Почему частота 50 гц. Системный оператор единой энергетической системы
Бытовая техника из Кореи или любая другая техника зарубежного производства нередко бывает предназначена для работы от электрической сети, частота переменного тока в которой составляет 60 Гц. Естественно, у владельцев таких приборов возникает резонный вопрос – можно ли их использовать в России или других странах с частотой питающей сети 50 Гц? Ответ прост, как таблица умножения: можно! Но с учетом, что техника рассчитана на питание от сети с напряжением 220-230 Вольт. Например, если на шильдике соковыжималки из Кореи указана рабочая частота 60 Гц, а напряжение 220-230V, то прибор будет исправно работать.
Откуда они вообще взялись?
Электрифицироваться мир начал в конце XIX-го – начале XX-го веков. В Америке у ее истоков стояли Эдисон и Вестингауз, Европу «приучали» к электроэнергетике в основном инженеры немецкой компании «Сименс». Стандартные частоты 50 и 60 Гц были выбраны, в общем-то, относительно случайно из диапазона 40…60 Гц. Вот границы диапазона были выбраны не случайно: при частоте ниже 40 Герц не могли работать дуговые лампы, бывшие в то время основным электрическим источником искусственного освещения, а при частоте выше 60 Гц – не работали асинхронные электродвигатели конструкции Николы Теслы, наиболее распространенные в тот период…
В Европе был выбран стандарт 50 Гц («золотая середина»!), у американцев прижился стандарт 60 Гц – на этой частоте стабильнее работали дуговые лампы. Прошло больше века, дуговые лампы стали раритетом, а стандарты остались – и на работоспособности электрооборудования эта разница в 10 Гц практически не отражается. Гораздо важнее напряжение в электрической сети – во многих странах оно примерно вдвое ниже, чем в России! А частота… в Японии, например, в трети префектур установлен стандарт 60Гц, в оставшихся двух третях – стандарт 50 Гц.
Можно? Можно!
Можно смело утверждать, что от частоты питающей электросети работоспособность бытовой техники не зависит. С точки зрения физики вообще и электротехники – в частности, это вполне очевидно: у вала 60-герцового электромотора переменного тока, подключенного к сети 50 Гц, частота вращения уменьшится всего на несколько процентов; незначительно снизиться мощность самого электродвигателя. Иными словами, он станет работать в щадящем режиме – в тех же, например, шнековых соковыжималках холодного отжима это только к лучшему.
В приборах с двигателями постоянного тока частота питающей сети вообще не играет никакой роли – установленные в блоке питания выпрямительные диоды справляются с напряжением любой формы и «герцовости». Возникающая из-за изменения частоты питающей сети разность величин выпрямленных напряжений будет просто мизерной; к тому же, выпрямленное напряжение обычно стабилизируется электронной «начинкой» прибора.
Все вышесказанное абсолютно справедливо и для бытовой техники, имеющей встроенный или внешний импульсный блок питания. Еще проще дело обстоит, если в состав блока питания входит обычный понижающий трансформатор – его выходные характеристики от изменения частоты напряжения в первичной обмотке изменяются незначительно. Работоспособность еще одного типа приборов – нагревательных – вообще не зависит от частоты питающей электрической сети, для таких устройств куда большее значение имеет величина сетевого напряжения…
Можно! Только… внимательно!
Приборы, спроектированные для питания от сети с частотой 60 Гц, можно смело включать в электросеть с частотой 50 Гц. Это, кстати, подтверждается одним не слишком известным фактом: если вскрыть какой-нибудь достаточно старый прибор с электромотором – пылесос, фен, миксер, соковыжималку холодного отжима – и внимательно прочитать надписи на шильдике двигателя, можно увидеть: «частота питающей сети… 50-60 Гц»! Частота 60 Гц используется в технике из Кореи, США, Японии и некторых других стран. Поэтому если вы заказали, к примеру, соковыжималку из Кореи, то теперь вы знаете, что хоть её рабочая частота и отличается от наших сетей, подключать прибор можно!
Справедливости ради нужно отметить, что есть все же тип электроприборов, которые в отечественную электросеть лучше не включать – это электрооборудование, в котором используется однофазный асинхронный двигатель. И дело тут даже не в том, что у таких электромоторов скорость вращения зависит не от частоты питающей сети, а от приложенной к валу нагрузки — дело в том, что из-за принципа своей работы асинхронные электродвигатели очень чувствительны к частоте сети при пуске. Рассчитанный на 60 Гц «асинхронник» при 50 Гц просто не запустится… К прмиеру, та же соковыжималка из Кореи может иметь те же 60 Гц в своих характеристиках, но если у неё отличается тип двигателя, то будьте готовы к тому, что прибор не включится. То же самое касается и любой техники из Кореи, Японии, США.
Вот на что ещё обязательно нужно обращать внимание при выборе техники из Кореи, Японии, Тайваня, США и ряда других стран – на требования к величине питающего напряжения! Во многих странах, производящих технику (Корея, Япония и т.д.), электросети имеют рабочее напряжение 110 В, а не 220, как у нас. Включить прибор, рассчитанный на 110 В, без переходного трансформатора можно только один раз – первый и последний… в лучшем случае аппарат «перегорит», в худшем – взорвется прямо в руках! Поэтому сли соковыжималка из Кореи или другой страны, и имеет рабочее напряжение по своим характеристикам 110V, то такой прибор для наших сетей не годится. Выбирая соковыжималку холодного отжима, обращайте внимание на рабочее напряжение прибора — оно должно быть 220V!
Техника для российских сетей
Для тех кого наша статья не показалась убедительной, на рынке есть аналоги самой востребованной техники, созданные специально для российских условий. Представляет такую технику марка с большим ассортиментом инновационных технологий для жизни. Высокомощные , холодного отжима нового поколения, и многое другое можно приобрести в без опаски, что возникнет несоответствие с местными электросетями. Товары этой марки имеют лучшее соотношение цены и качества, а также предлагают решения для частного сегмента и для малого бизнеса.
Толчок в развитии электричества пришелся на вторую половину XIX века. Именно в это время ученые сделали ряд открытий в этой области, которые позволили найти электричеству практическое применение. Тома Эдиссон изобрел первую электрическую лампочку и, пообещав всем очень дешевое освещение, принялся за строительство электростанций.
Первые лампы были дуговые, в них разряд происходил на открытом воздухе между двумя угольными стержнями. В это время эмпирически было установлено, что наиболее подходящим для горения дуги является напряжение 45 В. Чтобы уменьшить токи короткого замыкания, которые возникали в момент зажигания ламп (при соприкосновении углей), и для более устойчивого горения дуги включали последовательно с дуговой лампой балластный резистор. Так же было найдено, что сопротивление балластного резистора должно быть таким, чтобы падение напряжения на нем при нормальной работе составляло примерно 20 В. Таким образом, общее напряжение в установках постоянного тока сначала составляло 65 В, и это напряжение применялось долгое время. Однако часто в одну цепь включали последовательно две дуговые лампы, для работы которых требовалось 2×45 = 90 В, а если к этому напряжению прибавить еще 20 В, приходящиеся на сопротивление балластного резистора, то получится напряжение 110 В.
Ошибка Томаса Эдиссона была в том, что он для выработки тока использовал генераторы постоянного тока, и пытался передавать по проводам постоянный ток. Радиус электроснабжения не превышал нескольких сотен метров и имел громадные потери. Попытки расширить границы р
Частота электрического тока: определение, формула, характеристики
Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частота переменного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.
Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом — в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду. В качестве единицы измерения частоты во всем мире принят 1 Гц (в честь немецкого ученого Г.Герца), который соответствует 1 периоду колебания за 1 секунду.
В республиках бывшего СССР стандартной считается частота тока в 50 Гц.
Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 — в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.
Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:
• Метод дискретного счета;
• Метод перезаряда конденсатора;
• Резонансный метод измерения частот.
• Метод сравнения частот;
Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.
Более подробно о частоте переменного тока Вы можете узнать из видео:
Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.
Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.
Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.
Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.
Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.
Ещё одно интересное видео о частоте переменного тока:
Использование 60Гц электродвигателей на 50Гц. Стандарты IEC и NEMA .
Использование 60 Гц электродвигателей на 50 Гц. Стандарты IEC и NEMA .
NEMA – основной стандарт электрооборудования в Северной Америке. IEC стандарты существуют, как бы, «поверх» национальных. К примеру, в Германии действует VDE 0530; в Великобритании — BS 2613. Но они параллельны стандарту IEC 34-1. В целом, это же можно сказать о большинстве других стандартов в мире. Они похожи либо на клонов IEC либо, в лучшем случае, близкие производные от оного.
Более того: хотя NEMA и IEC и различны, они существенно совпадают в установленных номиналах и, для большинства распространенных применений, в серьезной мере взаимозаменяемы. В целом, NEMA может быть оценен, как более консервативный, дающий большую свободу конструкторам и практикам, что очень свойственно инженерным подходам в США. Наоборот, IEC более точен, более упорядочен, построен с существенно меньшим «Запасом прочности».
Как будет работать типичный трехфазный асинхронный мотор, сконструированный под 230/460 60Гц при частоте сети 50Гц. Таблица предполагает, что мотор нагружен на номинальную мощность при различных напряжениях частотой 50-Гц. |
||||||
Напряжение |
230/460 |
380 |
200/400 |
208/415 |
220/440 |
|
Частота, Гц |
60 |
50 |
50 |
50 |
50 |
50 |
% момент при полной нагрузке |
100 |
120 |
120 |
120 |
120 |
120 |
% синхронной скорости |
100 |
83.3 |
83.3 |
83.3 |
83.3 |
83.3 |
%Ток полной нагрузки |
100 |
118 |
115 |
113 |
115 |
118 |
% КПД при полной нагрузке |
Номинал |
-2 % |
-1/-2% |
-1/-2% |
-2 % |
-2/-3% |
Косинус фи Cos( φ ) |
Номинал |
+ 4-5 % |
+ 2 % |
= |
— 3/-4 % |
— 8/-9% |
начальный пусковой момент (электродвигателя), % от номинала |
Номинал |
90-95 |
100-105 |
110-115 |
130-135 |
140-160 |
Опрокидывающий вращающий момент, % от номинала |
Номинал |
90-95 |
100 |
105-110 |
120-125 |
130-135 |
Ток при заторможенном роторе, % от номинала |
Номинал |
90 |
94 |
98 |
106 |
112 |
Тепловыделение, % от номинала |
Номинал |
153 |
149 |
149 |
153 |
162 |
Магнитный шум |
Норма |
Незначит. изменения |
Чуть выше |
Чуть выше |
Значительно выше |
Значительно выше |
Не забудьте, что если электродвигатель машины был рассчитан на работу в сети 60Гц , а подключен к сети 50 Гц, то его скорость вращения составляет 5/6 от первоначальной (расчетной на сеть 60Гц). |
В Европе и в большей части остального мира питающие сети придерживаются стандартной частоты 50Гц, в отличие от Северной Америки, где стандартной частотой является 60Гц. Что произойдет с мотором, если он сконструирован на одну частоту, а подключен к другой? Можно ли их безопасно эксплуатировать?
Трехфазные асинхронные электродвигатели: Электродвигатель, рассчитанный на 60Гц, будет успешно работать на номинальной мощности при 50Гц, если напряжение питания будет уменьшено на 1/6. Поэтому, электродвигатель номинала 230/460В, 60Гц подключенный на «звезду» 380В, 50Гц будет работать вполне успешно на полную номинальную нагрузку, хотя скорость вращения и будет составлять 5/6 от номинальной.
При подключении на 50Гц / 230В, для трехфазного асинхронного электродвигателя номинала 230/460В, 60Гц, следует принять коэффициент понижения мощности 0.80 to 0.85 для предотвращения перегрева на частоте 50Гц. Большинство производителей в Северной Америке либо указывают в каталогах, либо с удовольствием ответят на запрос о способности двигателя работать на частоте 50Гц и соответствующей данной частоте номинальной мощности. Не ленитесь спрашивать.
Пожалуйста, запомните, что наибольший вред причиняет нагрев.
Однофазные асинхронные электродвигатели. Для однофазного асинхронного электродвигателя на 60Гц, ответом на вопрос «Можно ли использовать его на 50Гц» , в общем случае будет: НЕ НАДО! Почему? Многие из однофазных моторов чувствительны к частоте сети при пуске. Для частных применений, производитель электродвигателей иногда может предложить электродвигатель, который будет работать и на 50Гц и на 60Гц.
Вывод. По возможности, пытайтесь купить электродвигатель на номинал Вашей сети.
В ПОМОЩЬ ПИШУЩЕМУ НА ТЕМУ ЭЛЕКТРОЭНЕРГЕТИКИ. ЧАСТЬ-3
Гц (Герц)В Герцах измеряется частота, обозначается буквой «F» (число наступления какого-либо события за секунду). Ну, например, пульс человека 60 ударов в минуту, значит, частота с которой бьется сердце F=60/60=1 Гц. Виниловая пластинка при проигрывании делает 33 оборота в минуту – F=33/60=0,55 Гц. Частота обновления экрана монитора с ЭЛТ составляет 200 Гц, значит электронный пучок «пробегает» экран 200 раз в секунду.
Применительно к энергетике под частотой понимают частоту переменного электрического тока в энергосистеме. Или еще говорят «промышленная частота». У нас и в Европе частота 50 Гц. В США и Японии 60 Гц. Что это значит? Это значит, 50 раз в секунду электрический ток течет с возрастанием-убыванием (по синусоиде) в одну сторону, 50 раз в другую. Несколько слов, почему промышленная частота именно 50 или 60 Гц. Просто частота у тока появляется из-за вращения ротора генератора. Если увеличивать частоту вращения ротора (и соответственно частоту в энергосистеме), нужно делать конструкцию генератора более прочной. А увеличивать прочность до бесконечности нельзя, у любых конструкционных материалов есть предел. Короче 50-60 Гц это равновесие многих технических ограничений.
Когда с частотой проблем нет, нет и упоминаний в журналистских материалах об этой величине. Но так может быть далеко не всегда. К чему может привести отклонение частоты от номинала (у нас 50 Гц)? К серьезной аварии! Когда частота выше номинальных 50 Гц, на вращающийся ротор генератора и турбины действуют центробежные силы большей величины, чем заложено в их конструкции. Это может привести к их разрушению. Конечно, есть автоматика. Если F достигнет значения 55 Гц, агрегат автоматически отключится от сети, чтобы не допустить повреждений. Если частота ниже 50 Гц, происходит снижение производительности всех электрических двигателей (снижение частоты их вращения), подключенных к энергосистеме – и тех которые обеспечивают работу эскалаторов в супермаркете, и тех, которые вращают конвейерную ленту на заводе, и тех, которые обеспечивают технологический процесс производства электроэнергии на электростанциях. Последнее – самое опасное. Снижается частота, снижается выработка электроэнергии, что приводит к еще большему снижению частоты, в результате – электростанции могут просто «встать на ноль» (если частота снизится до 45 Гц), это полное погашение, как говорится blackout. Конечно, и здесь есть автоматика. Чтобы не допустить глубокого снижения частоты автоматически отключается часть потребителей, в том числе «бытовых». Вышеописанное это конечно крайние случаи аварий. Но частота может отклоняться и на меньшие величины. Это тоже плохо. И в энергосистеме предусмотрены автоматики, позволяющие этого избежать. Вот здесь я немного расписал, как это работает, кому интересно, читайте.
Еще немного теории (терпите, раз уж до сюда дошли). Частота в системе, значением ровно 50 Гц может быть только в одном случае – если в каждый момент времени генерируется ровно столько активной мощности, сколько потребляется. При нарушении этого баланса, частоту «уводит» в одну или другую сторону, а это ведет к аварии. Представьте себе любое другое предприятие (мебельную фабрику, хлебопекарню, автомобильный завод) и ту же задачу – каждую долю секунды производить ровно столько продукции, сколько необходимо потребителям. Вот видите, какое сложное у энергетиков производство. Что здесь интересного – если частота выше 50 Гц, значит, генераторы вырабатывают мощность большую, чем мощность всех потребителей, ну это лечится просто – снижается выработка на электростанциях, да и все. Если частота ниже 50 Гц – мощность потребления больше, чем генерируемая мощность. И если частота все время ниже 50 Гц, значит в энергосистеме дефицит мощности. Не построили вовремя электростанций – это большая проблема.
Сегодня качественную частоту 50 Гц нам обеспечивает Россия. Именно там находятся быстродействующие регуляторы частоты с воздействием на российские станции. Когда вы включаете утюг, где-то далеко в России генератор загружается на дополнительных 1,5 кВт, и наоборот (это немного упрощенно, но по большей части так). Ни в ЕЭС Казахстана, ни в энергосистемах Центральной Азии, на сегодняшний день, нет систем, позволяющих держать частоту «в струнку» на уровне 50 Гц. Если мы отделимся от России (электрически), частота у нас будет «гулять», а это очень плохо.
И еще одно – частота это глобальный фактор. Она одинакова везде в энергосистеме. И в Казахстане и по всей России (той части, что входит в ЕЭС) она одинакова в один и тот же момент времени. Если в какой-то части частота стала другой, значит эта часть электрически отсоединилась (из-за аварии или по другим причинам) и работает от основной энергосистемы изолировано.
Только не говорите мне: «Папа, а с кем это ты сейчас разговаривал?». Шучу, конечно:) Идем дальше.
ЕЭС – Единая Электроэнергетическая система. Это совокупность электростанций, подстанций и линий электропередачи, связанные единым общим технологическим режимом работы. Короче, все, что работает «параллельно» и взаимосвязано (все, что соединено между собой линиями электропередачи) составляет ЕЭС. И хотя есть ЕЭС Казахстана и есть ЕЭС России, на самом деле это больше политическое деление, «электрически» все это одна энергосистема, которая раньше называлось ЕЭС СССР. А вот, например энергосистема Австралии в нашу ЕЭС не входит, поскольку не связана с нами линиями электропередачи.
КЛ – кабельная линия электропередачи – под землей прокладывается кабель, конечно с мощной изоляцией. По стоимости КЛ намного дороже ВЛ, поэтому в СССР, было принято прокладывать КЛ только внутри населенных пунктов, чтобы не уродовать внешний вид. Такой дикости, как в других странах, когда все кишки по улицам размотаны, у нас не встретишь.
Самая первая кабельная линия была предназначена не для передачи электроэнергии, а для передачи сигналов. В 1843 году конгресс США объявил тендер на постройку экспериментальной телеграфной линии, который выиграл Морзе (известный нам по «азбуке Морзе»), так вот линию решили прокладывать под землей. Однако, из-за того, что компаньон Морзе решил сэкономить на изоляции для проводов, вместо линии получилось одно сплошное короткое замыкание (такие ситуации случаются и сегодня, когда коммерсанты начинают управлять технарями). А денег уже было потрачено более чем достаточно. Инженер Корнелл, участвующий в проекте предложил такой выход из ситуации – расставить вдоль трассы столбы, и развесить прямо на этих столбах оголенные телеграфные провода, используя в качестве изоляторов горлышки от стеклянных бутылок. Так появилась воздушная телеграфная линия, электрическая ВЛ – практически ее копия, причем даже сегодня принципиально конструкция не изменилась.
ВЛ – воздушная линия электропередачи. Служит для передачи электроэнергии по проводам, которые подвешены к опоре посредством изоляторов. Чем выше рабочее напряжение ВЛ, тем выше опоры и больше количество изоляторов в гирлянде. На ВЛ-6,10 кВ всего один изолятор, на ВЛ-35 кВ – 2 изолятора, на ВЛ-110 кВ – 6 изоляторов, ВЛ-220 кВ – 12 изоляторов, ВЛ-500 кВ – 24 изолятора, так что по внешнему виду не трудно определить рабочее напряжение ВЛ.
ГЭС – гидроэлектрическая станция (еще может расшифровываться как гидравлическая электростанция, старайтесь не употреблять просторечное «гидростанция» — на мой взгляд, звучит пошловато). ГЭС – это электростанция, на которой электроэнергию получают преобразованием энергии воды (поток воды крутит турбину). Крупных ГЭС в Казахстане не много. Если сравнивать по мощности, то все ГЭС составят не более 10% от всех генерирующих мощностей в ЕЭС. Это плохо. Для того чтобы энергосистема была самодостаточной, необходимо иметь хотя бы 20-30% ГЭС в системе, но что поделаешь – водных ресурсов маловато. Достоинство ГЭС – высокая маневренность. Такие станции могут быстро набрать нагрузку и также быстро ее сбрасывать (это необходимо для точного регулирования частоты на уровне 50 Гц). Какие у нас есть ГЭС?
Капшагайская ГЭС, которая берет воду из Капшагайского водохранилища, в которое впадает река Или. На Капшагайской ГЭС установлено 4 генератора по 100 МВт каждый. Правда больше 2-х генераторов практически никогда не работает. Это связано с тем, что пуск на «всю катушку» этой ГЭС приведет к подтоплению территорий, находящихся ниже КапГЭС. Правда в планах есть строительство Кербулакской ГЭС мощностью 50 МВт (контррегулятор КапГЭС), основное назначение которой – не допустить подтопления, что позволит увеличить выработку электроэнергии на КапГЭС. Мне рассказывали историю, как принимали решение о строительстве КапГЭС (уж не знаю, правда, или нет – рассказывал один московский дедушка). Москва была против строительства КапГЭС (в основном ученые). Дело в том, что для создания КапГЭС нужно было затопить внушительные территории. Так вот, москвичи подсчитали, что если сжигать траву, которая на этих затопленных территориях растет, то можно получить еще больше электроэнергии, чем от самой ГЭС (если построить тепловую электростанцию). К тому же в СССР были планы строить электростанции в Экибастузе и тянуть мощную линию на Юг (постоянного тока напряжением 1 500 кВ – еще один несостоявшийся рекорд), так, что особой надобности в КапГЭС на перспективу не было. Однако на решении настоял Шафик Чокин – Президент Академии Наук КазССР, основатель КазНИИ Энергетики. А у Москвы, как мне рассказали, был такой принцип – если Республика сильно настаивает, надо найти возможность и сделать (даже если кому-то кажется, что это деньги на ветер). Так, что если бы не Шафик Чокинович, ситуация с электроснабжением Алматы была бы сегодня аховая. Кстати скоро должны достроить Мойнакскую ГЭС (Алматинская область), установленной мощностью 300 МВт (строительство началось еще при СССР).
Далее. Алтайский каскад ГЭС (электростанции стоят каскадом – одна, ниже другой по течению реки): Усть-Каменогорская ГЭС (300 МВт), Бухтарминская ГЭС (600 МВт), Шульбинская ГЭС (700 МВт) – все это на реке Иртыш в ВКО. Вот и все крупные ГЭС в Казахстане.
Остальное – «мелочевка», вроде Алматинского каскада ГЭС (30 МВт), который «работает» на воде Большого Алматинского Озера (кто ходил на озеро, должен помнить трубу, именно по ней и отводится
Формула расчета периода переменных и постоянных токов в электротехнике
Изобретение электричества поставило человечество на новую грань развития. Технический прогресс опирался на два направления движения с использованием электроэнергии. В одном случае применялся постоянный ток, во втором – переменный. Внедрение источников электричества и электропотребителей вылилось в столетнюю войну между приверженцами двух видов энергии. В конце концов, победу одержали те, кто продвигал идею повсеместного использования её переменного вида.
Синусоида переменного электричества в системе координат
Общее понятие о переменном токе
В отличие от постоянного движения электронов в одном направлении, переменный ток меняет как направление, так и значение несколько раз за единицу времени. Изменения происходят по гармоническому закону. Если наблюдать подобный сигнал с помощью осциллографа, можно увидеть картинку в виде синусоиды.
Относительно оси ординат OY ток меняет своё направление с положительного на отрицательное и делает это периодически. Поэтому его мгновенное значение в первой позиции считается положительным, во второй – отрицательным.
Важно! Так как переменный ток – это алгебраическая величина, то говорить о его знаке заряда можно только для конкретного мгновенного значения, смотря, в каком направлении он протекает в этот момент.
Сигнал на экране осциллографа
Периодический переменный ток
Тот, который, изменяясь, успевает вернуться к своему исходному значению через одинаковые временные интервалы и при этом проходит весь цикл своих преобразований, называется периодическим. Его можно проследить на синусоиде, изображённой на экране осциллографа.
Период и амплитуда синусоидального колебания
Видно, что через одинаковые интервалы времени график повторяется без перемен. Эти интервалы обозначаются буквой Т и называются периодами. Частота, с которой в единицу времени укладывается определённое количество подобных периодов, – это частота тока переменного значения.
Её можно вычислить по формуле частоты переменного тока:
f = 1/T,
где:
- f – частота, Гц;
- T – период, с.
Частота равна количеству периодов в секунду и имеет единицу измерения 1 герц (Гц).
Внимание! Единица частоты в системе СИ носит имя Генриха Герца. 1 герц (Гц, Hz) = 1 с-1. К ней применимы кратные и дольные, выраженные стандартными приставками СИ, единицы.
Стандарты частоты
Для того чтобы обеспечить согласование работы источников переменного электричества, систем передач, приём и работу электропотребителей, применяются стандарты частоты. Используемая частота в электротехнике некоторых стран:
- 50 Гц – страны бывшего СССР, Прибалтики, страны Европы, Австралия, КНДР и другие;
- 60 Гц – стандарт, принятый в США, Канаде, Доминиканской республике, Тайвани, на Каймановых островах, Кубе, Коста-Рике, Южной Корее и ещё в некоторых странах.
В Японии используются обе частоты. Восточные регионы (Токио, Сендай, Кавасаки) используют частоту 50 Гц. Западные области (Киото, Хиросима, Нагоя, Окинава) применяют частоту 60 Гц.
К сведению. Железнодорожная инфраструктура Австрии, Норвегии, Германии, Швейцарии и Швеции по сей день применяет частоту 16,6 Гц.
Переменный синусоидальный ток
Это тот ток, который периодически меняется во времени, и его изменения подчиняются закону синусоиды. Это элементарное движение электрических зарядов, потому дальнейшему разложению на простые токи оно не подлежит.
Вид формулы такого переменного тока:
i = Im*sinωt,
где:
- Im – амплитуда;
- sinωt – фаза синусоидального тока, рад.
Здесь ω = const, называется угловой частотой переменного электричества, причём угол ωt находится в прямой временной зависимости.
Зная частоту f исходного тока, можно вычислить его угловую частоту, применив выражение:
ω = 2πf = 2π/Т.
Тут 2π – это выраженное в радианах значение центрального угла окружности:
- Т = 2 π радиан = 3600;
- Т/2 = π = 1800;
- Т/4 = π/2 = 900.
Если выразить 1 рад в градусах, то он будет равен 57°17′.
Синусоидальное переменное движение электронов
Многофазный переменный ток
Для запуска и работы многих промышленных устройств и электрооборудования требуется не одна фаза, а несколько. В связи с этим рассматривают такие понятия, как двухфазный и трёхфазный переменные токи.
Трёхфазный ток
Этот вид электричества применяют в трёхфазной системе, в которую включены три однофазные цепи. Цепи имеют ЭДС переменной природы одной и той же частоты. Эти ЭДС сдвинуты по фазе относительно друг друга на ϕ = Т/3 = 2π/3. Такую систему называют трёхфазным током, а цепь – фазой.
Выработка, преобразование, доставка и потребление переменного электрического тока в основном происходят по трёхфазной системе электроснабжения.
Трёхфазный переменный ток
Двухфазный ток
Ещё в 1888 году Никола Тесла выполнил описание того, как можно на практике применить двухфазную сеть, и предложил разработанную им конструкцию двухфазного двигателя. Такие сети начали применять в начале 20 века. Они состояли из двух контуров.
Там напряжения контуров сдвигались по фазе на 900. Каждая фаза включала в себя два провода, у двухфазных генераторов было по два ротора, также конструктивно развёрнутые на угол 900.
Важно! Такие сети позволяли производить мягкий пуск двухфазных электродвигателей, практически с нулевого момента вращения. В то время как для запуска однофазного асинхронного двигателя требуется дополнительная пусковая обмотка или система запуска.
График двухфазного напряжения и схематический рисунок двухфазного генератора
Действующее значение синусоидального тока
Под действующим значением понимают его эффективность. Она равна такому значению постоянного тока, который выполнит ту же работу, что и переменный, за один период времени. Под работой здесь подразумевают его тепловую или электродинамическую направленность. Удобнее всего использовать среднеквадратичное значение переменного электричества.
Тогда действующее значение для синусоидального тока определяют по формуле:
I = * Im ≈ 0,707* Im,
где Im – величина амплитуды тока.
Действующее значение тока
Генерирование переменного тока
Кроме стандартных генераторов, для производства переменного тока применяются инверторы и фазорасщепители.
Инвертор
Это устройство, с помощью которого из постоянного тока получают его переменный вид. В процессе этого величина выходного напряжения тоже меняется. Схема устройства представляет собой электронный генератор синусоидального импульсного напряжения периодического характера. Есть варианты инверторов, работающих с дискретным сигналом. Инверторы применяют для автономного питания оборудования от аккумуляторов постоянного напряжения.
Инвертор 12/220 В, мощностью 1500 Вт
Фазорасщепитель
Ещё один способ получить несколько фаз из какого-либо сигнала – это выполнить его расщепление на несколько фаз. Это делается с помощью фазорасщепителя. Принудительная обработка сигналов цифрового или аналогового формата используется, как в радиоэлектронике, так и в силовой электротехнике.
Для электроснабжения трёхфазных асинхронных двигателей применяют выполненный на их же базе фазорасщепитель. Для этого обмотки трёхфазного двигателя соединяют не «звездой», а иначе. Две катушки присоединяют между собой последовательно, третью – подключают к средней точке второй обмотки. Двигатель запускают, как однофазный, после разгона в его третьей обмотке наводится ЭДС.
Интересно. В случае расщепления фаз подобным методом сдвиг фаз между 2 и 3 обмоткой составляет не 1200, как должно быть в идеале, а 900.
Сети переменного тока
По назначению и применению эти сети можно классифицировать следующим образом:
- общие системы: питание объектов промышленного, транспортного, сельскохозяйственного и бытового назначения;
- автономные сети: снабжение передвижных и стационарных автономных субъектов.
Общие сети переменного трёхфазного тока построены по четырёхпроводной схеме, где три провода – это «фаза», четвёртый – «ноль». Трансформаторные подстанции построены по схеме с глухо заземлённой нейтралью. Передача на дальние расстояния производится при высоком напряжении, которое затем понижается на подстанциях до напряжения 0,4 кВ и раздаётся потребителям.
Бытовые объекты подключаются по однофазной схеме. В этом случае требуются два провода: «фазный» и «нулевой».
Определение частоты и периода
Частота электрического тока – это величина физическая, она определяет количество колебаний за 1 секунду. Время, за которое происходит одно целое колебание, называется периодом.
Взаимосвязь частоты и работы электрооборудования
Частота тока – это один из параметров электроэнергии, который влияет на стабильную работу электроустановок и оборудования. При поставке энергии потребителю этот параметр строго контролируется, так же, как и напряжение.
Нить взаимосвязи выражается формулой номинального количества оборотов в минуту для вращающихся машин. КПД (коэффициент полезного действия) заложен в самой конструкции агрегатов. Он максимален при:
n = 60f/p,
где:
- n – количество об./мин.;
- f – частота;
- p – количество пар полюсов.
Количество оборотов турбины генераторов напрямую связано с частотой вырабатываемого переменного тока, полученная частота отвечает за оптимальный режим вращения электродвигателя потребителя. При снижении частоты в сети обороты машины снижаются автоматически. Происходит перегрузка на валу, и страдает двигатель.
В то же время технологическая линия, в которую он передаёт энергию вращения, также терпит изменения в работе:
- изменяется скорость движения конвейера, что влечёт за собой сбой технологического процесса и брак в итоге;
- снижаются мощность и частота вращения насосов, вентиляторов, что приводит к нестабильной работе систем, в которых они установлены;
- снижение частоты в энергосистеме на 1% приводит к падению общей мощности на нагрузке до 2%.
Для контроля этого важного электрического параметра применяют частотомеры.
Внимание! Снижение частоты на 10-15% вызывает падение производительности механизмов даже на самой электростанции до нуля. При частоте тока в сети 50 Гц (критической величиной являются 45 Гц) происходит лавинный спад.
Частотомер
Это прибор, предназначенный для измерения частоты и отображения полученного результата на экран. Для контроля в электросетях применяют приборы непосредственной оценки синусоидальных колебаний аналоговой конструкции.
Различают по методу установки:
- стационарные;
- щитовые;
- переносные.
Частотомеры в современном исполнении имеют цифровое отображение результатов на электронном дисплее.
Токи высокой частоты
ТВЧ – такова их аббревиатура, используются для плавки металлов, закалки поверхности металлических изделий. ТВЧ – это токи, имеющие частоту более 10 кГц. В индукционных печах используют ТВЧ, помещая проводник внутрь обмотки, через которую пропускают ТВЧ. Под их воздействием возникающие в проводнике вихревые токи разогревают его. Регулируя силу ТВЧ, контролируют температуру и скорость нагрева.
Интересно. Расплавляемый металл может быть подвешен в вакууме с помощью магнитного поля. Для него не нужен тигель (специальный ковш для нагрева). Так получают очень чистые вещества.
Плюсы использования ТВЧ в разных случаях:
- быстрый нагрев при ковке и прокате металла;
- оптимальный температурный режим для пайки или сварки деталей;
- расплав даже очень тугоплавких сплавов;
- приготовление пищи в микроволновых печах;
- дарсонвализация в медицине.
Получают ТВЧ с помощью установок, включающих в свой состав колебательный контур, или электромашинных генераторов. У статора и ротора генераторов на сторонах, обращённых друг другу, нанесены зубцы. Их взаимное движение порождает пульсацию магнитного поля. Частота на выходе тем больше, чем больше произведение числа зубцов ротора на частоту его вращения.
Период пульсаций и частота
Частота переменного тока может иметь другое название – пульсация. Периодом пульсации называют время единичной пульсации.
Интенсивность циклов
Для электросети с частотой 50 Гц период пульсации составит:
Т = 1/50 = 0,02 с.
При необходимости, зная эту зависимость, можно по времени цикла вычислить частоту.
Опасность разночастотных зарядов
Как постоянный, так и переменный ток при определённых значениях представляет опасность для человека. До 500 В разница в безопасности находится в соотношении 1:3 (42 В постоянного к 120 В переменного).
При значениях выше 500 В это соотношение выравнивается, причём константное электричество вызывает ожоги и электролизацию кожных покровов, изменяющееся – судороги, фибрилляцию и смерть. Тут уже частота пульсации имеет большое значение. Самый опасный интервал частот – от 40 до 60 Гц. Далее с повышением частоты риск поражения уменьшается.
Влияние частоты на пороговый ток
Частота переменного электричества – важный параметр. Она влияет не только на работу электроустановок потребителей, но и на человеческий организм. Изменяя частоту электрических колебаний, можно менять технологические процессы на производстве и качество вырабатываемой энергии.
Видео
Промышленная частота Википедия
У этого термина существуют и другие значения, см. Напряжение.Сетевое напряжение — среднеквадратичное (действующее) значение напряжения в электрической сети переменного тока, доступной конечным потребителям.
Среднее значение и частота[ | ]
Основные параметры сети переменного тока — напряжение и частота — различаются в разных регионах мира. В большинстве европейских стран низкое сетевое напряжение в трёхфазных сетях составляет 230/400 В при частоте 50 Гц, а в промышленных сетях — 400/690 В. В Северной, Центральной и частично Южной Америке низкое сетевое напряжение в сетях с раздёлённой фазой составляет 115 В при частоте 60 Гц.
Более высокое сетевое напряжение (от 1000 В до 10 кВ) уменьшает потери при передаче электроэнергии и позволяет использовать электроприборы с большей мощностью, однако, в то же время, увеличивает тяжесть последствий от поражения током неподготовленных пользователей от незащищённых сетей.
Для использования электроприборов, предназначенных для одного сетевого напряжения, в районах, где используется другое, нужны соответствующие преобразователи (например, трансформаторы). Для некоторых электроприборов (главным образом, специализированных, не относящихся к бытовой технике) кроме напряжения играет роль и частота питающей сети.
Современное высокотехнологичное электрооборудование, как правило, содержащее в своём составе импульсные преобразователи напряжения, может иметь переключатели на различные значения сетевого напряжения либо не имеет переключателей, но допускает широкий диапазон входных напряжений: от 100 до 240 В при номинальной частоте от 50 до 60 Гц, что позволяет использовать данные электроприборы без преобразователей практически в любой стране мира.
Параметры сетевого напряжения в России[ | ]
Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных подстанций, которые находятся рядом с электростанциями.
Согласно межгосударственному стандарту ГОСТ 29322-2014 (IEC 60038:2009), сетевое напряжение должно составлять 230 В ±10 % при частоте 50 ±0,2 Гц[1] (межфазное напряжение 400 В, напряжением фаза-нейтраль 230 В, четырёхпроводная схема включения «звезда»), примечание «a)» стандарта гласит: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».
К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод) линии электропередач (воздушные или кабельные ЛЭП) с межфазным напряжением 400 Вольт. Входные автоматы и счётчики потребления электроэнергии, обычно, трёхфазные. К однофазной розетке подводится фазовый провод, нулевой провод и, возможно, провод защитного заземления или зануления, электрическое напряжение между «фазой» и «нулём» составляет 230 Вольт.
В правилах устройства электроустановок (ПУЭ-7) продолжает фигурировать величина 220, но фактически напряжение в сети почти всегда выше этого значения и достигает 230—240 В, варьируясь от 190 до 250 В.
Герц, Вольт и Ампер. 110\220\380V & 50\60Hz
Первые однофазные сети переменного тока в США в 1880-е годы имели частоту 133 Гц (это удобно для обрабатывающего оборудования). Но исследованиями ведущих электротехников конца XIX века (Чарльз Штейнмец, Никола Тесла и другие) было установлено, что при реальном качестве трансформаторных сталей оптимальная частота равна приблизительно 55 Гц. В Америке выбрали «круглую» частоту 60 Гц, ориентируясь на улучшение качества. Консервативные немцы приняли 50 Гц, чтобы можно было использовать сталь с ухудшенным качеством. Так и разошлись жизненные пути Старого и Нового света… В начале 1950-х годов появились новые магнитные сплавы (пермаллой и т.п.), позволявшие строить электросети с частотой 400 Гц, по общей экономичности превосходящие традиционные — 50 и 60 Гц. Но техническая инерция не дала это сделать: пришлось бы заменить все трансформаторы и другое оборудование на электростанциях всех видов, все асинхронные и синхронные электродвигатели, индукционные электросчетчики и многие другие устройства, для работы которых важна частота сети.
До конца Первой мировой войны каждая из фирм, выпускавших пластинки, записывала фонограммы со своей скоростью вращения, а патефоны делали с перестройкой центробежного регулятора Уатта в достаточно широких пределах. Но с 1919 по 1927 годы появились ручные электроинструменты (электропаяльники, электродрели, электропилы, электрорубанки) и бытовые электроприборы (утюги, чайники, электроплитки, вентиляторы), а также электропатефоны — пружинный привод, часто заводимый вручную, заменили асинхронным двигателем. И от американского сетевого стандарта 60 Гц произошел другой, на полвека ставший общемировым (до конца 1960-х годов) — единая скорость вращения патефонных пластинок 78 об/мин. Почему выбрали редуктор с замедлением именно в 46 раз, не известно; возможно, просто взяли то, что оказалось под руками. Но он замедлял скорость вращения малонагруженного ротора 3600 об/мин (скорость вращения магнитного поля при минимальном количестве полюсов) до 78,26 об/мин.
Папа работает трансформатором:
получает 380, пропивает 220,
гудит и домой несет 127.
(анекдот 1960-1970-х годов)