Site Loader

Содержание

Чем отличается трансформатор от автотрансформатора

Различное электрооборудование и современные электрические сети в целом используют для своей работы прежде всего переменный ток. Переменный ток питает двигатели, индукционные печи, станки, компьютеры, обогреватели, ТЭНы, осветительные приборы, бытовую технику.

Переоценить значимость переменного тока для современного мира невозможно. Однако для передачи электрической энергии на большие расстояния используется высокое напряжение. А техника требует для своего питания напряжения пониженного — 110, 220 или 380 вольт.

Поэтому после передачи на расстояние электрическое напряжение необходимо понизить. Понижение осуществляют ступенями при помощи трансформаторов и автотрансформаторов.

Вообще трансформаторы бывают повышающими и понижающими. Повышающие трансформаторы установлены на генерирующих электростанциях, где они повышают получаемое от генератора переменное напряжение до сотен тысяч и даже миллиона вольт, приемлемых для передачи на большие расстояния с минимальными потерями энергии. А потом это высокое напряжение понижается опять же при помощи трансформаторов.

Обычный силовой или сетевой трансформатор — это электромагнитный агрегат, назначение которого — изменить действующее значение переменного напряжения, подаваемого на его первичную обмотку. Трансформатор в каноническом виде имеет несколько обмоток, но минимум – две — первичную и вторичную.

Витки всех обмоток трансформатора обвивают общий магнитопровод — сердечник. На первичную обмотку подается напряжение величину которого необходимо изменить, ко вторичной (вторичным) обмотке (обмоткам) присоединяется потребитель или сеть с розетками, от которых будут питаться многочисленные потребители.

Действие трансформатора основано на законе электромагнитной индукции Фарадея. Когда по виткам первичной обмотки течет переменный ток, в пространстве внутри (в основном) обмотки действует переменное электромагнитное поле данного тока.

Это переменное магнитное поле способно навести ЭДС индукции во вторичной обмотке, которая охватывает пространство действия магнитного потока первичной обмотки. В обычном трансформаторе первичные обмотки гальванически изолированы от первичных.

В автотрансформаторе часть витков первичной обмотки используется в качестве вторичной. Автотрансформаторы целесообразно использовать тогда, когда напряжение нужно понизить лишь немного, не в разы, как это делают обычные трансформаторы, а например в 0,7 раз.

Таким образом главное отличие трансформатора от автотрансформатора заключается в том, что у обычного трансформатора обмотки электрически изолированы друг от друга, а обмотки автотрансформатора имеют общие витки и поэтому всегда связаны гальванически. У трансформатора каждая обмотка имеет минимум два собственных вывода, у автотрансформатора один вывод всегда окажется общим для первичной и вторичной обмоток.

Автотрансформаторы широко применяются в сетях с напряжением более 100 кВ, поскольку при ступенчатом понижении напряжения, когда ясно, что обмотки конечного трансформатора будут гальванически изолированы, отсутствие гальванической развязки на ступени автотрансформатора не критично.

Зато с экономической точки зрения автотрансформаторы куда выгоднее обычных. У них меньше потери в обмотках за счет меньшего количества меди в проводах чем у обычных трансформаторов аналогичной мощности.

Размер автотрансформатора при той же мощности меньше – меньше расходы на материалы и сердечник. У автотрансформаторов более высокий КПД, ибо преобразованию подвергается лишь часть магнитного потока. Да и в целом стоимость автотрансформатора получается ниже.

К недостаткам автотрансформатора, в отличие от обычного, можно отнести отсутствие гальванической развязки между первичной и вторичной цепью. Если изоляция по какой-нибудь причине окажется нарушена, обмотка низшего напряжения окажется под высоким напряжением. Поэтому автотрансформаторы обычно не используют в быту дабы не подвергать обывателя опасности поражения током.

На напряжении до 1000 вольт автотрансформаторы используются для регулирования напряжения в виде лабораторных приборов – лабораторных автотрансформаторов (ЛАТРов) и в составе электромеханических стабилизаторов напряжения (смотрите – Сетевые стабилизаторы напряжения 220В – сравнение различных типов, достоинства и недостатки)

Чем отличается трансформатор от автотрансформатора

Определения

Трансформатор – это электромагнитный аппарат, передающий энергию через магнитное поле. Он состоит из двух и более обмоток (иногда говорят катушек) на стальном, железном или ферритовом сердечнике в зависимости от числа фаз, входных и выходных напряжений. Основной его особенностью является то, что первичная цепь и вторичная не электрически связаны между собой, то есть обмотки не имеют электрических контактов. Это называется гальванической развязкой. А такую связь катушек называют индуктивной.

Ниже вы видите условное графическое обозначение двух и трёхобмоточного трансформатора на схеме электрической принципиальной:

Они бывают повышающими, понижающими и разделительными (напряжение на входе равно напряжению на выходе). При этом если подать питание на вторичную обмотку понижающего трансформатора – на первичные обмотки вы получите повышенное напряжение, то же самое и правило работает и для повышающего.

Автотрансформатор – это один из вариантов трансформатора с одной обмоткой, намотанной на сердечнике в принципе аналогичном предыдущему случаю. В нём, в отличие от обычного транса, первичная и вторичная цепь электрически связаны между собой. А значит он не обеспечивает гальванической развязки. Условное графическое обозначение автотрансформатора вы видите ниже:

Автотрансформаторы бывают с фиксированным выходным напряжением и регулируемые. Последние многим известны под названием ЛАТР (лабораторный автотрансформатор). Также могут быть как понижающими, так и повышающими. В регулируемом ЛАТРе вторичная цепь подключается к скользящему по катушке контакту.

Важно! Из-за отсутствия гальванической развязки, автотрансформаторы по определению не могут быть разделительными в отличие от обычных!

Еще одним отличием является количество обмоток автотрансформатора – обычно оно равняется количеству фаз. Соответственно для питания однофазных устройств используют однообмоточные, а для трёхфазных – трёхобмоточные изделия.

Принцип действия

Кратко и простыми словами рассмотрим, как работает каждый вариант исполнения.

У трансформатора есть минимум две обмотки – первичная и вторичная (или их несколько). Если первичную подключить к сети (или другому источнику переменного тока) – тогда ток в первичной обмотке создаёт магнитный поток через сердечник, который пронизывая витки вторичных, наводит в них ЭДС. Принцип действия основан на явлениях электромагнитной индукции, в частности закона Фарадея. При протекании тока во вторичной обмотке (в нагрузку) изменяется и ток в первичной обмотке из-за взаимоиндукции. Разница напряжений между первичной и вторичными обмотками определяется соотношением их витков (коэффициентом трансформации).

Uп/Ud=n1/n2

n1, n2 – количество витков на первичке и вторичке.

Говоря об автотрансформаторе, у него одна обмотка, если фаз несколько – столько же и обмоток. При протекании по ней переменного тока магнитный поток, который возникает внутри неё, индуцирует ЭДС в этой же обмотке. Её величина прямо пропорциональна числу витков. Нагрузка (вторичная цепь) подключается к отводу от витков. На повышающем автотрансформаторе питание подаётся не на концы обмотки, а на один из концов и отвод от витков в отличие от трансформатора. Что было изображено на схеме выше.

Основные отличия

Чтобы вам было легче понять, в чем разница между обычным трансформатором и автотрансформатором, мы собрали в таблицу их основные отличия:

ТрансформаторАвтотрансформатор
КПДКПД автотрансформатора больше чем у обычного, особенно при незначительной разности входного и выходного напряжения.
Количество обмотокМинимум 2 и больше в зависимости от количества фаз1 и более, равно количеству фаз
Гальваническая развязкаЕстьНет
Опасность поражения электрическим током при питания бытовых электроприборовПри выходном напряжении менее 36 Вольт – невеликаВысокая
Безопасность для запитанных приборовВысокаяНизкая, при обрыве в катушке на витках после отвода к нагрузке, на неё попадет всё напряжение питания
СтоимостьВысокая, расход меди и стали для сердечников большой, особенно у трёхфазных трансформаторовНизкая, из-за того что для каждой фазы лишь 1 обмотка, расход меди и стали меньшие

Сфера применения

Трансформаторы применяются всюду – от электростанций и подстанций, рассчитанных на десятки и сотни тысяч вольт, до питания малой бытовой техники. Хотя в последнее время используются блоки питания, но и их основой является генератор и трансформатор на ферритовом сердечнике.

Автотрансформаторы используются в бытовых стабилизаторах сетевого напряжения. Часто ЛАТРы используют в лабораториях при тестировании или ремонте электронных устройств. Тем не менее они нашли своё применение и в высоковольтных сетях, а также для электрификации железных дорог.

Например, на ЖД используются такие изделия в сетях 2х25 (два по 25 киловольт). Как на схеме выше в малонаселенных районах прокладывается линия 50 кВ, а к электропоезду по контактному проводу подаётся 25 кВ от понижающего автотрансформатора. Таким образом уменьшается число тяговых подстанций и потери в линии.

Теперь вы знаете, в чем принципиальное отличие трансформатора от автотрансформатора. Для закрепления материала рекомендуем просмотреть полезное видео по теме:

Чем отличается трансформатор от автотрансформатора?

Работа электрооборудования обеспечивается системой повышающих, понижающих трансформаторов. Приборы «отличаются» рядом характеристик. Бытовые агрегаты рассчитаны на напряжение 110 или 220В, а бытовые – на 380В. Некоторые из представленных устройств снижают или повышают напряжение, другие передают электричество постепенно от подстанции потребителям.

Подобные действия совершают «трансформаторы и автотрансформаторы». Агрегаты характеризуются некоторыми отличиями. Однако подобные аппараты предназначены для поддержания требуемого уровня напряжения в сети. Чтобы научиться правильно, безопасно применять подобное оборудование, нужно рассмотреть их главные отличия.

Основное определение

Чтобы понимать, «чем принципиально отличаются трансформатор и автотрансформатор», нужно рассмотреть их определение.

Трансформатор – электромагнитный прибор статического типа, преобразующий электрический ток переменного значения с определенным показателем напряжения в электроэнергию другого уровня. Прибор способен повышать или понижать этот показатель. Система способна преобразовывать частоту и количество фаз электрического тока. Также рекомендуем ознакомиться с конструкцией и принципами работы трансформатора.

Оборудование включает несколько обмоток. Контуры находятся на сердечнике из специального сплава. Первичная катушка подключается к сети переменного типа. Вторичная катушка или все остальные обмотки соединены с установкой, потребляющей исходящее электричество.

Основным принципом работы прибора является закон Фарадея. При перемещении через обмотку магнитного потока определяется некоторая электродвижущая сила.

При необходимости менять параметры незначительно, разрешается применять «автотрансформатор». Этот агрегат представляет собой систему с двумя обмотками, объединенными в одну катушку. Это обеспечивает возникновение электромагнитной, электрической связи. Подробнее о автотрансформаторе мы писали здесь.

Основные отличия

Существует всего 5 основных отличий трансформатора и автотрансформатора. Их можно кратко перечислить:

  1. В первую очередь оба этих агрегата отличаются «тем», что у них присутствует разное количество обмоток.
  2. Надежность и безопасность автотрансформатора уступает обычному трансформатору.
  3. Автотрансформаторы стоят дешевле.
  4. Трансформатор имеет меньший уровень КПД.
  5. Габариты автотрансформатора меньше.

У трансформаторов, отличающихся количеством обмоток, есть две катушки и более. Второй тип агрегатов обладает одной совмещенной катушкой. Она имеет минимум три выхода для подключения к различным коммуникациям и получения на выходе различных показателей сети.

Автотрансформаторы применяются в сетях с напряжением от 150 кВ и более. Они компактные, удобные и стоят значительно дешевле. Их главным преимуществом является высокий уровень КПД. Однако существенным недостатком является отсутствие между обмотками изоляционного материала. Это понижает безопасность представленных приборов при его эксплуатации и обслуживании. Для промышленных сетей это не столь важно, но для бытового применения подобный факт является существенным недостатком.

Если применять этот прибор в бытовых сетях, при возникновении аварийной ситуации электричество может быть приложено из первичной обмотки к низшему напряжению. Это происходит из-за пробоя изоляции частей, проводящих электричество. Части агрегата будут соединены с высоковольтными частями. Поэтому для бытовых нужд применяют трансформаторы, а в промышленности – автотрансформаторы.

Рассмотрев основные отличия автотрансформаторов и трансформаторов, каждый пользователь сможет правильно применять подобное оборудование в своих целях.

Чем трансформаторы отличаются от автотрансформаторов

Трансформаторное оборудование представлено на современном рынке в широком ассортименте, существуют различные по видам и особенностям трансформаторы, которые предназначены для использования в разных условиях и на разных объектах. При выборе трансформатора следует учитывать назначение объекта, его особенности и характеристики. Для питания большинства маломощных бытовых устройств требуется электрическое напряжение 220 В, а иногда и 110 В.

Для подключения таких объектов к электросети используются одни трансформаторные устройства. Для подключения крупных предприятий, где оборудование требует напряжение на уровне 380 В придется использовать другие приборы.

Чтобы правильно выбрать трансформаторное устройство, нужно учесть множество разных факторов и особенностей. Кроме того, специалистам следует знать основные отличия трансформаторов от автотрансформаторов.

Зачем требуется снижение напряжения в сети

Электрическую энергию принято транспортировать на большие расстояния при максимальных уровнях напряжения. Если электричество будет иметь бытовой уровень напряжения 220 В или даже напряжение 380 В для использования на крупных объектах, при его транспортировке будут происходить ощутимые потери, из-за чего передача электрической энергии станет затратной для сетевых предприятий. Таким образом, электричество транспортируют с высоким напряжением, а потому, для его использования конечными потребителями, уровень напряжения электроэнергии должен быть существенно снижен. Снижают уровень напряжения электричества с помощью специальных устройств, называемых трансформаторами. Автотрансформаторы отличаются значительно меньшими габаритами, они удобны в эксплуатации и просты в монтаже, хотя и не отличаются столь же высокой функциональностью, которая характерна для стандартных устройств. Специалисты обязаны разбираться в видах и особенностях трансформаторов для организации надежных электросистем.

Нельзя сказать, что единственным назначением трансформаторов является снижение уровня напряжения электрической энергии. Помимо понижающего оборудования, которое требуется для электроснабжения конечных потребителей, в электрических сетях используются и повышающие устройства. Повышающие приборы в цепи требуются для того, чтобы транспортировать электроэнергию на большие расстояния с минимальным уровнем потерь.

Особенности трансформаторов

Любой трансформатор предназначен для изменения свойств и характеристик электрической энергии. Это статическое устройство, способное преобразовывать переменный ток, число фаз в электрической сети и частоту электроэнергии. Трансформатор может включать в себя от двух обмоток и более, устанавливаемых на единый стальной сердечник. Вне зависимости от общего числа обмоток, хотя бы одна из них должна иметь подключение к источнику переменного тока. Все остальные обмотки устройства могут подключаться к потребителям электрической энергии.

Такая конструкция обеспечивает необходимые электрические и электромагнитные связи между обмотками. Автотрансформаторы оснащаются дополнительными обмотками, имеющими несколько отдельных выводов. Другими словами, такие устройства могут быть подключены к различным выводам, за счет чего может быть обеспечено разное значение параметров напряжения в сети.

Автотрансформаторы работают по принципу электромагнитной индукции, при прохождении через обмотку магнитного потока, в ней появляется электродвижущая сила. Данное оборудование прекрасно подходит для изменения характеристик электрической энергии в небольших диапазонах.

Основные отличия трансформаторов и автотрансформаторов

Основным и самым важным отличием двух трансформирующих устройств является число обмоток на них. В стандартных приборах используется больше обмоток, чем в автоматических, в последних обычно предусматривается только одна обмотка.

Каждое из этих устройств имеет свои преимущества и недостатки, с которыми должны быть хорошо знакомы все профессионалы. Автоматические трансформаторы отлично подходят для использования в сетях электроснабжения с напряжением не менее 150 кВ. Такие устройства отличаются сравнительно невысокой стоимостью и в процессе их работы уровень потерь на обмотках будет максимально низким. Еще одной положительной чертой автоматических устройств является их небольшой размер. За счет описанных особенностей и частичному преобразованию мощности, для таких приборов характерен крайне высокий КПД.

У автоматических приборов имеются и определенные недостатки, если сравнивать их со стандартными трансформаторами. В первую очередь, автоматические приборы не имеют надежной электрической изоляции между обмотками. Эта особенность делает использование автотрансформаторов в бытовых целях крайне опасным, хотя в промышленных цепях, где присутствует надежное заземление, этот недостаток не имеет особого значения.

Подводя итог, можно сказать о том, что стандартные трансформаторы являются более универсальными, они подходят для использования практически во всех условиях, чего нельзя сказать об их автоматических аналогах. При выборе трансформаторного оборудования необходимо учитывать допустимый уровень потерь напряжения в сетях.

Применение автотрансформаторов

В отличие от стандартного трансформирующего оборудования, автоматические трансформаторы можно использовать далеко не во всех ситуациях. Чаще всего такие приборы применяют для обеспечения плавной регулировки напряжения и тока в электросистеме. За счет установки такого оборудования можно добиться передачи электроэнергии в полном объеме на потребители только при условии нахождения коэффициента трансформации на уровне единицы.

Так как автоматические трансформаторы снабжаются специальными секционированными обмотками, с их помощью можно обеспечивать плавную регулировку электрических устройств. Следует отметить также, что из-за простой конструкции и простого монтажа, автоматические трансформирующие устройства отличаются легким ремонтом, что сказывается на стоимости эксплуатации всей электрической системы. При выходе оборудования из строя, специалистам нужно будет лишь заменить обмотку, которую можно перемотать вручную, обладая необходимой подготовкой и профессиональными знаниями.

Защита автотрансформаторов

Если сравнивать надежность и безопасность эксплуатации трансформаторов и автотрансформаторов, то следует отметить, что автоматические устройства не имеют вращающейся части, что делает их гораздо более надежными и долговечными. Несмотря на эту особенность в процессе эксплуатации таких приборов также могут возникать различные проблемы, сбои и поломки, с которыми придется бороться ремонтникам.

Чтобы снизить вероятность крупного повреждения, на автоматических трансформаторах принято устанавливать защиту. Защита работает следующим образом: если в процессе эксплуатации устройства на нем возникнет какая-то неисправность, об этом будет подан соответствующий световой сигнал. Если проблема не будет устранена, устройство будет автоматически отключено, чтобы избежать серьезных проблем в электросистеме.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.

В чем разница между трансформатором и автотрансформатором?

Трансформаторы являются довольно разнообразной группой оборудования, имеющей существенные внутренние различия по назначению и конструктивным особенностям. Кроме того, работа различного оборудования требует различного напряжения. Существуют средние значения. Которые учитываются при составлении технического допуска на подключение. Например, домашние бытовые приборы рассчитаны на 220, а то и на 110 В. А вот оборудование промышленного типа использует 380 В. Для них предусмотрены свои варианты, более легкие и недорогие. Но прежде чем решиться на использование, следует знать в чем разница между трансформатором и автотрансформатором.

Для чего снижают напряжение?

Передача электроэнергии на дальние расстояния требует высоких показателей напряжения, в противном случае потери при транспортировке энергии сделают процесс нерентабельным. Но, чтобы использовать электроэнергию в промышленных и, тем более, бытовых целях, требуется ее снижение. Делается это постепенно, благодаря системе трансформаторов, а также их более мобильных аналогов — автотрансформаторов.

Несмотря на то, что все приборы такого типа призваны преобразовать исходное напряжение до желаемого, трансформаторы можно разделить на два типа. Первые — повышающие — увеличивают напряжение, поддерживая его на достаточном уровне для продолжения транспортировки или для использования в промышленных целях. Вторые — понижающие — напротив, снижают напряжение, позволяя использовать энергию в бытовых целях.

Что представляют собой оба устройства? ↑

Любой трансформатор — это прибор статического типа, который преобразует переменный ток, частоту, а также число фаз. Это устройство включает в себя две или больше обмоток, которые наматываются на один для всех сердечник из стали. Одна из обмоток обязательно должна быть подключена к источнику переменного тока. Остальные могут быть соединены с конечными потребителями. В результате между ними наблюдается как электромагнитная, так и электрическая связи. Дополнительно обмотка автотрансформатора оснащена тремя и более выводами, то есть имеется возможность подключаться к разным выводам и, соответственно, получать разные значения напряжения.

В основе принципа работы лежит небезызвестная электромагнитная индукция. Проще говоря, меняющийся при прохождении через обмотку магнитный поток образует в ней электродвижущую силу.

Такой тип трансформаторов прекрасно подходит для смены напряжения в сравнительно малом диапазоне.

В чем отличия трансформатора от автоварианта? ↑

Разница между трансформатором и автотрансформатором — это число обмоток. Больше – у трансформаторов, автотрансформаторы имеют всего один экземпляр.

Очевидные плюсы автовариантов обнаруживаются при применении в сетях с уровнем напряжения от 150 кВ и более. Эти приборы дешевле, да и потери в обмотках у них на порядок меньше. Размером автотрансформаторы тоже уступают своим статичным аналогам.

Помимо этого, у автотрансформаторов гораздо выше коэффициент полезного действия. Такое возможно благодаря частичному преобразованию мощности. Стоимостные преимущества же обосновываются меньшим расходом материалов, а соответственно, меньшей массой и большей компактностью.

Что касается минусов автотрансформаторов, то к ним можно отнести отсутствие электроизоляции между обмотками электрической изоляции. Для промышленного применения это не играет никакой роли, там всегда наличествует заземляющий провод. А вот в быту их применение опасно.

Можно сказать, что трансформаторы более универсальны в использовании и имеют широкий диапазон применения, в отличие от автотрансформаторов.

Инженерный центр “ПрофЭнергия” имеет все необходимые инструменты для качественного проведения обслуживания трансформаторных подстанций, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории “ПрофЭнергия” вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать обслуживание трансформаторных подстанций или задать вопрос, звоните по телефону: +7 (495) 181-50-34 .

Для чего используются автотрансформаторы? ↑

Область применения и принцип использования трансформаторов широко известны, а для каких целей можно использовать автовариант? Самое распространенное направление — это плавный ход регулировки напряжения в сети и тока в самой системе электроснабжения.

Когда коэффициент трансформации находится в диапазоне единицы, тогда энергия поступает к конечному потребителю полностью.

Регулировка устройств возможна благодаря секционированной обмотке в автотрансформаторе. Кстати, именно по причине простоты конструкции обмотки этот тип трансформирующих устройств имеет высокий уровень ремонтопригодности. Если он вышел из строя, вам будет достаточно сменить обмотку и устройство снова готово к работе. Перемотать ее можно даже вручную. Не используя дополнительных приспособлений.

Типы защиты автотрансформаторов ↑

Автотрансформаторы более надежны в эксплуатации, чем обычные устройства трансформации, а все благодаря тому, что в них полностью отсутствуют вращающиеся части.

Но и с ними могут произойти нарушения, которые закончатся поломкой. Чтобы этого не произошло в автотрансформаторе предусмотрена специальная защита. Суть ее в том, что при любых перегрузках устройство подает соответствующий оповещающий сигнал, а если прибор выйдет из строя, срабатывает автоматическое отключение. Защита автотрансформатора делится на несколько видов:

  • дифференциальная, предотвращающая поломку из-за проблем с обмоткой;
  • токовая отсечка, корректирующая неполадки с ошинковками и вводами;
  • максимальная токовая защита, срабатывающая при повреждении самого устройства;
  • газовая, оповещающая о выделении газа или снижении уровня масляной жидкости;
  • защита от возможных замыканий и перегрузок.

Ограничения в использовании автотрансформаторов ↑

Этот тип устройств нельзя использовать в случаях, когда:

  • есть подозрение на возгорание изоляции;
  • неполадки в соединителях;
  • явные шумы и вибрация;
  • трещины и сколы на корпусе.

Ни в коем случае не рекомендуется к устройству этого типа подключать любые электродвигатели, потребляющие более 70 процентов предельного тока расчетной нагрузки самого автотрансформатора.

Подключать имеющиеся выходные клеммы электропитанию также категорически не рекомендуется.

Для чего предназначен автотрансформатор — Вместе мастерим

Автотрансформатор является одной из разновидностей обычного трансформатора напряжения, отличаясь от него своей конструкцией, которая даёт автотрансформаторам ряд весомых преимуществ, делая их просто незаменимыми, например, при производстве стабилизаторов напряжения.

Но давайте обо всё по порядку, в этой статье я подробно расскажу о том, что такое автотрансформатор, зачем он нужен, какая у него конструкция и многое другое.

Автотрансформатор – это устройство для изменения напряжения переменного тока при сохранении его частоты, основанное на эффекте электромагнитной индукции, которое имеет одну общую обмотку на магнитопроводе и не менее трёх выводов от неё.

Если простыми словами, то автотрансформаторы – это разновидность обычных трансформаторов напряжения, в которых есть всего одна обмотка, часть витков которой выполняют функцию первичной обмотки, а часть вторичной.

Для лучшего понимания, давайте рассмотрим устройство наиболее распространенного типа автотрансформаторов.

Устройство автотрансформатора

Чаще всего стандартный автотрансформатор представляет собой тороидальный магнитопровод – сердечник, сделанный из электротехнической стали в виде кольца, на который намотана медная проволока – называемая обмоткой.

Кроме того, чтобы эта конструкция служила именно автотрансформатором, у неё есть дополнительная «отпайка» – отвод от этой обмотки, всего контактов получается, как минимум три.

Устройство автотрансформатора достаточно наглядно показано на изображении ниже:

В данном примере, вы можете видеть автотрансформатор, к крайним контактам которого подключается источник напряжения переменного тока, к A – фаза , к X – ноль . Все витки проволоки между этими точками считаются первичной обмоткой.

Нагрузка, какой-нибудь электроприбор, которому для работы требуется меньшее напряжение, чем поступает из сети, подключается к выводам a2 и X – витки между этими контактами – это уже вторичная обмотка.

Как видите, у автотрансформатора есть всего одна обмотка, но при этом напряжение, если замерять в различных точках подключения, будет разным, почему оно меняется и как определить насколько (коэффициент трансформации) мы рассмотрим ниже.

Обозначение автотрансформатора на схемах

Кстати, вы довольно легко на любой схеме определите автотрансформатор и отличите его от обычного трансформатора, чаще всего он обозначается вот так:

Как видите, схематически у автотрансформатора показаны все его основные элементы: прямая линия – это стальной сердечник, с одной стороны которого расположена единственная обмотка – в виде волнистой линии, от которой идёт несколько отводов.

Перепутать с обычным трансформатором не получится, ведь у него на схеме будет как минимум две обмотки по сторонам от сердечника.

Более подробно о принципиальных различиях автотрансформатора и обычного трансформатора напряжения, я расскажу во второй части этой статьи.

Принцип работы автотрансформатора

А сейчас, для лучшего понимания основного принципа работы автотрансформаторов, рассмотрим процессы, которые в них происходят.

В качестве примера, мы возьмем автотрансформатор, который может как повышать напряжение на выходе, так и уменьшать его, относительно начального. Общее количество витков медного провода у него, для удобства расчетов, равно 20, выглядит он следующим образом:

Как видите, у такой модели, есть уже четыре точки подключения к общей обмотке: A1, a2, a3 и X .

К контактам A1 и N – подключается источник переменного электрического тока, например, питание стандартной городской электросети, с напряжением(U1), в нашем случае это стандартные 220В. Всего между этими точками 18 витков медной проволоки, этот участок спирали обозначен как W1, он считается первичной обмоткой автотрансформатора.

Что происходит при подаче напряжения на автотрансформатор

При протекании переменного тока по обмотке, в сердечнике (магнитопроводе) автотрансформатора, образуется переменный магнитный поток, который циркулирует по замкнутому магнитному сердечнику, пронизывая ВСЕ витки обмотки.

Проще говоря, при подключении тока к первичной обмотке – в нашем примере к 18 виткам, магнитный поток протекая по сердечнику пронизывает всю обмотку, все 20 витков. Напряжение же на первичной обмотке (в точках подключения A1 и X ) остаётся 220В или, если распределить на каждый виток 220/18 = 12.222… Вольта на каждый.

Теперь, чтобы узнать какое напряжение образуется на всех 20 витках, к точкам a2 и X , подключим нагрузку, какой-нибудь электроприбор – это будет вторичная обмотка автотрансформатора. На схеме условно обозначим нагрузку, некий электроприбор подключеный к этой обмотке, напряжение U2, а число витков между контактами W2 = 20.

Зависимость между обмотками у автотрансформатора, выражается следующей формулой:

U1/w1 = U2/w2 , где U1 напряжение на первой обмотке, U2 напряжение на второй обмотке, w1 число витков первой обмотки, w2 число витков второй обмотки.

Из этой формулы следует что напряжение на вторичной обмотке изменяется относительно напряжения первичной обмотки, пропорционально разнице витков. В нашем примере на один виток первичной обмотки приходится 12.22.. Вольт, у вторичной же обмотки витков больше на 2, соответственно общее напряжение обмотки выше на 24.44..Вольта.

Это доказывает нехитрый расcчет:

220 Вольт/18 Витков=U2/20 Витков,

U2 = 220*20/18 = 244.44В

Автотрансформатор, у которого на вторичной обмотке напряжение увеличивается называется повышающий.

Зная зависимость между обмотками, мы можем вычислить коэффициент трансформации, величину, которая позволяет легко определять, изменение входящих параметров (напряжения, сопротивления, силы тока) на вторичной обмотке.

Коэффициент трансформации вычисляется по следующей формуле: U1/U2=w1/w2

В нашем случае получается 220/244,44=18/20=0,9

Теперь давайте посмотрим, как изменится напряжения на оставшихся контактах.

Подключаем нагрузку к контактам a3 и X нашего автотрансформатора, число витков w3 у этой обмотки равно 16, напряжение обозначим как U3.

Следуя той же формуле, рассчитываем напряжение:

U1/w1 = U3/w3 = 220/18=U3/16, от сюда следует, что U3 =220*16/18 = 195,55.. Вольт, а коэффициент трансформации U1/U3=w1/w3=220/195,55=18/16=1,125 , эта обмотка понижающая.

Автотрансформатор, у которого на вторичной обмотке напряжение уменьшается называется понижающий.

Теперь, зная коэффициенты трансформации на всех выводах автотрансформатора мы легко сможем определять, например, какое будет напряжение на вторичной обмотке, если изменится напряжение источника электрического тока:

Так, например, при напряжении источника переменного тока на первичной обмотке 200В, у этого трансформатора:

– на контактах a2 и X , при коэффициенте трансформации k1=0,9 напряжением будет U2=200В/0,9= 222,22 В

– на контактах a3 и X , при коэффициенте трансформации k2=1,125 напряжение равняется U3=200/1,125=177,77 В

ПРАВИЛО: Если коэффициент трансформации k>1 – то трансформатор понижающий, если же k

Чаще всего стандартный автотрансформатор имеет большее количество выводов, чем в нашем примере, большее количество ступеней для регулировки входящего напряжения или тока.

Логическим развитием автотрансформаторов, стало появление так называемых РЕГУЛИРУЕМЫХ АВТОТРАНСФОРМАТОРОВ, у которых нет множество дополнительных отпаек с разным коэфициентом трансформации, а количество витков вторичной обмотки, изменяется путем перемещения подвижного контакта по ней – подробнее об этом читайте ТУТ .

Изменение силы тока в автотрансформаторе

По силе тока есть простое правило – ток в обмотке более высокого напряжения меньше, чем ток в обмотке с более низким напряжением.

Другими словами, если используется понижающий отвод от первичной обмотки автотрансформатора – то ток на вторичной обмотке будет больше, а напряжение ниже и наоборот, если используется повышающий отвод – то ток на вторичной обмотке будет ниже, а напряжение выше.

Мощности же на обеих обмотках примерно одинаковы, поэтому, согласно закону ОМА:

I1U1 = I2U2, где I1 – ток в первичной обмотке, I2 – ток во вторичной обмотке, U1- напряжение в первичной обмотке, U2 – Напряжение во вторичной обмотке.

Соответственно ток, например, в первичной обмотке рассчитывается так: I1 = U2*I2/U1

Зная, как изменяется ток, можно заранее правильно подобрать кабели питания и защитную автоматику.

Теперь, когда вы знакомы с принципом работы автотрансформатора и знаете его конструкцию, давайте рассмотрим какие они бывают, их назначение и места применения, какие у них плюсы и минусы и чем принципиально отличаются от обычных трансформаторов. Всё это и многое другое читайте во второй части этой статьи. Подписывайтесь на нашу группу вконтакте, следите за выходом новых материалов!

Назначение, устройство и принцип действия автотрансформаторов

В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не двухобмоточными трансформаторами, а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).

Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.

В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.

Рис. 1 Схемы однофазных автотрансформаторов: а – понижающего, б – повышающего.

Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.

Если присоединить к обмотке в точках a и Х какую-нибудь нагрузку, то вторичный ток I2 будет проходить по части обмотки и именно между точками a и Х. Но так как по этим же виткам проходит и первичный ток I1 , то оба тока геометрически сложатся, и по участку a Х будет протекать очень небольшой по величине ток, определяемый разностью этих токов. Это позволяет часть обмотки сделать из провода малого сечения, чтобы сэкономить медь. Если принять во внимание, что этот участок составляет большую часть всех витков, то и экономия меди получается весьма ощутимой.

Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.

В электромагнитных преобразователях энергии – трансформаторах – передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.

Трансформатор и автотрансформатор

Автотрансформаторы успешно конкурируют с двухобмоточными трансформаторами, когда их коэффициент трансформации – мало отличается от единицы и но более 1,5 – 2. При коэффициенте трансформации свыше 3 автотрансформаторы себя не оправдывают.

В конструктивном отношении автотрансформаторы практически не отличаются от трансформаторов. На стержнях магнитопровода располагаются две обмотки. Выводы берутся от двух обмоток и общей точки. Большинство деталей автотрансформатора в конструктивном отношении не отличаются от деталей трансформатора.

Лабораторные автотрансформаторы (ЛАТРы)

Автотрансформаторы применяются также в низковольтных сетях в качестве лабораторных регуляторов напряжения небольшой мощности (ЛАТР). В таких автотрансформаторах регулирование напряжения осуществляется при перемещении скользящего контакта по виткам обмотки.

Лабораторные регулируемые однофазные автотрансформаторы состоят из кольцеобразного ферромагнитного магнитопровода, обмотанного одним слоем изолированного медного провода (рис. 2).

От этой обмотки сделано несколько постоянных ответвлений, что позволяет использовать эти устройства как понижающие или повышающие автотрансформаторы с определенным постоянным коэффициентом трансформации. Кроме того, на поверхности обмотки, очищенной от изоляции, имеется узкая дорожка, по которой перемещают щеточный или роликовый контакт для получения плавно регулируемого вторичного напряжения в пределах от нуля до 250 В.

При замыкании соседних витков в ЛАТР не происходит витковых замыканий, так как токи сети и нагрузки в совмещенной обмотке автотрансформатора близки друг к другу и направлены встречно.

Лабораторные автотрансформаторы изготовляют номинальной мощностью 0,5; 1; 2; 5; 7,5 кВА.

Схема лабораторного регулируемого однофазного автотрансформатора

Лабораторный автотрансформатор (ЛАТР)

Наряду с однофазными двухобмоточными автотрансформаторами часто применяются трехфазные двухобмоточные и трехфазные трехобмоточные автотрансформаторы.

В трехфазных автотрансформаторах фазы обычно соединяют звездой с выведенной нейтральной точкой (рис. 3). При необходимости понижения напряжения электрическую энергию подводят к зажимам А, В, С и отводят от зажимов а, b , с, а при повышении напряжения – наоборот. Их применяют в качестве устройств для снижения напряжения при пуске мощных двигателей, а также для ступенчатого регулирования напряжения на зажимах нагревательных элементов электрических печей.

Рис. 3. Схема трехфазного автотрансформатора с соединением фаз обмотки звездой с выведенной нейтральной точкой

Трехфазные высоковольтные трехобмоточные трансформаторы используются также в высоковольтных электрических сетях.

Трехфазные автотрансформаторы, как правило, на стороне высшего напряжения соединяются в звезду с нулевым проводом. Соединение в звезду обеспечивает снижение напряжения, на которое рассчитывается изоляция автотрансформатора.

Применение автотрансформаторов улучшает КПД энергосистем, обеспечивает снижение стоимости передачи энергии, но приводит к увеличению токов короткого замыкания.

Недостатком автотрансформатора является необходимость выполнения изоляции обеих обмоток на большее напряжение, так как обмотки имеют электрическую связь.

Существенный недостаток автотрансформаторов – гальваническая связь между первичной и вторичной цепями, что не позволяет использовать их в качестве силовых в сетях 6 – 10 кВ при понижении напряжения до 0,38 кВ, так как напряжение 380 В подводится к оборудованию, на котором работают люди.

При авариях из-за наличия электрической связи между обмотками в автотрансформаторе высшее напряжение может оказаться приложенным к обмотке низшего. При этом все части эксплуатируемой установки окажутся соединенными с высоковольтной частью, что не допускается по условиям безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования.

В данной статье подробно опишем все про автотрансформатор, его конструкцию и принцип работы, а так же рассмотрим переменный автотрансформатор.

Описание

В отличие от трансформатора напряжения, который имеет две электрически изолированные обмотки: первичную и вторичную, автотрансформатор имеет только одну одиночную обмотку напряжения, которая является общей для обеих сторон. Эта отдельная обмотка «постукивает» по разным точкам вдоль своей длины, чтобы обеспечить процент первичного напряжения питания на его вторичной нагрузке. Тогда автотрансформатор имеет обычный магнитный сердечник, но имеет только одну обмотку, которая является общей для первичной и вторичной цепей.

Поэтому в автотрансформаторе первичная и вторичная обмотки связаны друг с другом как электрически, так и магнитно. Основным преимуществом этого типа конструкции трансформатора является то, что он может быть значительно дешевле при той же номинальной мощности ВА, но самым большим недостатком автотрансформатора является то, что он не имеет изоляции первичной / вторичной обмотки обычного трансформатора с двойной обмоткой.

Участок обмотки, обозначенный как первичная часть обмотки, соединен с источником питания переменного тока, причем вторичная обмотка является частью этой первичной обмотки. Автотрансформатор также можно использовать для повышения или понижения напряжения питания путем изменения направления соединений. Если первичная обмотка является общей обмоткой и подключена к источнику питания, а вторичная цепь подключена только через часть обмотки, то вторичное напряжение «понижается», как показано ниже.

Конструкция автотрансформатора

Когда первичный ток I P протекает через одну обмотку в направлении стрелки, как показано, вторичный ток I S протекает в противоположном направлении. Таким образом, в части обмотки, которая генерирует вторичное напряжение, В S ток , вытекающий из обмотки представляет собой разность I Pи I S .

Автотрансформатор также может быть построен с более чем одной точкой врезки. Автотрансформаторы могут использоваться для подачи различных точек напряжения вдоль его обмотки или увеличения напряжения питания относительно напряжения питания V P, как показано на рисунке.

Автотрансформатор с несколькими точками подключения

Стандартный метод маркировки обмоток автотрансформатора — маркировать его заглавными буквами, например, A , B , Z и т.д. Обычно общее нейтральное соединение обозначается как N или n . Для вторичных ответвлений используются номера суффиксов для всех точек ответвления вдоль первичной обмотки автотрансформатора. Эти числа обычно начинаются с цифры « 1 » и продолжаются в порядке возрастания для всех точек касания, как показано на рисунке.

Автотрансформаторный терминал маркировки

Автотрансформатор используется в основном для регулировки линейных напряжений, чтобы либо изменить его значение, либо сохранить его постоянным. Если регулировка напряжения на небольшую величину, либо вверх, либо вниз, то коэффициент трансформатора мал, так как V P и V S почти равны. Токи I P и I S также почти равны.

Следовательно, часть обмотки, которая несет разницу между двумя токами, может быть изготовлена ​​из проводника намного меньшего размера, поскольку токи намного меньше, что экономит затраты на эквивалентный трансформатор с двойной обмоткой.

Однако регулирование, индуктивность рассеяния и физический размер (поскольку нет второй обмотки) автотрансформатора для заданного значения ВА или КВА ниже, чем для трансформатора с двойной обмоткой.

Автотрансформаторы явно намного дешевле, чем обычные трансформаторы с двойной обмоткой и той же оценкой ВА. При принятии решения об использовании автотрансформатора обычно сравнивают его стоимость со стоимостью эквивалентного типа с двойной обмоткой.

Это делается путем сравнения количества меди, сэкономленной в обмотке. Если отношение « n » определено как отношение более низкого напряжения к более высокому напряжению, то можно показать, что экономия в меди составляет: n * 100% . Например, экономия на меди для двух автотрансформаторов будет:

Автотрансформатор пример

Автотрансформатор требует повышающее напряжение от 220 вольт до 250 вольт. Общее количество витков катушки на главной обмотке трансформатора составляет 2000. Определите положение первичной точки ответвления, первичного и вторичного токов, когда мощность на выходе равна 10 кВА, а экономия меди сохраняется.

Таким образом, первичный ток составляет 45,4 А, вторичный ток, потребляемый нагрузкой, составляет 40 А, и через общую обмотку протекает 5,4 А. Экономия меди составляет 88%.

Недостатки автотрансформатора

  • Основным недостатком автотрансформатора является то, что он не имеет изоляции первичной и вторичной обмоток обычного трансформатора с двойной обмоткой.
    Тогда автотрансформатор нельзя безопасно использовать для понижения более высоких напряжений до гораздо более низких напряжений, подходящих для меньших нагрузок.
  • Если обмотка вторичной стороны становится разомкнутой, ток нагрузки прекращает протекать через первичную обмотку, останавливая действие трансформатора, в результате чего на вторичные клеммы подается полное первичное напряжение.
  • Если вторичная цепь испытывает состояние короткого замыкания, результирующий первичный ток будет намного больше, чем у эквивалентного трансформатора с двойной обмоткой, из-за увеличенного магнитного потока, повреждающего автотрансформатор.
  • Поскольку нейтральное соединение является общим как для первичной, так и для вторичной обмотки, заземление вторичной обмотки автоматически заземляет первичную, поскольку между этими двумя обмотками нет изоляции. Трансформаторы с двойной обмоткой иногда используются для изоляции оборудования от земли.

Автотрансформатор имеет множество применений и устройств, в том числе и пуск асинхронных двигателей, используемых для регулирования напряжения линий электропередачи, и может быть использована для преобразования напряжения, когда первичные к вторичному отношению близко к единице.

Автотрансформатор также может быть изготовлен из обычных двухобмоточных трансформаторов путем последовательного соединения первичной и вторичной обмоток, и в зависимости от того, как выполнено соединение, вторичное напряжение может увеличивать или уменьшать первичное напряжение.

Переменный автотрансформатор

Наряду с наличием фиксированной или постукивающей вторичной обмотки, которая создает выходное напряжение на определенном уровне, существует еще одно полезное применение устройства типа автотрансформатора, которое можно использовать для получения переменного напряжения от источника переменного тока с фиксированным напряжением. Этот тип переменного автотрансформатора обычно используется в лабораториях и научных лабораториях в школах и колледжах и более известен как Variac.

Конструкция переменного автотрансформатора, или вариака, такая же, как и для фиксированного типа. Одинарная первичная обмотка, намотанная на многослойный магнитный сердечник, используется, как в автотрансформаторе, но вместо того, чтобы фиксироваться в некоторой заранее определенной точке ответвления, вторичное напряжение отводится через угольную щетку.

Эта угольная щетка вращается или может скользить вдоль открытой части первичной обмотки, соприкасаясь с ней по мере движения, обеспечивая требуемый уровень напряжения.

Затем переменный автотрансформатор содержит переменный отвод в форме угольной щетки, которая скользит вверх и вниз по первичной обмотке, которая контролирует длину вторичной обмотки, и, следовательно, вторичное выходное напряжение полностью изменяется от значения первичного напряжения питания до нуля вольт.

Переменный автотрансформатор обычно имеет значительное количество первичных обмоток для создания вторичного напряжения, которое можно регулировать в диапазоне от нескольких вольт. Это достигается благодаря тому, что угольная щетка или ползун всегда находятся в контакте с одним или несколькими витками первичной обмотки. Поскольку витки первичной катушки равномерно распределены по ее длине. Тогда выходное напряжение становится пропорциональным угловому вращению.

Мы видим, что вариак может плавно регулировать напряжение на нагрузке от нуля до номинального напряжения питания. Если в некоторой точке вдоль первичной обмотки было подано напряжение питания, то потенциально вторичное выходное напряжение могло бы быть выше, чем фактическое напряжение питания. Переменный автотрансформатор также можно использовать для регулировки яркости света, а при использовании в этом типе приложений их иногда называют «диммерами».

Вариак также очень полезен в электротехнических и электронных мастерских и лабораториях, так как они могут использоваться для обеспечения переменного питания. Но следует соблюдать осторожность с подходящей защитой предохранителей, чтобы гарантировать, что более высокое напряжение питания не присутствует на вторичных клеммах в условиях неисправности.

Автотрансформатор имеет много преимуществ по сравнению с обычными трансформаторами двойных обмоток. Они, как правило, более эффективны при одинаковом номинальном значении ВА, имеют меньшие размеры и, поскольку в их конструкции требуется меньше меди, их стоимость ниже по сравнению с трансформаторами с двойной обмоткой с одинаковыми номинальными характеристиками. Кроме того, их потери в сердечнике и меди, I 2 R , ниже из-за меньшего сопротивления и реактивного сопротивления рассеяния, обеспечивающих более высокое регулирование напряжения, чем у эквивалентных двухобмоточных трансформаторов.

В следующей статье о трансформаторах мы рассмотрим другой дизайн трансформатора, у которого нет обычной первичной обмотки, намотанной вокруг его сердечника. Этот тип трансформатора обычно называют трансформатором токаи используется для питания амперметров и других таких индикаторов электрической мощности.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Трансформатор имеет обмотки с числом витков 200 и 1000. Определить его коэффициент трансформации — FINDOUT.SU

Трансформатор имеет обмотки с числом витков 200 и 1000. Определить его коэффициент трансформации

Поможем в ✍️ написании учебной работы

Имя

Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Выберите тип работыЧасть дипломаДипломная работаКурсовая работаКонтрольная работаРешение задачРефератНаучно — исследовательская работаОтчет по практикеОтветы на билетыТест/экзамен onlineМонографияЭссеДокладКомпьютерный набор текстаКомпьютерный чертежРецензияПереводРепетиторБизнес-планКонспектыПроверка качестваЭкзамен на сайтеАспирантский рефератМагистерская работаНаучная статьяНаучный трудТехническая редакция текстаЧертеж от рукиДиаграммы, таблицыПрезентация к защитеТезисный планРечь к дипломуДоработка заказа клиентаОтзыв на дипломПубликация статьи в ВАКПубликация статьи в ScopusДипломная работа MBAПовышение оригинальностиКопирайтингДругое

Нажимая кнопку «Продолжить», я принимаю политику конфиденциальности

а) 5                                                                               б) 0,2

в) 800                                                                           г) 0,02

У однофазного трансформатора номинальное напряжение на входе 6000 В, на выходе 100 В. Определить коэффициент трансформации.

 

а) 60                                                                    б) 0,016

в) 6                                                                      г) 600

При каких значениях коэффициента трансформации целесообразно применять автотрансформаторы

a) k > 1                                                                б) k > 2

в) k ≤ 2                                                               г) не имеет значения

Какой физический закон лежит в основе принципа действия трансформатора?

а) Закон Ома                                                                    б) Закон Кирхгофа

в) Закон самоиндукции                                                   г) Закон          

                                                                                             электромагнитной

                                                                                                 индукции

К чему приводит обрыв вторичной цепи трансформатора тока?

а) К короткому замыканию                                              б) К режиму холостого хода

в) К повышению напряжения                                            г) К поломке              

                                                                                                  трансформатора

Какой режим работы трансформатора позволяет определить коэффициент трансформации?

а) Режим нагрузки                                                           б) Режим холостогохода

в) Режим короткого замыкания                                       г) Ни один из

                                                                                              перечисленных

 

Первичная обмотка трансформатора содержит 600 витков, а коэффициент трансформации равен 20. Сколько витков во вторичной обмотке?

а) 30                                       б) 1200

в) 12000                                    г) 300 

Чем принципиально отличается автотрансформаторы от трансформатора?

а) Малым коэффициентом трансформации               

б) Возможностью изменения коэффициента трансформации 

в) Электрическим соединением первичной и вторичной цепей

г) Мощностью

 

Раздел 5 «Асинхронные машины»

Частота вращения магнитного поля асинхронного двигателя 1000 об/мин. Частота вращения ротора 950 об/мин. Определить скольжение.

а) 50                                                                             б) 0,5

в) 5                                                                                г) 0,05

 

Какой из способов регулирования частоты вращения ротора асинхронного двигателя самый экономичный?

а) Частотное регулирование                                б) Регулирование

                                                                                    измерением числа

                                                                                      пар полюсов

в) Реостатное регулирование                               г) Ни один из выше

                                                                                        перечисленных

С какой целью при пуске в цепь обмотки фазного ротора асинхронного двигателя вводят дополнительное сопротивление?

а) Для увеличения пускового тока.   

б) Для уменьшения пускового тока.

в) Для уменьшения механических потерь и износа колец и щеток                                                                             г) Для увеличения КПД двигателя

Определите частоту вращения магнитного поля статора асинхронного короткозамкнутого двигателя, если число пар полюсов равна 1, а частота тока 50 Гц.

а) 3000 об/мин                                                          б) 1000 об/мин

в) 1500 об/мин                                                          г) 500 об/мин

Как изменить направление вращения магнитного поля статора асинхронного трехфазного двигателя?

а) Изменить порядок следования фаз                                                                         

б) Изменить питающее напряжение

в) Изменить источник питания на более мощный                                                                             г) Это сделать не возможно

Какую частоту вращения имеет вращающееся магнитное поле асинхронного четырехполюсного двигателя при частоте переменного тока 50 Гц?

а) 1500 об/мин                                                           б) 5000 об/мин

в) 3000 об/мин                                                          г) 100 об/мин

Почему магнитопровод статора асинхронного двигателя набирают из изолированных листов электротехнической стали?

а) Для охлаждения обмотки  

б) Для уменьшения нагревания

в) Для увеличения сопротивления                                                                          

г) Из конструкционных соображений

Что является вращающейся частью в асинхронном двигателе?

а) Статор                                                                   б) Ротор

в) Якорь                                                                     г) Станина

Ротор четырехполюсного асинхронного двигателя, подключенный к сети трехфазного тока с частотой 50 Гц, вращается с частотой 1440 об/мин. Чему равно скольжение?

а) 0,56                                                                     б) 0,04

в) 1,3                                                                       г) 0,96

С какой целью асинхронный двигатель с фазным ротором снабжают контактными кольцами и щетками?

а) Для соединения ротора с регулировочным реостатом                                                                    б) Для соединения статора с регулировочным реостатом

в) Для подключения двигателя к электрической сети                                                                          

г)Для соединения ротора со статором

11.Для преобразования какой энергии предназначены асинхронные двигатели?

а) Электрической энергии в механическую

 б) Механической энергии в электрическую

в) Электрической энергии в тепловую                                                                    

г) Механической энергии во внутреннюю

Перечислите режимы работы асинхронного электродвигателя

а) Режимы двигателя                                            б) Режим генератора

в) Режим электромагнитного тормоза                  г) Все перечисленные

АВТОТРАНСФОРМАТОР

1) Что такое автотрансформатор? В чем разница между автотрансформатором и двухобмоточным трансформатором?

Автотрансформатор, также называемый автоформатором, представляет собой электрический трансформатор, в котором первичная и вторичная обмотки имеют одинаковую общую обмотку. Таким образом, в основном это трансформатор с одной обмоткой

Основное различие между обычным трансформатором с двумя обмотками и автотрансформатором заключается в их принципе работы и, следовательно, в применении. В автотрансформаторе энергия передается в основном через процесс проводимости, и только небольшая часть передается индуктивно

Автотрансформатор работает по принципу индукции и проводимости вместе.

(Трансформатор с двумя обмотками работает только на принципе электромагнитной индукции)

ПРИМЕЧАНИЕ:

Проводимость включает поток электрического заряда из-за электрического поля. Чтобы провести ток от одного проводника к другому, два проводника должны быть в контакте. В проводимости ток генерируется, когда электрическое поле проходит через проводник.

В  индукции ток можно заставить течь по проводнику, удерживая его рядом с другим проводником, по которому течет постоянно изменяющийся ток. В индукции ток генерируется, когда магнитное поле изменяется  вокруг проводника.

2) Почему автотрансформатор не используется в качестве распределительного трансформатора, так как он более эффективен, чем обычный трансформатор?

ANS) Распределительные трансформаторы обычно представляют собой трансформаторы уровня напряжения 11 кВ/400 Ом. Автотрансформатор обычно используется, когда коэффициенты напряжения близки к 1 (макс. < 2). Они используются для понижения напряжения с 220 кВ до 132 кВ. Поскольку коэффициент на стороне распределения слишком высок (от 11000 до 400 В), автотрансформатор не используется на стороне распределения.

3) Почему используется автотрансформатор, когда отношение напряжения максимально 2?

ANS) для коэффициента трансформации = 2 размер автотрансформатора будет составлять примерно 50% от соответствующего размера двухобмоточного трансформатора. Для коэффициента трансформации скажем 20, однако размер будет 95%. Экономия затрат заметна, когда коэффициент трансформации низкий, то есть ниже 2.

4) Что такое коэффициент трансформации в автотрансформаторе?

Коэффициент трансформации представляет собой отношение вторичного напряжения к первичному напряжению и равен отношению числа витков вторичной обмотки к числу витков первичной обмотки

K = N2/N1 = E2/E1

K = N2/N1 = E2/E1

5) Почему ток короткого замыкания в автотрансформаторе больше, чем в двухобмоточном трансформаторе?

ANS) Двухобмоточный трансформатор имеет гальваническую изоляцию. То есть в автотрансформаторе нет короткого замыкания между первичной и вторичной обмоткой. Возьмем пример:

Рассмотрим трансформатор мощностью 10 кВА, рассчитанный на 2300/230 вольт, который будет иметь полное сопротивление утечки, скажем, 4 %. Если он подключен как автотрансформатор, понижающий, скажем, с 2530 до 2300 вольт, что соответствует коэффициенту трансформации 1,1 (2530/2300=1,1), падение импеданса будет:

4*(0,1/1,1)= 0,364 %.

Сопротивление утечки составляет 9,1 % от сопротивления утечки двухобмоточного трансформатора

Следовательно, ток короткого замыкания в автотрансформаторе больше по сравнению с двухобмоточным трансформатором и для защиты автотрансформатора от опасности большого количества коротких замыканий тока, вставлено ограничение тока.

6) Каковы преимущества автотрансформатора перед распределительным трансформатором?

ANS) Автотрансформатор — это трансформатор, в котором первичная и вторичная обмотки имеют одинаковую общую обмотку. Так что в основном это однообмоточный трансформатор.

Уменьшена стоимость и размер. Они дешевле, легче по весу, имеют меньшее реактивное сопротивление рассеяния, меньшие потери и меньший ток возбуждения.

Автотрансформаторы явно намного дешевле, чем обычные трансформаторы с двойной обмоткой того же номинала ВА. При принятии решения об использовании автотрансформатора обычно сравнивают его стоимость со стоимостью эквивалентного типа с двойной обмоткой.

Это делается путем сравнения количества меди, сэкономленной в обмотке. Если отношение «n» определяется как отношение более низкого напряжения к более высокому напряжению, то можно показать, что экономия меди составляет: n,100%. Например, экономия меди для двух автотрансформаторов составит:

7) Каковы недостатки автотрансформатора?

·        Основным недостатком автотрансформатора является то, что он не имеет изоляции первичной и вторичной обмоток обычного трансформатора с двойной обмоткой. Тогда автотрансформатор нельзя безопасно использовать для понижения более высоких напряжений до гораздо более низких напряжений, подходящих для меньших нагрузок.

·        Если вторичная боковая обмотка размыкается, ток перестает течь через первичную обмотку, останавливая работу трансформатора, в результате чего на вторичные клеммы подается полное первичное напряжение.

·        Если вторичная цепь подвергается короткому замыканию, результирующий первичный ток будет намного больше, чем у эквивалентного трансформатора с двойной обмоткой, из-за увеличенной потокосцепления, повреждающей автотрансформатор.

·        Поскольку соединение нейтрали является общим для первичной и вторичной обмоток, заземление вторичной обмотки автоматически заземляет первичную обмотку, поскольку между двумя обмотками нет изоляции. Трансформаторы с двойной обмоткой иногда используются для изоляции оборудования от земли.

8) каковы применения автотрансформатора?

Автотрансформатор   имеет множество применений и применений, включая запуск асинхронных двигателей, используемых для регулирования напряжения линий передачи, в аудиоприложениях и согласование импеданса между микрофоном с низким импедансом и входом усилителя с высоким импедансом.

Автотрансформатор используется в качестве вариатора в лаборатории или там, где требуется непрерывная регулировка в широком диапазоне.

9) Должна ли быть только одна отпайка от автотрансформатора?

Автотрансформатор  также может иметь более одной точки ответвления. Автотрансформаторы можно использовать для обеспечения различных точек напряжения вдоль его обмотки или увеличения напряжения питания по отношению к напряжению питания VP, как показано на рисунке.

отличие конструкции и принципа действия

Для преобразования напряжения в электротехнике применяют трансформаторы или автотрансформаторы. Из-за схожести названий этих двух устройств их часто путают или приравнивают к одному и тому же. Однако это не так, хоть принцип работы и похож, но конструкция и область их применения принципиально разные. Поэтому давайте рассмотрим отличия трансформатора от автотрансформатора, чтобы понять, в чем же все-таки разница.

  • Определения
  • Принцип действия
  • Основные отличия

Определения

Трансформатор представляет собой электромагнитное устройство, передающее энергию через магнитное поле. Он состоит из двух и более обмоток (иногда называемых катушками) на стальном, железном или ферритовом сердечнике в зависимости от количества фаз, входного и выходного напряжения. Его главная особенность в том, что первичная цепь и вторичная электрически не связаны, то есть обмотки не имеют электрических контактов. Это называется гальванической развязкой. И такое соединение катушек называется индуктивным.

Ниже вы видите условное графическое обозначение двух- и трехобмоточного трансформатора на электрической схеме:

Возрастающие, убывающие и делительные (входное напряжение равно выходному). В то же время, если подать питание на вторичную обмотку понижающего трансформатора — вы получите повышенное напряжение на первичных обмотках, то же правило работает и для бустера.

Автотрансформатор — один из вариантов трансформатора с одной обмоткой, намотанной на сердечник по принципу аналогичному предыдущему случаю. В нем, в отличие от обычного транса, первичная и вторичная цепи электрически соединены. Поэтому он не обеспечивает гальваническую развязку. Условное графическое обозначение автотрансформатора вы видите ниже:

Автотрансформаторы имеют фиксированное выходное напряжение и могут регулироваться. Последние многим известны под названием ЛАТР (лабораторный автотрансформатор). Также они могут быть как понижающими, так и повышающими. В регулируемом ЛАТР вторичная цепь подключается к скользящему по катушке контакту.

Важно! Из-за отсутствия гальванической развязки автотрансформаторы по определению не могут быть разделительными в отличие от обычных!

Еще одним отличием является количество обмоток автотрансформатора — обычно оно равно количеству фаз. Соответственно для питания однофазных устройств применяют однообмоточные, а для трехфазных – трехобмоточные.

Принцип работы

Коротко и простыми словами рассмотрим, как работает каждый вариант исполнения.

Трансформатор имеет не менее двух обмоток — первичную и вторичную (или несколько). Если первичка подключена к сети (или другому источнику переменного тока) — то ток в первичной обмотке создает через сердечник магнитный поток, который пронизывает витки вторички, наводит в них ЭДС. Принцип действия основан на явлениях электромагнитной индукции, в частности на законе Фарадея. При протекании тока во вторичной обмотке (в нагрузку) ток в первичной обмотке также изменяется за счет взаимной индукции. Разность напряжений между первичной и вторичной обмотками определяется соотношением их витков (коэффициентом трансформации).

Uп/Ud = n1/n2

n1, n2 — количество витков на первичке и вторичке.

Если говорить об автотрансформаторе, то у него одна обмотка, если фаз несколько, то столько же обмоток. При протекании по ней переменного тока магнитный поток, возникающий внутри нее, наводит в этой же обмотке ЭДС. Его значение прямо пропорционально количеству витков. Нагрузка (вторичная цепь) подключается к отводу с витков. На повышающем автотрансформаторе питание подается не на концы обмотки, а на один из концов и отвод от витков, в отличие от трансформатора. Что было изображено на схеме выше.

Основные отличия

Чтобы вам было проще понять, чем отличается обычный трансформатор от автотрансформатора, мы собрали их основные отличия в таблицу:

Трансформатор Автотрансформатор
Эффективность КПД автотрансформатора больше, чем у обычного, особенно при небольшой разнице входного и выходного напряжения.
Количество обмоток Минимум 2 и более в зависимости от количества фаз 1 или более, равно количеству фаз
Гальваническая развязка есть
Опасность поражения электрическим током при включении бытовых приборов При выходном напряжении менее 36 вольт — малый Высокий
Безопасность электроприборов Высокий Низкий, при обрыве катушки на витках после отвода в нагрузку получит все питающее напряжение
Стоимость Большой расход меди и стали для больших сердечников, особенно для трехфазных трансформаторов Низкий, за счет того, что на каждую фазу приходится только 1 обмотка, расход меди и стали меньше

Трансформаторы применяются повсеместно — от электростанций и подстанций, рассчитанных на десятки и сотни тысяч вольт, до питания мелкой бытовой техники. Хотя блоки питания используются в последнее время, их генератор и трансформатор на ферритовом сердечнике также являются их основой.

Автотрансформаторы применяются в бытовых стабилизаторах напряжения. Часто ЛАТРы используются в лабораториях для тестирования или ремонта электронных устройств. Тем не менее они нашли свое применение в высоковольтных сетях, а также для электрификации железных дорог.

Например, железнодорожная продукция использует такие изделия в сетях 2х25 (две по 25 киловольт). Как и на схеме выше, линия 50 кВ прокладывается в малонаселенных районах, а 25 кВ от понижающего автотрансформатора подается в электропоезд по контактному проводу. Таким образом, снижается количество тяговых подстанций и потери в линиях.

Теперь вы знаете, в чем принципиальная разница между трансформатором и автотрансформатором. Для закрепления материала рекомендуем посмотреть полезное видео по теме:

Наверняка вы не знаете:

  • Чем электромеханическое УЗО отличается от электронного
  • Отличия сетевого фильтра от удлинителя
  • Отличие контактора от пускателя

Опубликовано: Обновлено: 01.12.2018 Пока без коментариев

8.4: Конфигурации намотки — Workforce LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    13301
    • Tony R. Kuphaldt
    • Schweitzer Engineering Laboratories via All About Circuits

    Трансформаторы — очень универсальные устройства. Базовая концепция передачи энергии между взаимными индукторами достаточно полезна между одной первичной и одной вторичной катушкой, но трансформаторы не обязательно должны быть сделаны только с двумя наборами обмоток. Рассмотрим эту схему трансформатора: (Рисунок ниже)

    Трансформатор с несколькими вторичными обмотками обеспечивает несколько выходных напряжений.

    Здесь три катушки индуктивности имеют общий магнитный сердечник, магнитно «связывающий» или «связывающий» их вместе. Соотношение соотношений витков обмоток и соотношений напряжений, наблюдаемое с одной парой взаимных индукторов, остается верным и здесь для нескольких пар катушек. Вполне возможно собрать такой трансформатор, как приведенный выше (одна первичная обмотка, две вторичные обмотки), в котором одна вторичная обмотка понижающая, а другая повышающая. Фактически такая конструкция трансформатора была довольно распространена в схемах питания электронных ламп, которые должны были обеспечивать низкое напряжение для нитей накала ламп (обычно 6 или 12 вольт) и высокое напряжение для пластин ламп (несколько сотен вольт) от номинальное первичное напряжение 110 вольт переменного тока. С таким трансформатором возможны не только напряжения и токи совершенно разных величин, но и все цепи электрически изолированы друг от друга.

    Фотография многообмоточного трансформатора с шестью обмотками, одной первичной и пятью вторичными.

    Трансформатор на рисунке выше предназначен для обеспечения как высокого, так и низкого напряжения, необходимого в электронной системе с использованием электронных ламп. Низкое напряжение требуется для питания нитей накала электронных ламп, а высокое напряжение требуется для создания разности потенциалов между пластиной и катодными элементами каждой лампы. Одного трансформатора с несколькими обмотками достаточно, чтобы обеспечить все необходимые уровни напряжения от одного источника 115 В. Провода для этого трансформатора (их 15!) на фотографии не показаны, они скрыты от глаз.

    Если электрическая изоляция между вторичными цепями не имеет большого значения, аналогичный эффект можно получить, «отводя» одну вторичную обмотку в нескольких точках по ее длине, как показано на рисунке ниже.

    Вторичная обмотка с одним отводом обеспечивает несколько напряжений.

    Отвод — это не что иное, как проводное соединение, выполненное в какой-то точке на обмотке между самыми концами. Неудивительно, что отношение витка обмотки к величине напряжения нормального трансформатора справедливо для всех сегментов обмотки с ответвлениями. Этот факт можно использовать для создания трансформатора, способного работать с несколькими коэффициентами: (рисунок ниже)

    Вторичная обмотка с отводом с помощью переключателя для выбора одного из многих возможных напряжений открытая вторичная обмотка, способная соединиться с ней в любой точке по ее длине. Эффект эквивалентен отводу обмотки на каждом витке обмотки и переключателю с полюсами на каждом положении отвода: (рисунок ниже)

    Скользящий контакт на вторичной обмотке непрерывно изменяет вторичное напряжение.

    Одним из потребительских применений регулируемого трансформатора является регулирование скорости моделей поездов, особенно поездов 1950-х и 1960-х годов. Эти трансформаторы были по существу понижающими блоками, максимальное напряжение, получаемое от вторичной обмотки, было значительно меньше, чем первичное напряжение от 110 до 120 вольт переменного тока. Контакт с переменной разверткой обеспечивает простое средство управления напряжением с небольшими потерями мощности, гораздо более эффективное, чем управление с помощью переменного резистора!

    Подвижные ползунковые контакты слишком непрактичны для использования в крупных промышленных силовых трансформаторах, но многополюсные выключатели и ответвители обмотки обычно используются для регулировки напряжения. В энергосистемах необходимо периодически вносить коррективы, чтобы приспособиться к изменениям нагрузки в течение месяцев или лет, и эти схемы переключения обеспечивают удобное средство. Как правило, такие «переключатели ответвлений» не рассчитаны на работу с током полной нагрузки, а должны приводиться в действие только тогда, когда трансформатор обесточен (отсутствует питание).

    Учитывая, что мы можем отсоединить любую обмотку трансформатора, чтобы получить эквивалент нескольких обмоток (хотя и с потерей электрической изоляции между ними), логично предположить, что можно полностью отказаться от электрической изоляции и построить трансформатор из одной обмотки. . Действительно, это возможно, и получившееся устройство называется автотрансформатором : (рисунок ниже)

    Этот автотрансформатор повышает напряжение с помощью одной обмотки с ответвлениями, экономя медь, жертвуя изоляцией.

    Изображенный выше автотрансформатор выполняет функцию повышения напряжения. Понижающий автотрансформатор будет выглядеть примерно так, как показано на рисунке ниже.

    Этот автотрансформатор понижает напряжение с помощью одной ответвленной обмотки, экономящей медь.

    Автотрансформаторы широко используются в приложениях, требующих небольшого повышения или понижения напряжения на нагрузке. В качестве альтернативы обычному (изолированному) трансформатору можно было бы либо выбрать правильное соотношение первичной и вторичной обмоток для данной работы, либо использовать понижающую конфигурацию с последовательно соединенной вторичной обмоткой («повышающий») или последовательно-последовательно. противоборствующая («взъерошенная») мода. Первичное, вторичное и нагрузочное напряжения даны, чтобы проиллюстрировать, как это будет работать.

    Во-первых, «бустерная» конфигурация. На рисунке ниже полярность вторичной катушки ориентирована так, что ее напряжение непосредственно добавляется к первичному напряжению.

    Обычный трансформатор, подключенный как автотрансформатор для повышения сетевого напряжения.

    Далее конфигурация «раскряжевка». На рисунке ниже полярность вторичной обмотки ориентирована так, что ее напряжение напрямую вычитается из первичного напряжения:

    Обычный трансформатор, подключенный как автотрансформатор для снижения линейного напряжения.

    Основным преимуществом автотрансформатора является то, что такая же повышающая или понижающая функция достигается только с одной обмоткой, что делает его дешевле и легче в производстве, чем обычный (изолирующий) трансформатор, имеющий как первичную, так и вторичную обмотки.

    Как и у обычных трансформаторов, обмотки автотрансформаторов могут иметь ответвления для изменения коэффициента трансформации. Кроме того, их можно сделать бесступенчатыми со скользящим контактом для отвода обмотки в любой точке по ее длине. Последняя конфигурация достаточно популярна, чтобы заслужить собственное имя: 9-дюймовая.0301 Вариак . (Рисунок ниже)

    Вариак – это автотрансформатор со скользящим отводом.

    Небольшие вариаторы для настольного использования — популярное оборудование для экспериментаторов в области электроники, позволяющее понижать (а иногда и повышать) напряжение в домашнем хозяйстве простым поворотом ручки в широких пределах.

    • Трансформаторы могут быть оснащены более чем одной парой первичной и вторичной обмоток. Это позволяет использовать несколько повышающих и/или понижающих коэффициентов в одном и том же устройстве.
    • Обмотки трансформатора также можно «отводить», т. е. пересекать во многих точках, чтобы разделить одну обмотку на секции.
    • Переменные трансформаторы могут быть изготовлены с помощью подвижного рычага, который перемещается по всей длине обмотки, контактируя с обмоткой в ​​любой точке по ее длине. Обмотка, разумеется, должна быть оголенной (без изоляции) в области, где качается рука.
    • Автотрансформатор представляет собой единственную катушку индуктивности с ответвлениями, используемую для повышения или понижения напряжения, как трансформатор, за исключением того, что не обеспечивает гальваническую изоляцию.
    • A Variac — регулируемый автотрансформатор.

    Эта страница под названием 8.4: Конфигурации обмотки распространяется в соответствии с лицензией GNU Free Documentation License 1.3 и была создана, изменена и/или курирована Тони Р. Купхалдтом (Все о цепях) посредством исходного содержимого, которое было отредактировано в соответствии со стилем и стандартами. платформы LibreTexts; подробная история редактирования доступна по запросу.

    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или страница
        Автор
        Тони Р.

      alexxlab

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *