Электрические явления. Видеоурок. Физика 8 Класс
На уроке «Электрические явления» мы узнаем, что такое заряд и какими свойствами он обладает, изучим явление электризации тел и образования электрического поля.
Что такое утюг? Самое точное определение – это то, чем мы гладим одежду. То есть мы почти всегда определяем объект через его свойства. Похожая ситуация у нас уже возникала: мы не могли точно сформулировать, что такое энергия, но описывали ее через свойство: энергия – это то, что сохраняется в замкнутой системе.
Такие понятия, как «тело», «координата», «время», мы считаем базовыми, то есть не требующими точного определения (как точка или прямая в математике). Сложно строго сформулировать, что они значат, мы считаем их общеизвестными, общепонятными и через них определяем все остальные. Если каждое понятие определять через предыдущие, то рано или поздно придется остановиться и признать, что «предыдущих» не осталось.Сегодня мы познакомимся с еще одним таким базовым физическим понятием, которое называется «заряд». Мы опишем свойства заряда и заряженных тел, которые и будем использовать в практических целях.
До сих пор мы изучали в основном силы, которые возникают при контакте тел (трение, упругость, реакция опоры). Без непосредственного контакта мы говорили только о силах гравитации (два тела, обладающих массой, притягиваются друг другу). Но некоторые тела (например, потертые друг о друга волосы и пластиковая расческа, янтарь и шерсть и т. д.) взаимодействуют на расстоянии, причем это взаимодействие нельзя назвать гравитационным.
1) Сила гравитационного притяжения зависит только от массы и расстояния между телами, поэтому объяснить наличием этой силы притяжения волос к расческе нельзя (иначе мы бы наблюдали это притяжение и до расчесывания). Плюс возникающее притяжение сильнее гравитационного.
2) Между телами, обладающими массой, есть только силы гравитационного притяжения. Мы же, в ряде случаев, можем наблюдать отталкивание тел друг от друга. Значит, в приведенных примерах у тел есть нечто, благодаря чему они взаимодействуют. Такое взаимодействие назвали электрическим, а это «нечто» – электрическим зарядом.
Тела, обладающие зарядом, взаимодействуют между собой. Между ними пробегает искра, и они теряют заряд. Похожее явление можно наблюдать и в больших масштабах: молния – аналог искры между заряженными облаками и поверхностью Земли. Потертая о волосы расческа притягивает даже, казалось бы, незаряженные кусочки бумаги, пыль и т. д. Круг явлений широкий, и в этом нужно разобраться.
Заряд изучается по проявлениям, а проявляется заряд во взаимодействии тел. Возьмем воздушный шарик и потрем его о волосы. Волосы начнут притягиваться к шарику – волосы и шарик обладают зарядом. Если взять два таких заряженных шарика, между собой они будут отталкиваться. Установили два типа взаимодействия: притяжение и отталкивание. Причем, если взять два тела, которые одинаково себя ведут с третьим телом (оба к нему притягиваются или оба отталкиваются), друг от друга они отталкиваются. Есть два типа зарядов, и заряды одного типа (одноименные) отталкиваются, а разных типов (разноименные) – притягиваются.
Как обозначить эти типы зарядов? Оказалось, удобно обозначить их знаками плюс и минус: положительный и отрицательный заряд (см. рис. 1).
Рис. 1. Обозначение зарядов
Теперь можем сказать, что шарики обладают одноименными зарядами – они отталкиваются. А вот заряды шарика и волос разноименные – между собой они притягиваются.
Заряды или заряженные тела
Говоря о взаимодействии заряженных тел, часто само слов
Электрические явления. Физика, 8 класс: уроки, тесты, задания.
Вход- Предметы
- Физика
- 8 класс
-
Электризация тел. Два рода электрических зарядов
-
Проводники, диэлектрики и полупроводники
-
Взаимодействие заряженных тел. Электрическое поле
-
Закон сохранения электрического заряда -
Дискретность электрического заряда. Электрон. Строение атомов
-
Электрический ток. Электрическая цепь. Гальванические элементы. Аккумуляторы
-
Электрический ток в металлах. Полупроводниковые приборы
-
Сила тока. Амперметр
-
Электрическое напряжение. Вольтметр
-
Электрическое сопротивление. Закон Ома для участка электрической цепи
-
Удельное сопротивление. Реостаты
-
Последовательное и параллельное соединение проводников
-
Работа и мощность тока
-
Количество теплоты, выделяемое проводником с током
-
Счётчик электрической энергии
-
Лампа накаливания. Электронагревательные приборы
-
Расчёт электроэнергии, потребляемой бытовыми электроприборами
-
Короткое замыкание. Плавкие предохранители
Электрические явления (стр. 1 из 7)
Министерство образования и высшей школы Республики Коми
Управление образования администрации МО «Городской округ Усинск»
Муниципальная средняя общеобразовательная школа 5
Реферат
по физике
на тему: «Электрические явления»
2008 г.
Оглавление
Введение
Основная часть
Заключение
Список использованной литератуы
Введение
Электричество – совокупность явлений, обусловленных существованием, движением и взаимодействием электрически зараженных тел или частиц, Взаимодействие электрических зарядов осуществляется с помощью электромагнитного поля ( в случае неподвижных электрических зарядов – электростатические поля). Движущиеся заряды (электрический ток) наряду с электрическим возбуждают и магнитное поле, т.е. порождают электромагнитное поле, посредством которого осуществляется электромагнитное взаимодействие(учение о магнетизме, т.о., является составной частью общего учения об электричестве). Электромагнитные явления описываются классической электродинамикой, в основе которой лежат уравнения Максвелла.
Законы классической теории электричества охватывают огромную совокупность электромагнитных процессов. Среди 4 типов взаимодействий ( электромагнитных, гравитационных, сильных и слабых), существовавших в природе, электромагнитные занимают первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных частиц противоположенных знаков, взаимодействие между которыми, с одной стороны, на много порядков интенсивнее гравитационных и слабых, а с другой – являются дальнодействующими в отличии от сильных взаимодействий, Строение атомных оболочек, сцепление атомов в молекулы (хим. Силы) и образование конденсированного вещества определяются электромагнитным взаимодействием.
Цель Реферата в том, чтобы показать , что человечество не мыслит своё существование на Земле без электричества.
Историческая справка. Простейшие электрические и магнитные явления известны ещё с глубокой древности. Были найдены минералы, притягивающие кусочки железа, а также обнаружено, что янтарь( от греческого электрон, отсюда термин электричества), потертый о шерсть, притягивает легкие предметы (электризация трением). Однако лишь в 1600 У. Гильберт впервые установил различия между электрическими и магнитными явлениями, Он открыл существование магнитных полюсов и неотделимость их друг от друга, а также установил, что земной шар – гигантский магнит.
В 17 – 1-й пол. 18 вв. проводились многочисленные опыты с наэлектризованными телами, были построены первые электростатические машины, основанные на электризации тернием, установлено существование электрических зарядов двух родов (Ш. Дюфе), обнаружена электропроводность металлов (англ. Ученый С. Грей). С изобретением первого конденсатора – лейденские банки (1745) – появилась возможность накапливать большие электрические заряды. В 1747-53 Б. Франклин изложил первую последовательную теорию электрических явлений, окончательно установил электрическую природу молнии и изобрел молниеотвод.
Во 2-й пол. 18 в. Началось количественное изучение электрических и магнитных явлений, Появились первые измерительные приборы – электроскопы различных конструкций, электрометры. Г. Кавендиш (1773) и Ш. Кулон (1785) экспериментально установили закон взаимодействия неподвижных точечных электрических зарядов ( работы Кавендиша были опубликованы лишь в 1879). Этот основой закон электростатики (Кулона закон) впервые позволил создать метод измерение электрических зарядов по силам взаимодействия между ними, Кулон установил также закон взаимодействия между полюсами длинных магнитов и ввёл понятие о магнитных зарядах, сосредоточенных на концах магнитов.
Следующий этап в развитии науки об электричестве связан с открытием в кон. 18 в. Л. Гальвани «животного электричества» и работами А. Вольты, который правильно истолковал опыты Гальвани присутствием в замкнутой цепи 2 разнородных металлов в жидкости и изобрел первый источник электрического тока – гальванический элемент(вольтов столб 1800), создающий непрерывный(постоянный) ток в течение длительного времени, В 1802 В.В. Петров, построив гальванический элемент значительно большей мощности, открыл электрическую дугу, исследовал её свойства и указал на возможность применения её для освещения, а также для плавления и сварки металлов. Г. Дэви электролизом водных растворов щелочей получил (1807) неизвестные ранее металлы – натрий и калий. Дж. П. Джоуль установил (1841), что количество теплоты, выделяемой в проводнике электрическим током, пропорциональна квадрату силы тока; этот закон был обоснован (1842) точными экспериментами Э. Х. Ленца (закон Джоуля – Ленца). Г.Ом установил (1826) количество зависимости электрического тока от напряжения в цепи. К. Ф. Гаусс сформулировал (1830) основную теорему электростатики (теорема Гаусса).
Наиболее фундаментальное открытие было сделано Х. Эрстедом в 1820; он обнаружил действие электрического тока на магнитную стрелку – явление, свидетельствовавшее о связи между электричеством и магнетизмом. Вслед за этим в том же году А. М. Ампер установил закон взаимодействия электрических токов(закон Ампера) Он показал также, что свойства постоянных магнитов могут быть объяснены на основе предположения о том, что в молекулах намагниченных тел циркулируют постоянные электрические токи(молекулярные токи). Т. О., согласно Амперу, все магнитные явления сводятся к взаимодействиям токов, магнитных же зарядов не существует. Со времени открытий Эрстеда и Ампера учение о магнетизме сделалось составной частью учений об электричестве
Со 2-й четв. 19 в. Началось быстрое проникновение электричества в технику. В 20-х гг. появились первые электромагниты. Одним из первых применений электричества был телеграфный аппарат, в 30 — 40-х гг. построены электродвигатели и генераторы тока, а в 40-х гг. – электрические осветительные устройства и т. д. Практическое применения электричества в дальнейшем всё более возрастало, что в свою очередь оказало существенное влияние на учение об электричестве.
В 30 – 40-х гг. 19 в. В развитие науки об электричестве внёс большой вклад М.
Фарадей- творец общего учения об электромагнитных явлениях, в в котором все электрические и магнитные явления рассматриваются с единой точки зрения. С помощью опытов он доказал, что действие электрических зарядов и токов не зависят от способа их получения [до Фарадея»обыкновенное» (полученное при электризации трением), атмосферное, «гальваническое», магнитное, термоэлектрическое, «животное» и др. виды электричества]. В 1831 Фарадей открыл индукцию электромагнитную – возбуждения электрического тока в контуре, находящемся в переменном магнитном поле. Это явление (наблюдавшееся в 1832 также Дж. Генри) составляет фундамент электротехники. В 1833-34 Фарадей установил законы электролиза; эти его работы положили начало электрохимии. В дальнейшем он, пытаясь найти взаимосвязь электрических и магнитных явлений с оптическими, открыл поляризацию диэлектриков (1837), явления парамагнетизма и диамагнетизма (1845), магнитное вращение плоскости поляризации света (1845) и др.
Фарадей впервые ввёл представление об электрических и магнитных полях. Он отрицал концепцию дальнодействия, сторонники которой считали, что тела непосредственно (через пустоту) на расстояние действуют друг на друга. Согласно идеям Фарадея, взаимодействия между зарядами и токами осуществляется посредством промежуточных агентов: заряды и токи создают в окружающем пространстве электрические или магнитные поля, с помощью которых взаимодействие передается от точки к точке (концепция близкодействия). В основе его представлений об электрических и магнитных полях лежало понятие силовых линий, которые он рассматривал, как механические образования в гипотетической среде – эфире, подобные растянутым упругим нитям или шнурам.
Идеи Фарадея о реальности электромагнитного поля не сразу получили признание, Первая математическая формулировка законов электромагнитной индукции была дана Ф Нейманом в 1845 на языке концепции дальнодействия. Им же были введены важные понятия коэффициентов само- и взаимодукции токов. Значение этих понятий полностью раскрылось позднее, когда У. Томсон ( лорд Кельвин) развил (1853) теории электрических колебаний в контуре, состоящем из конденсатора (электроёмкость) и катушки (индуктивность.
Большое значения для развития учения об электричестве имело создание новых приборов и методов электрических измерений, а также единая система электрических и магнитных единиц измерений,, созданная Гауссом и В. Вебером (система единиц гаусса). В 1846 Вебер указал на связь силы тока с плотностью электрических зарядов в проводнике и скоростью их упорядочного перемещения. Он установил также закон взаимодействия движущихся точечных зарядов, который содержал новую универсальную электродинамическую постоянную, представляющею собой отношение электростатических и электромагнитных единиц заряда и имеющею размерность скорости. При экспериментальном определении ( Вебер и Ф. Кольрауш, 1856) этой постоянной было получено значение, близкое к скорости света; это явилось определенным указанием на связь электромагнитных явлений с оптическими.
В 1861 – 73 учение об электричестве получило своё развитие и завершение в работах Дж. К. Максвелла. Опираясь на эмпирические законы электромагнитных явлений ,и введя гипотезу о порождение магнитного поля переменным электрическим полем, Максвелл сформулировал фундаментальные уравнения классической электродинамики, названные его именем. При этом он, подобно Фарадею, рассматривал электромагнитные явления как некоторую форму механических процессов в эфире. Главное новое следствие, вытекающее из этих уравнений,- существование электромагнитных волн, распространяющихся со скоростью света. Уравнения Максвелла легли в основу электромагнитной теории света. Решающее подтверждение теория Максвелла нашла в 1886-89, когда Г. Герц экспериментально установил существование электромагнитных волн. После его открытия были предприняты попытки установить связь с помощью электромагнитных волн, завершившиеся созданием радио, и начались интенсивные исследования в области радиотехники.
Объяснение электрических явлений (Гребенюк Ю.В.). Видеоурок. Физика 8 Класс
На прошлых уроках мы рассмотрели наличие электрического поля у заряженных тел и поговорили о делимости электрического заряда. Сегодня мы обобщим изученные ранее факты и понятия, а также рассмотрим различные электрические явления.
Считается, что первым систематическое изучение электромагнитных явлений начал английский ученый Гильберт (рис. 1).
Рис. 1. Уильям Гильберт (1544–1603)
Однако объяснить эти явления ученые смогли только спустя несколько веков. После открытия электрона физики выяснили, что часть электронов может сравнительно легко отрываться от атома, превращая его в положительно или отрицательно заряженный ион (рис. 2). Каким же способом могут электризоваться тела? Рассмотрим эти способы.
Рис. 2. Положительно и отрицательно заряженный ион
С электризацией трением мы встречались, когда электризовали эбонитовую палочку кусочком шерсти. Возьмем эбонитовую палочку и потрем ее шерстяной тканью – в этом случае палочка приобретет отрицательный заряд. Выясним, что вызвало возникновение этого заряда. Оказывается, что в случае тесного контакта двух тел, изготовленных из разных материалов, часть электронов переходит из одного тела на другое (рис. 3).
Рис. 3. Переход части электронов с одного тела на другое
Расстояние, на которое при этом перемещаются электроны, не превышает межатомных расстояний. Если тела после контакта разъединить, то они окажутся заряженными: тело, отдавшее часть своих электронов, будет заряжено положительно (шерсть), а тело, получившее их, – отрицательно (эбонитовая палочка). Шерсть удерживает электроны слабее, чем эбонит, поэтому при контакте электроны в основном переходят с шерстяной ткани на эбонитовую палочку, а не наоборот.
Аналогичного результата можно добиться, если расчесывать сухие волосы расческой. Отметим, что общепринятое название «электризация трением» не совсем корректная, правильно говорить «электризация прикосновением», ведь трение необходимо только для того, чтобы увеличить количество участков тесного контакта при соприкосновении тел.
Если до начала опыта шерстяная ткань и эбонитовая палочка не были заряженными, то после проведения опыта они приобретут некоторый заряд, причем их заряд будет равен по модулю, но противоположен по знаку. Это означает, что до и после проведения опыта суммарный заряд палочки и ткани будет равен 0 (рис. 4).
Рис. 4. Суммарный заряд палочки и ткани до и после проведения опыта равен нулю
В результате проведения многих опытов физики установили, что при электризации происходит не создание новых зарядов, а их перераспределение. Таким образом, выполняется закон сохранения заряда.
Закон сохранения электрического заряда: полный заряд замкнутой системы тел или частиц остается неизменным при любых взаимодействиях, происходящих в этой системе (рис. 5):
,
где – заряды тел или частиц, образующих замкнутую систему (n – количество таких тел или частиц).
Рис. 5. Закон сохранения электрического заряда
Под замкнутой системой подразумевают такую систему тел или частиц, которые взаимодействуют только друг с другом, то есть не взаимодействуют с другими телами и частицами.
Решение различных задач
Рассмотрим примеры решения нескольких важных задач, связанных с различными электрическими явлениями.
Задача 1. Два одинаковых проводящих заряженных шарика соприкоснулись и сразу же разошлись. Вычислите заряд каждого шарика после соприкосновения, если до него заряд первого шарика был равен , а второго .
Решение
Решение данной задачи основывается на законе сохранения электрического заряда: сумма зарядов шариков до и после соприкосновения не может измениться (так как в данном случае они образуют замкнутую систему). Кроме того, поскольку шарики одинаковые, то перетекание заряда с одного шарика на другой будет происходить до тех пор, пока их заряды не уравняются (в качестве аналогии можно рассмотреть тепловой баланс в системе из двух одинаковых тел с разными температурами, который установится только тогда, когда уравняются температуры тел). Значит, после соприкосновения заряд каждого из шариков станет равным (рис. 6). Пользуясь законом сохранения заряда, мы получаем: . Из этого несложно получить, что после соприкосновения заряд каждого из шариков будет равен: .
Рис. 6. Заряды после соприкосновения шариков
Задача 2. Два заряженных шарика подвешены на шелковых нитях. К ним подносят положительно заряженный лист оргстекла, и угол между нитями увеличивается. Каков знак зарядов шариков? Ответ обоснуйте.
Решение
До поднесения оргстекла силы, действующие на каждый из шариков, уравновешены (сила тяжести, сила натяжения нити и сила электрического взаимодействия шариков) (рис. 7). Мы видим, что при поднесении положительно заряженного оргстекла шарики «поднимаются» относительно первоначального положения. Значит, возникла сила, которая направлена вверх. Это, конечно же, сила электрического взаимодействия шарика и пластинки. Значит, шарик и пластинка отталкиваются (в противном случае сила их взаимодействия «тянула» бы шарик вниз). Из этого можно сделать вывод, что шарики заряжены так же по знаку, как и пластинка, то есть положительно (рис. 8).
Рис. 7. Силы, действующие на шарики до поднесения оргстекла
Рис. 8. Движение шариков вверх
Задача 3. Как передать электроскопу заряд, который в несколько раз больше, чем заряд наэлектризованной стеклянной палочки? У вас, кроме заряженной палочки и электроскопа, есть небольшой металлический шарик на изолирующей ручке.
Решение
Будем использовать электризацию через влияние. Поднесем шарик к палочке (не касаясь) и, дотронувшись до шарика пальцем, зарядим его. После этого поднесем шарик к шару электроскопа и коснемся его с внутренней стороны. Заряд распределится по поверхности шара электроскопа. Повторяя операцию много раз, мы можем сообщить электроскопу достаточно большой заряд.
В этом можно убедиться с помощью наглядной демонстрации (рис. 9).
Рис. 9. Сообщение электроскопу большого заряда многократной передачей
Заземление. Проводники и диэлектрики
Если взять металлический стержень и, удерживая его в руке, попробовать наэлектризовать, окажется, что это невозможно. Дело в том, что металлы – это вещества, имеющие множество так называемых свободных электронов (рис. 10), которые легко перемещаются по всему объему металла.
Рис. 10. Металлы – это вещества, имеющие множество свободных электронов
Подобные вещества принято называть проводниками. Попытка наэлектризовать металлический стержень, удерживая его в руке, приведет к тому, что избыточные электроны очень быстро убегут со стержня, и он останется незаряженным. «Дорогой для бегства» электронов служит сам исследователь, поскольку тело человека – это проводник. Именно поэтому опыты с электричеством могут быть опасными для их участников!
Рис. 11. «Дорога для бегства» электронов
Обычно «конечный пункт» для электронов – земля, которая тоже является проводником. Ее размеры огромны, поэтому любое заряженное тело, если его соединить проводником с землей, спустя некоторое время станет практически электронейтральным (незаряженным): тела, заряженные положительно, получат от земли некоторое количество электронов, а с тел, заряженных отрицательно, избыточное количество электронов уйдет в землю (см. рис. 12).
Рис. 12. Земля – «конечный пункт» для электронов
Технический прием, позволяющий разрядить любое заряженное тело путем соединения этого тела проводником с землей, называют заземлением.
Рис. 13. Обозначение заземления на схеме
В некоторых случаях, например чтобы зарядить проводник или сохранить на нем заряд, заземления следует избегать. Для этого используют тела, изготовленные из диэлектриков. В диэлектриках (их еще называют изоляторами) свободные электроны практически отсутствуют. Поэтому если между землей и заряженным телом поставить барьер в виде изолятора, то свободные электроны не смогут покинуть проводник (или попасть на него) и проводник останется заряженным (рис. 14). Стекло, оргстекло, эбонит, янтарь, резина, бумага – диэлектрики, поэтому в опытах по электростатике их легко наэлектризовать – заряд с них не стекает.
Рис. 14. Если между землей и заряженным телом поставить барьер в виде изолятора, то свободные электроны не смогут покинуть проводник (или попасть на него)
Проведем следующий опыт: возьмем эбонитовую палочку и зарядим ее с помощью электризации трением. Поднесем палочку к шару электрометра, коснемся на некоторое время шара электрометра пальцем и уберем палочку, мы видим, что стрелка электрометра отклонилась (рис. 15).
Рис. 15. Показание электрометра
Таким образом, шар приобрел электрический заряд, хотя мы его не касались эбонитовой палочкой. Почему же это произошло? Знак шара является противоположным знаку заряду палочки.
Так как контакта между заряженным и незаряженным телами не было, описанный процесс называется электризацией через влияние (или электростатической индукцией). Под действием электрического поля отрицательно заряженной палочки свободные электроны перераспределяются по поверхности металлической сферы (рис. 16).
Рис. 16. Перераспределение электронов
Электроны имеют отрицательный заряд, поэтому они отталкиваются от отрицательно заряженной эбонитовой палочки. В результате количество электронов станет избыточным на удаленной от палочки части сферы и недостаточным на ближней. Если коснуться сферы пальцем, то некоторое количество свободных электронов перейдет из сферы на тело исследователя (рис. 17).
Рис. 17. Переход части электронов на тело исследователя
В итоге на сфере возникнет недостаток электронов и она станет положительно заряженной. Выяснив механизм электризации через влияние, вам не составит труда объяснить, почему незаряженные металлические тела притягиваются к заряженным телам.
Сложнее объяснить, почему к наэлектризованной палочке притягиваются кусочки бумаги, ведь бумага – диэлектрик, а значит, практически не содержит свободных электронов. Дело в том, что электрическое поле заряженной палочки действует на связанные электроны атомов, из которых состоит бумага, вследствие чего изменяется форма электронного облака – оно становится вытянутым. В результате на ближних к палочке кусочках бумаги образуется заряд, противоположный по знаку заряду палочки (рис. 18), и поэтому бумага начинает притягиваться к палочке – это явление называется поляризацией диэлектрика.
Рис. 18. Поляризация диэлектрика
Польза и вред электризации
Применение электризации и наэлектризованных тел.
1. Изготовление наждачной бумаги
Принцип покрытия наждачным порошком бумаги и получения искусственных ворсистых материалов можно пояснить на следующем опыте (рис. 19). Диски от раздвижного конденсатора соединяют с кондукторами электрофорной машины. На нижний диск насыпают песок или узкие полоски цветной бумаги. Поверхность верхнего диска смазывают клеем. Приведя в действие электрофорную машину, заряжают диски. При этом кусочки бумаги или песок, находящиеся на нижнем диске, получив одноименный с ним заряд, под действием сил электрического поля притягиваются к верхнему диску и оседают на нем.
Рис. 19. Изготовление наждачной бумаги
2. Метод электростатической покраски металлических изделий
Метод окраски поверхностей в электрическом поле – электроокраска – впервые разработал русский ученый А.Л. Чижевский. Суть его такова: жидкий краситель любого цвета помещают в пульверизатор – сосуд с тонко оттянутым концом (соплом) – и подводят к нему отрицательный потенциал. К металлическому трафарету подводят положительный потенциал, а перед трафаретом размещается окрашиваемая поверхность (ткань, бумага, металл и т. д.) (рис. 20).
Рис. 20. Постановка метода электростатической покраски металлических изделий
Благодаря электростатическому полю между соплом с краской и трафаретом частицы краски летят строго по направлению к металлическому трафарету (рис. 21), на окрашиваемой поверхности воспроизводится точный рисунок трафарета, при этом ни одна капля краски не падает. Регулируя расстояние между соплом и объектом окраски, можно менять скорость нанесения и толщину покровного слоя, т. е. регулировать скорость окраски.
Данный метод дает экономию красителей до 70 % по сравнению с обычным методом окраски и ускоряет примерно в три раза процесс покрытия изделия.
Рис. 21. Частицы краски летят строго по направлению к металлическому трафарету
3. Очистка воздуха от пыли и легких частиц
Так как частицы пыли способны электризоваться, то для их удаления часто применяют фильтр, внутри которого находится электрически заряженный элемент, притягивающий к себе микрочастицы. Для того чтобы сделать пылеудаление более эффективным, воздух в помещении ионизируют. Такие электрофильтры устанавливают в цехах размола цемента и фосфоритов, на химических заводах.
Рис. 22. Электростатический очиститель воздуха со снятой пылесборной пластиной
Рис. 23. Электроды внутри промышленного электростатического очистителя воздуха
Отрицательное влияние электризации трением на производстве и в быту
На одном из целлюлозно-бумажных комбинатов некоторое время не могли установить причину частых обрывов быстродвижущейся бумажной ленты. Были приглашены ученые. Они выяснили, что причина заключалась в электризации ленты при трении ее о валки.
Рис. 24. Бумагоделательная машина
При трении о воздух электризуется самолет. Поэтому после посадки к самолету нельзя сразу приставлять металлический трап: может возникнуть разряд, который вызовет пожар. Сначала самолет разряжают: опускают на землю металлический трос, соединенный с обшивкой самолета, и разряд происходит между землей и концом троса (рис. 25).
Рис. 25. Удаление заряда с самолета
Бывали случаи, что быстро поднимающийся в воздухе воздушный шар загорался. Воздушные шары часто наполняют водородом, который легко воспламеняется. Причиной воспламенения может быть электризация трением прорезиненной оболочки о воздух при быстром подъеме.
Рис. 26. Воздушные шары (аэростаты)
В любом процессе, где участвуют движущиеся части вещества, движется зерно или жидкость, происходит разделение зарядов. Одна из опасностей при транспортировке зерна в элеватор связана с тем, что в результате разделения зарядов в атмосфере, заполненной горячей пылью, может проскочить искра и произойти возгорание.
Рис. 27. Транспортировка зерна
В домашних условиях устранить заряды статического электричества довольно легко, повышая относительную влажность воздуха квартиры до 60–70 % (рис. 28).
Рис. 28. Гигрометр
На этом уроке мы обсудили некоторые электрические явления: в частности, поговорили об электризации двумя способами – трением и влиянием.
Список литературы
- Соколович Ю.А., Богданова Г.С. Физика: справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: издательство «Ранок», 2005. – 464 с.
- А.В. Перышкин. Физика 8 кл.: учеб. для общеобразоват. учреждений. – М.: Дрофа, 2013. – 237 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал «physbook.ru» (Источник)
- Интернет-портал «youtube.com» (Источник)
Домашнее задание
- Почему иногда, поглаживая кошку рукой, можно увидеть небольшие искры, которые возникают между шерстью и рукой?
- Есть рыбы, которые можно назвать «живыми электростанциями». Что это за рыбы?
- Сформулируйте закон сохранения электрического заряда.
Электрические явления в природе
Испокон веков человечество пыталось логично объяснить различные электрические явления, примеры которых они наблюдали в природе. Так, в древности молнии считались верным признаком гнева богов, средневековые мореплаватели блаженно трепетали перед огнями святого Эльма, а наши современники чрезвычайно боятся встречи с шаровыми молниями.
Всё это — электрические явления. В природе всё, даже мы с вами, несёт в себе электрический заряд. Если объекты с большими зарядами разной полярности сближаются, то возникает физическое взаимодействие, видимым результатом которого становится окрашенный, как правило, в жёлтый или фиолетовый цвет поток холодной плазмы между ними. Её течение прекращается, как только заряды в обоих телах уравновешиваются.
Самые распространённые электрические явления в природе — молнии. Ежесекундно в поверхность Земли их ударяет несколько сотен. Молнии выбирают своей целью, как правило, отдельностоящие высокие объекты, поскольку, согласно физическим законам, для передачи сильного заряда требуется кратчайшее расстояние между грозовым облаком и поверхностью Земли. Чтобы обезопасить здания от попадания в них молний, их хозяева устанавливают на крышах громоотводы, которые представляют собой высокие металлические конструкции с заземлением, что при попадании молний позволяет отводить весь разряд в почву.
Огни святого Эльма — ещё одно электрическое явление, природа которого очень долгое время оставалась неясной. Имели с ним дело в основном моряки. Проявляли огни себя следующим образом: при попадании корабля в грозу вершины его мачт начинали полыхать ярким пламенем. Объяснение явлению оказалось очень простым — основополагающую роль играло высокое напряжение электромагнитного поля, что всякий раз наблюдается перед началом грозы. Но не только моряки могут иметь дело с огнями. Пилоты крупных авиалайнеров также сталкивались с этим явлением, когда пролетали сквозь облака пепла, подброшенного в небо извержениями вулканов. Огни возникают от трения частиц пепла об обшивку.
И молнии, и огни святого Эльма — это электрические явления, которые видели многие, а вот с шаровыми молниями столкнуться удавалось далеко не каждому. Их природа так и не изучена до конца. Обычно очевидцы описывают шаровую молнию как яркое светящееся образование шарообразной формы, хаотично перемещающееся в пространстве. Три года назад была выдвинута теория, которая поставила под сомнение реальность их существования. Если ранее считалось, что разнообразные шаровые молнии — это электрические явления, то теория предположила, что они являются не чем иным, как галлюцинациями.
Есть ещё одно явление, имеющее электромагнитную природу — северное сияние. Оно возникает вследствие воздействия солнечного ветра на верхние слои атмосферы. Северное сияние похоже на всполохи самых разных цветов и фиксируется, как правило, в довольно высоких широтах. Есть, конечно, и исключения – если солнечная активность достаточно высока, то сияние могут видеть в небе и жители умеренных широт.
Электрические явления являются довольно интересным объектом исследования для физиков по всей планете, так как большинство из них требует подробного обоснования и серьёзного изучения.
Объяснение электрических явлений (Ерюткин Е.С.). Видеоурок. Физика 8 Класс
Данный урок являются заключительным и обобщающим перед переходом к следующему подразделу темы, в котором будет изучаться постоянный электрический ток в проводниках. На уроке будут повторены основные понятия, с которыми мы сталкивались при изучении предыдущих уроков: заряд, электрическое поле, электроскоп, электризация, электрон и т. п. В конце урока будет приведено несколько экспериментов, которые будут объясняться, исходя из изученных ранее понятий.
Начнем с того, что вспомним, что было открыто советским ученым А. Ф. Иоффе (рис. 1) и американским ученым Р. Э. Милликеном (рис. 2) независимо друг от друга. Проведя ряд экспериментов, каждому из них удалось установить массу и заряд электрона, которые соответственно равны:
Рис. 1. А. Ф. Иоффе (1880-1960)
Рис. 2. Р. Э. Милликен (1868-1953) (Источник)
Модуль заряда электрона был назван элементарным зарядом, и было установлено, что такой заряд является неделимым, т. е. меньшего заряда в природе нет. Поскольку любой заряд, как из кирпичиков, состоит из элементарных зарядов, то значение любого заряда можно разделить на величину элементарного заряда без остатка.
Стоит упомянуть, что величина заряда тела характеризует его взаимодействие с другим заряженным телом и что заряды разделены на два типа: положительные и отрицательные. При этом одноименные заряды отталкиваются, а разноименные притягиваются.
Обозначение заряда: ;
Единица измерения заряда: Кл (кулон).
Замечание. Единица измерения заряда названа в честь французского физика Шарля Кулона (рис. 3), который внес большой вклад в изучение электричества.
Рис. 3. Ш. Кулон (1736-1806) (Источник)
Заряд тела имеет важное свойство: он может делиться, причем, достаточно много раз пока не дойдет до значения элементарного заряда, который неделим (на практике такая ситуация практически невозможна). Деление заряда происходит путем передачи части заряда от одного тела к другому.
Для понимания процессов возникновения зарядов у тел необходимо знать устройство атома. Открытие современной модели атома принадлежит английскому ученому Э. Резерфорду (рис. 4). Согласно этой модели, которая носит название «планетарная» (рис. 5), атом состоит из массивного положительно заряженного ядра, состоящего из протонов и нейтронов, и вращающихся вокруг ядра отрицательно заряженных электронов. Поскольку количество протонов в ядре атома, находящегося в основном состоянии, равно количеству электронов, вращающихся по орбитам, то атом в целом электронейтрален.
Замечание. Заряд протона по модулю равен заряду электрона, но противоположного знака (положительный), стандартное обозначение: .
Рис. 4. Э. Резерфорд (1871-1937) (Источник)
Электрические явления в природе и технике
Конспект по физике для 8 класса «Электрические явления в природе и технике». Как образуется молния. Как устроен громоотвод.
Конспекты по физике Учебник физики Тесты по физике
Электрические явления
в природе и технике
Вокруг нас происходит множество электрических явлений. Рассмотрим некоторые из них.
ЭЛЕКТРИЧЕСКАЯ ПРИРОДА МОЛНИИ
Наиболее яркое электрическое атмосферное явление — молния. Происхождение молнии объясняют следующим образом. Облака под действием ветра с большой скоростью проносятся над землёй и электризуются. При этом верхние и нижние слои облаков приобретают разноимённые заряды. Вокруг этих облаков возникает сильное электрическое поле. На ближайших к ним телах образуется электрический заряд противоположного знака. Такими телами могут являться другие облака, а также поверхность земли с находящимися на ней высокими телами.
Иногда два наэлектризованных облака приближаются друг к другу на достаточно близкое расстояние. Если при этом положительно заряженный слой облака приближается к отрицательно заряженному слою другого облака, то между ними происходит разряд — молния а, которая сопровождается громом.
Когда грозовая туча имеет отрицательный электрический заряд и проходит близко к поверхности земли, то создаваемое этим электрическим зарядом поле приводит к появлению в предметах на земле положительного электрического заряда. Между тучей и заряженными предметами может произойти разряд б.
Молния и гром происходят одновременно, но свет распространяется со скоростью 300 000 км/с, а скорость звука в воздухе 340 м/с. Поэтому мы сначала видим разряд — молнию, а звук разряда — гром — слышим спустя некоторое время. Зная время запаздывания грома, можно оценить, как далеко от наблюдателя произошёл разряд.
На земном шаре одновременно происходит до 1800 гроз. В умеренных широтах грозы в среднем бывают 10—15 раз в год, у экватора на суше от 80 до 160 грозовых дней в году, над океаном грозы случаются реже, а в Арктике — одна в несколько лет.
Электрическая природа молнии была впервые раскрыта в 1752 г. американским учёным Бенджамином Франклином. Во время грозы он запустил в облака воздушного змея. Как только верёвка, на которой был привязан змей, намокла от дождя, её растрепавшиеся волокна внезапно встали дыбом, указывая на то, что змей и нить зарядились. Находясь под навесом и придерживая нить, на которой был подвешен змей, Франклин осуществил опыт, который мог оказаться для учёного смертельным. Он приблизил палец к металлическому ключу, привязанному на мокром шнуре. Но ещё до того, как он коснулся пальцем ключа, из ключа в палец проскочили искры, произведя при этом треск.
Подобные опыты чрезвычайно опасны. Некоторые исследователи погибли во время таких экспериментов.
ГРОМООТВОД
Во время своих опытов Франклин обнаружил, что металлическое остриё, соединенное с землёй, снимает электрические разряды с заряженных тел. Сконструированный им молниеотвод, или громоотвод, как его сейчас называют, был первым научно обоснованным устройством для защиты от молний.
Простейший громоотвод представляет собой заострённый металлический стержень, прикреплённый к зданию и поднятый над крышей. Он соединяется со всеми металлическими частями здания и с массивной металлической плитой, зарытой в землю, чем обеспечивается заземление громоотвода.
При разряде заряд по громоотводу уходит в землю и не приносит никакого вреда. Кроме того, наведённый тучей на здание электрический заряд уходит с громоотвода в землю, тем самым не только предохраняя здание от удара молнии, но и уменьшая вероятность её удара в данное здание.
В течение сотен лет моряки замечали, что во время гроз на верхушках корабельных мачт появляются странные огни, которые получили название огней святого Эльма. Моряки думали, что этими огнями их покровитель святой Эльм показывает, что они находятся под его опекой. Огни святого Эльма можно также наблюдать во время грозы на верхушках высоких зданий, на кончиках лопастей пропеллеров самолётов и т. п. Это явление наблюдается, когда в остроконечных частях предметов появляется большой электрический заряд.
Молния чаще всего ударяет в возвышающиеся над уровнем земли объекты — колокольни, флагштоки, небоскрёбы, а также в одиночные деревья в полях и вершины холмов. Если молния попадает в металл, она его плавит. Попадая в песок, молния плавит и его. Попав в дерево, молния расщепляет его, обугливает, а может и поджечь. Поэтому во время грозы нельзя прятаться от дождя под высокими деревьями. Попав в строения, молния также может разрушить их и поджечь.
ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ В БЫТУ И ТЕХНИКЕ
Электризация часто наблюдается и в быту. Разряды электричества возникают при ходьбе человека по полимерным покрытиям, синтетическим коврам, при снятии синтетической одежды, при расчёсывании волос пластмассовой расчёской и т. д.
В домашних условиях устранить заряды статического электричества можно, увлажняя воздух или используя антистатические препараты. На производстве человек также сталкивается с проблемой самопроизвольной электризации.
При трении о воздух электризуется самолёт, поэтому после посадки к нему нельзя сразу приставлять металлический трап: возникнет электрический разряд, который может вызвать пожар.
После посадки самолёт сначала «разряжают»: опускают на землю соединённый с обшивкой самолёта металлический трос, по которому заряд уходит в землю.
Вы смотрели Конспект по физике для 8 класса «Электрические явления в природе и технике».
Вернуться к Списку конспектов по физике (Оглавление).
Электрические явления в природе и технике
5 (100%) 2 vote[s]Просмотров: 1 293