Система счисления — Википедия
Системы счисления в культуре | |
---|---|
Индо-арабская | |
Арабская Тамильская Бирманская | Кхмерская Лаосская Монгольская Тайская |
Восточноазиатские | |
Китайская Японская Сучжоу Корейская | Вьетнамская Счётные палочки |
Алфавитные | |
Абджадия Армянская Ариабхата Кириллическая Греческая | Грузинская Эфиопская Еврейская Акшара-санкхья |
Другие | |
Вавилонская Египетская Этрусская Римская Дунайская | Аттическая Кипу Майяская Эгейская Символы КППУ |
Позиционные | |
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60 | |
Нега-позиционная | |
Симметричная | |
Смешанные системы | |
Фибоначчиева | |
Непозиционные | |
Единичная (унарная) |
Систе́ма счисле́ния (англ. numeral system или system of numeration) — символический метод записи чисел, представление чисел с помощью письменных знаков.
Система счисления:
Системы счисления подразделяются на:
Позиционные системы счисления
В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у арабов.
Под позиционной системой счисления обычно понимается b{\displaystyle b}-ичная система счисления, которая определяется целым числом b>1{\displaystyle b>1}, называемым основанием системы счисления. Целое число без знака x{\displaystyle x} в b{\displaystyle b}-ичной системе счисления представляется в виде конечной линейной комбинации степеней числа b{\displaystyle b}:
- x=∑k=0n−1akbk{\displaystyle x=\sum _{k=0}^{n-1}a_{k}b^{k}}, где ak{\displaystyle a_{k}} — это целые числа, называемые цифрами, удовлетворяющие неравенству 0≤ak≤(b−1){\displaystyle 0\leq a_{k}\leq (b-1)}.
Каждая степень bk{\displaystyle b^{k}} в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя k{\displaystyle k} (номером разряда). Обычно в записи ненулевых чисел начальные нули опускаются.
Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число x{\displaystyle x} записывают в виде последовательности его b{\displaystyle b}-ичных цифр, перечисляемых по убыванию старшинства разрядов слева направо:
- x=an−1an−2…a0.{\displaystyle x=a_{n-1}a_{n-2}\dots a_{0}.}
Например, число сто три представляется в десятичной системе счисления в виде:
- 103=1⋅102+0⋅101+3⋅100.{\displaystyle 103=1\cdot 10^{2}+0\cdot 10^{1}+3\cdot 10^{0}.}
Наиболее часто употребляемыми в настоящее время позиционными системами являются:
В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.
Смешанные системы счисления
Смешанная система счисления является обобщением b{\displaystyle b}-ичной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел {bk}k=0∞{\displaystyle \{b_{k}\}_{k=0}^{\infty }}, и каждое число x{\displaystyle x} в ней представляется как линейная комбинация:
- x=∑k=0n−1akbk{\displaystyle x=\sum _{k=0}^{n-1}a_{k}b_{k}}, где на коэффициенты ak{\displaystyle a_{k}}, называемые как и прежде цифрами, накладываются некоторые ограничения.
Записью числа x{\displaystyle x} в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса k{\displaystyle k}, начиная с первого ненулевого.
В зависимости от вида bk{\displaystyle b_{k}} как функции от k{\displaystyle k} смешанные системы счисления могут быть степенными, показательными и т. п. Когда bk=bk{\displaystyle b_{k}=b^{k}} для некоторого b{\displaystyle b}, смешанная система счисления совпадает с показательной b{\displaystyle b}-ичной системой счисления.
Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина «d{\displaystyle d} дней, h{\displaystyle h} часов, m{\displaystyle m} минут, s{\displaystyle s} секунд» соответствует значению d⋅24⋅60⋅60+h⋅60⋅60+m⋅60+s{\displaystyle d\cdot 24\cdot 60\cdot 60+h\cdot 60\cdot 60+m\cdot 60+s} секунд.
Факториальная система счисления
В факториальной системе счисления основаниями являются последовательность факториалов bk=k!{\displaystyle b_{k}=k!}, и каждое натуральное число x{\displaystyle x} представляется в виде:
- x=∑k=1ndkk!{\displaystyle x=\sum _{k=1}^{n}d_{k}k!}, где 0≤dk≤k{\displaystyle 0\leq d_{k}\leq k}.
Факториальная система счисления используется при декодировании перестановок списками инверсий: имея номер перестановки, можно воспроизвести её саму следующим образом: номер перестановки (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i!{\displaystyle i!} будет обозначать число инверсий для элемента i+1{\displaystyle i+1} в том множестве, в котором производятся перестановки (число элементов меньших i+1{\displaystyle i+1}, но стоящих правее его в искомой перестановке).
Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с номером 0 — (1,2,3,4,5) до перестановки с номером 119 — (5,4,3,2,1)), найдём перестановку с номером 100:
- 100=4!⋅4+3!⋅0+2!⋅2+1!⋅0=96+4;{\displaystyle 100=4!\cdot 4+3!\cdot 0+2!\cdot 2+1!\cdot 0=96+4;}
положим ti{\displaystyle t_{i}} — коэффициент при числе i!{\displaystyle i!}, тогда t4=4{\displaystyle t_{4}=4}, t3=0{\displaystyle t_{3}=0}, t2=2{\displaystyle t_{2}=2}, t1=0{\displaystyle t_{1}=0}, тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) — таким образом, перестановка с номером 100 будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.
Фибоначчиева система счисления
Фибоначчиева система счисления основывается на числах Фибоначчи. Каждое натуральное число n{\displaystyle n} в ней представляется в виде:
- n=∑kfkFk{\displaystyle n=\sum _{k}f_{k}F_{k}}, где Fk{\displaystyle F_{k}} — числа Фибоначчи, fk∈{0,1}{\displaystyle f_{k}\in \{0,1\}}, при этом в коэффициентах fk{\displaystyle f_{k}} есть конечное количество единиц и не встречаются две единицы подряд.
Непозиционные системы счисления
В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.
Биномиальная система счисления
В биномиальной системе счисления (англ.) число x представляется в виде суммы биномиальных коэффициентов:
- x=∑k=1n(ckk){\displaystyle x=\sum _{k=1}^{n}{c_{k} \choose k}}, где 0≤c1<c2<⋯<cn.{\displaystyle 0\leq c_{1}<c_{2}<\dots <c_{n}.}
При всяком фиксированном значении n{\displaystyle n} каждое натуральное число представляется уникальным образом.[1]
Система остаточных классов (СОК)
Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором попарно взаимно простых модулей (m1,m2,…,mn){\displaystyle (m_{1},m_{2},\dots ,m_{n})} с произведением M=m1⋅m2⋅⋯⋅mn{\displaystyle M=m_{1}\cdot m_{2}\cdot \dots \cdot m_{n}} так, что каждому целому числу x{\displaystyle x} из отрезка [0,M−1]{\displaystyle [0,M-1]} ставится в соответствие набор вычетов (x1,x2,…,xn){\displaystyle (x_{1},x_{2},\dots ,x_{n})}, где
- x≡x1(modm1);{\displaystyle x\equiv x_{1}{\pmod {m_{1}}};}
- x≡x2(modm2);{\displaystyle x\equiv x_{2}{\pmod {m_{2}}};}
- …
- x≡xn(modmn).{\displaystyle x\equiv x_{n}{\pmod {m_{n}}}.}
При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка [0,M−1]{\displaystyle [0,M-1]}.
В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в [0,M−1]{\displaystyle [0,M-1]}.
Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленных в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям (m1,m1⋅m2,…,m1⋅m2⋅⋯⋅mn−1){\displaystyle (m_{1},m_{1}\cdot m_{2},\dots ,m_{1}\cdot m_{2}\cdot \dots \cdot m_{n-1})}.
Система счисления Штерна-Броко
Система счисления Штерна-Броко — способ записи положительных рациональных чисел, основанный на дереве Штерна-Броко.
Системы счисления разных народов
Единичная система счисления
По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т. д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком — так возникают прообразы будущих цифр.
Древнеегипетская система счисления
Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.[2]
Вавилонская система счисления
Алфавитные системы счисления
Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия), индийцы (акшара-санкхья) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.[2]
Еврейская система счисления
Еврейская система счисления в качестве цифр использует 22 буквы еврейского алфавита. Каждая буква имеет своё числовое значение от 1 до 400 (см. также Гематрия). Ноль отсутствует. Цифры, записанные таким образом, наиболее часто можно встретить в нумерации лет по иудейскому календарю.
Греческая система счисления
Греческая система счисления, также известная как ионийская или новогреческая — непозиционная система счисления. Алфавитная запись чисел, в которой в качестве символов для счёта, употребляют буквы классического греческого алфавита, а также некоторые буквы доклассической эпохи, такие как ϛ (стигма), ϟ (коппа) и ϡ (сампи).
Римская система счисления
I обозначает 1,
V — 5,
X — 10,
L — 50,
C — 100,
D — 500,
M — 1000
Например, II = 1 + 1 = 2
здесь символ I обозначает 1 независимо от места в числе.
На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:
IV = 4, в то время как:
VI = 6
Система счисления майя
Майя использовали 20-ичную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом (17)(19) сразу следовало число (1)(0)(0). Это было сделано для облегчения расчётов календарного цикла, поскольку (1)(0)(0) = 360 примерно равно числу дней в солнечном году.
Для записи основными знаками были точки (единицы) и отрезки (пятёрки).
Кипу инков
Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[3], так и не числовых записей в двоичной системе кодирования[4]. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[5]. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись
См. также
Примечания
Ссылки
основание, примеры и перевод в другие системы счисления
С того момента, как человек впервые осознал себя автономным объектом в мире, огляделся вокруг, прервав замкнутый круг бездумного выживания, он начал изучать. Смотрел, сравнивал, считал, делал выводы. Именно на этих, казалось бы, элементарных действиях, которые сейчас под силу и ребенку, начали основываться современные науки.
С чем работать будем?
Для начала необходимо определиться с тем, что вообще представляет собой система счисления. Это условный принцип записи чисел, их наглядное представление, которое упрощает процесс познания. Сами по себе числа не существуют (да простит нас Пифагор, который считал число основой мироздания). Это просто абстрактный объект, что имеет физическое обоснование лишь при вычислениях, своеобразное мерило. Цифры — объекты, из которых число составляется.
Начало
Первый осознанный счет носил самый примитивный характер. Теперь его принято называть непозиционной системой счисления. На практике она представляет собой число, в которых позиция составляющих его элементов неважна. Взять, к примеру, обыкновенные черточки, каждая из которых соответствует определенному объекту: три человека эквивалентны |||. Как ни крути, три черточки — это все те же три черточки. Если брать более близкие примеры, то древние новгородцы пользовались при счете славянским алфавитом. При необходимости выделения именно числа над буквой просто проставляли знак ~. Также буквенная система счисления была в почете у древних римлян, где числа – это опять же буквы, но принадлежащие уже латинскому алфавиту.
В силу обособленности древних держав, каждая из них развивала науку самостоятельно, кто во что горазд.

С развитием и усложнением процесса познания мира появилась потребность выделения разрядов. Представим, что нужно как-то зафиксировать численность армии государства, которая измеряется тысячами (в лучшем случае). Что ж теперь, бесконечно выписывать палочки? Из-за этого шумерские ученые тех лет выделили систему счисления, в которой месторасположение символа было обусловлено его разрядом. Опять же, пример: числа 789 и 987 имеют один и тот же «состав», но, в силу смены расположения цифр, второе существенно больше.
Что это такое — десятичная система счисления? Обоснование
Конечно, позиционность и закономерность были не едиными для всех методов подсчета. Например, в Вавилоне базой выступало число 60, в Греции — алфавитная система (число составляли буквы). Примечательно то, что метод подсчета жителей Вавилона жив и по сей день — он нашел свое место в астрономии.
Однако прижилась и распространилась та, у которой основание системы счисления — десятка, так как прослеживается откровенная параллель с пальцами человеческих рук. Посудите сами — поочередно сгибая пальцы, можно досчитаться чуть ли не до бесконечного множества.

Начало этой системе было положено в Индии, причем она появилась сразу на базе «10». Формирование названий чисел было двояким – например, 18 можно было прописать словом и как «восемнадцать», и как «без двух двадцать». Также именно индийские ученые вывели такое понятие, как «ноль», официально его появление зафиксировано в IX веке. Именно этот шаг стал основополагающим в формировании классических позиционных систем счисления, потому что ноль, несмотря на то, что символизирует пустоту, ничто, способен поддержать разрядность числа, дабы оно не потеряло свой смысл. Например: 100000 и 1. Первое число включает в себя 6 цифр, первая из которых – единица, а пять последних обозначают пустоту, отсутствие, а второе число – просто единица. По логике, они должны быть равны, но на практике это далеко не так. Нули в 100000 обозначают присутствие тех разрядов, которых во втором числе нет. Вот вам и «ничто».
Современность

Десятичная система счисления состоит из цифр от нуля до девяти. Числа, составленные в её рамках, строятся по следующему принципу:
крайняя справа цифра обозначает единицы, сместитесь на один шаг влево – получите десятки, еще шаг влево – сотни и так далее. Сложно? Ничего подобного! На самом деле, десятичная система примеры может предоставить весьма наглядные, взять хотя бы число 666. Состоит из трех цифр 6, каждая из которых обозначает свой разряд. Причем эта форма записи является свернутой. Если вы хотите подчеркнуть, о каком именно числе идет речь, то его можно развернуть, придав письменную форму тому, что «проговаривает» ваш внутренний голос каждый раз, когда вы видите число – «шестьсот шестьдесят шесть». Само написание включает в себя все те же единицы, десятки и сотни, то есть каждая цифра позиции умножается на определенную степень числа 10. Развернутая форма представляет собой следующее выражение:
66610 = 6х102 + 6*101 + 6*100 = 600 + 60 + 6.
Актуальные альтернативы
Второй по популярности после десятичной системы счисления является достаточно молодая разновидность — двоичная (бинарная). Появилась она благодаря вездесущему Лейбницу, который считал, что в особо сложных случаях в исследовании теории чисел бинарность будет удобнее, нежели десятизначность. Свое повсеместное распространение она получила с развитием цифровых технологий, так как имеет в основании число 2, и элементы в ней составляются из цифр 1 и 2.

С течением времени процессы, связанные с программированием, усложнялись, поэтому ввели способы записи чисел, у которых в основании лежат 8 и 16. Почему именно они? Во-первых, количество знаков больше, а значит, само число будет короче, во-вторых — в их основе лежит степень двойки. Восьмеричная система состоит из цифр 0-7, а шестнадцатеричная — из тех же цифр, что и десятичная, плюс буквы от A до F.
Принципы и методы перевода числа
Перевести в десятичную систему счисления просто, достаточно придерживаться следующего принципа: исходное число записывается как многочлен, который состоит из сумм произведений каждого числа на основу «2», возведенную в соответствующую разрядности степень.

Основная формула для вычисления:
x2 = yk2k-1 + yk-12k-2 + yk-22k-3 + …+ y221 + y120.
Примеры перевода
Для закрепления рассмотрим несколько выражений:
1011112 = (1×25) + (0x24) + (1×23) + (1×22) + (1×21) + (1×20) = 32 + 8 + 4 + 2 + 1 = 4710.
Усложним задачу, ибо система включает в себя перевод и дробных чисел, для этого рассмотрим отдельно целую и отдельно дробную часть — 111110,112. Итак:
111110,112 = (1×25) + (1×24) + (1×23) + (1×22) + (1×21) + (0x20) = 32 + 16 + 8 + 4 + 2 = 6210;
112 = 2-1x1 + 2-2x1 = 1/2 + 1/4 = 0,7510.
В итоге получаем, что 111110,112 = 62,7510.
Вывод

Несмотря на всю «древность», десятичная система счисления, примеры которой мы рассмотрели выше, все еще «на коне», и списывать ее со счетов не стоит. Именно она становится математической основой в школе, на ее примере познаются законы математической логики, выводится умение строить выверенные взаимосвязи. Да что уж там — практически весь мир пользуется именно этой системой, не смущаясь ее неактуальностью. Причина для этого одна: она удобная. В принципе, вывести основу счета можно любую, ею при необходимости станет даже яблоко, но зачем усложнять? Идеально выверенное количество цифр при необходимости и по пальцам пересчитать можно.
Система счисления — Википедия. Что такое Система счисления
Системы счисления в культуре | |
---|---|
Индо-арабская | |
Арабская Тамильская Бирманская | Кхмерская Лаосская Монгольская Тайская |
Восточноазиатские | |
Китайская Японская Сучжоу Корейская | Вьетнамская Счётные палочки |
Алфавитные | |
Абджадия Армянская Ариабхата Кириллическая Греческая | Грузинская Эфиопская Акшара-санкхья |
Другие | |
Вавилонская Египетская Этрусская Римская Дунайская | Аттическая Кипу Майяская Эгейская Символы КППУ |
Позиционные | |
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60 | |
Нега-позиционная | |
Симметричная | |
Смешанные системы | |
Фибоначчиева | |
Непозиционные | |
Единичная (унарная) |
Систе́ма счисле́ния (англ. numeral system или system of numeration) — символический метод записи чисел, представление чисел с помощью письменных знаков.
Система счисления:
Системы счисления подразделяются на:
Позиционные системы счисления
В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у арабов.
Под позиционной системой счисления обычно понимается b{\displaystyle b}-ичная система счисления, которая определяется целым числом b>1{\displaystyle b>1}, называемым основанием системы счисления. Целое число без знака x{\displaystyle x} в b{\displaystyle b}-ичной системе счисления представляется в виде конечной линейной комбинации степеней числа b{\displaystyle b}:
- x=∑k=0n−1akbk{\displaystyle x=\sum _{k=0}^{n-1}a_{k}b^{k}}, где ak{\displaystyle a_{k}} — это целые числа, называемые цифрами, удовлетворяющие неравенству 0≤ak≤(b−1){\displaystyle 0\leq a_{k}\leq (b-1)}.
Каждая степень bk{\displaystyle b^{k}} в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя k{\displaystyle k} (номером разряда). Обычно в записи ненулевых чисел начальные нули опускаются.
Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число x{\displaystyle x} записывают в виде последовательности его b{\displaystyle b}-ичных цифр, перечисляемых по убыванию старшинства разрядов слева направо:
- x=an−1an−2…a0.{\displaystyle x=a_{n-1}a_{n-2}\dots a_{0}.}
Например, число сто три представляется в десятичной системе счисления в виде:
- 103=1⋅102+0⋅101+3⋅100.{\displaystyle 103=1\cdot 10^{2}+0\cdot 10^{1}+3\cdot 10^{0}.}
Наиболее часто употребляемыми в настоящее время позиционными системами являются:
В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.
Смешанные системы счисления
Смешанная система счисления является обобщением b{\displaystyle b}-ичной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел {bk}k=0∞{\displaystyle \{b_{k}\}_{k=0}^{\infty }}, и каждое число x{\displaystyle x} в ней представляется как линейная комбинация:
- x=∑k=0n−1akbk{\displaystyle x=\sum _{k=0}^{n-1}a_{k}b_{k}}, где на коэффициенты ak{\displaystyle a_{k}}, называемые как и прежде цифрами, накладываются некоторые ограничения.
Записью числа x{\displaystyle x} в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса k{\displaystyle k}, начиная с первого ненулевого.
В зависимости от вида bk{\displaystyle b_{k}} как функции от k{\displaystyle k} смешанные системы счисления могут быть степенными, показательными и т. п. Когда bk=bk{\displaystyle b_{k}=b^{k}} для некоторого b{\displaystyle b}, смешанная система счисления совпадает с показательной b{\displaystyle b}-ичной системой счисления.
Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина «d{\displaystyle d} дней, h{\displaystyle h} часов, m{\displaystyle m} минут, s{\displaystyle s} секунд» соответствует значению d⋅24⋅60⋅60+h⋅60⋅60+m⋅60+s{\displaystyle d\cdot 24\cdot 60\cdot 60+h\cdot 60\cdot 60+m\cdot 60+s} секунд.
Факториальная система счисления
В факториальной системе счисления основаниями являются последовательность факториалов bk=k!{\displaystyle b_{k}=k!}, и каждое натуральное число x{\displaystyle x} представляется в виде:
- x=∑k=1ndkk!{\displaystyle x=\sum _{k=1}^{n}d_{k}k!}, где 0≤dk≤k{\displaystyle 0\leq d_{k}\leq k}.
Факториальная система счисления используется при декодировании перестановок списками инверсий: имея номер перестановки, можно воспроизвести её саму следующим образом: номер перестановки (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i!{\displaystyle i!} будет обозначать число инверсий для элемента i+1{\displaystyle i+1} в том множестве, в котором производятся перестановки (число элементов меньших i+1{\displaystyle i+1}, но стоящих правее его в искомой перестановке).
Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с номером 0 — (1,2,3,4,5) до перестановки с номером 119 — (5,4,3,2,1)), найдём перестановку с номером 100:
- 100=4!⋅4+3!⋅0+2!⋅2+1!⋅0=96+4;{\displaystyle 100=4!\cdot 4+3!\cdot 0+2!\cdot 2+1!\cdot 0=96+4;}
положим ti{\displaystyle t_{i}} — коэффициент при числе i!{\displaystyle i!}, тогда t4=4{\displaystyle t_{4}=4}, t3=0{\displaystyle t_{3}=0}, t2=2{\displaystyle t_{2}=2}, t1=0{\displaystyle t_{1}=0}, тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) — таким образом, перестановка с номером 100 будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.
Фибоначчиева система счисления
Фибоначчиева система счисления основывается на числах Фибоначчи. Каждое натуральное число n{\displaystyle n} в ней представляется в виде:
- n=∑kfkFk{\displaystyle n=\sum _{k}f_{k}F_{k}}, где Fk{\displaystyle F_{k}} — числа Фибоначчи, fk∈{0,1}{\displaystyle f_{k}\in \{0,1\}}, при этом в коэффициентах fk{\displaystyle f_{k}} есть конечное количество единиц и не встречаются две единицы подряд.
Непозиционные системы счисления
В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.
Биномиальная система счисления
В биномиальной системе счисления (англ.) число x представляется в виде суммы биномиальных коэффициентов:
- x=∑k=1n(ckk){\displaystyle x=\sum _{k=1}^{n}{c_{k} \choose k}}, где 0≤c1<c2<⋯<cn.{\displaystyle 0\leq c_{1}<c_{2}<\dots <c_{n}.}
При всяком фиксированном значении n{\displaystyle n} каждое натуральное число представляется уникальным образом.[1]
Система остаточных классов (СОК)
Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором попарно взаимно простых модулей (m1,m2,…,mn){\displaystyle (m_{1},m_{2},\dots ,m_{n})} с произведением M=m1⋅m2⋅⋯⋅mn{\displaystyle M=m_{1}\cdot m_{2}\cdot \dots \cdot m_{n}} так, что каждому целому числу x{\displaystyle x} из отрезка [0,M−1]{\displaystyle [0,M-1]} ставится в соответствие набор вычетов (x1,x2,…,xn){\displaystyle (x_{1},x_{2},\dots ,x_{n})}, где
- x≡x1(modm1);{\displaystyle x\equiv x_{1}{\pmod {m_{1}}};}
- x≡x2(modm2);{\displaystyle x\equiv x_{2}{\pmod {m_{2}}};}
- …
- x≡xn(modmn).{\displaystyle x\equiv x_{n}{\pmod {m_{n}}}.}
При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка [0,M−1]{\displaystyle [0,M-1]}.
В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в [0,M−1]{\displaystyle [0,M-1]}.
Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленных в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям (m1,m1⋅m2,…,m1⋅m2⋅⋯⋅mn−1){\displaystyle (m_{1},m_{1}\cdot m_{2},\dots ,m_{1}\cdot m_{2}\cdot \dots \cdot m_{n-1})}.
Система счисления Штерна-Броко
Система счисления Штерна-Броко — способ записи положительных рациональных чисел, основанный на дереве Штерна-Броко.
Системы счисления разных народов
Единичная система счисления
По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т. д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком — так возникают прообразы будущих цифр.
Древнеегипетская система счисления
Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 1, 10, 102, 103, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.[2]
Вавилонская система счисления
Алфавитные системы счисления
Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия), индийцы (акшара-санкхья) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.[2]
Еврейская система счисления
Еврейская система счисления в качестве цифр использует 22 буквы еврейского алфавита. Каждая буква имеет своё числовое значение от 1 до 400 (см. также Гематрия). Ноль отсутствует. Цифры, записанные таким образом, наиболее часто можно встретить в нумерации лет по иудейскому календарю.
Греческая система счисления
Греческая система счисления, также известная как ионийская или новогреческая — непозиционная система счисления. Алфавитная запись чисел, в которой в качестве символов для счёта, употребляют буквы классического греческого алфавита, а также некоторые буквы доклассической эпохи, такие как ϛ (стигма), ϟ (коппа) и ϡ (сампи).
Римская система счисления
Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:
I обозначает 1,
V — 5,
X — 10,
L — 50,
C — 100,
D — 500,
M — 1000
Например, II = 1 + 1 = 2
здесь символ I обозначает 1 независимо от места в числе.
На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:
IV = 4, в то время как:
VI = 6
Система счисления майя
Майя использовали 20-ичную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом (17)(19) сразу следовало число (1)(0)(0). Это было сделано для облегчения расчётов календарного цикла, поскольку (1)(0)(0) = 360 примерно равно числу дней в солнечном году.
Для записи основными знаками были точки (единицы) и отрезки (пятёрки).
Кипу инков
Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[3], так и не числовых записей в двоичной системе кодирования[4]. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[5]. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись[6].
См. также
Примечания
Ссылки
Система счисления — это… Что такое Система счисления?
Системы счисления в культуре | |
---|---|
Индо-арабская система счисления | |
Арабская Индийские Тамильская Бирманская | Кхмерская Лаоская Монгольская Тайская |
Восточноазиатские системы счисления | |
Китайская Японская Сучжоу Корейская | Вьетнамская Счётные палочки |
Алфавитные системы счисления | |
Абджадия Армянская Ариабхата Кириллическая | Греческая Эфиопская Еврейская Катапаяди |
Другие системы | |
Вавилонская Египетская Этруская Римская | Аттическая Кипу Майская |
Позиционные системы счисления | |
Десятичная система счисления (10) | |
2, 3, 4, 5, 6, 7, 8, 9, 12, 16, 20, 60 | |
Нега-позиционная система счисления | |
Симметричная система счисления | |
Смешанные системы счисления | |
Фибоначчиева система счисления | |
Непозиционные системы счисления | |
Единичная (унарная) система счисления | |
Список систем счисления |
Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.
Система счисления:
Системы счисления подразделяются на позиционные, непозиционные и смешанные.
Позиционные системы счисления
В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.
Под позиционной системой счисления обычно понимается -ричная система счисления, которая определяется целым числом , называемым основанием системы счисления. Целое число без знака в -ричной системе счисления представляется в виде конечной линейной комбинации степеней числа :
- , где — это целые числа, называемые цифрами, удовлетворяющие неравенству .
Каждая степень в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно, в ненулевых числах , левые нули опускаются.
Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:
Например, число сто три представляется в десятичной системе счисления в виде:
Наиболее употребляемыми в настоящее время позиционными системами являются:
В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.
Смешанные системы счисления
Смешанная система счисления является обобщением -ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел , и каждое число в ней представляется как линейная комбинация:
- , где на коэффициенты , называемые как и прежде цифрами, накладываются некоторые ограничения.
Записью числа в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.
В зависимости от вида как функции от смешанные системы счисления могут быть степенными, показательными и т. п. Когда для некоторого , смешанная система счисления совпадает с показательной -ричной системой счисления.
Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина « дней, часов, минут, секунд» соответствует значению секунд.
Факториальная система счисления
В факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число представляется в виде:
- , где .
Факториальная система счисления используется при декодировании перестановок списками инверсий: имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)
Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с номером 0 — (1,2,3,4,5) до перестановки с номером 119 — (5,4,3,2,1)), найдём 101-ую перестановку: 100 = 4!*4 + 3!*0 + 2!*2 + 1!*0 = 96 + 4; положим ti — коэффициент при числе i!, тогда t4 = 4, t3 = 0, t2 = 2, t1 = 0 , тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) — таким образом, 101-я перестановка будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.
Фибоначчиева система счисления
Фибоначчиева система счисления основывается на числах Фибоначчи. Каждое натуральное число в ней представляется в виде:
- , где — числа Фибоначчи, , при этом в коэффициентах есть конечное количество единиц и не встречаются две единицы подряд.
Непозиционные системы счисления
В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.
Биномиальная система счисления
Представление, использующее биномиальные коэффициенты
- , где .
Система остаточных классов (СОК)
Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов , где
- …
При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка .
В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .
Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленых в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям .
Система счисления Штерна–Броко
Система счисления Штерна–Броко — способ записи положительных рациональных чисел, основанный на дереве Штерна–Броко.
Системы счисления разных народов
Единичная система счисления
По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т.д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком — так возникают прообразы будущих цифр.
Древнеегипетская система счисления
Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 10², 10³, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.[2]
Вавилонская система счисления
Алфавитные системы счисления
Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.[2]
Еврейская система счисления
Еврейская система счисления в качестве цифр использует 22 буквы еврейского алфавита. Каждая буква имеет своё числовое значение от 1 до 400 (см. т. ж. Гематрия). Ноль отсутствует. Цифры, записанные таким образом, наиболее часто можно встретить в нумерации лет по иудейскому календарю.
Греческая система счисления
Римская система счисления
Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:
I обозначает 1,
V — 5,
X — 10,
L — 50,
C — 100,
D — 500,
M — 1000
Например, II = 1 + 1 = 2
здесь символ I обозначает 1 независимо от места в числе.
На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:
IV = 4, в то время как:
VI = 6
Система счисления майя
Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом (17)(19) сразу следовало число (1)(0)(0). Это было сделано для облегчения расчётов календарного цикла, поскольку (1)(0)(0) = 360 примерно равно числу дней в солнечном году.
Для записи основными знаками были точки (единицы) и отрезки (пятёрки).
Кипу инков
Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[3], так и не числовых записей в двоичной системе кодирования[4]. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[5]. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись[6].