Site Loader

Комбинированный урок по теме «Электроемкость. Единицы электроемкости. Конденсаторы». 10-й класс

  • Образовательные цели: сформировать понятия электрической ёмкости, единицы ёмкости; изучить зависимость ёмкости от размеров проводника, диэлектрической проницаемости среды и расстояния между пластинами конденсатора.
  • Воспитательные цели: продолжить формирование представления о строении вещества; о частицах, входящих в состав молекул и атомов; показать реальность электрического поля.
  • Развивающие цели: формировать умения сравнивать результаты опытов, формулы, а также величины характеризующие электроёмкость; научиться использовать знания формул в решении задач.

Оборудование: 2 электрометра, металлические пластины на изолирующих подставках, электростатическая машина, соединительные провода, конденсаторы переменной и постоянной ёмкости.

Демонстрации:

  • Зависимость электроёмкости от расстояния между пластинами.
  • Зависимость ёмкости плоского конденсатора от площади пластины.
  • Зависимость электроёмкости от диэлектрической проницаемости среды.

План урока.

  1. Физический диктант.
  2. Изучение нового материала.
  1. Понятие о конденсаторе.
  2. Электроёмкость конденсатора.
  3. Единица электроёмкости
  4. Формула электроёмкости плоского конденсатора.
  5. Виды конденсаторов.
  1. Закрепление. Решение задач. Беседа по вопросам.
  2. Итог урока.

Ход урока

  1. Физический диктант- проверка раннее изученного (вариант 1- нечётные вопросы; вариант 2- чётные вопросы)
  • В каких единицах измеряется напряжённость электрического поля?
  • В каких единицах измеряется электрический заряд?
  • Записать формулу закона Кулона для вакуума в СИ.
  • Записать формулу закона Кулона для среды в СИ.
  • Что такое электрическое поле?
  • Как называют поле неподвижных зарядов?
  • Каким образом связаны напряжение и напряжённость в однородном электрическом поле?
  • От каких величин зависит работа сил электрического поля?
  • Чему равна напряжённость поля точечного заряда?
  • Чему равна разность потенциалов между двумя точками заряженного проводника?
  1. Изучение нового материала.

Слово »конденсатор» происходит от латинского слова condensare, что означает »сгущение». В учении об электрических явлениях этим словом обозначают устройства, позволяющие сгущать электрические заряды и связанное с этими зарядами электрическое поле.

Простейший конденсатор состоит из двух проводников, разделённых диэлектриком, толщина которого мала по сравнению с размерами проводника.

Свойство конденсатора сгущать электрические заряды и связанное с ним электрическое поле можно наблюдать на опыте.

Опыт 1. Две металлические пластины, укреплённые на изолирующих подставках, располагаем параллельно друг другу и присоединяем к электрометру. Одну из пластин соединяем с землёй.

(рис.1)

Одной из пластин сообщаем положительный заряд q. Другая при этом получит через влияние отрицательный заряд- q. Электрометр покажет разность потенциалов между пластинами.

Сообщим первой пластине дополнительно заряд q тем же способом, прикоснувшись наэлектризованным шаром. Теперь на пластинах находятся заряды 2 q и -2 q. Показания электрометра при этом увеличились в двое.

Не меняя зарядов, начнём сближать пластины. Напряжение между пластинами будет уменьшаться. При некотором расстоянии оно станет таким, каким оно было при зарядах q и –q.

Прекратим сближение пластин и вновь первой пластине передадим дополнительный заряд q. Показания электрометра вновь увеличатся. При дальнейшем сближении пластин, замечаем, что при некотором, ещё меньшем расстоянии между ними электрометр вновь покажет прежнюю разность потенциалов. Следовательно, сдвигая пластины конденсатора, можно при одном и том же напряжении накапливать на одной пластине положительные заряды q, 2q, 3q,…, а на другой- равные по модулю отрицательные заряды. т.о, конденсатор накапливает заряды: поверхностная плотность зарядов увеличивается по мере сближения пластин.

Свойство конденсатора накапливать и сохранять электрические заряды и связанное с ними электрическое поле характеризуется особой величиной, называемой электроёмкостью.

Чтобы выяснить смысл этой величины, обратимся к исследованиям.

Опыт 2. Касаясь одинаково заряженными шарами внешней стороны пластины конденсатора, передаём этой пластине последовательно по заряду q. При этом заметим, что по мере увеличения заряда растёт напряжение между пластинами. Причём при зарядах q, 2q, 3q,… напряжение принимает значение U, 2U, 3U,…, возрастая пропорционально заряду. (рис.2) Но отношение заряда к напряжению остаётся постоянным:

рис.2

Проведём такие же опыты с конденсатором, пластины которого имеют большую площадь; при этом расстояние между пластинами сделаем таким же. Увеличивая заряд одной из пластин на q, т.е. делая его равным 2q, 3q,…, заметим, что напряжение между пластинами принимает значения U1, U2, 3U1…, где U1 < U. Но .

Для того чтобы второй конденсатор зарядить до такого же напряжения, как и первый, ему надо сообщить больший заряд. Второй конденсатор обладает большей электрической ёмкостью, т.е. второму конденсатору соответствует большее значение отношения заряда к напряжению.

Следовательно, величина С характеризует электрическую ёмкость конденсатора.

Электрической ёмкостью конденсатора называется скалярная величина, характеризующая его свойство накапливать и сохранять электрические заряды и связанное с этими зарядами электрическое поле. Электроёмкость конденсатора равна отношению заряда одной из пластин к напряжению между ними:

За единицу электроёмкости в СИ принимается электроёмкость конденсатора, напряжение между обкладками конденсатора которого равно 1В, когда на его обкладках имеются разноимённые заряды по 1Кл. Эта единица названа фарад в честь М.Фарадея: . На практике применяются:    

Из рассмотренных исследований делаем вывод, что С конденсатора зависит от площади S пластин и расстояния d между ними: .

Опыт 3. Кроме того, электрическая ёмкость конденсатора зависит от рода диэлектрика, находящегося между пластинами.

Внесём в пространство между пластинами заряженного конденсатора лист какого-либо диэлектрика. Мы видим, что напряжение между пластинами уменьшилось.(рис. 3,4) Значит, электрическая ёмкость конденсатора увеличилась

Выведем формулу для расчёта электроёмкости плоского конденсатора. По определению . Учитывая, что U = Ed, а , получаем:

Полученная формула согласуется с результатами рассмотренных опытов.

рис. 3

рис.4

Выслушаем два заранее подготовленных сообщения учащихся о различных типах конденсаторов (о конденсаторах переменной ёмкости, технических бумажных и электролитических конденсаторах), их сравнительной характеристике, устройстве и применении.

1.Сообщение.

В зависимости от назначения конденсаторы имеют различное устройство. Технический бумажный конденсатор состоит из двух полосок алюминиевой фольги, изолированных друг от друга и от металлического корпуса бумажными лентами, пропитанными парафином. Алюминиевая фольга и бумажные ленты туго свёрнуты в пакет небольшого размера. Бумажный конденсатор, имея размеры спичечного коробка, обладает электроёмкостью до 10 мкФ (металлический шар такой же ёмкости имел бы радиус 90 км).

В радиотехнике широко применяют конденсаторы переменной электроёмкости. Такой конденсатор состоит из двух систем металлических пластин, которые при вращении рукоятки могут входить одна в другую. При этом меняется площадь перекрывающейся части пластин и, следовательно, их электроёмкость. Диэлектриком в таких конденсаторах служит воздух.

2.Сообщение.

Значительного увеличения электроёмкости за счёт уменьшения расстояния между обкладками достигают в так называемых электролитических конденсаторах. Диэлектриком в них служит очень тонкая плёнка оксидов, покрывающих одну из обкладок. Второй обкладкой служит бумага, пропитанная раствором специального вещества (электролита). При включении электролитических конденсаторов надо обязательно соблюдать полярность.

В слюдяных конденсаторах в качестве диэлектрика используют слюду, а обкладками служит металлическая фольга или тонкий слой металла, нанесённый непосредственно на слюду. Слюдяные конденсаторы устанавливают, главным образом, в электрических цепях высокой частоты.

В радиотехнике широкое распространение получили керамические конденсаторы, имеющие небольшие размеры, но обладающие хорошими электрическими свойствами. Конструктивно их выполняют в виде трубок или дисков из керамики, а обкладками служит слой металла, нанесённый на керамику.

  1. Закрепление изученного материала.
  1. Решение задач с помощью учителя.
  • Какова электроёмкость (в микрофарадах) конденсатора, если при напряжении на его обкладках 300В заряд равен1,5 *10-5кл?

  • Какую площадь должны иметь пластины плоского воздушного конденсатора для того, чтобы его электроёмкость была равна 1пФ? Расстояние между пластинами q =0,5мм.

  1. Беседа по вопросам.
  • Что называют ёмкостью двух проводников? (электроёмкостью двух проводников называют физическую величину, характеризующую свойство проводников накапливать электрические заряды; она равна отношению заряда одного из проводников к напряжению между проводниками.)
  • Назовите единицы ёмкости. (Ф, мкФ, пФ.)
  • Какая система проводников называется конденсатором?(Конденсатор- эта система двух или более обкладок, разделённых диэлектриком. Заряженный конденсатор содержит на пластинах (обкладках) равные по величине, но противоположные по закону заряды. )
  • Как зависит электроёмкость плоского конденсатора от его геометрических размеров? (Ёмкость тем больше, чем больше площадь обкладок и чем меньше расстояние между ними.)
  1. Итог урока.

Учитель: Что нового узнали сегодня на уроке?

Ученик: Узнали, что такое электроёмкость и от чего она зависит; что такое конденсатор, какие бывают конденсаторы; где применяются конденсаторы; научились решать задачи на расчёт электроёмкости плоского конденсатора.

Оценки. Домашнее задание: g 101, 102.

Конденсатор

Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.

Конденсатор — это устройство для накопления электрического заряда; он состоит из двух проводников (обкладок), расположенных близко друг к другу, но не соприкасающихся. Типичный плоский конденсатор представляет собой пару параллельных пластин площадью А, разделенных небольшим промежутком d (рис. 25.1, а). Часто пластины, разделяют прокладкой из бумаги или другого диэлектрика (изолятора) и сворачивают в рулон (рис. 25.1,6).

Предположим, что конденсатор подключен к источнику напряжения, например к батарее. (Батарея — это устройство, на клеммах которого поддерживается относительно постоянная разность потенциалов). Подсоединенный к батарее конденсатор быстро заряжается: одна его обкладка приобретает положительный заряд, другая-равный по величине отрицательный (рис. 25.2).

Заряд, приобретаемый каждой из обкладок конденсатора, пропорционален разности потенциалов Vba:

Q = CVba (25.1)

Коэффициент пропорциональности С называется емкостью конденсатора. Единица емкости, кулон на вольт, называется фарад (Ф). На практике чаще всего применяются конденсаторы емкостью от 1 пФ (пикофарад, 10-12Ф) до 1 мкФ (микрофарад, 10-6 Ф). Формулу (25.1) впервые вывел Вольт в конце XVIII в.

Емкость С служит характеристикой данного конденсатора. Величина емкости С зависит от размеров, формы и взаимного расположения обкладок, а также от вещества, заполняющего промежуток между обкладками. В этом разделе мы будем считать, что между обкладками находится вакуум или воздух.

Емкость конденсатора, согласно (25.1), можно определить экспериментально, непосредственно измерив заряд Q пластины при известной разности потенциалов Vba.

Если геометрическая конфигурация конденсаторов достаточно проста, то можно определить емкость С аналитически. Для иллюстрации рассчитаем емкость С конденсатора с параллельными пластинами площадью А, находящимися на расстоянии d друг от друга (плоский конденсатор) (рис. 25.3). Будем считать, что величина d мала по сравнению с размерами пластин, так что электрическое поле Е между пластинами однородно и искривлением силовых линий у краев пластин можно пренебречь. Ранее мы показали, что напряженность электрического поля между близко расположенными параллельными пластинами равна Е = σ/ε0, а силовые линии перпендикулярны пластинам.
Поскольку плотность заряда равна σ = Q/A, то

Напряженность электрического поля связана с разностью потенциалов соотношением

Мы можем взять интеграл от одной пластины до другой вдоль траектории, направленной навстречу силовым линиям:

Установив связь между Q и Vba, выразим теперь емкость С через геометрические параметры:

Справедливость полученного вывода очевидна: чем больше площадь А, тем «свободнее» разместятся на ней заряды, отталкивание между ними будет меньше и каждая пластина сможет удерживать больший заряд. Чем больше расстояние d между пластинами, тем слабее заряды на одной пластине будут притягивать заряды на другой: на пластины от батареи поступает меньше заряда и емкость оказывается меньше.

Обратим также внимание, что формула справедлива при использовании в качестве диэлектрика — вакуума. Для других изоляторов используется коэффициент диэлектрической проницаемости К.
Тогда, с учётом коэффициента, ёмкость конденсатора будет равна:

С = Кε0 A/d , либо С = εA/d

Например, для некоторых диэлектриков коэффициент К будет равен:

Вакуум: К = 1.0000
Воздух (1 атм): К = 1.0006
Парафин: К = 2.2
Эбонит: К = 2.8
Пластик (поливинильный): К = 2.8-4.5
Бумага: К = 3-7
Кварц: К = 4.3
Стекло: К = 4-7
Фарфор: К = 6-8
Слюда: К = 7
Более подробно это будет рассмотрено далее в публикации — «Диэлектрики».

Продолжение следует. Коротко о следующей публикации:

Последовательное и параллельное соединения конденсаторов.
Конденсаторы можно соединять различными способами. На практике это используют очень часто, и емкость комбинации конденсаторов зависит от того, как они соединены. Два основных способа соединения — параллельное и последовательное.

Альтернативные статьи:
Дизель-генератор, Асинхронный генератор.


Замечания и предложения принимаются и приветствуются!

электростатика — Емкость конденсатора

$\begingroup$

Почему емкость конденсатора увеличивается, если расстояние между двумя пластинами плоского конденсатора уменьшается? Я думаю, что с уменьшением расстояния между двумя пластинами сила притяжения между зарядами на двух пластинах будет увеличиваться, и в результате будет накапливаться больше зарядов.

  • электростатика
  • емкость

$\endgroup$

$\begingroup$

Рассмотрим незаряженный конденсатор, подключенный к батарее в RC-цепи.

При включении цепи конденсатор начнет накапливать заряд. Когда это прекратится? Посмотрите на верхнюю пластину конденсатора на схеме. По мере того, как верхняя пластина накапливает все больше и больше заряда, носители заряда, поступающие через верхнюю проволоку, будут все больше отталкиваться от накапливающегося заряда на верхней пластине. Однако в то же время те же отталкиваемые заряды также будут «притягиваться» к верхней пластине за счет накопления противоположного заряда на нижней пластине. Когда пластины расположены близко друг к другу, входящие заряды, движущиеся к верхней пластине, будут чувствовать более сильное притяжение к нижней пластине, потому что противоположные заряды на нижней пластине будут ближе к входящим зарядам на верхней пластине. Если пластины находятся далеко друг от друга, то «притяжение» от другой пластины не будет очень сильным, и только небольшое количество заряда должно накопиться на верхней пластине, прежде чем локальное отталкивание станет преобладающим и пластина станет «полной». «. Поскольку в сценарии с закрытыми пластинами входящие заряды испытывают большее «притяжение», чем когда пластины далеко друг от друга, их больше может накапливаться на пластине до того, как конденсатор заполнится.

Надеюсь, это поможет.

$\endgroup$

1

$\begingroup$

as $C=E_0\cdot A / d$, близость пластин увеличивает емкость.

при уменьшении d емкость $C$ увеличивается.

$\endgroup$

1

$\begingroup$

1) Емкость – это отношение накопленного заряда Q (+ на одной пластине, – на другой) к напряжению между пластинами.

2) Электрическое поле между пластинами пропорционально поверхностной плотности заряда пластины $\sigma = Q/A$, где $A$ — площадь пластины.

3) Таким образом, если сдвинуть пластины ближе друг к другу, удерживая заряд фиксированным (без внешних цепей), а) электрическое поле также остается фиксированным (на 2 выше), б) напряжение (= электрическое поле x расстояние) уменьшается потому что расстояние уменьшается, и в) емкость ($C=Q/V$) увеличивается.

$\endgroup$

0

$\begingroup$

Емкость конденсатора зависит от максимального напряжения на пластинах $C_{\text{max}}=\frac Q{\Delta V_{\text{max}}}$.

Напряжение между пластинами зависит от напряженности поля между пластинами. Напряженность электрического поля между пластинами равна напряжению между пластинами, деленному на расстояние между пластинами $E=\frac {\Delta V}{\Delta x}$.

Сила электрического поля ограничена электрическим пробоем. Электрический пробой происходит, когда напряженность поля между обкладками превышает прочность диэлектрика между обкладками.

В достаточно сильном электрическом поле диэлектрик частично ионизируется. Ионы в поле ускоряются и сталкиваются с другими молекулами в диэлектрике, создавая больше ионов. Ионы образуют проводящие каналы между пластинами, которые позволяют току течь при самопроизвольном разряде, то есть искрах/молниях между пластинами.

Объединяя эти понятия, мы видим: $$C_{\text{max}}=\dfrac {Q\Delta x}{E_{\text{max}}}$$ емкость пропорциональна расстоянию между пластинами $C_{\text{max}}\propto \Delta x$.

$\endgroup$

1

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

404: Страница не найдена

Страница, которую вы пытались открыть по этому адресу, похоже, не существует. Обычно это результат плохой или устаревшей ссылки. Мы извиняемся за любые неудобства.

Что я могу сделать сейчас?

Если вы впервые посещаете TechTarget, добро пожаловать! Извините за обстоятельства, при которых мы встречаемся. Вот куда вы можете пойти отсюда:

Поиск
  • Пожалуйста, свяжитесь с нами, чтобы сообщить, что эта страница отсутствует, или используйте поле выше, чтобы продолжить поиск
  • Наша страница «О нас» содержит дополнительную информацию о сайте, на котором вы находитесь, WhatIs.com.
  • Посетите нашу домашнюю страницу и просмотрите наши технические темы

Поиск по категории

Сеть

  • поставщик сетевых услуг (NSP)

    Поставщик сетевых услуг (NSP) — это компания, которая владеет, управляет и продает доступ к магистральной инфраструктуре Интернета и . ..

  • неэкранированная витая пара (UTP)

    Неэкранированная витая пара (UTP) — это повсеместно распространенный тип медных кабелей, используемых в телефонной проводке и локальных сетях (LAN).

  • Многопротокольная коммутация по меткам (MPLS)

    Многопротокольная коммутация по меткам (MPLS) — это механизм коммутации, используемый в глобальных сетях (WAN).

Безопасность

  • Требования PCI DSS 12

    Требования PCI DSS 12 представляют собой набор мер безопасности, которые предприятия должны внедрить для защиты данных кредитных карт и соблюдения …

  • данные держателя карты (CD)

    Данные держателя карты (CD) — это любая личная информация (PII), связанная с лицом, у которого есть кредитная или дебетовая карта.

  • CSR (запрос на подпись сертификата)

    Запрос на подпись сертификата (CSR) — это специально отформатированное зашифрованное сообщение, отправляемое с цифрового протокола Secure Sockets Layer (SSL) . ..

ИТ-директор

  • системное мышление

    Системное мышление — это целостный подход к анализу, который фокусируется на том, как взаимодействуют составные части системы и как…

  • краудсорсинг

    Краудсорсинг — это практика обращения к группе людей для получения необходимых знаний, товаров или услуг.

  • синтетические данные

    Синтетические данные — это информация, созданная искусственно, а не в результате событий реального мира.

HRSoftware

  • вовлечения сотрудников

    Вовлеченность сотрудников — это эмоциональная и профессиональная связь, которую сотрудник испытывает к своей организации, коллегам и работе.

  • кадровый резерв

    Кадровый резерв — это база данных кандидатов на работу, которые потенциально могут удовлетворить неотложные и долгосрочные потребности организации.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *