Site Loader

Содержание

Как проверить конденсатор — доступные в домашних условиях методы

Автор Admin На чтение 29 мин. Просмотров 412 Опубликовано

Без конденсаторов, пожалуй, не обходится ни одна электрическая или электронная схема. Этот довольно простой по строению и, в общем-то, нехитрый по принципу своего действия элемент – буквально незаменим. И выход из строя такого миниатюрного «звена» общей цепи вполне способен повлечь и общую неработоспособность всего прибора или устройства.

  1. Как проверить конденсатор
  2. Основные типы конденсаторов
  3. Разделенные тонким просветом токопроводящие пластины имеют свойство накапливать электрический заряд.
  4. Многообразие конденсаторов и по эксплуатационным параметрам, и по размерам –очень широко
  5. Керамические конденсаторы
  6. Серебряно-слюдяные конденсаторы
  7. Принцип устройства пускового конденсатора: 1 – металлический корпус; 2 – обкладки – полосы полипропиленовой пленки с вакуумным металлизированным напылением; 3 – диэлектрическая пленочная прокладка; 4 – наполнение из диэлектрического нетоксичного масла; 5 – выводы-контакты для подключения к электрической схеме прибора.
  8. Электролитические полярные конденсаторы
  9. Танталовые полярные конденсаторы – миниатюрные «капельки» с весьма внушительными показателями емкости.
  10. Какие неисправности могут случиться в конденсаторе
  11. Специальный прибор для диагностики конденсаторов, позволяющий оценить и их емкость, и показатель эквивалентного последовательного сопротивления (ESR)
  12. Приставка к мультиметру типа DT, позволяющая оценивать показатель ESR электролитических конденсаторов.
  13. Как проводится проверка конденсаторов
  14. Первый шаг – выбраковка по возможным внешним признакам
  15. Керамическая облицовка конденсатора растрескалась и осыпалась – явный признак пробоя и необходимости замены.
  16. А в этом случае, по всей видимости, пробой конденсатора сопровождался еще и не слабой электрической дугой.
  17. Не характерный, но все же иногда встречающийся боковой разрыв корпуса алюминиевого полярного электролитического конденсатора.
  18. Вовремя не замеченный вздутый конденсатор может разорвать внутренним давлением – последствия показаны на фотографии. Лучше до этого не доводить!
  19. На четырех конденсаторах – явное вздутие верхней стенки, говорящее о необходимости замены. А на двух – еще и признаки потери герметичности и прорыва электролита наружу.
  20. Верхняя крышка вроде бы не имеет явной деформации, но вот нижняя пробка явно выдавлена наружу. Возможно, причина этому – заводской брак, но конденсатор однозначно нуждается в замене.
  21. Проверка конденсатора с помощью мультиметра
  22. Проверка с помощью омметра
  23. Мультиметр установлен в режим измерения сопротивления с пределом до 2000 кОм или 2 МОм
  24. Разрядка конденсатора небольшой емкости простым перемыканием его контактов-выводов.
  25. Подготовка к замеру – установлен нужны режим. На дисплее символы, обозначающие отсутствие проводимости между щупами прибора.
  26. Щупы-зажимы подключены к выводам конденсатора. На дисплее – ничего не изменилось.
  27. Исходное положение – то же, но неполярный конденсатор уже с указанным номиналом мощности в 1 μF.
  28. Показания сопротивления на дисплее «стартуют» с сотен килоом, быстро пересекают рубеж мегаом и продолжают стремительно расти.
  29. Значения растут, показывая, что ток зарядки конденсатора стремительно снижается.
  30. Наконец, зарядка полностью окончена, и на дисплее – «разрыв цепи».
  31. Подготовка к измерениям – мультиметр переведен в режим омметра
  32. Безусловно, очень удобно, когда мультитестер имеет специальную колодку с гнёздами именно для проверки конденсаторов – можно не мучиться с проводами
  33. Показатели сопротивления неуклонно повышаются
  34. Достигнуто значение в 20 МОм – на этом решено остановиться.
  35. Намечающееся вздутие верхней стенки корпуса уже говорит о предполагаемой непригодности конденсатора. Но просто для интереса и сравнения проведем проверку.
  36. На первом этапе замера показатели сопротивления росли до определенного предела
  37. После достижения какого-то максимума сопротивление стало падать…
  38. Падение показателя сопротивления продолжается – просто замер решено закончить, так как картина и без того проясняется.
  39. Первые показания сопротивления – около 50 кОм, но очень быстро повышаются.
  40. На этом уровне рост прекращается, и показания достаточно стабильные, с небольшими колебаниями в несколько килоом в одну и другую стороны.
  41. При работе с аналоговым (стрелочным) прибором не забываем, что шкала сопротивления (в данном примере она верхняя, зеленого цвета) возрастает в не совсем привычном направлении – против часовой стрелки, справа налево.
  42. Проверка конденсаторов функцией измерения емкости
  43. Специальный прибор для измерения емкости конденсаторов, требующий предварительной установки предела измерений.
  44. Проверка емкости маленького керамического конденсатора.
  45. Проверка емкости конденсатора номиналом в 1 μF
  46. Проверяется емкость конденсатора с номиналом 10 μF – получены четкие и стабильные показатели.
  47. Начальные показания после подключения «проблемного» конденсатора к щупам мультиметра.
  48. Показания дисплея уже спустя несколько секунд – значение емкости падает…
  49. Проверка показывает, что емкость даже несколько выше номинальной
  50. Косвенная проверка конденсатора вольтметром
  51. «Народный» способ – проверка конденсатора коротким замыканием
  52. Замыкание выводов конденсатора большой емкости сопровождается мощным искровым разрядом.
  53. Можно ли проверить конденсатор, не выпаивая его с платы?
  54. Удобный компактный прибор, позволяющий снимать показания емкости конденсаторов непосредственно на монтажной плате.
  55. Схема и описание самодельного прибора для «ревизии» конденсаторов без их выпаивания из платы.
  56. Дорожки аккуратно перерезаются скальпелем, чтобы оставить конденсатор «в одиночестве». Затем, после проверки, важно не забыть восстановить их целостность.
  57. Видео: Какие неисправности случаются в конденсаторах, и как их выявить.

Как проверить конденсатор

Многие конденсаторы способны служить десятилетиями, и при этом не потребовать замены. Но время от времени выход из строя или некорректная работа электронной схемы заставляет заниматься поисками «виновника». Подозрение порой падает и на эти элементы цепи. Поэтому необходимо знать, как проверить конденсатор, чтобы убедиться в его пригодности или, наоборот, необходимости замены.

Да и перед проведением электромонтажных работ тоже не мешает заранее проверять элементы, которые будут впаиваться на свое место в плату. В любой партии изделий может быть определенный процент заводского брака. И проще выявить нерабочий конденсатор до его установки, нежели потом искать неисправности по всей схеме.

Основные типы конденсаторов

Буквально несколько минут внимания следует уделить принципам строения и работы конденсаторов, а также разновидностям этих элементов схемы. Так будет проще понять, на чем строится методика проверки их работоспособности.

Итак, конденсатор представляет собой очень распространенный элемент электрической цепи, в котором происходит накопление заряда. Устройство нехитрое – в отличие от многих других элементов здесь нет никаких полупроводниковых переходов. По сути – это всего лишь две значительные по площади токопроводящие пластины (их обычно называют обкладками) равных размеров, разнесенные на небольшое расстояние одна от другой, то есть непосредственного электрического контакта между ними нет и быть не должно. Этот просвет заполняется диэлектрическим материалом.

Принятое условное обозначение конденсатора на схемах как раз очень наглядно показывает принцип его устройства.

Разделенные тонким просветом токопроводящие пластины имеют свойство накапливать электрический заряд.

Понятно, что в цепи постоянного тока проводимость через конденсатор отсутствует, так как цепь, по сути, разорвана. Но зато на его обкладках накапливается (конденсируется) электрический заряд. И чем больше площадь этих обкладок, тем больший заряд может быть накоплен. Показателем же этих возможностей является величина емкости конденсатора.

Эта физическая величина измеряется в фарадах (F). Один фарад – это способность накопить 1 кулон заряда при разности потенциалов на обкладках в 1 вольт. Но пусть эти «единички» не вводят в заблуждение: на самом деле 1 F – это просто огромный показатель. На деле же приходится иметь дело с куда меньшими величинами:

1 mF = 0.001F = F×10⁻³ — миллифарад;

1 μF = 0.001mF = F×10⁻⁶ — микрофарад;

1 nF = 0.001μF = F×10⁻⁹ — нанофарад;

1 pF = 0.001nF = F×10⁻¹² — пикофарад

Несмотря на общность принципа устройства и действия, по своей конструкции конденсаторы все же могут иметь существенные различия.

Многообразие конденсаторов и по эксплуатационным параметрам, и по размерам –очень широко

Прежде всего, их можно разделить на две большие группы – полярные и неполярные конденсаторы.

  • Для неполярных элементов не имеет никакого значения взаимное расположение их обкладок в общей схеме. Такие конденсаторы выпускаются в следующих основных «обличиях».

Керамические конденсаторы – в качестве разделительного диэлектрического слоя между обкладками применяется керамический состав. Эти элементы характеризуются компактностью, широким диапазоном допустимых рабочих напряжений, дешевизной наряду с довольно высокой надежностью и долговечностью.

Керамические конденсаторы

Для достижения более высоких показателей емкости требуется увеличивать площадь обкладок. Это достигается свертыванием в рулон (или в «гармошку») двух токопроводящих лент со специальным металлизированным покрытием (или даже лент из алюминиевой фольги) с размещённой между ними диэлектрической прокладкой. По такому принципу устроены бумажные, металлобумажные, слюдяные и пришедшие им на замену серебряно-слюдяные конденсаторы.

Серебряно-слюдяные конденсаторы

К неполярным относятся и мощные пусковые конденсаторы, имеющиеся во многих моделях бытовой техники, оснащенной электроприводами. Они собираются в достаточно габаритном корпусе цилиндрической или кубической формы, имеют обкладки из металлизированной полипропиленовой пленки и заполняются диэлектрическим маслом.

Принцип устройства пускового конденсатора: 1 – металлический корпус; 2 – обкладки – полосы полипропиленовой пленки с вакуумным металлизированным напылением; 3 – диэлектрическая пленочная прокладка; 4 – наполнение из диэлектрического нетоксичного масла; 5 – выводы-контакты для подключения к электрической схеме прибора.

Их не зря называют пусковыми – они способны накапливать очень значительный заряд для выработки мощного пускового импульса и для повышения коэффициента мощности электроустановок. Способны они и сглаживать значительные колебания в системах высокого напряжения.

  • Полярные конденсаторы требуют, как понятно из названия, соблюдения полярности при установке их в схему.

Наиболее распространены на сегодняшний день полярные конденсаторы в алюминиевом цилиндрическом корпусе. Нередко такие элементы именуют еще «электролитическими». Такое название предопределяет тот факт, что свободное пространство между обкладками заполняется специальным электролитом. Диапазон габаритов и электротехнических показателей – очень широкий, но если неполярные компактные конденсаторы чаще всего по ёмкости максимально ограничиваются единицами микрофарад, то у электролитических счет может идти даже на тысячи μF, то есть единицы mF. На три порядка больше!

Электролитические полярные конденсаторы

Шагом вперед стало появление танталовых полярных конденсаторов, у которых соотношение размеров и возможных показателей емкости – намного выше. То есть это оптимальный вариант тех случаях, когда требуется компактность схемы наряду с высокой емкостью. Правда, такие детали значительно дороже, а кроме того – излишне чувствительны к пульсации токов и к превышениям допустимых напряжений, которые часто выводит их из строя.

Танталовые полярные конденсаторы – миниатюрные «капельки» с весьма внушительными показателями емкости.

Здесь были рассмотрены далеко не все формы выпуска конденсаторов, но принцип их строения, независимо от внешности, остается тем же.

Какие неисправности могут случиться в конденсаторе

Прежде чем учиться искать неисправности конденсатора, необходимо разобраться, в чем же они могут заключаться. Иными словами – нужно знать, что искать.

Итак, полный выход из строя или неправильная работа этого элемента схемы может выражаться в следующем:

  • Пробой между обкладками конденсатора. Обычно вызывается превышением допустимого напряжения на выводах. По сути, участок цепи, который должен «разрываться» конденсатором, получается замкнутым.
  • Обрыв между выводом конденсатора и обкладкой. Может случиться из-за вибрационного или иного механического воздействия, от превышения допустимого напряжения. Нельзя исключить и производственный брак. На деле получается, что конденсатор в схеме попросту отсутствует – на его месте банальный разрыв цепи.
  • Повышенный ток утечки – в связи с потерей диэлектрических качеств разделяющего обкладки слоя происходит «перетекание зарядов». Конденсатор не в силах сохранять полученный заряд достаточное для его корректной работы время.
  • Недостаточная емкость конденсатора. Может вызываться повышенным током утечки или же опять, чего греха таить, производственным браком. В результате схема, в которую включен такой конденсатор, работает некорректно, неустойчиво, или вовсе становится неработоспособной.
  • Для электролитических полярных конденсаторов выделяют еще один возможный дефект – это превышение эквивалентного последовательного сопротивления ЭПС (ESR). Как известно, такие конденсаторы, работая в схемах с высокочастотными токами, способны «фильтровать» постоянную составляющую и пропускать частотный сигнал. Но этот сигнал может «подавляться» повышенным ЭПС, по аналогии с обычным резистором, значительно снижая его уровень. Что, кстати, одновременно ведет и к нагреву таких элементов схемы.

ЭПС складывается из нескольких факторов:

— обычное активное сопротивление проволочных выводов, обкладок и точек их соединения.

— сопротивление, вызванное неоднородностью диэлектриков, наличием примесей или влаги.

— сопротивление электролита, которое способно изменяться (нарастать) по мере испарения, высыхания, постепенного изменения химического состава.

Для ответственных схем показатель ЭПС имеет очень важное значение. Но, к сожалению, именно эту величину оценить и сравнить с допустимой табличной без использования специфических приборов – невозможно.

Специальный прибор для диагностики конденсаторов, позволяющий оценить и их емкость, и показатель эквивалентного последовательного сопротивления (ESR)

Справедливости ради надо сказать, что некоторые пытливые мастера самостоятельно заготавливают приборы-приставки для оценки ESR и используют их в связке с самыми обычными цифровыми мультиметрами. При желании в интернете можно отыскать немало схем подобных приставок.

Приставка к мультиметру типа DT, позволяющая оценивать показатель ESR электролитических конденсаторов.

Пример таблицы допустимых значений эквивалентного последовательного сопротивления (в омах – Ω) для электролитических конденсаторов различных номиналов емкости (μF) и напряжения (V):

10 V16 V25 V35 V50 V63 V100 V160 V250 V350 V450 V
1 μF2.12.44.54.58.59.58.78.53.6
2.2 μF2.02.44.54.52.34.06.14.23.6
3.3 μF2.02.34.74.52.23.14.61.63.5
4.7 μF2.02.23.03.82.03.03.51.65.7
10 μF8.05.32.21.61.92.01.21.41.26.5
22 μF5.43.61.51.50.80.91.51.10.71.11.5
33 μF4.32.01.21.20.60.81.21.00.51.1
47 μF2.21.00.90.70.50.60.70.50.41.1
100 μF1.20.70.30.30.30.40.150.30.2
220 μF0.60.30.250.20.20.10.10.20.2
330 μF0.240.20.250.10.20.10.10.10.2
470 μF0.240.180.120.10.10.10.10.10.15
1000 μF0.120.150.080.10.10.10.10.10.1
2200 μF0.120.140.140.10.10.10.10.10.1
3300 μF0.130.120.130.10.10.10.10.10.1
4700 μF0.120.120.12.010.10.10.10.10.1

Как проводится проверка конденсаторов

Первый шаг – выбраковка по возможным внешним признакам

Если при некорректной работе или при полной неработоспособности схемы подозрение падает на конденсаторы, разумно будет первым делом произвести внимательный визуальный осмотр этих элементов. Не исключены внешние признаки, которые ясно дадут понять о возникших проблемах.

Аналогичную визуальную «ревизию» стоит проводить и при монтаже схемы, тем более в том случае, если для ее сборки используются радиодетали, уже бывшие в употреблении. Кстати, и среди абсолютно новых нет-нет, да и встречаются явно бракованные.

Обычно сразу становятся заметны конденсаторы с пробоем – это выражается в потемнении, вздутии, прогорании или растрескивании керамического корпуса. Понятно, что такие элементы подлежат безусловной замене, и даже не стоит терять время на их дальнейшую проверку – лучше сконцентрировать свое внимание на поиске возможных причин, приведших к таким последствиям.

Керамическая облицовка конденсатора растрескалась и осыпалась – явный признак пробоя и необходимости замены.

А в этом случае, по всей видимости, пробой конденсатора сопровождался еще и не слабой электрической дугой.

Даже если ставится новый керамический конденсатор, но он уже имеет трещины или сколы на корпусе, то его лучше сразу отложить в брак – не столь высока его стоимость, чтобы закладывать в схему «мину замедленного действия». Разумнее поставить полностью исправный и неповреждённый внешне элемент.

Пробои чаще встречаются на неполярных конденсаторах или на танталовых полярных (они очень чувствительны к превышениям напряжения).

Явными признаками выхода из строя, или же состояния, близкого к критическому, хорошо сигнализируют электролитические полярные конденсаторы. Это обусловлено самой особенностью их конструкции.

При превышении допустимого напряжения или же при изменении полярности на отводах внутри «бочонка» резко активизируются химические реакции, сопровождающиеся перегревом электролита и его испарением. Это может привести просто к пересыханию конденсатора, то есть к потере им своей номинальной емкости и повышению тока утечки. Но нередко увеличение давления внутри алюминиевого корпуса заканчивается и его разрывом.

Не характерный, но все же иногда встречающийся боковой разрыв корпуса алюминиевого полярного электролитического конденсатора.

Чтобы свести к минимуму вероятность поражения соседних элементов схемы разорвавшимся электролитическим конденсатором, производители предусматривают утонченную верхнюю «крышку» цилиндра, на которую, кроме того, наносятся насечки в виде креста или звездочки. Таким образом, искусственно создаётся «слабое звено» корпуса, чтобы в случае взрыва (прорыва паров электролита) он был направлен вверх.

Вовремя не замеченный вздутый конденсатор может разорвать внутренним давлением – последствия показаны на фотографии. Лучше до этого не доводить!

Но еще до этой критической ситуации конденсаторы начинают «сигнализировать» о скором «окончании своей карьеры» вздутием этой ослабленной стенки. По этому внешнему признаку следует сразу, не откладывая, производить выбраковку и замену элементов схемы. Проводить дополнительные проверки таких конденсаторов – вряд ли имеет смысл.

На четырех конденсаторах – явное вздутие верхней стенки, говорящее о необходимости замены. А на двух – еще и признаки потери герметичности и прорыва электролита наружу.

Правда, следует проявлять внимательность, и обращать внимание еще на один признак. Случается, что даже при отсутствии деформации верхней стенки цилиндра конденсатора, превышение давления приводит к выжиму нижней диэлектрической пробки, через которую проходят отводы. Встречается такое не столь часто, но тем не менее…

Верхняя крышка вроде бы не имеет явной деформации, но вот нижняя пробка явно выдавлена наружу. Возможно, причина этому – заводской брак, но конденсатор однозначно нуждается в замене.

Итак, если заметны явные внешние признаки выхода конденсатора из строя, не стоит тратить время на его последующую более тщательную проверку – даже если показатели будут в пределах, вроде бы, нормы, последующее использование все же крайне нежелательно.

Но в том случае, когда никаких признаков нет, но подозрения из-за неработоспособности схемы падают именно на конденсатор, его следует проверить доступными способами. Для этого прежде всего они выпаивается их схемы.

Многие спрашивают, а возможна ли проверка конденсатора без выпаивания с платы? Да, некоторые способы или хитрости на этот счет имеются, но они возможны далеко не всегда, и зачастую не дают достоверной картины. Подробнее мы на этом остановимся чуть ниже. Но для качественной проверки, не имея в распоряжении специальных приборов, элемент все же придется демонтировать.

Проверка конденсатора с помощью мультиметра

В распоряжении домашнего мастера – неспециалиста в области электроники, как правило, может иметься только обычный мультиметр. Но определенную диагностику и выбраковку вышедших из строя конденсаторов можно провести и с его помощью.

Проверка с помощью омметра

Чаще всего первым шагом производится проверка конденсатора на пробой или обрыв с помощью омметра. Такая «ревизия», по сути, является косвенной, но все же может показать явные неполадки, то есть провести выбраковку. Правда, есть нюансы, которые зависят и от типа конденсатора, и от его номинальной емкости.

Любой конденсатор не должен пропускать постоянный ток. То есть – обладать очень высоким сопротивлением. Возможный ток утечки может быть – это зависит от качества диэлектрического разделительного слоя между обкладками, но в идеале – он настолько мал, что может не учитываться.

То есть при замере сопротивления между выводами конденсатора должно получиться очень высокое значение. Для рабочих неполярных элементов оно лежит в пределах выше 2 МОм.

Значит, мультитестер должен быть переведен в режим работы омметра на максимальном диапазоне. У наиболее распространенных моделей – это как раз и составляет предел измерений в 2000 кОм = 2 МОм.

Мультиметр установлен в режим измерения сопротивления с пределом до 2000 кОм или 2 МОм

Перед проверкой любого конденсатора его следует «очистить» от возможного остаточного заряда. Для элементов небольшой емкости и с невысокими показателями напряжения это делается обычным перемыканием выводов с помощью отвертки, пинцета, щупа и т.п.

Разрядка конденсатора небольшой емкости простым перемыканием его контактов-выводов.

Для разрядки конденсаторов ёмкостью более 100 μF, и в особенности – с рабочими напряжениями свыше 50 вольт, перемыкать контакты следует через резистор сопротивлением порядка 5÷20 кОм и мощностью не менее 1 Вт. В противном случае можно получить довольно мощную искру, что небезопасно. Перемыкание с помощью резистора проводят в течение двух-трех секунд для полной разрядки конденсатора.

Если проверяется неполярный конденсатор, то как уже говорилось, его сопротивление должно быть не менее 2 MОм. Если прибор типа DT установлен на максимальный предел измерений в 2000 кОм, то на дисплее следует ожидать единицы в крайнем левом разряде, говорящей о том, что цепь, по сути, разомкнута, то есть измеряемое значение лежит выше максимальной установленной границы. У мультиметров другого типа может быть и иная индикация отсутствия проводимости – например, буквенные символы «OL».

В любом случае, если дисплей показывает или полное отсутствие проводимости, или очень высокий показатель сопротивления (более 2 МОм) то можно с уверенностью говорить, что пробой не выявлен, а ток утечки если и есть – то в допустимых пределах.

В распоряжении автора статьи – мультиметр ZT102, в котором реализовано автоматическое определение пределов измерений. то есть достаточно просто установить режим работы на омметр, а единицы измерения прибор определит и покажет самостоятельно. Попробуем проверить на пробой керамический конденсатор ёмкостью 4700 pF = 4.7 nF

Мультиметр устанавливается в режим измерения электрического сопротивления.

Подготовка к замеру – установлен нужны режим. На дисплее символы, обозначающие отсутствие проводимости между щупами прибора.

Щупы-зажимы подключены к выводам конденсатора. На дисплее – ничего не изменилось.

После подключения конденсатора к щупам (полярность в данном случае не имеет никакого значения) на дисплее изменений не отмечено – все те же символы, говорящие об отсутствии проводимости.

Вывод – полного пробоя или недопустимо высокого тока утечки однозначно нет.

К сожалению, такая проверка не дает никакого вразумительного ответа, если ли обрыв на этом конденсаторе (обрыв характеризуется точно такими же показаниями дисплея). Просто ток, необходимый для зарядки столь невысокой емкости, настолько незначителен, а сама зарядка происходит так быстро, что мультитестер не успевает на это прореагировать изменением показаний.

Так что подобный метод на неполярных конденсаторах малой емкости, менее 1 μF, и с использованием приборов с невысокими пределами измерений, не дает однозначного ответа о полной исправности элемента. И для полноценной картины не обойтись без измерения емкости.

Теперь, для сравнения, посмотрим на проверку омметром неполярного конденсатора с более высоким показателем емкости – 1 μF.

Исходное положение – то же, но неполярный конденсатор уже с указанным номиналом мощности в 1 μF.

Показания сопротивления на дисплее «стартуют» с сотен килоом, быстро пересекают рубеж мегаом и продолжают стремительно расти.

Значения растут, показывая, что ток зарядки конденсатора стремительно снижается.

Наконец, зарядка полностью окончена, и на дисплее – «разрыв цепи».

Вот в этом случае можно смело констатировать, что и пробой отсутствует (заряженный конденсатор не проводит ток), и обрыва точно нет, так как мы наблюдали за процессом зарядки.

Справедливости ради заметим следующее – у показанного мультиметра предел измерений электрического сопротивления ограничивается 60 мегаомами. Именно это обстоятельство, скорее всего, и позволило наблюдать процесс зарядки этого сравнительно небольшого по емкости конденсатора. Был бы предел в 2 МОм – скорее всего, весь этот замер уложился бы в доли секунды, и стал практически незаметным. Ну что ж – явный плюс приборам с расширенным диапазоном.

Теперь проверим омметром полярные электролитические конденсаторы. Принцип не меряется. Правда, при использовании мультиметров с выделенными диапазонами рекомендуется установить предел примерно в 200 кОм. Дело в том, что для многих подобных конденсаторов считается нормальным сопротивление утечки более 100 кОм, для некоторых, наиболее качественных, заявляемый допустимый предел – 1 МОм. Так что в большинстве случаев если будет достигнуто сопротивление в 200 кОм — можно судить об отсутствии пробоя, обрыва и пригодности такого конденсатора к работе. Впрочем, на всякий случай можно установить тот же предел в 2000 кОм и даже, если не жаль элементов питания мультитестера – попытаться дождаться полной зарядки.

Попробуем поэкспериментировать с электролитическими конденсаторами разных номиналов емкости, применяя мультиметр ZT102, то есть с «плавающим» пределом измерений сопротивления.

Первым проверим конденсатор с номиналом 10 μF. Внешне на нем нет никаких признаков неисправностей.

Подготовка к измерениям – мультиметр переведен в режим омметра

То, что к выводам конденсатора в демонстрируемом примере припаяны проводки – никого не должно вводить в заблуждение. Если длина выводов позволяет проводить измерения напрямую щупами или зажимами-«крокодилами», то никакие удлинения не нужны. А в данном случае проводки припаяны только для того, чтобы освободить руки во время замера для фотографирования. При всех достоинствах этого мультитестера есть у него и недостаток – не предусмотрена отдельная контактная панель для проверки конденсаторов.

Безусловно, очень удобно, когда мультитестер имеет специальную колодку с гнёздами именно для проверки конденсаторов – можно не мучиться с проводами

Разный цвет припаянных проводков – чтобы не перепутать полярность, так как здесь это уже имеет значение. Черный измерительный провод (СОМ) мультитестера должен идти на «минус» конденсатора, красный, соответственно, на «плюс».

Подключаем щупы к конденсатору.

Показатели сопротивления неуклонно повышаются

Показатели на дисплее довольно быстро, буквально за секунду, пересекли рубеж в 1 мегаом и продолжают повышаться.

Достигнуто значение в 20 МОм – на этом решено остановиться.

Рост показателей сопротивления, в отличие от неполярных конденсаторов, не столь стремительный. При выходе на 20 мегаом решено проверку закончить – и без того понятно, что ни обрыва, ни пробоя, ни значимого тока утечки нет.

Вторым на очереди – конденсатор с номиналом 470 μF. Если приглядеться к нему, то явно видно начинающееся вздутие крышки.

Намечающееся вздутие верхней стенки корпуса уже говорит о предполагаемой непригодности конденсатора. Но просто для интереса и сравнения проведем проверку.

По идее – его и проверять-то не стоит, но все-таки посмотрим, в чем окажется выраженной его уже заметная внешне дефектность.

На первом этапе замера показатели сопротивления росли до определенного предела

Поначалу проверка шла «штатным образом» — сопротивление нарастало с сотен килоом до 5. 7 МОм. Но, в отличие от ранее проверяемых элементов, затем запустился обратный процесс – сопротивление стало неуклонно снижаться.

После достижения какого-то максимума сопротивление стало падать…

Это уже явно говорит о нарастании тока утечки. Как знать, может утечка лежит пока в допустимых пределах, но признак явно тревожный. Тем более что снижение сопротивления не останавливается – просто опыт прекращен, чтобы не садить впустую питание мультиметра.

Падение показателя сопротивления продолжается – просто замер решено закончить, так как картина и без того проясняется.

То есть вздутие конденсатора уже не прошло даром – дефект явно имеется. Дополнительно проверим этот элемент, когда перейдем к измерению емкостей.

Наконец, самый большой по емкости из взятых на проверку электролитический конденсатор – номинал в 2200 μF.

Первые показания сопротивления – около 50 кОм, но очень быстро повышаются.

Показания на дисплее стартовали с уровня примерно в 50 кОм, но стабильно и довольно быстро растут — происходит зарядка конденсатора, а емкость у него весьма значительная. Вскорости показания превышают 500 кОм, и в районе 600 кОм стабилизируются.

На этом уровне рост прекращается, и показания достаточно стабильные, с небольшими колебаниями в несколько килоом в одну и другую стороны.

Что ж, значение сопротивления достаточно велико и вполне входит в допустимые пределы для электролитического конденсатора столь высокой ёмкости. А стабильность показания на пике говорит и о стабильности тока разрядки, который также, по все видимости, не выходит за рамки дозволенного. Предварительный вывод: конденсатор в исправном состоянии – нет ни пробоя, ни обрыва, ни чрезмерного тока утечки.

Проверить конденсаторы измерением их сопротивления вполне можно и стрелочным (аналоговым) тестером. Кстати, там этот процесс выглядит даже более наглядно. При подключении тестируемого элемента стрелка обычно сначала отклоняется вправо, а затем начинает движение в сторону увеличения значения, то есть к левому краю, к «бесконечности».

При работе с аналоговым (стрелочным) прибором не забываем, что шкала сопротивления (в данном примере она верхняя, зеленого цвета) возрастает в не совсем привычном направлении – против часовой стрелки, справа налево.

В остальном же принцип проверки никак не меняется. А наглядность подобной «ревизии» конденсаторов нередко у некоторых мастеров делает именно такой способ даже более предпочитаемым.

Проверка конденсаторов функцией измерения емкости

Итак, косвенная проверка с помощью омметра способна в некоторых случаях сразу обнаружить явно непригодные к дальнейшему использованию конденсаторы. Например, результаты измерений указывают на явный пробой между укладками или чрезмерно низкие показатели сопротивления. Но часто картина остается неполной – элемент попадает «под подозрение», но «приговор» выносить вроде бы еще нет оснований, так как налицо только косвенные признаки неисправности.

Кстати, в подобных случаях иногда выручает «сравнительная экспертиза». То есть если имеется заведомо исправный конденсатор с точно таким же номиналом, можно провести сравнения полученных значений сопротивления с вызывающим сомнения элементом. По идее, при испрвности они должны быть очень близки между собой.

Но опять же, например, диагностировать обрыв на конденсаторе малой емкости – практически невозможно. Показатели омметра мгновенно уходят в «бесконечность», что свойственно и для отсутствия пробоя.

Специальный прибор для измерения емкости конденсаторов, требующий предварительной установки предела измерений.

Единственно действительным достоверным методом оценки в таких случаях видится замер емкости конденсатора. Для этого используются или специальные приборы для проверки конденсаторов (некоторые из них помимо емкости позволяют оценить и ESR), или мультиметры, в которых имеется такая функция.

В моем мультиметре ZT102 такая функция реализована, причем, тоже с «плавающей запятой», то есть не требующая установки единиц измерения и диапазонов – все это происходит автоматически. Поэтому попробуем проверить все те конденсаторы, которые ранее тестировались омметром – теперь уже на показатели ёмкости.

Начнем опять с неполярных конденсаторов.

Если вспомнить проверку омметром, то самый маленьким из тестируемых был керамический конденсатор 472. Что означает, согласно принятой маркировке, 47 pF × 10², то есть 4700 pF или 4,7 nF. Проверка сопротивления дала положительный результат, но не исключила возможности обрыва. Посмотрим, что покажет замер емкости.

Мультиметр переводится в соответствующий режим. На этом приборе, кстати, режим измерения емкости находится на том же положении переключателя, что и режим омметра, и выбирается кнопкой «SELECT».

Проверяется обычный керамический конденсатор, так что полярность роли не играет.

Проверка емкости маленького керамического конденсатора.

Значение выведено очень быстро (сказывается малая емкость), прибор сам определил и вывел на дисплей единицы измерения – нанофарады, и показал значение — 4.59 nF. Показания довольно стабильные, с очень незначительными колебаниями вверх-вниз. Не в «самое яблочко», но результат очень близок к указанному номиналу.

Можно констатировать что этот конденсатор – абсолютно «здоровый» и пригоден для дальнейшего использования.

Вторым по очереди стоит конденсатор емкостью в 1 μF. Как мы помним, его проверка омметром дала основания исключить и пробой, и обрыв. Остается выяснить его реальную емкость. Подключаем щупы к выводам конденсатора (без соблюдения полярности).

Проверка емкости конденсатора номиналом в 1 μF

На дисплее, после небольшой паузы – 983,5 nF, что равно 0,98 μF. Опять – показатель емкости не идеально точен с номиналом, но очень близок к нему. И что важно – стабилен.

Конденсатор следует признать полностью исправным

Далее – тройка полярных электролитических конденсаторов. Проверяем их в порядке по нарастанию емкости. Здесь, понятно, уже требуется соблюдение полярности подключения щупов.

Проверяется емкость конденсатора с номиналом 10 μF – получены четкие и стабильные показатели.

Конденсатор номиналом 10 μF дал при проверке значение 10,2 μF практически без колебаний в ту или иную сторону. Вопросов к нему – никаких нет.

Следующий – тот самый проблемный конденсатор номиналом 470 μF с признаками вздутия корпуса и повышенного тока разряда. Что покажет измерение емкости?

Так и есть – имеются явные дефекты и в этом вопросе:

Начальные показания после подключения «проблемного» конденсатора к щупам мультиметра.

Даже первичные показания прибора сразу дают понять, что измеренная емкость практически на четверть ниже номинала – всего 329 μF. Но и это еще не всё…

Показания дисплея уже спустя несколько секунд – значение емкости падает…

Показатель на дисплее нестабилен – имеется тенденция к снижению емкости, причем довольно быстрому. Уже через несколько секунд значение упало до 309 μF и продолжает уменьшаться. Дальнейший замер – совершенно излишен, так как картина неисправности конденсатора вырисовалась в полной ясности.

Это лишнее подтверждение тому, что попытки продолжать использовать электролитические конденсаторы с признаками вздутия корпуса – совершенно бесплодны. Да и на их тестирование, повторимся, даже жалко тратить время – такие детали уже отслужили свое и подлежат безусловной утилизации. Иначе – жди или некорректной работы схемы, или ее полного выхода из строя, или, что еще «веселее» — «фейерверка» со взрывом корпуса.

Остался последний конденсатор – емкостью 2200 μF. Внешне и по результатам проверки омметром он не вызывал беспокойства.

Проверка показывает, что емкость даже несколько выше номинальной

Проведенный замер показал, что с конденсатором – все в порядке, если не считать несколько завышенной его емкости. На дисплее высветилось 2,489 mF = 2489 μF – вполне укладывается в допустимые рамки (обычно допустимые отклонения для емкости оцениваются в ± 15%). Но зато измеренное значение стабильно, без тенденции к увеличению или снижению.

Вывод — конденсатор во вполне пригодном к дальнейшему использованию состоянии.

Позволим себе маленькую ремарку.

Показанная последовательность проверки, то есть сначала омметром, а затем измерением емкости, вовсе не является обязательной. Измерением сопротивления просто демонстрировался способ, которым во многих случаях можно выявить явно неисправный элемент, если отсутствует прибор контроля емкости. Но, как мы помним, достоверность такой проверки бывает и неполной.

То есть в том случае, когда имеется возможность замера емкости, начинать следует прямо с него. Он однозначно покажет работоспособность конденсатора по всем пунктам – в случае обрыва, пробоя или большой утечки емкость или просто не поддастся измерению, или ее показатель будет очень далек от номинала, или, как было показано в рассмотренном примере, индицируемое значение будет нестабильным, с тенденцией к быстрому снижению.

Косвенная проверка конденсатора вольтметром

Эта проверка со вполне допустимой долей достоверности может показать, насколько хорошо конденсатор накапливает и удерживает полученный заряд. Правда, она возможна при довольно высоких показателях как емкости, так и напряжения, иначе используемый «визуальный подход» к оценке работы элемента может стать просто незаметным для восприятия.

Суть метода заключается в том, что вначале конденсатор следует зарядить от какого-то внешнего источника питания. Причем, рекомендуется, чтобы напряжение этого источника было примерно вдвое ниже указанного на конденсаторе предела. Скажем, для конденсатора, на котором указан предел в 25 вольт вполне подойдет блок питания на 12 вольт.

Обычно для зарядки хватает нескольких секунд. Кстати, пока идет зарядка будет нелишним для контроля проверить на клеммах источника питания, какое же точно напряжение подается на обкладки конденсатора.

После выполнения зарядки источник питания отключается. Мультитестер должен быть переведен в режим измерения постоянного напряжения в предполагаемом диапазоне (например, 20 вольт). Буквально через несколько секунд касаются щупами выводов конденсатора. Здесь важно проявить внимательность, так как главную ценность будет представлять показание вольтметра, снятое именно в момент первого касания – это значение должно быть максимально близким с напряжением, подаваемым при зарядке. Затем, естественно, по мере разрядки конденсатора через мультиметр, оно будет падать. Скорость его разрядки зависит от показателя емкости и от значения эквивалентного последовательного сопротивления (ЭПС).

Если первичное показание слишком далеко от «эталона» — это может говорить о слишком большом токе утечки и малопригодности конденсатора к нормальной работе.

Впрочем, такой способ все же таит в себе и субъективную составляющую, зависящую от личного восприятия быстро изменяющихся показаний. То есть говорить о его полной объективности – сложно. Хотя явный дефект он, пожалуй, выявить поможет. А в сомнительных случаях все же лучше изыскать возможность полноценной проверки емкости конденсатора.

«Народный» способ – проверка конденсатора коротким замыканием

К такому методу зачастую прибегают для «проверки» мощных, в том числе – пусковых конденсаторов, работающих с напряжениями свыше 200 вольт.

Смысл заключается в зарядке конденсатора, часто – просто от сети переменного напряжения 220 вольт. А затем — его разрядкой путем короткого замыкания выводов отвёрткой или отрезком изолированного провода. При замыкании возникает мощная искра, говорящая о том, что конденсатор способен накапливать нешуточный заряд.

Замыкание выводов конденсатора большой емкости сопровождается мощным искровым разрядом.

Сразу будет сделана оговорка – не зря слово «проверка» выше было взято в кавычки. Автор этой публикации ни в коем случае не рекомендует выполнять подобное тестирование, особенно тем людям, кто делает только первые шаги на поприще электротехники.

  • Во-первых, это крайне небезопасно. При малейшей неосторожности можно получить очень чувствительный, а иногда – и весьма опасный для здоровья электрический удар. Особую опасность представляет случайное замыкание контактов заряженного конденсатора обеими руками. Траектория тока «из руки в руку» проходит через наиболее уязвимую область тела человека, через сердце, что порой заканчивается очень печально.
  • А во-вторых, объективной картины работоспособности конденсатора таким путем все равно получить невозможно. Признайтесь, сможете ли вы отличить искру, вызванную разницей потенциалов в 200 вольт, от искры, для которой потребовалось всего 100 вольт? Вряд ли. Так что говорить о полной пригодности, о полноценной емкости и допустимой утечке – все же преждевременно. Так стоит ли «огород городить»? Единственное, на что способна такая проверка — выявить совершенно неисправный конденсатор.

Можно ли проверить конденсатор, не выпаивая его с платы?

Для полноценной проверки конденсатора, уже стоящего в схеме, его все же рекомендуется выпаять из платы. Дело в том, что другие элементы схемы способны оказывать влияние на измеряемые показания, и картина получатся явно недостоверной.

Понятно, что лишний раз заниматься выпаиванием конденсатора никому не хочется, что и вызывает вынесенный в заголовок подраздела вопрос.

Однозначного ответа нет. Если точнее, то существует несколько методов, которые могут дать определенный эффект, но не всегда они просты и оправданы.

  • Некоторые современные приборы, предназначенные именно для тестирования конденсаторов, сразу разрабатывались с учетом возможности проверок без проведения демонтажа элементов схемы. Если есть возможность воспользоваться подобным тестером – то это существенно упрощает решение вопроса.

Удобный компактный прибор, позволяющий снимать показания емкости конденсаторов непосредственно на монтажной плате.

Поднаторевшие в радиоэлектронике мастера зачастую создают некое подобие таких приборов и самостоятельно. Причем, охотно делятся и разработанными схемами, и опытом их эксплуатации. Например, ниже показана одна из таких схем с кратким ее описанием – возможно, кто-то возьмет себе на заметку.

Схема и описание самодельного прибора для «ревизии» конденсаторов без их выпаивания из платы.

Если ничего из выше перечисленного нет, придётся обходиться другими мерами.

  • Конденсатор можно выпаять частично, то есть одним выводом. После этого – провести проверку мультиметром. Правда, получается это далеко не всегда, так как в большинстве случаев эти детали изначально впаиваются с «низкой посадкой», а с электролитическими конденсаторами такой подход и вовсе невозможен.
  • Одним из путей, когда выпаивание видится трудноосуществимым, может стать «изоляция» конденсатора на плате подрезкой дорожек, идущих к соседним элементам схемы.

Дорожки аккуратно перерезаются скальпелем, чтобы оставить конденсатор «в одиночестве». Затем, после проверки, важно не забыть восстановить их целостность.

Метод, конечно, «варварский», особенно в том случае, если идет поиск неисправного элемента – эдак можно и всю плату «перепахать». Кроме того, если плата – не с односторонней печатью, то к такому способу и вовсе не стоит прибегать.

  • Возможно, если выпаивание конденсатора сопряжено с определенными сложностями, проще «поднять ножки» расположенных с ним в последовательной цепи элементов, например, резисторов. Так будет устранено их влияние на тестируемый элемент.
  • Наконец, есть еще один способ убедиться в необходимости замены неработающего конденсатора. Заключается он в том, что непосредственно к выводам детали, работоспособность которой вызывает сомнения, параллельно припаивается новый конденсатор точно такого же номинала, но заранее проверенный и гарантированно рабочий. Естественно, если это полярный конденсатор, то с соблюдением правильного расположения «плюса» и «минуса».

После этого проводится тестовый запуск схемы (устройства). Если заметны улучшения, или работоспособность полностью восстановлена – можно провести выпаивание старого конденсатора и монтаж нового. Если же никаких позитивных изменений не последовало – следует продолжить поиск неисправности в ином месте, так как вряд ли именно исследуемый конденсатор послужил причиной неполадок.

Завершим сегодняшнюю публикацию демонстрацией видео, в котором также речь идет о неисправностях конденсаторов и возможных способах их выявления.

Видео: Какие неисправности случаются в конденсаторах, и как их выявить.

Как проверить конденсатор электродвигателя мультиметром

Как проверить конденсатор с помощью приборов

Увидите, проверить мультиметром конденсатор может каждый. Неполярный конденсатор, керамический конденсатор, разницы дают мало, многое определяет номинал. Однако сюрпризы способна преподнести гибридная технология. Понятно, извлечь SMD конденсатор — дело нешуточное (большинству не под силу). Тогда проводите косвенные тесты, например, сравнение показаний с заведомо рабочим устройством.

Проще проверить электролитический конденсатор мультиметром. Начать лучше с визуального контроля. Неисправные электролитические конденсаторы ощутимо раздуваются. На зарубежных моделях в верхней части цилиндра делается специальная крестовидная прорезь для гарантированной индикации неисправности. Внешние признаки молчат — нужно хватать мультиметр.

Сначала элемент гарантированно разрядим. Обычно напряжение отсутствует, но совать голую отвертку, кусок провода — бестолковая идея. Неплохо создать своими руками разрядник, воспользовавшись патроном, ввинченной лампочкой. Штуковина повсеместно используется мастерами ремонта телевизоров, импульсных блоков питания. Пара слов касаемо процесса, когда конденсатор разряжен, можно хватать тестер.

На контактах мультиметра в некоторых режимах выходит напряжение 5 вольт. Требуется, чтобы оценить параметры. К примеру, при измерении сопротивлений мультиметр просто делит напряжение на ток, получает искомую величину. Первая цифра известна – 5 вольт (определяет модель тестера). Аналогично проводится прозвонка. Подаются 5 вольт на оба конца. Некоторые стабилитроны пробиваются. Прозвонить такие элементы на цифровых мультиметрах не представляется возможным.

Зная указанные вещи, понимаем, что делать дальше:

  1. Подключаем в режиме измерения сопротивления клеммы к контактам разряженного конденсатора.
  2. Образуется зарядная цепь, сформированная внутренним сопротивлением мультиметра, емкости. Вначале ток равен бесконечности, потом падает, достигая нуля.
  3. Попутно сопротивлению начнёт расти от нуля до бесконечности.

Итак, напряжение испытуемого образца сильно отличается от эталонных показаний (нужно заранее позаботиться о получении), наверняка сломалось. Начинаем измерять напряжение конденсатора, внутреннее сопротивление прибора уступает бесконечности. Потенциал начнет потихоньку падать, заметим на экране. Делаем два вывода:

  1. Начальное значение напряжение намного ниже эталона (выдает на контакты тестер, режим прозвонки) — внутри наличествует утечка. Параметр нормально составляет часть формулы добротности, если конденсатор быстро разряжается самостоятельно (без намеренного замыкания контактов), элемент отслужил.
  2. По скорости разряда можно оценить размер емкости конденсатора. Можно, конечно, заморочиться с определением констант, формулами, проще провести тест с заведомо рабочими емкостями, после чего свести результаты таблицей. Станет возможным судить о номинале конденсатора по одной скорости разряда. Процесс напоминает оценку давления при помощи тонометра. Ориентируемся на глаз. Величина емкости определена скоростью падения напряжения на дисплее мультиметра.

Разумеется, делается больше навскидку, отличить мкФ от мФ удастся без труда. Жаждущим большего, можем сообщить: за время RC заряд падает на 63%. Каждый волен посчитать уровень вольт для мультиметра. Вычислить приблизительно внутреннее сопротивление, исходя из полученных данных, проводить приблизительный замер номинала емкости конденсатора.

Известен простой способ проверить емкость конденсатора мультиметром. Купить тестер, у которого наличествует соответствующая шкала. Надписана буквой F (Farad). Просто берется за ножки конденсатор, примерно выставляется диапазон, мультиметр проделает работу, описанную выше. Проверить конденсатор мультиметром, не выпаивая, не всегда удаётся.

Проведём сравнение. Допустим, на исправной технике показывает фиксированное значение, на поломанной – нечто другое. Необязательно неисправный конденсатор мультиметром на плате нашли — цепь разряда барахлит. Пусковой конденсатор авто — возможно вынуть, проверить (предварительно обработав разрядником), для электроники методика не всегда действенна.

Для начала давайте разберемся, что это за устройство, из чего он состоит, и какие виды конденсаторов существуют.

Конденсатор представляет собой устройство, которое способно накапливать электрический заряд. Внутри он состоит из двух металлических пластин параллельных между собой. Между пластинами расположен диэлектрик (прокладка). Чем больше пластины, тем соответственно больший заряд они могут накапливать.

Существует два вида конденсаторов:

Как можно догадаться по названию полярные имеют полярность (плюс и минус) и подключаются к электронным схемам со строгим соблюдением полярность: плюс к плюсу, минус к минусу. В противном случае конденсатор может выйти из строя.

Все полярные конденсаторы – электролитические. Бывают как с твердым, так и с жидким электролитом. Емкость колеблется в диапазоне 0.1 ÷ 100000 мкФ.

Неполярные конденсаторы без разницы как подключать или впаивать в схему, у них нет плюса или минуса. В неполярных кондерах диэлектрическим материалом является бумага, керамика, слюда, стекло. Их емкость не очень большая колеблется в приделах от несколько пФ (пикофарад) до единиц мкФ (микрофарад).

Друзья некоторые из Вас могут задаться вопросом, зачем эта ненужная информация? Какая разница полярный-неполярный? Все это влияет на методику измерений. И перед тем как проверить конденсатор мультиметром нужно понимать, какой именно тип устройства перед нами находится.

Прежде всего, выполняется внешний осмотр конденсатора на предмет трещин и вздутия. Нередко причиной неисправности является внутренние повреждения электролитов, что в свою очередь приводит к увеличению давления внутри корпуса, и как следствие вздутие оболочки.

Если конденсатор с виду цел, то без специальных приборов трудно сказать работоспособный он или нет. Поэтому в этом случае выполняется проверка конденсатора мультиметром. Этот простой прибор позволит нам определить емкость конденсатора и наличие обрывов внутри.

Перед тем, как приступить к проверке, нужно определиться какого рода конденсатор находится перед вами: полярный или неполярный. Помните, выше я писал, что это будет важно при измерениях.

Так вот при выполнении проверки полярных конденсаторов нужно соблюдать полярность и подключать щупы к ним соответственно: плюсовой к ножке « », а минусовой к ножке «-».

При проверке неполярных «кондеров» полярность в подключении соблюдать не нужно, однако здесь есть одна особенность на которую нужно обращать внимание. Для проверки целостности кондера переключатель мультиметра нужно выставить на отметку 2 МОм. Если будет меньше то на дисплее будет отображаться — «1» (единица), можно ложно подумать что конденсатор неисправен.

В нашей сегодняшней статье будем проверять четыре конденсатора: два полярных (диэлектрических) и два неполярных (керамических). Перед тем как выполнять проверку необходимо разрядить конденсатор. Для этого нужно замкнуть его выводы на металлический предмет.

Переключатель мультиметра устанавливаем в секторе измерения сопротивления (режим омметра). Режим сопротивления даст нам понять есть ли внутри кондера обрыв или короткое замыкание.

Проверим сначала полярные кондеры номиналом 5.6 мкФ и 3.3 мкФ соответственно (они мне достались от неисправных энергосберегающих лампочек).

Друзья забыл отметить, перед выполнением проверки необходимо разряжать конденсатор. Для этого необходимо закоротить его выводы на металлический предмет (отвертку, щуп, провод и т.п.). Так показания будут более точными.

Для этого выставляем переключатель на отметку 2 МОм и касаемся щупами выводов конденсатора. Как только щупы будут подключены, на дисплее можно увидеть стремительно растущее сопротивление.

Почему так происходит? Почему на дисплее можно наблюдать «плавающие значения сопротивления»? Все дело в том, что при касании щупами выводов к конденсатору прикладывается постоянное напряжение (батарейка прибора) – он начинает заряжаться. Чем дольше мы держим щупы, тем больше конденсатор заряжается, и сопротивление плавно увеличивается.

Не все удается передать фотографиями, но для экземпляра 5.6 мкФ сопротивление стартует с 200 кОм и плавно растет, пока не перевалит отметку в 2 МОм. Длится весь процесс, примерно 10 сек.

Со вторым конденсатором номиналом 3.3 мкФ происходит все аналогично. Начинает заряжаться, сопротивление растет, как только показания превысят отметку 2 МОм на дисплее можно увидеть «1» что соответствует «бесконечности». По времени процесс длится меньше, примерно 5 сек.

В случае со второй неполярной парой конденсаторов делаем все аналогично. Касаемся щупами выводов и наблюдаем за изменением сопротивления на приборе.

Первый из них кондер «104К» его сопротивление сначала немного снижается (до 900 кОм) потом начинает плавно расти, пока не перевалит за отметку. Заряжается дольше, чем остальные около 30 сек.

Второй пример проверка конденсатора мультиметром типа МБГО емкостью 1 мкФ. На фото можно видеть, как изменяется сопротивление при проверке. Только в этом случае переключатель нужно установить на отметку 20 МОм (сопротивление большое, на 2-ке очень быстро заряжается).

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Двигатели или компрессоры не работают? Это видео демонстрирует, как разрядить и проверить конденсатор электродвигателя. Конденсатор это наиболее проблемный компонент схемы запуска двигателя или компрессора, из-за которого они могут не работать. Конденсаторы могут применяться в духовках, кондиционерах, холодильниках, и стиральных машинах.
Конденсатор это компонент, который хранит электрический заряд, а затем освобождает его.
Конденсаторы наиболее часто используются для запуска и работы двигателя и компрессора, и могут применяться в кондиционерах, духовках и другой нагревательной и охлаждающей бытовой технике, а также в холодильниках и стиральных машинах. Если двигатель или компрессор не запускается или медленно раскручивается, то может быть неисправен конденсатор. Когда конденсатор неисправен, его часто вспучивает или появляется утечка. Если вы заметили какое-либо вспучивание или утечку, то конденсатора надо заменить.
Если нет никаких видимых признаков повреждения конденсатора, то его можно проверить, чтобы определить, работает ли он правильно. В этом видео мы покажем два метода проверки. Первая проверка поможет определить, способен ли конденсатор хранить и затем отдавать электрический заряд. Проверка может быть выполнена и с использованием аналогового Ом-метра. Перед прикосновением к конденсатору вы должны снять потенциально сохраненный электрический заряд, чтобы избежать травм.
Вы можете сделать это, замкнув отверткой с изолированной ручкой все контакты конденсатора.
Будьте очень осторожны, чтобы не коснуться металлической части отвертки. Теперь поверните диск выбора диапазона на измерение сопротивления 1000 Ом или выше. При необходимости калибровки прибора замкните щупы друг с другом и выставьте стрелку на ноль. Для того, чтобы проверить конденсатор, прикоснитесь щупом к одному из клемм и вторым щупом коснитесь другого контакта. Стрелка омметра должна отклониться в сторону нуля Ом и потом вернуться к бесконечному сопротивлению.
Поменяйте щупы местами и вы должны увидеть тот же результат. Если стрелка не двигается или остается около нуля Ом, то конденсатор неисправен.
Чтобы проверить двойной конденсатор проведите измерения между общим контактом и каждым другим контактом.
Общий терминал часто обозначается буквой С. С другими контактами с надписью «FAN» и «HERM» или «COM». Чтобы проверить цепь FAN коснитесь одним щупом к общей клемме, а вторым щупом к разъему FAN. Как и прежде стрелка должна отклоняться в сторону нуля Ом и возвращаться к бесконечному сопротивлению. Повторите эти действия с цепями «HERM» или «COM».
Стандартный вольтметр может также помочь определить, есть ли у конденсатора короткое замыкание на корпус. Поместите один щуп прибора к каждому из контактов, и вторым щупом прикоснитесь к корпусу. Ни один контакт не должен показать сопротивление на корпус. Если прибор покажет сопротивление, то конденсатор имеет короткое замыкание на корпус и его необходимо будет заменить. Вторая проверка позволит вам определить, что компонент работает с соответствующими параметрами емкости путем измерения мкФ. Для этой проверки вам понадобится тестер конденсаторов или мультиметр с функцией проверки конденсаторов. Перед тем, как начать, убедитесь, что заряд с конденсатора был снят. При проверке конденсатора прочитайте на компоненте емкость в микро Фарадах на и выберите на тестере соответствующий диапазон. Теперь подключите щупы к контактам и нажмите кнопку, чтобы увидеть значение в микро Фарадах. Показание должно близко к рейтингу на компоненте. Двойные конденсаторы имеют два значения микро Фарад. Более высокое значение характерно для контакта «HERM» или схемы «COM» и низкое значение типично для схемы в «FAN». Как и прежде, вы должны проверить каждую цепь отдельно, чтобы определить, является ли показания прибора близкими к значению написанному на компоненте. Если прибор показывает низкое значение емкости, то конденсатор необходимо будет заменить.
_

Как проверить конденсатор подавления эмп мультиметром

Одной из наиболее распространенных причин неисправности радиоэлектронной техники является поломка одного или нескольких конденсаторов, которые составляют неотъемлемую часть ее платы. И чтобы выяснить, какой же именно конденсатор оказался слабым звеном, необходимо проверить их работоспособность. В этой статье описывается, как прозванивают конденсатор. Независимо от того, занимаетесь ли вы электронной аппаратурой профессионально или вы просто любитель, вам это вполне под силу. Для этого вам понадобится мультиметр. Ниже мы рассмотрим, как проверить конденсатор мультиметром самостоятельно.

Виды конденсаторов и их проверка

Прежде чем разобраться, как мультиметром прозвонить конденсатор, давайте выясним, какие виды конденсаторов существуют. Все конденсаторы делятся на полярные и неполярные. Разница между ними заключается в том, что полярные, как можно догадаться из названия, имеют полярность. Проверять их нужно строго соответствующим образом: «плюс» к «плюсу», «минус» к «минусу», так как в противном случае они придут в негодность и могут взорваться. Все полярные конденсаторы являются электролитическими. Если конденсатор еще советского производства, то при взрыве электролит может попасть вам на кожу. В современных конденсаторах для таких случаев предусмотрено специальное сечение на поверхности, которое разрывается в определенном направлении и не дает проводящему веществу разбрызгаться в разные стороны.

Пробой конденсатора

Наиболее распространенной проблемой конденсаторов является пробой диэлектрика. Диэлектрик – это слой материала между двумя проводниками внутри конденсатора, который имеет большое сопротивление, чтобы не допустить протекания тока между проводниками.

В исправном конденсаторе допускается небольшое пропускание тока через этот изолятор, это называется «ток утечки», и он ничтожно мал. При пробое диэлектрика его сопротивление резко падает, и, по сути, он превращается в обыкновенный проводник. Причиной такого пробоя, как правило, является резкий перепад напряжения в сети, к которой подключено оборудование. К характерным признакам пробоя относятся вздутие корпуса конденсатора, его потемнение и появление черных пятен. Перед тем как проверить конденсатор на исправность, осмотрите его визуально на предмет внешних дефектов.

Проверка неполярного конденсатора в режиме омметра

Проверка мультиметром сопротивления диэлектрика в конденсаторе осуществляется в режиме омметра. В неполярных конденсаторах диэлектрик может быть выполнен из стекла, керамики, бумаги или даже в виде воздушной прослойки. Таким образом обеспечивается крайне высокое сопротивление, и в исправном конденсаторе цифровой мультиметр покажет фактически бесконечную величину. Если же электрический пробой имеет место, то уровень сопротивления будет в пределах нескольких Ом, максимум нескольких десятков.

Помните о технике безопасности и не держитесь одновременно и за щупы прибора и за выводы конденсатора, так как из-за меньшего сопротивления электрический ток пойдет через ваше тело.

Проверка полярного конденсатора в режиме омметра

По сравнению с неполярными конденсаторами в полярных сопротивление диэлектрика на порядок меньше, поэтому максимум сопротивления на мультиметре нужно выставлять соответствующее. Большинство таких конденсаторов имеют не менее 100 кОм сопротивления, особо мощные и до 1 мОма. Перед тем как мультиметром прозвонить конденсатор, замкните выводы накопителя, чтобы разрядить его полностью.

Как мультиметром прозвонить конденсатор (аналоговый измеритель)

Как мультиметром прозвонить конденсатор: инструкция по проверке емкости накопителя

Прежде чем проверять таким образом электролитический конденсатор, его обязательно необходимо полностью разрядить. Заряженный конденсатор может попросту испортить ваш мультиметр. Особенно это касается полярных накопителей с высоким рабочим напряжением и большой емкостью. Как правило, такие конденсаторы используются в импульсных блоках в качестве фильтрующих накопителей.

Разрядка конденсатора

Обрыв конденсатора

Обрыв – довольно редкая для конденсаторов неисправность. Как правило, он возникает при механических повреждениях накопителя. В результате обрыва конденсатор полностью теряет свою накопительную функцию и имеет нулевую емкость. Фактически он превращается в два изолированных друг от друга проводника. Обнаружить обрыв при помощи омметра практически невозможно. Своеобразным симптомом обрыва в полярных электролитических конденсаторах при измерении сопротивления является отсутствие какого-либо изменения в показаниях прибора. Так как исправный неполярный конденсатор малой емкости имеет высокое сопротивление, проверить его на обрыв, таким образом, не представляется возможным. Единственный выход – измерение емкости.

Потеря емкости конденсатора

Для того чтобы определить, потерял ли конденсатор свою емкость, как ни странно, нужно замерить эту самую емкость. Выставьте на мультиметре соответствующий предел измеряемой емкости, разрядите проверяемый конденсатор, подключите щупы измерителя к соответствующим гнездам на нем, соблюдая правильную полярность, и наконец, прикоснитесь щупами к выводам конденсатора. Очевидно, что разобраться, как мультиметром проверить конденсатор кондиционера или любого другого бытового прибора на предмет потери емкости, не столь сложно.

Измерение напряжения конденсатора

Учтите, что при проверке накопитель теряет свой заряд и напряжение, соответственно, будет быстро падать, поэтому важно увидеть цифру, которая появилась в самом начале.
Есть и более простой способ проверки, но он действенен только для конденсаторов с достаточно большой емкостью. Зарядив накопитель полностью, возьмите обыкновенную отвертку с изолированной рукояткой, поднесите ее металлическую часть к его выводам и замкните их. Если в результате проскочила яркая искра, значит, элемент рабочий. Если же искра очень слабая или вовсе отсутствует, значит, конденсатор не держит заряд.

Заключение

В данной статье мы попытались разобрать все наиболее часто встречающиеся поломки конденсаторов, а также способы их проверки. Важный момент: многие начинающие мастера думают, как прозвонить конденсатор мультиметром, не выпаивая его из платы, однако в таком случае в процессе измерений будет иметь место очень большая погрешность. Единственный способ в таком случае – это визуальный осмотр на предмет наличия внешних признаков, таких как взбухание, потемнение или изменение цвета поверхности.

Чаще всего конденсаторы «летят» в таких видах бытовой техники, как стиральные машины, телевизоры, микроволновые печи и др. Поэтому если перед вами стала проблема, как прозвонить конденсатор кондиционера мультиметром, можете смело использовать нашу инструкцию.

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Современный человек не представляет своей жизни без разнообразных бытовых радиотехнических устройств и приспособлений. Основой таких устройств являются различные схемы, где конденсатор занимает одно из ведущих мест. Из статьи вы узнаете, что это за элемент и как его проверить.

Устройство конденсатора

Это радиотехнический элемент, который способен накапливать электрическую энергию и отдавать её в сеть, в заданное время. Конструктивно он представляет две металлические пластины разделённые слоем диэлектрика. Параметры его зависят в основном от площади проводника и от толщины и свойств диэлектрика. Чем больше площадь пластин и меньше расстояние между ними, тем больше ёмкость такого элемента.

Пластины изготавливаются из алюминиевой фольги, которая скручена в рулон. Между пластинами помещается изоляция из различных диэлектрических материалов. В зависимости от того, какой диэлектрик используется, конденсаторы бывают:

  • Керамическими.
  • Бумажными.
  • Электролитическими.

От условий применения их подразделяют:

Как проверить конденсатор мультиметром не выпаивая?

Перед началом ремонта радиотехнической схемы, необходимо произвести внешний осмотр радиоэлементов, не выпаивая их из платы. Характерными признаками неисправного накопителя энергии является вздутие его корпуса, изменение цвета. Современные электролитические конденсаторы снабжены специальными щелями, для более безопасного выхода системы из строя. На плате могут появиться признаки температурного воздействия неисправного элемента – токопроводящие дорожки отслаиваются от поверхности, потемнение платы и т. п. Проверять контакт элемента можно осторожно покачав его пальцем.

Если имеется электрическая схема, можно проконтролировать наличие величины напряжения на контрольных точках. Точнее, нужно произвести измерения по цепи разряда конденсатора и оценить его состояние. При подозрении на неисправность нужно параллельно подозрительному компоненту включить в схему исправный, одинакового номинала, что позволит судить о его работоспособности. Такой вариант определения неисправности приемлем в схемах с малым напряжением.

Как проверить конденсатор мультиметром?

Современная промышленность выпускает большое разнообразие моделей приборов для измерения электрических параметров – мультиметров. Они бывают как с аналоговой стрелочной индикацией, так и с жидкокристаллическим дисплеем. Приборы с ЖК дисплеем дают более точные измерения и удобны в использовании. Стрелочные индикаторы предпочитают из-за более плавного перемещения стрелки.

Перед проверкой накопителей энергии, их необходимо выпаять из схемы, чтобы избежать влияния на показания других радиотехнических элементов.

Конденсаторы разделяют на полярные и неполярные. К полярным относятся все электролитические. Они включаются в электрическую схему строго с соблюдением полярности. К неполярным – все остальные. Неполярные впаиваются в схему без соблюдения полярности.

Как проверить электролитический конденсатор мультиметром

  • Настраиваем прибор на режим измерения сопротивления до 100 Ком.
  • Дотрагиваемся до контактных выводов этого кондера измерительными проводами мультиметра, при это необходимо строго соблюдать полярность.
  • Внимательно контролируем изменение показаний на шкале измерительного прибора.

Оцениваем результат измерения:

  • Если сопротивление начинает расти (происходит заряд) и достигает большого значения, а затем медленно начинает уменьшаться (он разряжается) — элемент исправен.
  • Если сопротивление на шкале мультиметра увеличивается, но нет обратного движения показаний (происходит заряд, но нет разряда) – проводящая пластина находится на обрыве. Такой элемент подлежит замене.
  • Если сопротивление остаётся малым (не происходит заряд измеряемого элемента) – электролит находится в состоянии короткого замыкания. Его необходимо заменить.

Обязательно нужно разряжать электролит перед его проверкой, чтобы не попасть под напряжение. Разрядить его легко, коснувшись одновременно двух контактов электролита любой отвёрткой с изолированной рукояткой.

Как проверить керамический конденсатор

Конденсаторы неполярные (керамические, бумажные и т. п.) проверяются мультиметром немного другим способом:

  • Прибор настраиваем на измерение сопротивления.
  • Выставляем самый максимальный предел измерения.
  • Прикасаемся измерительными проводами к контактам, не касаясь их.

Если в результате этих действий на экране прибора величина сопротивления будет больше 2 Мом. – конденсатор исправен. Если полученное показание сопротивления будет меньше 2 Мом. – элемент неисправен (конденсатор пробит или закорочен). Его необходимо заменить исправным.

Помните, что при измерении на максимальных режимах сопротивления, нужно обязательно исключить касание проводящих частей. Связано это с тем, что сопротивление человеческого тела намного меньше сопротивления конденсатора. Это сопротивление и оказывает большое влияние на точность измерения. Тестер не показывает правильные параметры.

Как измерить ёмкость конденсатора мультиметром?

Проверка путём измерения сопротивления зачастую не даёт возможности гарантированно говорить о том, что кондер работоспособен. Именно измерение ёмкости может дать ответ о полной пригодности этого элемента в радиотехнической схеме. Для проведения таких измерений понадобится более точный прибор для проверки конденсаторов, имеющий специальную функцию для измерения ёмкости.

Принцип измерения ёмкости:

  • Аккуратно зачищаем и выравниваем ножки.
  • На измерительном приборе устанавливаем значение ёмкости, близкое к оригиналу.
  • Вставляем конденсатор в специальные контакты на приборе. Ожидаем зарядки элемента несколько секунд. Когда показания на шкале перестанут изменяться – фиксируем их.

Измерение ёмкости прибором, имеющим специальную функцию, одинаково для накопителей энергии любого типа (полярный, неполярный). Из этой статьи мы узнали, что знание основных навыков для проверки конденсаторов мультиметром дело нужное и не очень сложное. Их легко измерять и прозванивать самостоятельно. О более точных принципах измерения можно узнать из видео в интернете.

Как проверить конденсатор | soundbass

При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов. О том, как с достоверной точностью проверить исправность конденсаторов перед их использованием и пойдёт речь.

Самым доступным и распространённым прибором, с помощью которого можно проверить практически любой конденсатор, является цифровой мультиметр, включенный в режим омметра.

Наиболее важным является проверка конденсатора на пробой.

Пробой конденсатора – это неисправность, связанная с изменением сопротивления диэлектрика между обкладками конденсатора вследствие превышения допустимого рабочего напряжения на обкладках конденсатора.

При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки неисправности элемента.

Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальных конденсаторах диэлектрик, несмотря на то, что он является, по сути, изолятором, пропускает незначительный ток. Этот ток для исправного конденсатора очень мал и не учитывается. Он называется током утечки.

Проверка конденсаторов с помощью омметра

Данный способ подходит для проверки неполярных конденсаторов. В неполярных конденсаторах, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух, сопротивление утечки бесконечно большое и если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое сопротивление.

Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.

На практике проверить на пробой любой неполярный конденсатор можно так:

Переключаем цифровой мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов измерения сопротивления. Для цифровых мультитестеров серий DT-83x, MAS83x, M83x это будет предел 2M (2000k), то бишь, 2 Мегаома.

Далее подключаем измерительные щупы к выводам проверяемого конденсатора. При исправном конденсаторе прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки конденсатора более 2 Мегаом. Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, меньшее 2 Мегаом, то, скорее всего, конденсатор неисправен.

Следует учесть, что держаться обеими руками выводов и щупов мультиметра при измерении нельзя. Так как в таком случае прибор зафиксирует сопротивление Вашего тела, а не сопротивление утечки конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Поэтому не стоит забывать о правилах при проведении измерения сопротивления.

Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.

Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 килоОм. Для более качественных полярных конденсаторов это значение не менее 1 Мегаом. При проверке таких конденсаторов омметром следует сначала разрядить конденсатор, замкнув выводы накоротко.

Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200.000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки конденсатора. Так как электролитические конденсаторы имеют довольно высокую емкость, то при проверке конденсатор начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти, и будет расти до тех пор, пока конденсатор не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности конденсатора.

Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась аналогичным образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелочным прибором росло, в конечном итоге достигая значения сопротивления утечки.

По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем соответственно, была больше ёмкость конденсатора. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости конденсатора, а вот при проверке конденсаторов с большой ёмкостью (1000 мкф и более), стрелка отклонялась значительно медленнее.

Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения ёмкости конденсатора.

При проверке электролитических конденсаторов необходимо перед проведением измерения ёмкости полностью разрядить проверяемый конденсатор. Особенно этого правила стоит придерживаться при проверке полярных конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор.

Например, часто приходиться проверять исправность конденсаторов, которые выполняют роль фильтрующих, и применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче измерительного прибора.

Поэтому такие конденсаторы перед проверкой следует разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью), либо подсоединив к выводам резистор, сопротивлением 5-10 килоОм (для высоковольтных конденсаторов).

При проведении данной операции не стоит касаться руками выводов конденсатора, иначе можно получить неприятный удар током при разряде обкладок. При закорачивании выводов заряженного электролитического конденсатора проскакивает искра. Чтобы исключить появление искры, выводы высоковольтных конденсаторов и закорачивают через резистор.

Одной из существенных неисправностей электролитических конденсаторов является частичная потеря ёмкости, вызванная повышенной утечкой. В таких случаях ёмкость конденсатора заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра довольно сложно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.

Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости.

Для полярных электролитических конденсатором косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления. Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор также имеет очень высокое сопротивление.

Обнаружить обрыв в конденсаторе возможно лишь с помощью приборов для измерения ёмкости конденсатора.

На практике обрыв в конденсаторах встречается довольно редко, в основном при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.
Например, люминесцентные компактные лампы частенько выходят из строя по причине электрического пробоя конденсаторов в электронной схеме преобразователя.

Причиной неисправности телевизора может служить потеря ёмкости электролитического конденсатора в схеме источника питания.

Потеря ёмкости электролитическими конденсаторами легко обнаруживается при замере ёмкости таких конденсаторов с помощью мультиметров с функцией измерения ёмкости. К таким мультиметрам относиться мультиметр Victor VC9805A+, который имеет 5 пределов измерения ёмкости:

20 нФ (20nF)
200 нФ (200nF)
2 мкФ (2uF)
20 мкФ (20uF)
200 мкФ (200uF)

Данный прибор способен измерять ёмкость в диапазоне от 20 нанофарад (20 нФ) до 200 микрофарад (мкФ). Как видно, с помощью этого прибора есть возможность замерить ёмкость, как обычных неполярных конденсаторов, так и полярных электролитических. Правда, максимальный предел измерения ограничен значением в 200 микрофарад (мкФ).

Измерительные щупы прибора подключаются к гнёздам измерения ёмкости (обозначается как Cx). При этом нужно соблюдать полярность подключения щупов. Как уже упоминалось, перед измерением ёмкости следует в обязательном порядке полностью разрядить проверяемый конденсатор. Несоблюдение этого правила может привести к порче прибора.

Неисправность конденсатора можно определить при внешнем осмотре, например, корпус электролитических конденсаторов имеет разрыв насечки в верхней части корпуса. Это свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый «взрыв” конденсатора. Корпуса неполярных конденсаторов при значительном превышении рабочего напряжения имеют свойство раскалываться, на поверхности образуются расколы и трещины.

Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозовых разрядов и сильных скачков напряжения электроосветительной сети.

Источник: go-radio.ru

Как проверить конденсатор на исправность

Система зажигания двигателя является одной из главных систем автомобиля. Благодаря ей автомобиль мы заводим и можем перемещать по дороге. В нашей стране еще достаточно много транспортных средств, имеющих контактное зажигание. Конденсатор – один из ее элементов. Обычно он не выходит из строя, но водители должны быть всегда к этому готовы. Проверка и замена его в дороге не вызывает ни каких трудностей.

Возьмите прибор омметр. Вывод конденсатора соедините с его корпусом, разрядите его. Один щуп омметра подсоедините к наконечнику провода, второй к корпусу (прибор переключите в верхний предел измерений). При исправном конденсаторе стрелка резко отклонится в сторону «0», а затем плавно возвратится к символу «∞». Если изменить полярность, то стрелка еще больше отклонится к «нулю». Неисправный конденсатор замените.

Отсоедините провод катушки зажигания и провод конденсатора от зажима прерывателя. Возьмите переносную лампу, она даст возможность проверить пробивание конденсатора на корпус автомобиля. Подключите ее к зажиму прерывателя. Включите зажигание. Конденсатор считается неисправным, если лампа при этом загорится. Его используют для уменьшения обгорания контактов прерывателя и увеличения вторичного напряжения. Подключают конденсатор параллельно им. При размыкании контактов, в то время когда зазор находится на минимальном значении, проскакивает искра, в результате чего и он накапливает заряд. Для каждой системы зажигания имеется свой конденсатор. Его емкость обычно расположена в границах 0,17—0,35 мкФ. Для контактной системы автомобилей семейства ВАЗ его значение составляет 0,20—0,25 мкФ. В случае отклонения в емкости конденсатора, уменьшается вторичное напряжение. При зарядке или разрядке конденсатора оно не превышает 5 кВ.

Отсоедините черный провод, идущий от катушки зажигания от зажима прерывателя, отсоедините провод конденсатора от прерывателя. Включите зажигание. Сделайте между ними касание. Конденсатор будет неисправен в случае появления искры. Следующий способ — зарядите его током высокого напряжения от катушки зажигания, после чего разрядите его на корпус автомобиля. Если появилась разрядная искра между массой и проводом конденсатора со слышимым щелчком, то он исправен. Если искры не наблюдается, значит конденсатор пробит.

Отключите конденсатор. Возьмите заводную ручку и начинайте проворачивать коленчатый вал ДВС. Снимите крышку распределителя зажигания и включите зажигание. Признаком неисправности конденсатора служит чрезмерное искрение контактов прерывателя в это время. При появлении слишком слабой искры между корпусом и центральным высоковольтным проводом, а также при достаточно сильном искрение контактов прерывателя – конденсатор неисправен и требует замены.

Как проверить конденсатор генератора?

На примере генератора 37.3701 автомобиля ВАЗ 2108, 2109, 21099 проведем проверку конденсатора установленного на его задней крышке.

Для чего нужен конденсатор в генераторе?

— Для защиты регулятора напряжения от влияния импульсов тока в бортовой сети автомобиля и предотвращения перехода всей схемы в режим колебаний

— Предотвращения просадок напряжения

— Снижения влияния высокочастотных помех и пульсаций тока на работу регулятора напряжения

— Ускоряет переключение транзистора регулятора напряжения снижая потери энергии и его нагрев

Так что если регулятор напряжения генератора часто выходит из строя стоит обратить внимание на конденсатор генератора подключенный параллельно контактам регулятора и провести его проверку.

Как проверить конденсатор генератора?

Для проверки необходим омметр (мультиметр) с пределом измерения не менее 1000 кОм или заведомо исправный конденсатор для проверки путем замены.

— Снимаем конденсатор с генератора

Наконечник провода конденсатора одевается на болт вывода «30» генератора и закреплен гайкой под ключ на «10». Отворачиваем ее ключом на «10» и снимаем наконечник.

Сам конденсатор крепится винтом к задней крышке генератора. Шлицевой отверткой отворачиваем винт крепления конденсатора и снимаем его с генератора.

— Измеряем сопротивление конденсатора

Присоединяем щупы мультиметра (в режиме омметра) к выводам конденсатора. Полярность не имеет значение. Если он исправен, при присоединении щупов сопротивление будет стремиться к бесконечности, потом значение сопротивления снижается (на экране мультиметра быстро проскочит несколько цифр), а затем увеличивается и опять стремиться к бесконечности. Если вместо бесконечности на экране мультиметра высветится любое другое значение, конденсатор неисправен.

Проверка исправности конденсатора генератора 37.3701 автомобилей ВАЗ 2108, 2109, 21099 при помощи мультиметра
Примечания и дополнения

— Конденсатор это устройство, позволяющее накапливать, а затем отдавать электрический заряд. Своего рода маленькая аккумуляторная батарея. Состоит из двух электродов разделенных диэлектриком. Если на него подать электрический ток, то он начнет скапливаться на электродах конденсатора. Основное свойство конденсатора- это емкость.

Еще статьи по генераторам автомобиля ВАЗ 2108, 2109, 21099

— Проверка диодного моста генератора (на снятом генераторе)

— Проверка диодного моста генератора (без снятия)

— Проверка ротора генератора

— Проверка обмоток статора генератора

— Проверка регулятора напряжения генератора

— Проверка натяжения ремня привода генератора на ВАЗ 2108, 2109, 21099

— Признаки «пробитого» диода диодного моста генератора

Как проверить конденсатор мультиметром: на работоспособность

В электронике используется множество радиодеталей для создания различных приборов, в том числе и высоко чувствительных.

Статья раскроет тему, как проверить работоспособность конденсатора мультиметром. Также будет дана информация о разновидностях этих элементов, принципе их работы и о назначении.

Назначение

Основное предназначение конденсатора кроется в накоплении электрического заряда. Существует несколько разновидностей этого элемента. Именно от типа устройства зависит назначение накопления. Оно может быть необходимо для:

  1. Стабилизации напряжения.
  2. Передачи импульсных сигналов.
  3. Защиты от перепада напряжения в цепи.
  4. В качестве фильтра частотных колебаний.

Принцип действия

Конденсаторы представляют собой устройство, состоящие из двух пластин со свойством электрической проводимости.

Пластины не контактируют друг с другом. Между ними есть пространство, которое может быть заполнено кислородом или любым диэлектрическим веществом.

Основной величиной является емкость, ее измеряют в фарадах. Значение вычисляется при способности конденсатора к накоплению количества энергии равному 1 кулону, при показателе разниц напряжения 1 вольт между 2 пластинами. Величина 1 кулон очень большая. Емкости современных устройств варьируются от миллифарад до пикофарад.

Емкость этих элементов понижается или повышается за счет величины пластин и диэлектрического расстояния между ними. При увеличении высоты и ширины пластин, снижают ширину диэлектрика, что способствует увеличению емкости.

Конденсатор работает по следующему принципу:

  1. Переменное напряжение заряжает токопроводящие пластины устройства.
  2. На этих пластинах происходит смена потенциалов.
  3. При снижении напряжения в цепи, конденсатор отдает часть недостающей энергии, стимулируя выравнивание напряжения.

При работе под нагрузкой постоянного напряжения, на пластинах не происходит смены потенциала. Ток выдается импульсными разрядами, согласно установленной полярности. Далее будет дано подробное описание разновидностей конденсаторов и сфер их использования.

Разновидности

Существует множество типов и разновидностей описываемых устройств. По своим параметрам они делятся по емкостной и полярной характеристике. По емкости их можно разделить на:

  1. Конденсаторы с постоянной емкостью. Емкость таких элементов постоянна, ее нельзя изменить.
  2. Переменные. Эти элементы способны менять это значение, если на них воздействует температура, величина электрического напряжения или это делается руками человека. К таким конденсаторам относятся: подстрочные и нелинейные. Подстрочные регулируются вручную. Это необходимо для калибровки параметров оборудования. Емкость нелинейных устройств зависит от напряжения и температуры.

По значению полярности, конденсаторы делятся на:

  1. Оксидные, полярные или электролитические конденсаторы. Эти элементы имеют анод для хранения положительного электрического заряда и катод, который является диэлектрическим материалом. Для их подключения в цепь необходимо четко соблюдать полярность.
  2. Неполярные устройства. Не имеют полярности, часто используются для работы при переменном напряжении.

Далее опишем разновидности.

Электролитические

Являются самыми распространенными. Для их работы используется проводник — диэлектрик в виде металлической фольги.

На этом элементе накапливается заряд положительной полярности.

Заряд с отрицательным значением собирается на пластине из сухих веществ или емкости с электролитом.

Бумажные

Еще одна разновидность монтажного элемента. Отличается он наличием бумаги, как материала для диэлектрического разрыва между пластинами из фольги.

У этого устройства есть разновидность с напылением металлического порошка на бумажный диэлектрик. Такие конденсаторы называют металлобумажными. Особенностью подобных элементов является прочный стальной корпус. Подобные устройства используются в приборах с низкой или высокой частотой напряжения.

Керамические

Особый вид элементов, состоящий из нескольких слоев керамических пластин. Керамические конденсаторы при маленьких габаритах способны иметь большую емкость. Также их параметры могут изменяться при смене температуры и напряжений. К этому типу устройств относятся SMD конденсаторы.

Подобные элементы производятся в миниатюрных габаритах, без ножек и электродов. СМД конденсаторы самые дешевые, но эффективные при уменьшении габаритов аппаратуры с сохранением всех параметров необходимой емкости.

Пусковые

Тип постоянных конденсаторов, использующихся для импульсного возбуждения.

Способны выдавать импульсный толчок для пуска электродвигателей, некоторых типов осветительных приборов.

Пленочные

Для накопления напряжения в этих элементах используется пластиковая пленка.

Контактами является также пленка, но только из металлической фольги.

Особенностью устройств является способность работать при температурах до 125 градусов, при этом выдерживать повышенное напряжение с периодическими перепадами в большую сторону.

Полимерные

Еще один тип с особыми характеристиками. В этих элементах используется полимер в качестве диэлектрика. Таким образом удается снизить к нулю утечку тока, понизить сопротивление, но увеличить емкость.

Все описанные типы конденсаторов являются основными и наиболее часто используемыми в промышленности. Далее будет дано описание, как проверить конденсатор мультиметром.

Способы проверки

Перед тем как проверить конденсатор на работоспособность, необходимо удостовериться, к какому типу он относится. Далее будет дана отдельная инструкция проверки полярных и неполярных элементов.

Полярные

Для проверки полярных конденсаторов понадобится тестер в режиме замера сопротивления. Перед тестом, нужно закоротить ножки устройства металлическим предметом, чтобы разрядить конденсатор.

Также понадобится найти «+» контакт. Производители маркируют подобные элементы серой полосой с галочкам. Сторона с подобной полосой обозначает минусовой контакт. Далее необходимо:

  1. Измерительный щуп красного цвета соединить с выводом «+».
  2. Черный контрольный щуп с выводом «–».

Результат замера должен расти в течение непродолжительного времени. Рост указывает на заполнение емкости электрическим током от мультиметра. После того как емкость заполниться, тестер покажет «1». Таким образом, произошло выравнивание сопротивления относительно напряжения. Такой элемент можно считать работоспособным.

Если в ходе замера тестер показал единицу без увеличения сопротивления, то конденсатор признается неисправным, внутри него есть обрыв цепи.

Электрический конденсатор можно проверить при помощи прозвонки. Прозвонка конденсатора мультиметром покажет наличие или отсутствие короткого замыкания между пластинами. Для этого теста необходимо перевести мультиметр в режим прозвонки и соединить контрольные щупы с выводами устройства. Наличие зуммера укажет на непригодность к дальнейшему использованию.

Неполярные

Для теста неполярных конденсаторов не требуется соблюдать полярность. С помощью тестера можно проверить, например, исправность пускового элемента. Для этого необходимо:

  1. Мультиметр перевести в режим замера сопротивления
  2. Красный измерительный щуп соединить с любым выводом конденсатора.
  3. Черный измерительный щуп соединить ко второму выводу.

Исправные неполярные конденсаторы имеют сопротивление выше 2 МОм. Любые значения ниже этого параметра можно считать неисправностью устройства.

Емкость

Этот параметр особенно важен. Даже исправный элемент, с плохой емкостной характеристикой, не может быть использован в качестве детали в цепи. Простая проверка емкости выполняется следующим образом.

  1. Мультиметр переводится в режим прозвонки.
  2. Согласно полярности к ножкам соединяются измерительные щупы.
  3. При наличии зуммера, можно сделать вывод о емкости конденсатора свыше 0.1 мкФ. Громкость и долгота звукового оповещения, укажет на более высокие параметры емкости.

Измерение емкости конденсатора этим способом укажет только на работоспособность пластин и диэлектрика. Более точные измерения емкости доступны для мультиметров с режимом «CX». Такие тестеры могут дополнительно оснащаться гнездом для проверки конденсаторов.

  1. Тестер переводится в режим «CX», на номинал выше или равный номиналу емкости детали.
  2. Деталь вставляется в гнездо для определения параметров емкости.
  3. Данные тестера должны совпадать, с указанной на корпусе детали маркировкой. Любые отличающиеся значения указывают на неисправность.

Измерение емкости и сопротивления будут самыми точными, если конденсатор предварительно выпаян со схемы и разряжен.

Напряжение

Для того чтобы узнать, пригоден ли конденсатор к работе, нужно померить его способность накапливать напряжение. Для этого необходимо:

  1. Определить наивысшее номинальное напряжение устройства.
  2. Перевести мультиметр в режим замера постоянного напряжения.
  3. Согласно полярности подключить к нему блок питания с меньшим выходным напряжением. Например, если деталь имеет пороговое напряжение 30 вольт, для теста подойдет блок питания с выходом 9–12 вольт.
  4. Конденсатор удерживается под напряжением в течение 10 секунд.
  5. Далее контакт блока питания с конденсатором разрывается.

Если деталь исправна, она должна показать значение, равное указанному на ее корпусе. Отсутствие напряжения или искра на контактах, говорят о непригодности и коротком замыкании.

Без демонтажа

У начинающих радиолюбителей возникает вопрос, как проверить конденсатор мультиметром не выпаивая его. Проверка прямо на плате не является точной. На результат могут повлиять расположенные по близости радиодетали.

Прозвонка конденсатора мультиметром на схеме доступна следующим образом:

  1. Для теста нужно отпаять выводы рядом расположенных деталей. Так их сопротивление не помешает померить сопротивление тестируемого элемента.
  2. Разъединить дорожку, к которой припаян один вывод конденсатора. Таким образом нарушается цепь. Но этот способ можно применять только, если есть полная уверенность в неисправности детали.
  3. Самый точный способ проверки на плате заключается в параллельном соединении полного аналога детали. После монтажа, замеряется напряжение на выходе и проверяется работоспособность всего устройства. Если подобная пайка повлияла на конечный результат, то первый конденсатор признается нерабочим.

Не выпаивая из схемы можно замерить только напряжение на выходе. Если его нет или оно меньше номинального, то устройство неисправно.

В статье были рассмотрены основные способы, как проверить конденсатор мультиметром. Далее будет дана пошаговая инструкция проверки конденсатора в микроволновой печи.

Проверка

Перед тестом конденсатора СВЧ печи нужно знать, что элемент имеет высокое проходное напряжение, оно варьируется до 3 кВ. Этот элемент является частью цепи, в которой присутствуют высоковольтный трансформатор и диодный мост.

Поэтому перед проверкой необходимо разрядить устройство. Делать это металлическим предметом запрещено. Для разряда понадобится резистор 20 кОм. Его контакты нужно соединить с контактами тестируемого элемента на несколько секунд.

Далее следует:

  1. Переключить тестер в режим омметра.
  2. Подключить измерительные щупы мультиметра соблюдая полярность.
  3. Сопротивление рабочего элемента должно повышаться от значения 1 до 10–20 кОм. Если показаний нет или они не повышаются, то деталь признается непригодной для использования.

Этот способ проверки необходим для безопасного теста, имитирующего заряд устройства. Дополнительной проверкой может стать предварительное включение конденсатора под напряжение и замер его накопленного тока.

Заключение

Проверка конденсаторов несложный процесс. Главное соблюдать технику безопасности при работе с ними. Высокое напряжение этих элементов способно нанести вред человеку. Описанные способы подходят для проверки пленочных, керамических, SMD и пусковых устройств. Главное руководствоваться данными на корпусе, сравнивая их со сделанными замерами.

Видео по теме

поверхностный монтаж — Как проверить SMD конденсатор на короткое замыкание, не отсоединяя его от электрической платы

Без схемы вам нужно будет заняться поиском, чтобы найти плоскость заземления. Хорошим местом для начала проверки являются отрицательные (-) контакты больших электролитических конденсаторов, которые четко обозначены на пластиковых рукавах конденсаторов (более светлая часть).

Использование металлизированных монтажных площадок для сквозных отверстий может работать, а может и не работать, потому что они не всегда заземлены.Вы можете проверить это, измерив между отрицательным выводом электролитического конденсатора и монтажной площадкой.

Вы по-прежнему можете проводить прямые измерения целостности конденсаторов. Короткий — это короткий.

И последнее, что следует запомнить — эти конденсаторы почти всегда подключаются параллельно с другими компонентами в цепи. Короткое замыкание указывает на то, что одно или несколько устройств в цепи вышли из строя короткое замыкание — не обязательно конденсатор.

Наиболее распространенным механизмом отказа керамических конденсаторов от короткого замыкания является механическое напряжение, вызывающее растрескивание керамических слоев и внутреннее короткое замыкание.Если только вы не уронили сборку, то шапки плохие сомневаюсь. Если бы они подверглись чрезмерному электрическому или термическому воздействию, вы бы увидели ожоги, обесцвечивание и т. Д.

Измерения, которые вы уже провели — все с некоторым сопротивлением или за пределами возможностей измерения цифрового мультиметра — подразумевают, что ни одна из цепей, подключенных к проверяемым вами конденсаторам, не закорочена. Вероятно, ваша проблема где-то в другом месте или другая по своей природе (т. Е. Не короткая).

Я бы начал с того, чтобы перевести ваш цифровой мультиметр в режим постоянного напряжения, подключить питание переменного тока и проверить наличие постоянного тока на материнской плате, тщательно измерив напряжения на керамических и электронных крышках на материнской плате.НЕ ИСПОЛЬЗУЙТЕ ИСТОЧНИК ПИТАНИЯ. Если вы прикоснетесь не к тому месту, вы можете получить удар током. Также будьте очень осторожны, чтобы не закоротить щупы вместе при измерении, иначе вы можете получить действительно большую искру.

Тестирование конденсатора под нагрузкой

В этом видео я расскажу, как мы проверяем емкость рабочих конденсаторов в Prestige Air.

Слишком много компаний и технических специалистов просто включат свои измерители на мкФ (микрофарады), подключат провода к конденсатору и примут результат.Это называется стендовым тестированием, поскольку это тест, который вы можете провести на стенде. Это способ проверить конденсатор, когда нет питания и нет возможности проверить его в цепи. Это также единственный раз, когда вы должны испытывать конденсатор на стенде, когда нет возможности проверить его в цепи.

Один из примеров этого — когда конденсатор полностью вышел из строя, и вы не можете заставить цепь включиться (поскольку для этого требуется конденсатор). В этом случае вы должны провести стендовые испытания, чтобы подтвердить отказ компонента.

Во всех остальных сценариях вам необходимо выполнить тестовый запуск. Почему? Потому что так оно работает… во время бега. Это емкость, которую нам нужно подтвердить. Никого не волнует емкость, когда она выключена, только когда она находится под нагрузкой в ​​цепи.

Для проведения пробного запуска нам понадобятся два измерения:

  1. Напряжение от пускового провода к общему проводу на конденсаторе
  2. Затем сила тока на пусковом проводе во время работы системы.

Затем вытаскиваем телефон, открываем калькулятор и используем эту формулу:

А x 2652 / В = рабочая емкость

Итак, если у меня 1,1 А на пусковой обмотке двигателя вентилятора конденсатора, и я получаю 383 В между пуском и работой на конденсаторе, формула будет выглядеть так:

1,1 х 2652/383 = 7,61 мкФ.

Если это конденсатор 7,5 мкФ, то мы находимся именно там, где нам нужно, но если предполагается, что это конденсатор 10 мкФ, мы выходим за пределы диапазона, указанного производителем.

Единственное предостережение, которое я хотел бы предложить при проведении теста емкости, — это помнить, что он находится под напряжением, а провода горячие, обычно до 370+ вольт на конденсаторе.

В Prestige Air все наши специалисты проводят тесты, и мы проверяем это при каждом звонке. Каждая настройка или ремонт проходит через полную проверку системы, которая включает в себя рабочий тест всех конденсаторов. Таким образом, мы можем помочь найти проблемы до того, как они приведут к поломке вашей системы.

Если у вас возникли проблемы с обогревом или охлаждением, позвоните в Prestige Air.Наши квалифицированные специалисты по обслуживанию имеют подготовку и опыт, чтобы поддерживать вашу систему HVAC в идеальном состоянии в течение всего года. Позвоните (817) 200-7215, чтобы убедиться, что ваше отопление и охлаждение готовы к сезону!

Проверка рабочих конденсаторов под нагрузкой

Наконечник : Проверка Работа Конденсаторы Под Нагрузка

По Гэри Маккриди

Проверка рабочих конденсаторов под нагрузкой — это альтернативный метод отключения питания системы и проверки традиционным способом с использованием настройки мкФ (микрофарад) на вашем измерителе.Я всегда рекомендовал бы проверять конденсаторы при выключенном питании, с точки зрения безопасности, проникновение в электрический шкаф под напряжением по сравнению с проникновением в шкаф без питания — всегда более безопасный вариант. Но есть некоторые обстоятельства, при которых системе может потребоваться продолжить работу во время тестирования, если, возможно, система обслуживает критическую среду или вы пытаетесь выполнить настройку системных элементов управления и не можете отключить питание.

Следуйте процедуре ниже.

1. Установите токоизмерительные клещи на амперы и снимите показания тока на проводе пусковой обмотки двигателя, подключенном к конденсатору, запишите показания.

2. Теперь установите измеритель на вольт и снимите показания на конденсаторе, который даст вам обратную электродвижущую силу (ЭДС) двигателя, запишите показания.

3. Подставьте свои показания в следующую формулу …

4. Ампер пусковой обмотки x 2650 (постоянный) / обратная ЭДС

Вышеописанная процедура выдаст микрофарады под нагрузкой.Ограничения прогона имеют отметку +/- в процентах, если ваши расчеты попадают в этот диапазон +/-, все должно быть в порядке.

Посмотрите видео ниже для демонстрации вышеприведенного объяснения

Перейдите по ссылке на мой канал YouTube, чтобы увидеть больше советов, приемов и видео по устранению неполадок, а также посмотрите подкаст The HVAC Know It All здесь или в своем любимом приложении для подкастов. Счастливого ОВК …

Гэри МакКриди

Как диагностировать проблему конденсатора кондиционера

Как проверить конденсатор кондиционера

У вас проблемы с кондиционером в доме и вы подозреваете, что это проблема конденсатора кондиционера? Ниже я изложил пошаговое руководство о том, как проверить конденсатор переменного тока, чтобы убедиться, что он исправен или у вас проблемы с конденсатором.

Во-первых, прежде чем я продолжу, мне нужно выложить этот отказ от ответственности! ПРЕДУПРЕЖДЕНИЕ — Эта процедура связана с риском поражения электрическим током — не пытайтесь это сделать, если вы не знакомы с безопасностью при работе с высоким напряжением.

Вот инструменты, которые вам понадобятся:

  • Отвертка с изолированной ручкой
  • Изолированные перчатки
  • Измеритель с микрофарадами или измеритель с сопротивлением (Ом)

Шагов:

  1. Если вы не знакомы с высоким напряжением в наружном блоке, не пытайтесь выполнить эту процедуру !!!!!
  2. Удалите разъединитель или выключите автоматический выключатель, это должно отключить 240 вольт на внешнем блоке
  3. Установите термостат ниже комнатной температуры и выберите охлаждение (при этом на внешний блок по-прежнему будет поступать 24 В, но 240 В, необходимые для работы компрессора и вентилятора, должны быть отключены от разъединителя или автоматического выключателя)
  4. Убедитесь, что наружный блок не работает (вы услышите гудение, но блок не работает)
  5. Переведите термостат в положение ВЫКЛ. (Это отключит 24 В на агрегате, и гудение прекратится)
  6. Снимите панель, закрывающую электрические компоненты
  7. Наденьте изолирующие перчатки
  8. Возьмите отвертку с изолированной ручкой
  9. Возьмите отвертку и коснитесь обоих контактов «C» (общий) и выступов «HERM» (компрессор) в верхней части конденсатора, чтобы разрядить сторону HERM конденсатора.
  10. Возьмите отвертку и коснитесь общих выступов «FAN» и «C» в верхней части конденсатора, чтобы разрядить сторону FAN конденсатора.
  11. Запишите, какой провод подключен к какой клемме (например, коричневый к вентилятору, красный к C, фиолетовый к C, желтый к HERM) системы каждой марки могут незначительно отличаться, поэтому запишите соединение клеммы с проводом.
  12. Снимаем провода с конденсатора
  13. (opt1) Возьмите провода от измерителя, установив его на микрофарады, и проверьте показания одним проводом на C, а другим на вкладках HERM или FAN.
  14. (opt1) если показание находится в рабочем диапазоне, указанном на стороне конденсатора, то конденсатор исправен
  15. (opt2) с измерителем, установленным на ом, проверьте показания одним проводом на C, а другим на вкладках HERM или FAN.
  16. (opt2) наблюдайте, как показания возрастают от нуля (0) до максимального значения, а затем снова падают до нуля (вы заряжаете и разряжаете конденсатор при настройке сопротивления), если максимальное показание находится в рабочих характеристиках на стороне конденсатора. , то конденсатор в порядке.
  17. Замените провода точно так же, как они были сняты на шаге 9, используя свои записи
  18. Заменить электрическую крышку на блоке
  19. Заменить разъединитель

Всегда вызывайте опытного специалиста по HVAC, чтобы проверить конденсатор.

как проверить пленочный конденсатор 105J400V

Описание

как проверить пленочный конденсатор 105J400V Особенности и применение

как проверить пленочный конденсатор 105J400V. Поверхность покрыта гладкой оранжево-красной эпоксидной смолой с лазерной печатью, 105J400V, глянец проводов, допуск емкости не превышает ± 5% или ± 10%, выдерживает напряжение 800V.

как проверить пленочный конденсатор 105J400V

ltem Характеристики
Ссылочный стандарт ГБ10188 (МЭК 60384-13)
Климатическая категория 40/85/21
Номинальное напряжение 400 В
Емкость 1,0 мкФ
Допуск емкости ± 5% (Дж)
Устойчивость к напряжению 1.6УР (2С)
Коэффициент рассеяния ≤0,002 (20 ℃, 1 кГц)
Сопротивление изоляции

≥100000 МОм

20 ° C , 1 мин

Размер пленочного конденсатора CBB21 105J 400 В

CBB21 105J Пленочный конденсатор 400 В

W: 24,0 мм
H: 19,5 мм
T: 11,5 мм
P ± 1 : 20,0 мм

FAQ

Q: Пленочные конденсаторы припаяны волной припоя без свинца, около 200 градусов? Высокая температура может легко повредить конденсатор или повлиять на срок службы.Не знаете, как контролируют и обрабатывают эту отрасль? Требуется ручная сварка? Есть ли ограничение по температуре в технических характеристиках конденсатора? При маркировке указывается температура паяного соединения или температура тела?

A : Здравствуйте, температура пика волной пайки пленочного конденсатора может составлять 275 ° C, что также является температурой стандарта IEC, а время погружения в олово составляет 3S-5S. Другой — температура и время предварительного нагрева. Пленочные конденсаторы выдерживают такую ​​температуру.Не влияет на электрические характеристики. Температура пайки и температура термостойкости пайки указаны в журнале согласования технических характеристик. Первое направлено на паяемость контактов конденсатора, а второе — на влияние температуры сварки на характеристики пленочных конденсаторов.

Q: Как судить о качестве пленочного конденсатора?

A: 1) Используйте мультиметр, чтобы проверить сопротивление тонкой пленки электричества. Обе ножки должны иметь очень высокое сопротивление.Если есть измеритель емкости, измерьте, соответствует ли значение емкости отметке на корпусе.

2) Проведение испытаний при комнатной температуре, включая емкость, потери, сопротивление изоляции, выдерживаемое напряжение, ESR и т. Д.

3) Сделайте симуляцию жизненного теста.

Свяжитесь с нами

Электронная почта: [email protected]

Тел. / (WhatsApp): + 86-18825879082

Skype: Coco.PSH

Веб-сайт: xuanxcapacitors.com

Как проверить конденсатор с помощью мультиметра

Как сотрудник Amazon, я зарабатываю на соответствующих покупках

Мы получаем много вопросов.Могу ли я использовать дешевый мультиметр для проверки конденсатора? Да! Если вы хотите узнать , как проверить конденсатор с помощью мультиметра, вы можете использовать свой обычный измеритель.

Как правило, вам понадобится модный и дорогой измеритель, предназначенный для проверки емкости, но вы все равно можете использовать дешевый мультиметр, чтобы определить, работает ваш конденсатор или нет. Хотя это не самый точный тест на свете, для большинства домашних мастеров его более чем достаточно.

Как проверить конденсатор с помощью обычного мультиметра

Использование мультиметра — один из самых простых способов проверить конденсатор.Но будьте осторожны, ситуация может выйти из-под контроля, если вы не будете знать, что делаете. Итак, вот , как проверить рабочий конденсатор с помощью мультиметра. :

1. Безопасность

Конденсаторы хранят достаточно энергии, чтобы вывести вас из строя, поэтому разрядите их, прежде чем двигаться дальше.

Тем не менее, возьмите резистор и подключите его к клеммам наверху конденсатора. Конденсатор теперь отдаст всю свою энергию на резистор, немедленно снизив мощность.

Не используйте отвертку для этой работы.Это повредит и ваш инструмент, и конденсатор. Более того, это невероятно опасно, если вы не знаете, что делаете. Если к конденсатору прикасаться небезопасно, обратитесь к сертифицированному специалисту.

2. Настройте мультиметр

После разрядки конденсатора возьмите черный провод и вставьте его в отверстие COM. Затем возьмите красный провод и подключите его к отверстию VΩ. После этого поверните колесо на 200кОм.

3. Как проверить конденсатор с помощью цифрового мультиметра

Для начала подключите красный провод к положительной клемме, а черный — к отрицательной клемме.Теперь сопротивление будет увеличиваться, пока не достигнет 200 кОм. После этого на мультиметре отобразится «1», что указывает на отсутствие сопротивления, которое нужно проверить.

Если вы хотите проверить это наоборот, подключите черный провод к положительной клемме, а красный — к отрицательной клемме. Теперь сопротивление снизится, а затем числа увеличатся, указывая на то, что вы снова заряжаете его.

Имея всю эту информацию, мы можем с уверенностью предположить, что ваш конденсатор исправен. Однако этот тест не говорит нам, какие у него возможности.Вместо этого он говорит нам, что берет на себя ответственность, как и положено.

Для получения дополнительной информации о конденсаторах и о том, как их разрядить, посмотрите это видео:

Как проверить конденсаторы в цепи с помощью мультиметра

Тестирование блока питания телевизора очень просто и практически не требует усилий. любое время. Но вам нужно знать несколько вещей, чтобы выполнить эту работу. Итак, вот , как проверить конденсатор мультиметром :

1.Разрядите конденсатор

Как всегда, разрядите конденсатор. Полностью заряженный конденсатор может вызвать серьезные повреждения в считанные секунды. Даже небольшие конденсаторы могут нанести непоправимый урон и убить вас.

В качестве примечания обратите внимание на метки на конденсаторах, чтобы знать напряжение.

Если вам неудобно разряжать конденсатор, обратитесь к профессионалу, особенно если вы имеете дело с конденсатором, к которому небезопасно прикасаться.

2.Установите мультиметр на фарады

Конденсаторы измеряются в фарадах, то есть вы должны установить мультиметр на фарады. Однако ваш мультиметр будет отображать разные значения в зависимости от марки. Вот список наиболее распространенных значений:

  • мкФ — микрофарады
  • нФ — нанофарады
  • пФ — пикофарады

Все эти значения служат одной цели, поэтому не беспокойтесь, если вы получаете другое ценить.

3. Как проверить конденсатор с помощью мультиметра в цепи

Поместите черный провод на отрицательную сторону, а красный — на положительную.Показания мультиметра должны соответствовать значению конденсатора. Если значение вашего конденсатора становится на 10% ниже, чем указано в фактическом значении конденсатора, замените его.

Например, если ваш конденсатор показывает 680 мкФ, а вы получаете 274 мкФ, это означает, что блок не работает и его необходимо заменить. Если вам нужна дополнительная помощь в выполнении этих шагов, обратитесь к этому видео на YouTube:

Часто задаваемые вопросы (FAQ)

Нужна дополнительная помощь в выяснении того, как проверить конденсатор? Тогда обязательно загляните в этот раздел:

Как определить, что конденсатор плохой?
  • Сначала поищите повреждения.Например, неисправная емкость выглядит некрасиво, имеет пузыри и кажется громоздкой. Кроме того, нижняя сторона могла прогнуться. Тем не менее, проведите небольшой тест с помощью мультиметра, чтобы убедиться, что устройство перестало работать.
Как проверить конденсатор с помощью цифрового мультиметра?
  • Сначала возьмите два ваших провода и поместите положительный провод на положительный вывод, а отрицательный — на отрицательный. Затем установите мультиметр на Ом. Цифры на экране будут увеличиваться, пока не дойдет до разомкнутой цепи, указывая на то, что конденсатор все еще работает.
Что делать, если конденсатор показывает высокий уровень?
  • Если вы используете тестер емкости, обратите внимание, что меньшее число означает, что ваш конденсатор все еще в отличной форме, а большее число указывает на то, что блок вышел из строя и его необходимо заменить.
Какой символ конденсатора на мультиметре?
  • Обычный мультиметр нельзя использовать для проверки емкости. Значит, для этого нет значка конденсатора. Вместо этого поверните колесо на Ом, и вы сможете проверить поврежденный конденсатор.

Заключение

Понимание , как проверить конденсатор с помощью мультиметра , довольно просто и более управляемо, чем испытание напряжением.

Но даже в этом случае следует проявлять осторожность при тестировании конденсатора. Вы обожжете пальцы и почувствуете, как искра ударила в ваше сердце изнутри.

Кроме того, вы взорвете мультиметр, как только подсоедините провода к клемме. Так что будьте в безопасности и внимательно следуйте нашим инструкциям. Еще раз, если вы чувствуете себя некомфортно, вызовите местного электрика.

Как проверить двигатель компрессора кондиционера и конденсатор стартера

Обновлено 25 сентября 2019 г.

Автор S. Hussain Ather

Вы можете считать само собой разумеющимся кондиционер, который сохраняет прохладу, но когда он ломается , вы наверняка его пропустите! Узнав, как это работает, вы сможете это исправить. Если вы думаете, что ваш кондиционер может быть сломан, мотор и пусковой конденсатор могут быть местом для поиска.

Проверка пускового конденсатора компрессора

В установке отопления, вентиляции и кондиционирования (HVAC) используются двигатели, которые перемещаются для выработки электроэнергии или энергии ветра.Пусковые и рабочие конденсаторы накапливают и высвобождают заряд в электрических цепях этих устройств. Пусковой конденсатор удерживает заряд на своей пластине, который заставляет двигатель начать движение, в то время как рабочий конденсатор продолжает поддерживать плавную работу двигателя. Одиночные конденсаторы отделены друг от друга, а двойные круглые конденсаторы находятся в одном корпусе.

Пусковой конденсатор компрессора переменного тока имеет встроенное реле рядом с конденсатором. Это дает больший крутящий момент, вращающую силу для емкости, а также отключает конденсатор после того, как двигатель уже был запущен.

Использование этих конденсаторов снова и снова может увеличить вероятность их повреждения. Когда это произойдет, компрессор кондиционера не будет работать так же эффективно. Поврежденные или сломанные элементы цепи могут вызвать выход из строя конденсатора работы компрессора.

Диагностика отказа рабочего конденсатора компрессора

У вас могут быть проблемы с рабочим конденсатором компрессора, если у вас есть какие-либо признаки или симптомы отказа рабочего конденсатора компрессора переменного тока. Используйте защитные изолированные перчатки и провода при проверке внутренних частей вашего блока переменного тока на наличие дефектов.

Отказ конденсатора, запуск только на короткое время или создание гудящего шума могут быть симптомами рабочего конденсатора воздушного компрессора. Если эти отдельные отказы конденсаторов накапливаются со временем, возможно, весь блок переменного тока перестанет запускаться.

Посмотрите на конденсатор и сами провода. Вздутый или протекающий конденсатор, вероятно, потребуется заменить. Если вы заметили на нем повреждения или другие признаки нагрузки, конденсатор необходимо отремонтировать.

Проверка конденсаторов компрессоров переменного тока может предотвратить возникновение отказов или улучшить ваши возможности для их устранения.Существует несколько общих методов устранения неисправности конденсатора.

Устранение неисправности рабочего конденсатора компрессора

Если вы изучили, как ваш блок переменного тока работает на уровне электрических цепей, вы можете исправить неисправный конденсатор. Это означает выяснение того, какие конденсаторы запускаются или работают и как электричество проходит через цепь или цепи компрессора.

Убедитесь, что вы можете легко соединять и снимать части компрессора друг с другом. Если части устройства привинчены или прикручены, используйте соответствующие инструменты, такие как отвертки или гаечные ключи, чтобы удалить их.Используйте инструменты с резиновой изоляцией, чтобы не получить удар током.

Выключите блок переменного тока и с помощью измерителя в цепи убедитесь, что он выключен. Вольтметр или мультиметр должны работать нормально и отслеживать, какие значения напряжения или тока вы измеряете, чтобы убедиться, что компрессор показывает такие же или похожие значения после того, как вы его исправите. Снимите панель, которая подводит электричество к устройству. Заменить конденсатор двигателя вентилятора.

Проверьте молекулярный частотный дискриминатор (MFD) соединения, чтобы проверить, проходит ли сигнал.Подключите провода от старого конденсатора к новому конденсатору. Проверяйте эти соединения при их подключении, чтобы убедиться, что они безопасны. Используйте свой измеритель, чтобы проверить напряжение или ток в цепи.

Другие способы крепления компрессоров

Если вы устанавливаете новый двигатель в блок переменного тока, убедитесь, что вы также установили новый конденсатор вентилятора.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *