Site Loader

Содержание

Двухполупериодная схема выпрямителя. | Электрознайка. Домашний Электромастер.




data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8969066382″>
   Самая простая двух-полупериодная схема выпрямления переменного тока получается из двух однополупериодных схем.  

    Вторичная обмотка трансформатора состоит из двух одинаковых обмоток II и III, каждая из которых выдает нужное переменное напряжение Uвых.
Через диоды проходит только положительная полуволна синусоидального переменного тока.

   Работает поочередно или обмотка II и диод VD1, или обмотка III и диод VD2. Средняя величина тока проходящего через каждую обмотку и диод, в двухполупериодном выпрямителе, равна половине выходного тока выпрямителя. В этом случае обмотки можно мотать проводом с вдвое меньшим сечением и применять диоды с меньшим допустимым током.

   Такие схемы двухполупериодного выпрямления предпочтительны тогда, когда на выходе выпрямителя нужно получить большой ток (5 — 10 ампер и более) при небольших напряжениях (5 – 20 вольт).


    Желательно применять германиевые диоды (на них меньше падение напряжения, чем на кремниевых диодах) они меньше греются. Мощные диоды, при больших токах нагрузки, нужно обязательно ставить на радиатор.
    При таком способе включения, оба диода можно ставить на один радиатор, так как аноды (плюсы) их имеют вывод на корпус, под гайку. Конструктивно это очень удобно. Два диода и радиатор составляют одну конструкцию и ее ставят на одну изолирующую подставку.
    Форма выходного напряжения двухполупериодного выпрямителя представляет собой пульсирующее напряжение: полусинусоиды положительной и, перевернутой вверх, полусинусоиды отрицательной.

   На рисунках приведены варианты таких схем получения, на выходе выпрямителя, выходного напряжения положительной (рис. 1) или отрицательной (рис. 2) полярности относительно корпуса.

   Достоинства такой схемы двухполупериодного выпрямления против одно полупериодной схемы:

— трансформатор работает без токов подмагничивания;

— частота пульсаций на выходе выпрямителя f = 100 герц;

 — коэффициент пульсаций существенно меньше.

Недостатки такой схемы:

  •    — обратное напряжение на каждом диоде превышает выходное напряжение выпрямителя Uвых. в два раза (напряжение обоих обмоток складывается).

   В случае, если нет возможности достать диоды на рассчитываемый ток, можно включать их параллельно по два, а то и по три в каждом плече, как на рисунке 3.


    В этой схеме все диоды можно ставить на один радиатор, без изоляционных прокладок. Резисторы ставятся для того, чтобы уравнять внутренние «тепловые» сопротивления диодов.
    Резисторы должны быть равны между собой и иметь величину соответствующую динамическому сопротивлению диода — от 0,2 до 1 Ом, и мощность 1 ватт и более.


    Недостаток схемы:  – большая потеря мощности на резисторах.

   Разберем на примере применение данных схем.
Пусть нам нужно построить выпрямитель на напряжение 12 вольт и номинальный ток до 15 ампер.

    Рассмотрим сначала схему на рис. 1. Каждая вторичная обмотка трансформатора (обмотки II и III) должна быть рассчитана на переменное напряжение 13 – 14 вольт, с учетом падения напряжения на самой обмотке и самом сопротивлении диода.

Эти обмотки включаются последовательно – конец обмотки II с началом обмотки III. Средняя точка – общий, минусовой вывод. Два диода соединенные анодами вместе – это плюсовой вывод.


    Выходной ток двухполупериодного выпрямителя состоит из двух полуволн. Каждая из полуволн, за один период проходит сначала по одной половинке и диоду, затем по второй и диоду и имеет величину по 15 ампер. После диодов они сливаются вместе и имеют во времени форму пульсирующего напряжения.
    В каждой паре (обмотка и диод) ток, в течении одного периода, половину периода идет, половину периода не идет. Электрическая мощность, проходящая по каждой паре (обмотка — диод) в течение периода, равна половине общей мощности за это время. А следовательно, средний ток через каждую пару (обмотка — диод) равен, как бы, половине общего тока.


    Сечение провода вторичных обмоток и максимально допустимый ток диодов так же подбирается из этого расчета.
    Из этого следует, что в нашем примере сечение провода вторичных обмоток может быть рассчитано на ток в 7,5 ампер, то есть в два раза меньше. Диоды подбираются на ток до 10 ампер (всегда берутся с запасом), а не 7,5 ампер.
    Те же самые рекомендации по сечению провода относятся к схеме на рис. 2 и рис.3.

   Пример на схеме рис.3 относится к случаю, когда у нас нет в наличии диодов рассчитанных на ток 10 ампер, а есть диоды на 5 ампер. В этом случае ставим 4 диода: в «плечо» по два диода в параллель.

Через каждый диод будет протекать ток  15 : 4 = 3,75 ампера.
    Определим величину омического сопротивления резисторов R1 – R4. Падение напряжения на диоде, при протекании через него максимального тока, равно около Uд = 1,0 вольта. Его динамическое сопротивление при токе I = 3,75 ампер будет примерно равно:

R = Uд : I = 1,0 : 3,75 = 0,266 Ом.
 Сопротивление каждого из резисторов R1 – R4 должно быть 1 – 2 Uд = 0,26 – 0,5 Ома.R1 – R4 д
При резисторе R = (0,26 — 0,5) Ома падение напряжения на нем будет:
   U = R х I = (0,26 — 0,5) х 3,75 = от 0,975 до 1,875 вольта.
    Электрическая мощность выделяемая на каждом резисторе равна:


   P = I х U = 3,75 (0,95 – 1,875) = от 3,56 до 7,03 ватта.

Такие резисторы изготавливают из толстого высокоомного провода, рассчитанного на ток 3,75 ампер и сильное выделение тепла.

   Это довольно существенная потеря мощности на резисторах.
 Такова расплата за использование не соответствующих току диодов.
     Если же не ставить эти уравнительные резисторы, одни диоды будут работать с перегрузкой и сильно греться (тепловой пробой), другие будут работать с малыми токами.


data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8969066382″>

Электронные схемы — двухполупериодные выпрямители

Цепь выпрямителя, которая выпрямляет как положительные, так и отрицательные полупериоды, может называться двухполупериодным выпрямителем, поскольку выпрямляет полный цикл. Конструкция двухполупериодного выпрямителя может быть двух типов. Они есть

  • Двухполупериодный выпрямитель с центральным отводом
  • Мостовой двухполупериодный выпрямитель

Оба из них имеют свои преимущества и недостатки. Давайте теперь рассмотрим как их построение, так и работу с их формами волны, чтобы узнать, какая из них лучше и почему.

Полноволновой выпрямитель с центральным отводом

Цепь выпрямителя, чья вторичная обмотка трансформатора подключена для получения требуемого выходного напряжения, с использованием двух диодов для альтернативного выпрямления полного цикла, называется двухполупериодной цепью выпрямителя с центральным отводом . В отличие от других случаев трансформатор здесь отводится по центру.

Особенности центрирующего трансформатора –

  • Постукивание осуществляется путем вытягивания провода в средней точке вторичной обмотки. При этом эта обмотка делится на две равные половины.

  • Напряжение в повернутой средней точке равно нулю. Это формирует нейтральную точку.

  • Отвод по центру обеспечивает два отдельных выходных напряжения, которые равны по величине, но противоположны по полярности друг другу.

  • Для получения различных уровней напряжений можно вытянуть несколько обмоток.

Постукивание осуществляется путем вытягивания провода в средней точке вторичной обмотки. При этом эта обмотка делится на две равные половины.

Напряжение в повернутой средней точке равно нулю. Это формирует нейтральную точку.

Отвод по центру обеспечивает два отдельных выходных напряжения, которые равны по величине, но противоположны по полярности друг другу.

Для получения различных уровней напряжений можно вытянуть несколько обмоток.

Трансформатор с центральным отводом и двумя выпрямительными диодами используется в конструкции

двухполупериодного выпрямителя с центральным отводом . Принципиальная электрическая схема двухполупериодного выпрямителя с центральным отводом показана ниже.

Двухполупериодный выпрямитель с центральным касанием

Работа CT-FWR

Работу двухполупериодного выпрямителя с центральным отводом можно понять по приведенному выше рисунку. Когда прикладывается положительный полупериод входного напряжения, точка М на вторичной обмотке трансформатора становится положительной по отношению к точке N. Это делает диод D1 смещенным в прямом направлении. Следовательно, ток i1 протекает через нагрузочный резистор от A до B. Теперь у нас есть положительные полупериоды на выходе

Работа двухполупериодного выпрямителя CT

Когда прикладывается отрицательный полупериод входного напряжения, точка М на вторичной обмотке трансформатора становится отрицательной по отношению к точке N. Это делает диод D2 смещенным в прямом направлении. Следовательно, ток i2 протекает через нагрузочный резистор от А до В. Теперь у нас есть положительные полупериоды на выходе, даже во время отрицательных полупериодов на входе.

Работа CT FWR

Формы волны CT FWR

Форма входных и выходных сигналов двухполупериодного выпрямителя с центральным отводом выглядит следующим образом.

Форма входного сигнала двухполупериодного выпрямителя

Из приведенного выше рисунка видно, что выходные данные получены как для положительных, так и для отрицательных полупериодов. Также наблюдается, что выходной сигнал через нагрузочный резистор имеет одинаковое направление для обоих полупериодов.

Пиковое обратное напряжение

Поскольку максимальное напряжение на половине вторичной обмотки составляет Vm, все вторичное напряжение появляется на непроводящем диоде. Следовательно, пиковое обратное напряжение в два раза превышает максимальное напряжение на полу-вторичной обмотке, т.е.

PIV=2Vm

Недостатки

Есть несколько недостатков для выпрямителя с центральным ответвлением, таких как –

  • Расположение центра постукивания сложно
  • Выходное напряжение постоянного тока мало
  • PIV диодов должен быть высоким

Следующим типом двухполупериодной выпрямительной цепи является мостовая двухполупериодная выпрямительная схема .

Мостовой двухполупериодный выпрямитель

Это такая двухполупериодная схема выпрямителя, в которой используются четыре диода, соединенных в виде моста, чтобы не только создавать выходной сигнал в течение полного цикла ввода, но и устранять недостатки двухполупериодной выпрямительной схемы с центральным отводом.

В этой цепи нет необходимости в центральном постукивании трансформатора. Четыре диода, называемые D1, D2, D3 и D4, используются при построении сети мостового типа, так что два из диодов проводят один полупериод, а два – другой полупериод входного питания. Схема мостового двухполупериодного выпрямителя показана на следующем рисунке.

Мостовой выпрямитель

Работа мостового двухполупериодного выпрямителя

Двухполупериодный выпрямитель с четырьмя диодами, соединенными в мостовой схеме, используется для получения лучшего отклика на двухволновом выходе. Когда задан положительный полупериод входного питания, точка P становится положительной по отношению к точке Q. Это делает диод D1 и D3 смещенным в прямом направлении, а D2 и D4 – в обратном направлении. Эти два диода теперь будут последовательно подключены к нагрузочному резистору.

На следующем рисунке это показано вместе с обычным током в цепи.

Работа мостового двухполупериодного выпрямителя

Следовательно, диоды D1 и D3 проводят в течение положительного полупериода входного питания, чтобы создать выходной сигнал вдоль резистора нагрузки. Поскольку два диода работают для получения выходной мощности, напряжение будет вдвое превышать выходное напряжение двухполупериодного выпрямителя с центральным выводом.

Когда задан отрицательный полупериод входного питания, точка P становится отрицательной по отношению к точке Q. Это делает диод D1 и D3 смещенным в обратном направлении, тогда как D2 и D4 смещены в обратном направлении. Эти два диода теперь будут последовательно подключены к нагрузочному резистору.

На следующем рисунке это показано вместе с обычным током в цепи.

Обычный ток

Следовательно, диоды D2 и D4 проводят во время отрицательного полупериода входного питания, создавая выход вдоль нагрузочного резистора. Здесь также два диода работают, чтобы произвести выходное напряжение. Ток течет в том же направлении, что и во время положительного полупериода входа.

Форма волны моста FWR

Форма входных и выходных сигналов двухполупериодного выпрямителя с центральным отводом выглядит следующим образом.

Форма волны моста FWR

Из приведенного выше рисунка видно, что выходные данные получены как для положительных, так и для отрицательных полупериодов. Также наблюдается, что выходной сигнал через нагрузочный резистор имеет одинаковое направление для обоих полупериодов.

Пиковое обратное напряжение

Всякий раз, когда два из диодов параллельны вторичной обмотке трансформатора, максимальное напряжение вторичной обмотки на трансформаторе появляется в непроводящих диодах, что делает PIV цепи выпрямителя. Следовательно, пиковое обратное напряжение является максимальным напряжением на вторичной обмотке, т.е.

PIV=Vm

преимущества

Мостовой двухполупериодный выпрямитель имеет много преимуществ, таких как –

  • Нет необходимости постукивать по центру.
  • Выходное напряжение постоянного тока в два раза выше, чем у FWR центральных отводов.
  • PIV диодов в два раза меньше, чем у FWR центрального датчика.
  • Конструкция схемы проще с лучшим выходом.

Давайте теперь проанализируем характеристики двухполупериодного выпрямителя.

Анализ двухполупериодного выпрямителя

Чтобы проанализировать схему двухполупериодного выпрямителя, предположим, что входное напряжение Vi равно

Vi=Vm sin omegat

Ток i1 через нагрузочный резистор RL определяется как

i1=Im sin omegat quadдля quad0 leq omegat leq pi

i1= quad0 quad quad quadдля quad pi leq omegat leq2 pi

куда

im= гидроразрываVmRF+RL

Rf – сопротивление диода в состоянии ВКЛ.

Аналогично, ток i2, протекающий через диод D2 и нагрузочный резистор RL, определяется как

i2= quad0 quad quad quadдля quad0 leq omegat leq pi

i2=Im sin omegat quadдля quad pi leq omegat leq2 pi

Общий ток, протекающий через RL, является суммой двух токов i1 и i2, т.е.

I=i1+i2

DC или средний ток

Среднее значение выходного тока, которое показывает амперметр постоянного тока, определяется как

Idc= frac12 pi int2 pi0i1d left( omegat right)+ frac12 pi int2 pi0i2d left( omegat right)

= frac12 pi int pi0Im sin omegatd left( omegat right)+0+0+

 frac12 pi int2 pi0Im sin omegatd left( omegat right)

= fracIm pi+ fracIm pi= frac2Im pi=0.636Im

Это вдвое превышает значение полуволнового выпрямителя.

Выходное напряжение постоянного тока

Выходное напряжение постоянного тока на нагрузке определяется как

Vdc=Idc timesRL= frac2ImRL pi=0.636ImRL

Таким образом, выходное напряжение постоянного тока в два раза выше, чем у полуволнового выпрямителя.

RMS Current

Среднеквадратичное значение тока определяется как

Irms= left[ frac1 pi int pi0t2d left( omegat right) right] гидроразрыва12

Поскольку ток имеет две одинаковые формы в двух половинах

= left[ fracI2m pi int pi0 sin2 omegatd left( omegat right) right] frac12

= гидроразрываim SQRT2

Эффективность выпрямителя

Эффективность выпрямителя определяется как

 ета= гидроразрываР−постоянногоР−ас

Сейчас,

Pdc= left(Vdc right)2/RL= left(2Vm/ pi right)2

А также,

Pac= left(Vrms right)2/RL= left(Vm/ sqrt2 right)2

Следовательно,

 eta= fracPdcPac= frac left(2Vm/ pi right)2 left(Vm/ sqrt2 right)2= гидроразрыва8 р2

=0,812=81,2%

Эффективность выпрямителя можно рассчитать следующим образом:

Выходная мощность постоянного тока,

Pdc=I2dcRL= frac4I2m pi2 timesRL

Входная мощность переменного тока,

$$ P_ {ac} = I_ {rms} ^ {2} \ left (R_f + R_L \ right) = \ frac {I_ {m} ^ {2}} {2} \ left (R_f + R_L \ right) $ $

Следовательно,

 eta= frac4I2mRL/ pi2I2m left(Rf+RL right)/2= frac8 pi2 fracRL left(Rf+RL right)

= \ frac {0.812} {\ left \ {1+ \ left (R_f / R_L \ right) \ right \}}

Следовательно, процентная эффективность

= frac0.8121+ left(Rf+RL right)

=81.2% quadifRf=0

Таким образом, двухполупериодный выпрямитель имеет эффективность, в два раза превышающую эффективность полуволнового выпрямителя.

Пульсационный фактор

Форм-фактор выпрямленного выходного напряжения двухполупериодного выпрямителя задается

F= гидроразрываIэффIпостоянноготока= гидроразрываim/ SQRT22Im/ р=1,11

Коэффициент пульсации  gamma определяется как (с использованием теории цепей переменного тока)

 gamma= left[ left( fracIrmsIdc right)−1 right] frac12= left(F2−1 справа) frac12

= left[ left(1.11 right)2−1 right] frac12=0,48

Это значительное улучшение по сравнению с коэффициентом пульсации полуволнового выпрямителя, равным 1,21.

регулирование

Выходное напряжение постоянного тока определяется как

Vdc= frac2ImRL pi= frac2VmRL pi left(Rf+RL right)

= frac2Vm pi left[1− fracRfRf+RL right]= frac2Vm pi−IdcRf

Коэффициент использования трансформатора

TUF полуволнового выпрямителя составляет 0,287

В выпрямителе с центральным отводом имеются две вторичные обмотки, и, следовательно, TUF двухполупериодного выпрямителя с центральным выводом

 left(TUF right)avg= fracPdcVAрейтингofaтрансформатор

= frac left(TUF right)p+ left(TUF right)s+ left(TUF right)s3

= гидроразрыва0,812+0,287+0,2873=0,693

Полуволна против полноволнового выпрямителя

Изучив все значения различных параметров двухполупериодного выпрямителя, давайте просто попробуем сравнить и сопоставить особенности полуволновых и двухполупериодных выпрямителей.

Двухполупериодный полупроводниковый выпрямитель | Volt-info

   Для построения диодных выпрямителей чащё всего используются двухполупериодные схемы. Рассмотрим две, принципиально отличающиеся средствами достижения цели, но дающие одинаковый результат.

  Общее описание. 

      Двухполупериодный выпрямитель – устройство преобразования переменного напряжения в постоянное, работающее по принципу бесконтактной коммутации используемых выводов источника переменного напряжения с нагрузкой, создавая однополярное питание.

Трансформаторная схема с двойной обмоткой и общим выводом

Рисунок 1. Однофазный двухполупериодный выпрямитель. Трансформаторная схема с двойной обмоткой и общим выводом.

   На рисунке 1 а) изображена электрическая схема выпрямителя. На рисунках 1 б) и в) дано графическое пояснения принципа работы схемы. Прокомментирую:

   В один из полупериодов, назовём его условно «положительным», рисунок 1 б), на вторичной обмотке формируется напряжение положительной полярности на верхнем выводе относительно общего, и отрицательной полярности на нижнем выводе относительно общего. При этом, диод VD2 под действием обратного напряжения запирается, а диод VD1 под действием прямого напряжения открывается и коммутирует верхний вывод вторичной обмотки с нагрузкой. От верхнего вывода вторичной обмотки, через диод VD1, лампу HL1 и проводник, соединяющий лампу с общим выводом обмотки, течёт электрический ток. Ток изображён красной линией со стрелками, указывающими условное направление его протекания.

   Во второй, «отрицательный» полупериод, диод VD1 запирается обратным, а диод VD2 открывается прямым напряжениями. Ток течёт от нижнего вывода вторичной обмотки через диод VD2, лампу HL1 и проводник, соединяющий лампу с общим выводом вторичной обмотки.

   Обратите внимание на то, что в этой схеме оба полупериода являются рабочими. Поэтому схема носит название двухполупериодного выпрямителя. При этом в каждый из полупериодов через лампу течёт ток всегда в одном направлении, т.е. полярность питания на выводах лампы не изменяется. В этом суть выпрямления.

Диодный мост

   Ещё одна очень распространённая схема позволяет собрать выпрямитель без применения трансформатора. Это схема диодного моста, рисунок 2.

 

Рисунок 2. Однофазный двухполупериодный выпрямитель типа «диодный мост».

   На рисунке 2 а) показана электрическая схема питания нагрузки постоянного тока от источника переменного через диодный мост. На рисунке 2 б) и в) дано графическое пояснение принципа действия схемы.

   Рисунок 2 б) и в) имеет «развёрнутый» вид схемы диодного моста, рисунка 2 а). Это сделано для визуального удобства пояснений. Комментирую:

   В «положительный» полупериод, рисунок 1 б), диоды VD2 и VD3 закрываются, а VD1 и VD4 открываются и через них течёт ток нагрузки. Путь протекания тока отмечен непрерывной красной линией со стрелками, условно показывающими направление тока.

   В «отрицательный» полупериод происходит переключение диодов. Диоды VD1 и VD4 запираются, VD2 и VD3 открываются. Через открывшиеся диоды VD2 и VD3 протекает ток нагрузки.

   В этой схеме также оба полупериода являются рабочими, а ток в каждый из них через нагрузку всегда течёт в одном направлении.

Достоинства схем

   Достоинством представленных схем является их простота и достаточно высокая эффективность. Наиболее эффективно работает трансформаторная схема с двойной обмоткой и общим выводом, рисунок 1, поскольку при передаче электрической энергии в процессе каждого полупериода участвует только один диод, потери мощности происходят в проводниках и одном p-n переходе диода. Но эта конструкция является более дорогостоящей из-за необходимости использования специфичного трансформатора. Схема диодного моста, показанная на рисунке 2, имеет несколько сниженную эффективность, в ней потери энергии происходят в проводниках и двух p-n переходах одновременно работающих диодов в каждом полупериоде. Тем не менее, эта схема не требует обязательного использования трансформатора, является более универсальной и дешёвой, и получила очень широкое применение в различных электротехнических устройствах.   

Двухполупериодные выпрямители

Введение

Выпрямитель — это механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток. Большинство выпрямителей создаёт не постоянное напряжение и ток, а пульсирующее однонаправленное напряжение и ток, для сглаживания пульсаций которого применяют фильтры.

Из распространенных схем неуправляемых выпрямителей (однополупериодных, двухполупериодных и мостовых) наиболее эффективны двухполупериодные. Сравнение основных их видов — со средней точкой и с удвоителем тока — показывает, что хотя оба выпрямителя имеют одинаковые динамические характеристики, удвоитель больше подходит для использования в области больших токов, так как в нем меньше соединений и потерь на вторичной стороне, а отсутствие средней точки дает возможность выбрать нечетное число витков.

Двухполупериодные выпрямители – это выпрямители, в которых ток через нагрузку будет протекать в одном и том же направлении за оба полупериода.

Двухполупериодные выпрямители могут строятся по мостовой или полумостовой схеме (когда, например, в случае выпрямления однофазного тока, используется специальный трансформатор с выводом от средней точки вторичной обмотки и вдвое меньшим количеством выпрямляющих ток элементов). Такая схема ныне применяется редко, так как более металлоёмка и имеет большее эквивалентное активное внутреннее сопротивление, то есть большие потери на нагрев обмоток трансформатора. При построении двухполупериодного выпрямителя со сглаживающим конденсатором следует всегда помнить, что переменное напряжение всегда измеряется в «действующем» значении, которое в 1,41 раза меньше его максимальной амплитуды, а выпрямленное напряжение на конденсаторе, в отсутствии нагрузки, будет всегда равно амплитудному. Это означает, что, например, при измеренном напряжении однофазного переменного тока 12 вольт до мостового однофазного выпрямителя со сглаживающим конденсатором, на конденсаторе, (в отсутствии нагрузки), будет напряжение до 17 вольт. Под нагрузкой выпрямленное напряжение будет ниже, (но не ниже величины действующего напряжения переменного тока, если внутреннее сопротивление трансформатора — источника переменного тока — принять равным нулю) и зависеть от ёмкости сглаживающего конденсатора.

Выпрямители широко используются в схемах питания различных радиоэлектронных устройств. С помощью выпрямителей возможно преобразование постоянного тока одного напряжения в постоянный ток другого напряжения, что позволяет создать схемы питания с различными напряжениями при наличии одного источника энергии.

  1.  Литературный обзор двухполупериодных выпрямителей

Двухполупериодные схемы служат основой построения большинства источников питания, используемых в самых различных областях техники. Эти источники обеспечивают постоянным напряжением питания электромашинные приводы механизмов, технологические процессы, электронные устройства. Знание свойств источников питания необходимо инженеру для грамотной их эксплуатации.

Рассмотрим несколько схем двухполупериодных выпрямителей.

  1.  Схема однофазного двухполупериодного выпрямителя с выводом от средней точки представлена на рисунке 1.

Рисунок 1 — Схема однофазного двухполупериодного выпрямителя с выводом от средней точки.

Достоинствами данной схемы является то, что она имеет лучший коэффициент использования вентилей по току, меньшую расчётную мощность трансформатора, меньший коэффициент пульсации выпрямленного напряжения.

К недостаткам схемы следует отнести: плохое использование вентилей по напряжению, высокое обратное напряжение, прикладываемое к выпрямительным диодам, усложнённая конструкция трансформатора.

  1.  Схема однофазного двухполупериодного мостового выпрямителя представлена на рисунке 2.

 

Рисунок 2 — Схема однофазного двухполупериодного мостового выпрямителя.

Главным достоинством мостовой схемы являются: лучший коэффициент использования вентилей по напряжению, меньшая расчётная мощность трансформатора, благодаря этому мостовая схема широко применяется в установках малой и средней мощности, а также простота конструкции трансформатора.   

Недостатками мостовой схемы являются: требуется строгая симметрия напряжений на обмотках, две обмотки вместо одной, большое обратное напряжение на диодах, удвоенное количество диодов по сравнению с выпрямителем со средней точкой. Однако суммарное сопротивление постоянному току двух диодов и обмотки мостового выпрямителя чаще оказывается меньше сопротивления одного диода и обмотки выпрямителя со средней точкой.

  1.  Схема двухполупериодного выпрямителя с удвоением напряжения представлена на рисунке 3.

Рисунок 3 — Схема двухполупериодного выпрямителя с удвоением напряжения.

Данную схему используют, когда трудно намотать многовитковую вторичную обмотку, или когда обмотка имеющегося трансформатора дает недостаточное напряжение. Схема удвоения (как и однополупериодного выпрямителя) имеет круто падающую нагрузочную характеристику. Кроме того, при пробое одного из диодов переменное напряжение оказывается приложенным к электролитическому конденсатору, что обычно приводит к его взрыву. Достоинством схемы является то, что конденсаторы несколько сглаживают пульсации выпрямленного тока. Недостатком является то, что данную схему нельзя применять для получения выпрямленного напряжения свыше 200-300 В, так как возможен пробой изоляции в кенотроне между катодами и нитью накала.


4) Схема двухполупериодного выпрямителя с умножением напряжения представлена на рисунке 4.

Рисунок 4 — Схема двухполупериодного выпрямителя с умножением напряжения.

Достоинством приведенной схемы является возможность получения высоких напряжений без высоковольтного трансформатора. Кроме того, конденсаторы должны иметь рабочее напряжение лишь 2Ет независимо от того, в какое число раз умножается напряжение, и каждый вентиль работает при максимальном обратном напряжении, равном только 2Ет. Если вентили имеют катод, требующий накала (например, кенотроны), то для каждого из них нужна отдельная обмотка накала. Удобнее применять в подобных схемах полупроводниковые вентили.

Недостатком данной схемы является то, что при включении нагрузочного сопротивления конденсаторы будут разряжаться, и напряжение на них понизится. Чем меньше сопротивление нагрузки, тем быстрее разряжаются конденсаторы и тем ниже становится напряжение на них. Поэтому при недостаточно больших сопротивлениях нагрузки использование подобных схем становится нерациональным.

В соответствии с курсовыми данными, в наибольшей мере схема однофазного двухполупериодного выпрямителя с выводом от средней точки соответствует заданным условиям, поэтому в дальнейшем будем опираться на данную схему.

  1.  Разработка структурной схемы двухполупериодного выпрямителя с выводом от средней точки

Электрическая структурная схема двухполупериодного выпрямителя с выводом от средней точки представлена на рисунке 5.

ИПрН — источник переменного напряжения,

Т — трансформатор,

Н — активная нагрузка,

АЭ — активные элементы VD1 и VD2.

Рисунок 5 — Структурная схема двухполупериодного выпрямителя с выводом от средней точки

При включении сетевого напряжения (блок 1) на каждой половине вторичной обмотки трансформатора возникает напряжение. Трансформатор (блок 2) требуется для повышения или понижения вторичного напряжения при заданном первичном. Соотношение чисел витков вторичной и первичной обмоток трансформатора определяется величиной постоянного напряжения на выходе выпрямителя.

Вторичные обмотки трансформатора подключены к активным элементам диодам — VD1 и VD2 (блок 3). Диодом называют нелинейный элемент, обладающий весьма малым сопротивлением протеканию тока в прямом направлении по сравнению с обратным.

Ток проходит через один из диодов, затем через активную нагрузку (блок 4) и снова попадает на трансформатор.  Активная нагрузка — это полезная мощность, отбираемая любой нагрузкой из электросети и преобразуемая в дальнейшем в любой вид энергии (механическую, тепловую, электрическую и т.п.).

В следующий полупериод полярность на концах обмотки меняется на обратную, и ток проходит через второй диод. Таким образом, переменный ток преобразуется в постоянный.

  1.  Выбор принципиальной схемы двухполупериодного выпрямителя с выводом от средней точки

Электрическая принципиальная схема двухполупериодного выпрямителя с выводом от средней точки представлена на рисунке 6.

Рисунок 6 — Принципиальная схема двухполупериодного выпрямителя с выводом от средней точки

При включении сетевого напряжения U1 на каждой половине вторичной обмотки трансформатора возникает напряжение U2. В первый полупериод (в интервале времени от 0 до Т/2), когда потенциал точки 1 является положительным относительно точки 0, ток I21 проходит через диод VD1, нагрузку Rн и возвращается к точке 1, через половину вторичной обмотки.

В следующий полупериод полярность на концах обмотки меняется на обратную; диод VD1 закрывается, а диод VD2 открывается. С этого момента проводящим становится диод VD2 и через него начинает протекать ток I22; пройдя через нагрузку, он замыкается через вторую половину вторичной обмотки. Таким образом, через сопротивление нагрузки Rн поочерёдно проходят в одном и том же направлении токи I21 и I22. Эти токи будут одинаковыми, если схема симметрична. Так переменный ток преобразуется в постоянный.

Напряжения U21-0 и U20-2, измеренные на концах 1 и 2 вторичной обмотки трансформатора относительно средней точки 0, являются противофазными.

  1.  Расчёт двухполупериодного выпрямителя с выводом от средней точки
  1.  Исходные данные
    1.  При расчёте схемы заданными являются величины:

— выпрямленное напряжение на входе фильтра Uн=27В;

— выпрямленный ток Iн=0,5А;

— мощность нагрузки  Рн=13,5Вт;

— напряжение сети Uc=220В;

— частота сети f=50Гц

— коэффициент пульсации Кп=0,1

  1.  Схема двухполупериодного выпрямителя с выводом от средней точки представлена на рисунке 7.

Рисунок 7 — Схема двухполупериодного выпрямителя с выводом от средней точки.

  1.  Особенности расчёта схемы
    1.  Выбор типа диодов.

Определяем обратное напряжение:

Средний ток равен:

Выбираем диод типа КД205Е ГОСТ 94342-69 с 

  1.  Расчёт трансформатора.

Определяем сопротивление трансформатора:

Напряжение на вторичной обмотке трансформатора равно:

Токи соответственно равны:

Вычисляем габаритную мощность трансформатора, которая для двухполупериодной схемы определяется выражением:

и находим произведение площади сечения сердечника трансформатора Qc на площадь окна сердечника Qо, которое в зависимости от марки провода обмотки равно:

 для провода марки ПЭЛ;

для провода марки ПЭШО;

 для провода марки ПШД.

Выбираем для нашего примера провод марки ПЭЛ. При этом получаем

Из таблицы «Основные данные типовых Ш-образных пластин трансформатора», по значению QcQо выбираем для сердечника трансформатора пластины типа Ш25 с Qо=15см2, шириной среднего стержня сердечника a=2,5 см, высотой окна h =2,5см и шириной окна b =2,5 см. При этом получаем:

Необходимая толщина пакета пластин будет равна:

Отношение

Определяем число витков  и толщину провода  d первичной и вторичной обмоток трансформатора:

4.2.3 Расчёт сопротивления нагрузки (Rн).

Определяем напряжение нагрузки:

Рассчитываем сопротивление нагрузки:

Выбираем резистор нагрузки типа ПЭВ-100 56 регулируемый до 56 Ом

ГОСТ 7113-77

Заключение

Двухполупериодный выпрямитель может строиться по мостовой или полумостовой схеме, в случае выпрямления однофазного тока, используется специальный трансформатор с выводом от средней точки вторичной обмотки и вдвое меньшим количеством выпрямляющих ток элементов. Такая схема ныне применяется редко, так как более металлоёмка и имеет большее эквивалентное активное внутреннее сопротивление, то есть большие потери на нагрев обмоток трансформатора. При построении двухполупериодного выпрямителя со сглаживающим конденсатором следует всегда помнить, что переменное напряжение всегда измеряется в «действующем» значении, которое в 1,41 раза меньше его максимальной амплитуды, а выпрямленное напряжение на конденсаторе, в отсутствии нагрузки, будет всегда равно амплитудному. Это означает, что, при измеренном напряжении однофазного переменного тока 12 вольт до мостового однофазного выпрямителя со сглаживающим конденсатором, на конденсаторе, в отсутствии нагрузки, будет напряжение до 17 вольт. Под нагрузкой выпрямленное напряжение будет ниже, но не ниже величины действующего напряжения переменного тока, если внутреннее сопротивление трансформатора — источника переменного тока — принять равным нулю и зависеть от ёмкости сглаживающего конденсатора.

Выбор величины переменного напряжения вторичной обмотки трансформатора, должен строиться исходя из максимальной допустимой величины подаваемого напряжения, а ёмкость сглаживающего конденсатора — должна быть достаточно большой, чтобы напряжение под нагрузкой не снизилось меньше минимально допустимого. На практике также учитывается неизбежное падение напряжения под нагрузкой — на сопротивлении проводов, обмотке трансформатора, диодах выпрямительного моста, а также возможное отклонение от номинального величины питающего трансформатор напряжения электрической сети.

Литература

  1.  Руденкова В. И. Основные узлы радиоэлектронной аппаратуры. Методика расчёта: Минск, 2008.
  2.  Ломов И. А., Сапожников Б. И. Выпрямители на полупроводниковых диодах: МГТУ им. Н.Э. Баумана, 1993.
  3.  Галкин В.И. Промышленная электроника: Высшая школа, 1989.
  4.  Красько А.С., Скачко К.Г  Промышленная электроника: Высшая школа, 1984.
  5.  Напалков А.Я. Промышленная электроника: Минск, 1972.
  6.  Москатов Е.А. Справочник по полупроводниковым приборам: Таганрог, 2008.
  7.  Забродин Ю.С. Промышленная электроника: Высшая школа, 1992.
  8.  Гершунский Б.С. Расчёт электронных схем: Высшая школа, 1994.
  9.  Изъюрова Г.И. Расчёт электронных схем. Примеры и задачи: Высшая школа, 1987.
  10.  Степаненко И.П. Основы микроэлектроники: Лаборатория базовых знаний, 2001.
  11.  Кастров М.И. Электроника: наука, технология, бизнес: Электроника, 2004.

Нормативная документация

ГОСТ 2.301-68 ЕСКД. Форматы.

ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах.

СТП 7-02 Общие правила оформления дипломных, курсовых, практических работ.

ГОСТ 2.730-73 ЕСКД. Обозначения условные графические в схемах. Приборы полупроводниковые.

ГОСТ 2.747-68* ЕСКД. Обозначения условные графические в схемах. Размеры условных графических обозначений.

ГОСТ 2.004-88 ЕСКД. Общие требования к выполнению конструкторских и технологических документов на печатающих и графических установках вывода ЭВМ.

ГОСТ 19.404-79 Пояснительная записка. Требования к содержанию и оформлению.

ГОСТ 2.302-68 ЕСКД. Масштабы.

ГОСТ 2.102-68* ЕСКД. Виды и комплектность конструкторских документов.


ИПрН

Н

АЭ

(VD1, VD2)

Базовые схемы выпрямителей

Базовые схемы выпрямителей
Однополупериодный выпрямитель с емкостной нагрузкой
Может быть рекомендован для использования только в устройствах с малым током нагрузки, так как постоянная составляющая тока в обмотке трансформатора снижает КПД. Если величина тока Ir дана в миллиамперах, а напряжение пульсаций Uo — в вольтах (двойная амплитуда), то емкость С (в микрофарадах) равна 15 Ir / U. Форма пульсаций в принципе идентична для всех выпрямителей с емкостным фильтром.

Трехфазный выпрямитель с одной обмоткой на фазу

Рис. 2: Uпик= 0,82 Еэфф, коэффициент пульсаций 17,7%, частота пульсаций 3f. Рис. 3: Uпик=1,412 Еэфф, коэффициент пульсаций 4%, частота пульсаций 6f.

Двухполупериодный выпрямитель
Рекомендован для использования в низковольтных устройствах, так как падение напряжения на диодах меньше, чем у мостового выпрямителя. Значение тока Ir действительно при непрерывном режиме функционирования. Максимальное значение тока Irm допустимо в продолжение 60 с, если при этом среднее значение тока нагрузки остается ниже Ir.

Двухполупериодный мостовой выпрямитель
Рекомендован для использования в устройствах со средним и большим током потребления. Значение тока Ir действительно при непрерывном режиме работы. Максимальное значение тока Irm допустимо в течение 60 с, если при этом среднее значение выходного тока остается ниже Ir.

Двухполярный двухполупериодный выпрямитель
Используется в двухполярных источниках питания. Четыре дискретных диода можно заменить мостовым выпрямителем.

Удвоитель напряжения Латура-Делона-Гренашера

Рис. 7: асимметричный источник питания. Рис. 8: симметричный источник питания.
Диоды должны выдерживать напряжение до 3 Ui (имеется в виду эффективное значение Ui), а конденсаторы — 1,5 Ui, причем их емкость определяется соотношением: С (мкФ) — 100 I2 (мА) / Ui (В). Трансформатор должен обеспечивать 5 I2.

Трехфазный выпрямитель с двумя обмотками на фазу

Рис. 9 (шестифазная схема): Uпик= 0,82 Еэфф, коэффициент пульсаций 4%, частота пульсаций 6 f.
Рис. 10 (двенадцатифазная схема): Uпик = 1,412 Еэфф, коэффициент пульсаций 2%, частота пульсаций 12 f

Удвоитель напряжения Шенкеля-Вилларда (Вийяра)

Рис. 11: асимметричный источник питания. Рис. 12: симметричный удвоитель напряжения.
Диоды должны выдерживать напряжение до 3 Ui (имеется в виду эффективное значение Ui), конденсатор С1 — 1,5 Ui, конденсатор С2 — в два раза больше. Емкость определяется из соотношения: С (мкФ) = 100 I2 (мА) / Ui (В). Трансформатор должен обеспечивать 5 I2.

Дополнительный маломощный выход


Подключение, удвоителя напряжения к двухполупериодному со средней точкой или двухполупериодному мостовому выпрямителю позволяет получить основное выходное напряжение U и дополнительное выходное напряжение Ua х 2 Up . Данную схему рекомендуется использовать только тогда, когда I

Умножитель напряжения Латура-Делона-Гренашера

Для примера показаны четыре секции, но их число может быть увеличено. Диоды должны выдерживать 3 Еэфф, конденсатор С1 — 1,5 Еэфф, последующие — в два раза больше. Емкость определяется из соотношения: С (мкФ) = 100 I2 (мА) / Ui (В). Трансформатор обязан обеспечивать 5 I2.

Источник высокого напряжения на обычных трансформаторах
За трансформатором Tpl, обеспечивающим 2×12 В, последовательно включены два повышающих трансформатора Тр2, ТрЗ (с 9 до 220 В), за которыми стоят удвоители напряжения, позволяющие получить разность потенциалов в 1,2 кВ. Дополнительно данная схема выдает 2×18 В для питания, например, операционных усилителей.

Умножитель напряжения Шенкеля-Вилларда (Вийяра)
Для примера показаны пять секций, но их число может быть увеличено. Величина выходного сопротивления меньше, чем в предыдущей схеме, однако необходимо применение конденсаторов с рабочими напряжениями 1,5 Uэфф для С1 и U2 для Сn.

Гибридный умножитель напряжения
Схема обеспечивает снижение выходного сопротивления за счет расположения конденсаторов так, что переменное напряжение на них имеет большую, чем обычно, величину. Пропорциональное возрастание разности потенциалов подразумевает использование конденсаторов с соответствующими рабочими напряжениями.

Симметричный умножитель напряжения
Сочетание двух удвоителей напряжения, каждый их которых имеет четыре секции, обеспечивает меньшее выходное сопротивление, чем в случае применения схемы Латура-Делона-Гренашера, использующей восемь секций.

Умножитель напряжения большой мощности
В умножителях напряжения, использующих принцип двухполупериодного выпрямления, пульсации значительно снижены, а выходное сопротивление в четыре раза меньше, чем в случае однополупе-риодного умножителя.

Получение трёх напряжений от двух обмоток
Схема сочетает двухполупериодный выпрямитель (конденсатор С2 заряжается через диоды D2 и D3) с двумя однополупериодными (D1C1 и D4C3). Такая схема сводит к минимуму мощность, рассеиваемую на стабилизаторах.

Двухполупериодный выпрямитель

Рассмотрим схему выпрямителя с диодным мостом и конденсатором фильтра 100 uF при подключении в сеть 220 V 50 Hz с активной нагрузкой 1 kOhm.

На нагрузке получим постоянное напряжение (DC), приблизительно равное амплитудному значению напряжения сети 220*√2 = 311 V.

В реальности, из за наличия переменной составляющей (AC) в виде пульсаций и падения напряжения на прямосмещённых диодах, значение DC будет на несколько вольт меньше.

Проанализируем вкратце ток в сети, который создаст устройство с подобным выпрямителем без использования специальных фильтров на входе.

Большую часть времени диоды моста будут заперты положительным напряжением на конденсаторе, зарядившемся за предыдущий полупериод до амплитудного значения, и открыться смогут лишь по мере разряда конденсатора в нагрузку, когда напряжение на нём сравняется с нарастающим напряжением сети в следующем полупериоде.
Открываясь, диоды подключат конденсатор к сети, практически, напрямую. В этом случае ток в конденсаторе определится напряжением сети и реактивным сопротивлением конденсатора, ёмкость которого обычно выбирают достаточно большой в целях уменьшения пульсаций.
Относительно большой импульс тока (в нашем случае почти 4А) быстро зарядит конденсатор до амплитудного значения напряжения, которое закроет диоды, и медленный процесс разряда конденсатора в нагрузку повторится до очередного полупериода, когда напряжение сети, нарастая по синусоиде, вновь достигнет значения напряжения на конденсаторе.
В результате в сети будут короткие импульсы тока, амплитуда и длительность которых будет зависеть от ёмкости конденсатора фильтра. В нашем примере c конденсатором 100 uF и нагрузкой 1 k — это импульсы порядка 4 A при постоянном токе в нагрузке примерно 0.3 A.

Можно более детально рассмотреть токи в конденсаторе и сети по картинке ниже, где ток показан относительно напряжения в масштабе 100/1 для более наглядного представления временных интервалов.

В самый первый полупериод при подключении выпрямителя к сети, когда конденсатор разряжен, ток его заряда определится выражением: I(t) = ((Uamp-Ud)/Xc)*cos(t).
Здесь Xc — реактивное сопротивление конденсатора, в нашем примере равное 1/(2πfC) = 31.8 Ohm,
Ud — падение напряжения на двух открытых диодах моста, будем считать примерно по 1 V на каждом диоде.
Амплитуда тока в начальный момент времени достигнет ((311-2)/31.8)*cos(0)= 9.7 A и будет спадать до нуля по косинусоиде в течении первых 5 миллисекунд.

Далее, по истечении 5 mS, когда конденсатор зарядится до максимального значения Uamp-Ud, напряжения в сети начнёт убывать по синусоиде, диоды закроются и начнётся медленный процесс разряда конденсатора в нагрузку по экспоненте . Розовая линия UR на рисунке.
e — логарифмическая константа ( 2.718…),
τ — постоянная времени, равная произведению RC, в нашем случае для 1 k и 100 uF, τ = 0.1 S.
В качестве напряжение U в экспоненте можно грубо принять амплитудное значение с учётом диодов Uamp-Ud, либо, более точно, с учётом сдвига α, U=(Uamp-Ud)*sin(π/2-α)

Напряжение в сети меняется по синусоидальному закону: U(t)=Uamp*(sin(ωt).
Напряжение, выпрямленное диодами, (чёрная линия): U(t)=(Uamp-Ud)*|sin(ωt)|
Решив уравнение в интервале от 5 до 10 mS, получим время отпирания диодов.
В нашем примере это будет примерно 8.7 mS от вершины синусоиды. В радианах 0.0087*ω = 2.73.
С учётом первых 5 mS (π/2) вычисляем напряжение в это время:
U (t) = (Uamp-Ud)*sin(π/2+2.73) = 309*0.916 = 283 V.

Итак, напряжение за время разряда конденсатора по экспоненте упадёт с 309 до 283 V, сравняется с нарастающим напряжением сети и тогда откроются диоды, подключив конденсатор непосредственно к переменному напряжению сети .
Ток в конденсаторе подчинится косинусоидальному закону (коричневый пунктир на рисунке) и сразу достигнет величины:
Ic = ((Uamp-Ud)/Xc)*|cos(π/2+2.73)|.
В нашем случае это будет (309/31.8)*0.4 = 3.89 A.
Далее ток будет спадать по косинусоиде и, поменяв направление при пересечении нулевой линии (на графике), достигнет значения тока в нагрузке, а напряжение на нём достигнет амплитудного.
Тогда диоды закроются и конденсатор снова начнёт разряжаться в нагрузку по экспоненте.

Ток в сети будет равен сумме токов в конденсаторе и нагрузке. В импульсе он достигнет большего значения чем в конденсаторе на величину, равную току в нагрузке в момент отпирания диодов.
Красная линия на рисунке в максимуме max(Ipulse) = max(Ic) + 283/R1 = 3.89 + 0.283 = 4.17 A.
Ток в сети будет спадать от значения max по косинусоиде до нуля с учётом сдвига фаз. Тангенс δ для параллельного соединения определится соотношением реактивного и активного сопротивлений tg(δ) = Xc/R1.
Тогда угол δ = arctg(Xc/R1).

Постоянный ток в нагрузке вычислим, используя закон Ома I=U/R.

Если грубо посчитать среднее значение пульсаций как половину их амплитуды (309-283)/2 = 13 V, тогда с учётом пульсаций можно допустить значение постоянной составляющей DC напряжения на нагрузке 309-13=296 V.
Соответственно, постоянную составляющую тока при таком приближении считаем 0.296 A.

Для убедительности проинтегрируем в программе Mathcad среднее и среднеквадратичное значение напряжения в полупериоде 10 mS функции экспоненты и модуля синусоиды на соответствующих им интервалах со сдвигом π/2. Получим значение DC.

Среднеквадратичное (действующее) значение напряжения на нагрузке определится следующим выражением:

В качестве примера можно посмотреть разложение тока выпрямителя на гармоники преобразованием Фурье, а так же вычисление коэффициента мощности на страничке здесь.

Следует отметить, что в таком виде, без специальных фильтров, выпрямители в бытовых и промышленных приборах не используются.
В целях уменьшения потерь энергии в виде высших гармонических составляющих тока, производителей электронной техники обязывают устанавливать Корректоры Коэффициента Мощности (Power Factor Correction) во все потребители электроэнергии сети, содержащие нелинейные элементы в силовых цепях. Обычно это LC-фильтры, либо активные PFC, которые преобразовывают любую форму тока в форму, близкую к синусоидальной.
Почитать немного подробнее про Power Factor можно на странице Коэффициент Мощности.


Замечания и предложения принимаются и приветствуются!

двух-полупериодная схема | Электрознайка. Домашний Электромастер.




data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8969066382″>
   Самая простая двух-полупериодная схема выпрямления переменного тока получается из двух однополупериодных схем.  

    Вторичная обмотка трансформатора состоит из двух одинаковых обмоток II и III, каждая из которых выдает нужное переменное напряжение Uвых.
Через диоды проходит только положительная полуволна синусоидального переменного тока.

   Работает поочередно или обмотка II и диод VD1, или обмотка III и диод VD2. Средняя величина тока проходящего через каждую обмотку и диод, в двухполупериодном выпрямителе, равна половине выходного тока выпрямителя. В этом случае обмотки можно мотать проводом с вдвое меньшим сечением и применять диоды с меньшим допустимым током.

   Такие схемы двухполупериодного выпрямления предпочтительны тогда, когда на выходе выпрямителя нужно получить большой ток (5 — 10 ампер и более) при небольших напряжениях (5 – 20 вольт).
    Желательно применять германиевые диоды (на них меньше падение напряжения, чем на кремниевых диодах) они меньше греются. Мощные диоды, при больших токах нагрузки, нужно обязательно ставить на радиатор.
    При таком способе включения, оба диода можно ставить на один радиатор, так как аноды (плюсы) их имеют вывод на корпус, под гайку. Конструктивно это очень удобно. Два диода и радиатор составляют одну конструкцию и ее ставят на одну изолирующую подставку.
    Форма выходного напряжения двухполупериодного выпрямителя представляет собой пульсирующее напряжение: полусинусоиды положительной и, перевернутой вверх, полусинусоиды отрицательной.

   На рисунках приведены варианты таких схем получения, на выходе выпрямителя, выходного напряжения положительной (рис. 1) или отрицательной (рис. 2) полярности относительно корпуса.

   Достоинства такой схемы двухполупериодного выпрямления против одно полупериодной схемы:

— трансформатор работает без токов подмагничивания;

— частота пульсаций на выходе выпрямителя f = 100 герц;

 — коэффициент пульсаций существенно меньше.

Недостатки такой схемы:

  •    — обратное напряжение на каждом диоде превышает выходное напряжение выпрямителя Uвых. в два раза (напряжение обоих обмоток складывается).

   В случае, если нет возможности достать диоды на рассчитываемый ток, можно включать их параллельно по два, а то и по три в каждом плече, как на рисунке 3.


    В этой схеме все диоды можно ставить на один радиатор, без изоляционных прокладок. Резисторы ставятся для того, чтобы уравнять внутренние «тепловые» сопротивления диодов.
    Резисторы должны быть равны между собой и иметь величину соответствующую динамическому сопротивлению диода — от 0,2 до 1 Ом, и мощность 1 ватт и более.
    Недостаток схемы:  – большая потеря мощности на резисторах.

   Разберем на примере применение данных схем.
Пусть нам нужно построить выпрямитель на напряжение 12 вольт и номинальный ток до 15 ампер.

    Рассмотрим сначала схему на рис. 1. Каждая вторичная обмотка трансформатора (обмотки II и III) должна быть рассчитана на переменное напряжение 13 – 14 вольт, с учетом падения напряжения на самой обмотке и самом сопротивлении диода.

Эти обмотки включаются последовательно – конец обмотки II с началом обмотки III. Средняя точка – общий, минусовой вывод. Два диода соединенные анодами вместе – это плюсовой вывод.


    Выходной ток двухполупериодного выпрямителя состоит из двух полуволн. Каждая из полуволн, за один период проходит сначала по одной половинке и диоду, затем по второй и диоду и имеет величину по 15 ампер. После диодов они сливаются вместе и имеют во времени форму пульсирующего напряжения.
    В каждой паре (обмотка и диод) ток, в течении одного периода, половину периода идет, половину периода не идет. Электрическая мощность, проходящая по каждой паре (обмотка — диод) в течение периода, равна половине общей мощности за это время. А следовательно, средний ток через каждую пару (обмотка — диод) равен, как бы, половине общего тока.
    Сечение провода вторичных обмоток и максимально допустимый ток диодов так же подбирается из этого расчета.
    Из этого следует, что в нашем примере сечение провода вторичных обмоток может быть рассчитано на ток в 7,5 ампер, то есть в два раза меньше. Диоды подбираются на ток до 10 ампер (всегда берутся с запасом), а не 7,5 ампер.
    Те же самые рекомендации по сечению провода относятся к схеме на рис. 2 и рис.3.

   Пример на схеме рис.3 относится к случаю, когда у нас нет в наличии диодов рассчитанных на ток 10 ампер, а есть диоды на 5 ампер. В этом случае ставим 4 диода: в «плечо» по два диода в параллель.Через каждый диод будет протекать ток  15 : 4 = 3,75 ампера.
    Определим величину омического сопротивления резисторов R1 – R4. Падение напряжения на диоде, при протекании через него максимального тока, равно около Uд = 1,0 вольта. Его динамическое сопротивление при токе I = 3,75 ампер будет примерно равно:

R = Uд : I = 1,0 : 3,75 = 0,266 Ом.
 Сопротивление каждого из резисторов R1 – R4 должно быть 1 – 2 Uд = 0,26 – 0,5 Ома.R1 – R4 д
При резисторе R = (0,26 — 0,5) Ома падение напряжения на нем будет:
   U = R х I = (0,26 — 0,5) х 3,75 = от 0,975 до 1,875 вольта.
    Электрическая мощность выделяемая на каждом резисторе равна:
   P = I х U = 3,75 (0,95 – 1,875) = от 3,56 до 7,03 ватта.

Такие резисторы изготавливают из толстого высокоомного провода, рассчитанного на ток 3,75 ампер и сильное выделение тепла.

   Это довольно существенная потеря мощности на резисторах.
 Такова расплата за использование не соответствующих току диодов.
     Если же не ставить эти уравнительные резисторы, одни диоды будут работать с перегрузкой и сильно греться (тепловой пробой), другие будут работать с малыми токами.


data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8969066382″>

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *