{\displaystyle k} или греческой буквой μ{\displaystyle \mu }. Она зависит от природы и качества обработки трущихся поверхностей. Кроме того, коэффициент трения зависит от скорости. Впрочем, чаще всего эта зависимость выражена слабо, и если большая точность измерений не требуется, то μ{\displaystyle \mu } можно считать постоянным. В первом приближении величина силы трения скольжения может быть рассчитана по формуле[1]:

F=μN{\displaystyle F=\mu N}

μ{\displaystyle \mu } — коэффициент трения скольжения,

N{\displaystyle N} — сила нормальной реакции опоры.

Силами трения называются тангенциальные взаимодействия между соприкасающимися телами, возникающие при их относительном перемещении.

Опыты с движением различных соприкасающихся тел (твёрдых по твёрдым, твёрдых в жидкости или газе, жидких в газе и т. п.) с различным состоянием поверхностей соприкосновения показывают, что силы трения проявляются при относительном перемещении соприкасающихся тел и направлены против вектора относительной скорости тангенциально к поверхности соприкосновения. При этом всегда в большей или меньшей степени происходит преобразование механического движения в другие формы движения материи — чаще всего в тепловую форму движения, и происходит нагревание взаимодействующих тел.

Типы трения скольжения

Если между телами отсутствует жидкая или газообразная прослойка (смазочный материал), то такое трение называется сухим. В противном случае, трение называется «жидким». Характерной отличительной чертой сухого трения является наличие трения покоя.

По физике взаимодействия трение скольжения принято разделять на:

  • Сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазочными материалами — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя.
  • Сухое с сухой смазкой (графитовым порошком)
  • Жидкостное, при взаимодействии тел, разделённых слоем жидкости или газа (смазочного материала) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость;
  • Смешанное, когда область контакта содержит участки сухого и жидкостного трения;
  • Граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и т. д.) — наиболее распространённый случай при трении скольжения.

Также можно классифицировать трение по его области. Силы трения, возникающие при относительном перемещении различных тел, называются силами внешнего трения. Силы трения возникают и при относительном перемещении частей одного и того же тела. Трение между слоями одного и того же тела называется внутренним трением.

Измерение

В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики. Поэтому нет точной формулы для коэффициента трения. Его оценка производится на основе эмпирических данных: так как по первому закону Ньютона тело движется равномерно и прямолинейно, когда внешняя сила уравновешивает возникающую при движении силу трения, то для измерения действующей на тело силы трения достаточно измерить силу, которую необходимо приложить к телу, чтобы оно двигалось без ускорения.

Таблица коэффициентов трения скольжения

Значения таблицы взяты из справочника по физике[2]

Таблица коэффициентов трения скольжения, μ{\displaystyle \mu }
Трущиеся материалы (при сухих поверхностях) Коэффициенты трения
покоя при движении
Алюминий по алюминию 0,94
Бронза по бронзе 0,20
Бронза по чугуну 0,21
Дерево по дереву (в среднем) 0,65 0,33
Дерево по камню 0,46-0,60
Дуб по дубу (вдоль волокон) 0,62 0,48
Дуб по дубу (перпендикулярно волокнам) 0,54 0,34
Железо по железу 0,15 0,14
Железо по чугуну 0,19 0,18
Железо по бронзе (слабая смазка) 0,19 0,18
Канат пеньковый по деревянному барабану 0,40
Канат пеньковый по железному барабану 0,25
Каучук по дереву 0,80 0,55
Каучук по металлу 0,80 0,55
Кирпич по кирпичу (гладко отшлифованные) 0,5-0,7
Колесо со стальным бандажем по рельсу 0,16
Лед по льду 0,028
Метал по аботекстолиту 0,35-0,50
Метал по дереву (в среднем) 0,60 0,40
Метал по камню (в среднем) 0,42-0,50
Метал по металу (в среднем) 0,18-0,20
Медь по чугуну 0,27
Олово по свинцу 2,25
Полозья деревянные по льду 0,035
Полозья обитые железом по льду 0,02
Резина (шина) по твердому грунту 0,40-0,60
Резина (шина) по чугуну 0,83 0,8
Ремень кожаный по деревянному шкиву 0,50 0,30-0,50
Ремень кожаный по чугунному шкиву 0,30-0,50 0,56
Сталь по железу 0,19
Сталь (коньки) по льду 0,02-0,03 0,015
Сталь по райбесту 0,25-0,45
Сталь по стали 0,15-0,25 0,09 (ν = 3 м/с)

0,03 (ν = 27 м/с)

Сталь по феродо 0,25-0,45
Точильный камень (мелкозернистый) по железу 1
Точильный камень (мелкозернистый) по стали 0,94
Точильный камень (мелкозернистый) по чугуну 0,72
Чугун по дубу 0,65 0,30-0,50
Чугун по райбесту 0,25-0,45
Чугун по стали 0,33 0,13 (ν = 20 м/с)
Чугун по феродо 0,25-0,45
Чугун по чугуну 0,15

Примечания

  1. 1 2 Билимович Б. Ф. Законы механики в технике. — М., Просвещение, 1975. — Тираж 80000 экз. — с. 58
  2. Енохович А. С. Справочник по физике. — Просвещение, 1978. — С. 85. — 416 с.

Силы трения

       Силой трения называют силу, которая возникает при движении одного тела по поверхности другого. Она всегда направлена противоположно направлению движения. Сила трения прямо пропорциональна силе нормального давления на трущиеся поверхности и зависит от свойств этих поверхностей. Законы трения связаны с электромагнитным взаимодействием, которое существует между телами.

       Различают трение внешнее и внутреннее.

       Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя).

       Внутреннее трение наблюдается при относительном перемещении частей одного и того же сплошного тела (например, жидкость или газ).

       Различают сухое и жидкое (или вязкое) трение.

       Сухое трение возникает между поверхностями твердых тел в отсутствие смазки.

       Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями.

       Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения.

Рассмотрим законы сухого трения (рис. 4.5).

Рис. 4.5

Рис. 4.6
       Подействуем на тело, лежащее на неподвижной плоскости, внешней силой , постепенно увеличивая ее модуль. Вначале брусок будет оставаться неподвижным, значит, внешняя сила уравновешивается некоторой силой , направленной по касательной к трущейся поверхности, противоположной силе . В этом случае и есть сила трения покоя.

Установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и приблизительно пропорциональна модулю силы нормального давления  N:

μ0коэффициент трения покоя, зависящий от природы и состояния трущихся поверхностей.

       Когда модуль внешней силы, а следовательно, и модуль силы трения покоя превысит значение  F0, тело начнет скользить по опоре – трение покоя  Fтр.пок  сменится трением скольжения  Fск  (рис. 4.6):

  Fтр = μ N, (4.4.1)  
где  μ  – коэффициент трения скольжения.

       Трение качения возникает между шарообразным телом и поверхностью, по которой оно катится. Сила трения качения подчиняется тем же законам, что и сила трения скольжения, но коэффициент трения  μ ; здесь значительно меньше.

       Подробнее рассмотрим силу трения скольжения на наклонной плоскости (рис. 4.7).

На тело, находящееся на наклонной плоскости с сухим трением, действуют три силы: сила тяжести  , нормальная сила реакции опоры    и сила сухого трения  . Сила   есть равнодействующая сил    и  ; она направлена вниз, вдоль наклонной плоскости. Из рис. 4.7 видно, что

F = mg sin α,         N = mg cos α.

Рис. 4.7
       Если   – тело остается неподвижным на наклонной плоскости. Максимальный угол наклона  α  определяется из условия  (Fтр)max = F  или  μ mg cosα = mg sinα, следовательно,  tg αmax = μ, где  μ  – коэффициент сухого трения.

Fтр = μN = mg cosα,
F = mg sinα.

       При  α > αmax  тело будет скатываться с ускорением

a = g ( sinα — μ cosα ),
Fск = ma = F — Fтр.


       Если дополнительная сила  Fвн, направленная вдоль наклонной плоскости, приложена к телу, то критический угол  αmax  и ускорение тела будут зависеть от величины и направления этой внешней силы.

Трение покоя и трение скольжения. Природа явления и его суть.

Трение — основные понятия, законы и зависимости



Понятие трения

Как известно, в природе не существует абсолютно гладких и абсолютно твердых тел, поэтому при перемещении одного тела по поверхности другого возникает сопротивление, которое называется трением.

Трение – явление сопротивления относительному перемещению, возникающее между двумя телами в зонах соприкасания поверхностей по касательной к ним.

Трение – явление чрезвычайно распространенное в природе и имеющее большое значение. При этом оно может выполнять и полезные, и вредные функции. На трении основана работа фрикционных и ременных передач, муфт, наклонных транспортеров, прокатных станов, тормозных устройств и т. п.
Трение обеспечивает сцепление тел с земной поверхностью и, следовательно, работу машин, тракторов и другой транспортной самоходной техники. При отсутствии трения мы не могли бы ходить по земле, поскольку наши ноги скользили бы и разъезжались в разные стороны, как у неумелого конькобежца на гладком льду.

Наряду с полезными свойствами, трение является во многих устройствах и механизмах вредным сопротивлением, которое отнимает львиную долю мощности и энергии у машин. Для уменьшения трения в механизмах конструкторам приходится применять различные приемы и способы, чтобы снизить непродуктивные потери энергии.

Трение классифицируют по характеру движения, в результате которого оно возникает. Различают трение покоя, трение скольжения, трение качения и трение качения с проскальзыванием. Очевидно, что последний из перечисленных видов трения является комбинацией трения скольжения и трения качения.

Трением покоя называется трение двух тел при начальном (бесконечно малом) относительном перемещении в момент перехода от состояния покоя к состоянию относительного движения. Это явление можно объяснить шероховатостью поверхностей соприкасающихся тел, а также их деформацией, вызванной взаимным давлением друг на друга.
Кроме того, при таком взаимном давлении (контакте) между телами, на их поверхностях возникают силы молекулярного сцепления. Для того, чтобы начать взаимное перемещение тел, необходимо преодолеть все эти факторы, обуславливающие трение покоя.

Трением движения называется трение двух тел, находящихся в относительном движении. Рассмотрим основные виды трения в зависимости от характера относительного движения тел.

***

Трение скольжения

Трением скольжения называется трение движения, при котором скорости тел в точке касания различны по значению и (или) направлению.
Трение скольжения, как и трение покоя, обусловлено, прежде всего, шероховатостью и деформацией поверхностей, а также наличием молекулярного сцепления прижатых друг к другу тел. Трение скольжения сопровождается изнашиванием, т. е. отделением или остаточной деформацией материала, а также нагревом трущихся поверхностей тел (остаточной называется деформация, не исчезающая после прекращения действия внешних сил).
Трение характеризуется силой трения.
Сила трения есть сила сопротивления относительному перемещению двух тел при трении.

Рассмотрим тело, лежащее на горизонтальной шероховатой плоскости (см. рисунок 1).
Сила тяжести G уравновешивается нормальной реакцией плоской поверхности N. Если к телу приложить небольшую движущую силу P, то оно не придет в движение, так как эта сила будет уравновешиваться силой трения Fтр, которая является, таким образом, составляющей реакции опорной плоскости, направленной вдоль плоскости в противоположную перемещению сторону.

Если постепенно увеличивать сдвигающую силу P, то до определенного ее значения тело будет оставаться в покое, а затем придет в движение.
Очевидно, что сила трения в состоянии покоя может изменяться в зависимости от степени микросмещения может изменяться от нуля до какого-то максимального значения Fmaxтр, причем в промежутке между нулем и максимальным значением сила трения Fтр по модулю всегда равна сдвигающей силе P.
Максимальное значение сила трения покоя имеет в момент начала относительного движения. Это значение называется наибольшей силой трения покоя или просто силой трения покоя.

Сила трения всегда направлена в сторону, противоположную направлению относительного движения тела.

В XVIII веке французские ученые Гийом Атонтон (1663-1705), а затем Шарль Огюстен Кулон (1736-1806) провели фундаментальные исследования в области трения, и на основе их сформулировали три основных закона трения скольжения, которые обычно называют законами Кулона.

***

1-й закон Кулона

Cила трения не зависит от величины площади трущихся поверхностей.

Первый закон можно объяснить с помощью следующих умозаключений. Если площадь трущихся поверхностей увеличится, то увеличится и количество сцепляющихся неровностей, но уменьшится давление на опорную поверхность, которое обратно пропорционально площади контакта тел. Поэтому сопротивление относительному перемещению останется прежним.

***

2-й закон Кулона

Максимальная сила трения прямо пропорциональна нормальной составляющей внешних сил, действующих на поверхности тела.

Второй закон Кулона говорит о том, что если увеличится нормальная составляющая внешних сил, действующих на поверхности тела (иначе говоря, увеличится сила нормального давления или реакции), то во столько же раз возрастет максимальная сила трения.
Поскольку зависимость эта прямо пропорциональная, можно выделить коэффициент, характеризующий ее пропорциональность. Этот коэффициент называется коэффициентом трения скольжения, и определяется он, как отношение силы трения Fтр к нормальной составляющей N внешних сил, действующих на поверхности тела. Обозначается коэффициент трения скольжения f.
При наибольшей силе трения покоя коэффициент трения называют коэффициентом сцепления.

Таким образом,

f = Fтр/N    или    Fтр = fN.

В результате второй закон трения скольжения можно сформулировать так: сила трения равна коэффициенту трения скольжения, умноженному на силу нормального давления или реакции.

Очевидно, что коэффициент трения скольжения – величина безразмерная.

Нормальная реакция N опорной поверхности и сила трения Fтр дают равнодействующую R, которая называется полной реакцией опорной поверхности (см. рисунок 2).

R = N + Fтр.

Полная реакция R составляет с нормалью к опорной поверхности некоторый угол. Максимальное значение этого угла (достигает в момент начала относительного движения) называется углом трения и обозначается φ.
Из рисунка 2 очевидно, что

f = tgφ,

т. е. коэффициент трения скольжения равен тангенсу угла трения.

Если коэффициент трения скольжения одинаков для всех направлений движения, то множество (геометрическое место) полных реакций образует круговой конус, который называется конусом трения (см. рисунок 2).
Если для разных направлений движения коэффициент трения неодинаков (например, при скольжении по дереву вдоль волокон и поперек волокон), то конус трения будет некруговым (несимметричным).

Свойство конуса трения заключается в том, что для равновесия тела, лежащего на шероховатой поверхности, равнодействующая приложенных к нему активных сил должна проходить внутри конуса трения.

Действительно, если равнодействующую P активных сил, приложенных к телу, разложить на составляющие P2 (движущая сила) и P2 (сила нормального давления), то

P1 = P2 tgα.

По второму закону трения скольжения

Fтр = fP2 = P2 tgφ.

Следовательно, при α < φ будет P1 < Fтр и движение окажется невозможным.

***



3-й закон Кулона

Сила трения зависит от материала тел, состояния трущихся поверхностей и рода смазки.

Согласно третьему закону трения скольжения, коэффициент трения скольжения зависит от материалов трущихся тел, качества обработки их поверхности (степени шероховатости), рода и температуры смазки. В зависимости от наличия между сопрягаемыми поверхностями слоя смазки трение подразделяется на два вида: трение без смазочного материала (сухое трение) и трение в условиях смазки.

Коэффициент трения скольжения определяют опытным путем; значения его для различных условий приведены в справочниках. Примеры коэффициентов трения для некоторых материалов приведены ниже.

  • Металл по металлу без смазки ……. 0,15…0,30
  • То же, со смазкой ………………………0,10…0,18
  • Дерево по дереву без смазки …….. 0,40…0,60
  • Кожа по чугуну без смазки ………… 0,30…0,50
  • То же, со смазкой ………………………… 0,15
  • Сталь по льду ……………………………… 0,02

Коэффициент трения скольжения при движении обычно меньше, чем при покое, и в первом приближении не зависит от скорости относительного перемещения тел.

Методы решения задач статики при наличии трения остаются такими же, как и при отсутствии его, причем в уравнения равновесия обычно вводят максимальные значения сил трения.

***

Трение на наклонной поверхности

Рассмотрим тело, лежащее на шероховатой наклонной плоскости, составляющей угол α с горизонтальной плоскостью (см. рисунок 3).
Разложим силу тяжести тела G на составляющие G1 и G2, параллельную и перпендикулярную наклонной плоскости. Модули этих составляющих определим, используя тригонометрические зависимости:

G1 = G sinα;    G2 = G cosα.

Составляющая G1 стремится сдвинуть тело вдоль наклонной плоскости. Полностью или частично эта составляющая уравновешивается силой трения; согласно второму закону трения скольжения, ее максимальное значение равно:

Fтр = fN = fG cosα,     где f – коэффициент трения скольжения тела по наклонной плоскости.

Для того, чтобы тело, лежащее на наклонной плоскости, находилось в равновесии, движущая сила G1 должна быть по модулю равна силе трения Fтр ,т. е.

G sinα = fG cosα    или     tgα = f = tgφ, откуда следует, что α = φ.

Если угол, который наклонная плоскость составляет с горизонтом, будет равен углу трения, то тело, лежащее на наклонной плоскости ,будет под действием собственной силы тяжести либо равномерно скользить вниз, либо находиться в состоянии покоя (что, собственно, одно и то же).

Для того, чтобы тело, лежащее на наклонной плоскости, заведомо не скользило вниз под действием собственной силы тяжести, должно быть соблюдено условие α < φ.

Наклонной плоскостью с переменным углом наклона к горизонту пользуются для экспериментального определения угла трения φ и коэффициента трения f (см. рисунок 4а).

Определим модуль силы Р, параллельной наклонной плоскости, в случае равномерного перемещения тела вверх по шероховатой наклонной плоскости (см. рисунок 4б). Спроецируем силы, действующие на тело, на ось x. Составим уравнение равновесия:

ΣX = 0;    P – G sinα – Fтр = 0.

Так как Fтр = fG cosα, то P = G sinα + fG cosα или после преобразований: P = G (tgα + f).

Определим модуль горизонтальной силы Р, которую надо приложить к телу для равномерного перемещения его вверх по шероховатой наклонной плоскости (см. рисунок 5).

Применим геометрическое условие равновесия плоской системы сил (размерами тела пренебрегаем) и построим замкнутый силовой многоугольник, соответствующий уравнению равновесия:

G + P + N + Fтр = 0.

Из треугольника abc имеем: P = Gtg(α + φ).

Этот случай движения имеет место при взаимном перемещении винта и гайки с прямоугольной резьбой, так как резьбу винта можно рассматривать как наклонную плоскость, угол наклона которой равен углу подъема винтовой линии.

Трение в резьбе, имеющей треугольный или трапецеидальный профиль, подобно трению в клинчатом ползуне. Поэтому рассмотрим клинчатый ползун с углом заострения 2β, нагруженный вертикальной силой Q (см. рисунок 6). Определим силу P, необходимую для равномерного перемещения ползуна вдоль горизонтальных направляющих, если коэффициент трения скольжения равен f.

Составим два уравнения равновесия ползуна:

ΣX = 0;    P – 2Fтр = 0;
ΣY = 0;    2Nsinβ – Q = 0,

где Fтр– сила трения на каждой грани ползуна; N – нормальная реакция направляющей.

Решая эту систему уравнений и учитывая, что Fтр = fN, получим:

P = (f/sinβ)Q = f’Q,

где f’ = f/sinβ – приведенный коэффициент трения.

Соответствующий этому приведенному коэффициенту угол трения обозначим φ’ и назовем приведенным углом трения, тогда:

f’ = tgφ’.

Очевидно, что f’> f, следовательно, при прочих равных условиях трение в клинчатом ползуне больше трения на плоскости.

Понятие приведенного коэффициента трения условно, так как он изменяется в зависимости от угла заострения клинчатого ползуна.

По аналогии с движением тела вверх по наклонной плоскости под действием горизонтальной силы для равномерного перемещения клинчатого ползуна по направляющим, наклоненным к горизонту под углом α, нужно приложить горизонтальную силу равную

P = Q tg(α + φ’).

Трение в крепежной метрической резьбе подобно трению клинчатого ползуна с углом заострения 2β = 120˚, для трапецеидальной резьбы угол 2β = 150˚.

С трением связано понятие угла естественного откоса — наибольшим углом между наклонной плоскостью и горизонтом, при котором сыпучее тело удерживает свои частицы на поверхности, без их движения (осыпания) вниз. Угол естественного откоса сыпучего тела равен углу трения между его частицами. Этот угол приходится принимать во внимание, например, при различных земляных работах на уклонах и скатах.

***

Трение качения



6.3. Силы трения покоя и скольжения. Коэффициент трения скольжения

Силы, мешающие движению, знакомы человеку с глубокой древности. Каждому известно, как трудно передвигать тяжелые предметы. Это связано с тем, что поверхность твердого тела не является идеально гладкой и содержит множество зазубрин (они имеют различные размеры, которые уменьшаются при шлифовке). При соприкосновении поверхностей двух тел происходит сцепление зазубрин. Пусть к одному из тел приложена небольшая сила (F), направленная по касательной к соприкасающимся поверхностям. Под действием этой силы зазубрины будут деформироваться (изгибаться). Поэтому появится сила упругости, направленная вдоль соприкасающихся поверхностей. Сила упругости, действующая на тело, к которому приложена сила F, компенсирует ее и тело останется в покое.

Сила трения покоя — сила, возникающая на границе соприкасающихся тел при отсутствии их относительного движения.

Сила трения покоя направлена по касательной к поверхности соприкосновения тел (рис. 6.3) в сторону, противоположную силе F, и равна ей по величине: F тр = — F.

Рис. 6.3. Сила трения покоя

При увеличении модуля силы F изгиб зацепившихся зазубрин будет возрастать и, в конце концов, они начнут ломаться. Тело придет в движение.

Сила трения скольжения — сила, возникающая на границе соприкасающихся тел при их относительном движении.

Вектор силы трения скольжения направлен противоположно вектору скорости движения тела относительно поверхности, по которой оно скользит.

Тело, скользящее по твердой поверхности, прижимается к ней какой-либо внешней силой Р (например, силой тяжести), направленной по нормали. В результате этого поверхность прогибается и появляется сила упругости N (сила нормального давления или реакция опоры), которая компенсирует прижимающую силу Р (N = -Р). Чем больше сила N, тем глубже сцепление зазубрин и тем труднее их сломать. Опыт показывает, что модуль силы трения скольжения пропорционален силе нормального давления:

Fcк=μ·N. (6.4)

Безразмерный коэффициент μ называется коэффициентом трения скольжения. Он зависит от материалов соприкасающихся поверхностей и степени их шлифовки. Например, при передвижении на лыжах коэффициент трения скольжения зависит от качества смазки (сорт мази, толщина слоя мази, качество разравнивания слоя), поверхности лыжни (мягкая, сыпучая, уплотненная, оледенелая, той или иной степени влажности и с тем или иным строением снега в зависимости от температуры и влажности воздуха и др). Большое количество переменных факторов делает сам коэффициент непостоянным. Если коэффициент трения лежит в пределах 0,045—0,055 скольжение считается хорошим.

Можно считать, что максимальное значение силы трения покоя равно силе трения, действующей при скольжении:

В табл. 6.1 приведены значения коэффициента трения скольжения для различных соприкасающихся тел.

Таблица 6.1

Коэффициенты трения скольжения для различных случаев

Условия скольжения

μ

Лыжи по снегу

0,045—0,055

Сталь по льду (коньки)

0,015

Шина по сухому асфальту

0,50-0,70

Шина по мокрому асфальту

0,35—0,45

Шина по сухой грунтовой дороге

0,40—0,50

Шина по мокрой грунтовой дороге

0,30-0,40

Шина по гладкому льду

0,15—0,20

Сила трения скольжения всегда мешает движению, а роль силы трения покоя во многих случаях позитивна. Именно благодаря этой силе возможно передвижение человека, животных и наземного транспорта.

Так, при ходьбе (рис. 6.4, а) человек, напрягая мышцы опорной ноги, отталкивается от земли, стараясь сдвинуть подошву назад. Этому препятствует сила трения покоя направленная в обратную сторону — вперед. Она и сообщает ускорение человеку. Для тренировок спортсменов (космонавтов) применяются специальные дорожки, установленные на подвижных роликах (рис. 6.4, б). В этом случае бегущий человек, отталкивая дорожку, заставляет ее двигаться в обратную сторону. Таким же образом отталкиваются от дороги и колеса автомобиля (рис. 6.4, в).

Сила трения снижает спортивные результаты, поэтому ведутся непрерывные исследования по ее уменьшению. Одним из направлений повышения результатов в лыжном спорте является совершенствование мазей.

Первоначально в качестве мазей для лыж использовались пчелиный воск, смола деревьев, растительные масла. В настоящее время появились новые мази — научно разработанные составы для обработки скользящей поверхности.

Рис. 6.4. Проявления силы трения покоя: а) обычная ходьба, б) бег по дорожке на роликах, в) колесо автомобиля

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *