Site Loader

БЛОК ПИТАНИЯ НА LM723

   На основе специализированной микросхемы LM723 можно собрать регулируемый источник стабилизированного напряжения до 40 вольт, с током нагрузки до 10-ти ампер (при наличии ключевого внешнего транзистора, так как сама микросхема выдерживает до одного ампера).

LM723 LM723 LM723

   Показанная ниже схема расчитана на 30В 10А исходящего питания, и имеет плавную регулировку напряжения и тока. Блок питания строится на базе микросхемы LM723 — регулятора напряжения и ограничения тока. Эта схема используется уже более 20 лет и ни разу не подвела.

Электрическая схема блока питания на LM723

LM723 LM723 LM723

Внутренняя структура микросхемы LM723

 

LM723 LM723 LM723

Цоколёвка LM723 и возможные варианты корпусов

 

LM723 LM723 LM723

   Батарея конденсаторов на входе С1-С7 может быть заменена на один большой, ёмкостью 10000 мкФ, если у вас есть подходящий. Резисторы R1-R6 по 5 Вт будут довольно горячими под высокой нагрузкой, поэтому должны быть смонтированы с возможностью отвода тепла (возле вентиляционных отверстий корпуса). Печатной платы как таковой не требуется. Единственное, что нужно собрать вместе, это микросхему LM723, 3 резистора и 2 конденсатора. Остальные радиоэлементы крепятся к радиатору и к регуляторам на передней панели блока питания.

Схема БП на LM723 с фикисрованными напряжениями

LM723 LM723 LM723

   Как возможный вариант, введите выставление напряжения с помощью тумблера и дополните схему индикаторами напряжения и тока, собранными например по такой схеме. На фото ниже вы как раз и видите такой БП, имеющий несколько стандартных фиксированных напряжений на выходе.

Блок питания на LM723

   Максимальное входное напряжение составляет 40 Вольт. Транзисторы нужно устанавливать на хороший по размерам радиатор. Мостовой выпрямитель может монтироваться также непосредственно на общий радиатор. Для получения более подробной информации смотрите даташит LM723.

Мощный, регулируемый БП на LM723

Микросхема LM723 это интегральный стабилизатор с регулируемым выходным напряжением и схемой защиты от перегрузки.
Регулировка выходного напряжения происходит по входу ноги 4. Регулировкой устанавливается зависимость напряжения на выводе 4 А1 от выходного напряжения.

Компаратор микросхемы работает так, что напряжение на выходе (вывод 10) регулирует таким образом, чтобы напряжение на его выводе 4 было неизменным. Соответственно, напряжение на выводе 10 практически равно выходному. Но максимально допустимый ток выхода мал, поэтому для получения максимального тока нагрузки (у нас 20 А) необходима силовая часть, коим и является схема на транзисторах VT1,VT2 в первой схеме схеме, или VT1 — VT5 во второй.

Схема защиты от перегрузки по току работает по измерению напряжения на сопротивлении, включенном последовательно нагрузке. Входами датчика тока являются выводы 2 и 3 А1. Эти выводы подключены параллельно сопротивлению (в первой схеме не реализовано вообще никак), образованному резисторами R7-R10 (во второй схеме), которое включено последовательно с нагрузкой.

Понятно, что следуя закону Ома напряжение на сопротивлении будет расти с увеличением тока.

Пока напряжение между выводами 2 и 3 ниже 0,6 В защита не срабатывает, воспринимая это как то, что ток нагрузки не превышает максимально допустимого значения. При токе приближающимся к отметке 23-24 А напряжение между выводами 2 и 3 достигает величины 0,6 В и более. Это приводит к срабатыванию защиты, которая снижает напряжение на выводе 10 А1 до нуля, и, таким образом, отключает нагрузку.

Даташит на LM723

Топология печатной платы может быть такой:




Для сборки необходимо:
Микросхема LM723
Транзистор КТ3102 (можно заменить на BC547B)
Транзистор КТ3107 (можно заменить на BC556)
Транзистор КТ815Г (можно заменить на BD139)
Транзистор КТ827А(можно заменить на 2N6059 или 2N6284)
Понятно резисторы и конденсаторы

Для второй схемы:
Транзистор BD131
Транзисторы 2N3055


В заключении еще несколько схем блока питания на LM723

Еще записи по теме

Регулируемый блок питания своими руками


После мультиметра переменный источник питания (также называемый регулируемым блоком питания или лабораторным БП) является одним из самых полезных элементов оборудования, которое необходимо иметь в своей мастерской. Выходное напряжение блоков питания может регулироваться в широком диапазоне от менее 1 вольта до более чем 30 В, в зависимости от того как и по какой схеме он собран.

Регулируемые источники питания используются для питания радиосхем, которые ремонтируем или собираем. При разработке или тестировании устройств возобновляемой энергии можно использовать такой БП для имитации зарядки или разрядки аккумулятора, для настройки контроллера и нагрузки.

Вы можете конечно купить блок питания в магазинах электроники, но лучше построить свой собственный. Так вы чётко будете знать его работу, устройство, а при необходимости (это неизбежно в будущем) почините или улучшите.

Далее рассмотрим две схемы регулируемого блока питания. Обе используют детали, которые элементарно найти в местном магазине электронных компонентов.

Регулируемый блок питания на LM317

Схема блока питания на LM317 с регулировкой

Первая схема это регулятор напряжения на основе LM317. Микросхема LM317 может выдавать до 1,5 А, имеет защиту от короткого замыкания и перегрева. Максимальное входное напряжение составляет 40 вольт постоянного тока, и оно изменяется на выходе до 1,2 вольт. Конечно LM317 следует установить на радиатор (если нагрузка планируется мощная — то большой).

Регулируемый блок питания на LM723

Схема блока питания на LM723 с регулировкой

Также можете собрать схему для более совершенного и мощного регулируемого источника питания, используя микросхему LM723. Помимо регулируемого выходного напряжения, эта схема включает в себя регулируемый предел тока — вы можете ограничить ток, протекающий через тестируемую цепь, тем самым защищая источник питания от короткого замыкания. Параллельно стоящие 4 силовых транзистора увеличивают максимальный ток до 10 ампер (а это уже возможность зарядить авто аккумулятор, обычно средним током 5 А). Силовые транзисторы должны быть установлены на хороший радиатор.

Источник напряжения стабилизатора

Обе схемы стабилизаторов требуют источника питания постоянного тока (то есть подачу на них напряжения), и это напряжение должно быть как минимум на 3 В выше максимального напряжения, которое надо получить от регулируемого блока питания. Поэтому если планируется собрать источник питания, который можно регулировать от 1,2 до 12 вольт, понадобится на входе БП на 15 вольт или более (максимум до 40 вольт, иначе микросхемы сгорят от перегруза).

Схема блока питания постоянного напряжения

Традиционно используют сетевой трансформатор для преобразования сетевого напряжения 220 В до 15 В переменного тока. Затем используем мостовой выпрямитель для преобразования переменного тока в постоянный, а затем несколько фильтрующих конденсаторов для сглаживания пульсаций до чистого постоянного тока. Естественно нужен предохранитель для сетевой стороны.

Но не обязательно брать трансформатор, у большинства есть немало осиротевших импульсных БП которые больше не используются. Эти источники питания в основном от нерабочих мониторов или ноутбуков. У них выходное напряжение 20 В и максимальный ток 4,5 А. А этого более чем достаточно для самодельного переменного источника питания. Использование такого позволит после стабилизатора получать от 1,2 до 17 вольт.

Вы также можете подключить более одного источника питания последовательно для более высокого напряжения, например, два 12-вольтовых последовательно соединённые дадут напряжение 24 В, но максимальный ток будет таким, как в блоке питания с наименьшим номиналом мощности.

Прекрасной идеей будет добавить вольтметр и амперметр в самодельный лабораторный блок питания, тем более в магазинах полно готовых цифровых модулей светодиодных А/В-метров, поэтому делать его самому нет смысла. А если не хотите покупать готовый — ставьте обычные стрелочные индикаторы, как на фото.

Блок питания на микросхеме LM723

Электропитание

Главная  Радиолюбителю  Электропитание



Много лет лежала на полке у меня микросхема LM723. Раньше на этой микросхеме представляли конструкции зарубежные журналы в 80х — 90х годах. Это известные журналы «RADIOTECHNIKA» (Венгрия), «FUNKAMATEUR» (Германия) и другие. В настоящее время эта микросхема стала доступна в России. Пределы регулировки выходного напряжения (по паспорту) от 2 до 37 В. Немного подумав, я построил блок питания на данной микросхеме с параметрами:

Uвых…………………. 0…30В
Iвых………………….. 3…5А

Рис. 1. Блок питания на микросхеме LM723

Резистором R8 устанавливают верхний предел регулировки, т.е. 30,4 В. Защиту по току и напряжению можно поставить любую, Вас устраивающую. В авторском варианте индикация цифровая. Собирался блок питания как экспериментальный, прошел апробацию и показал неплохие результаты. По моей просьбе его повторили несколько радиолюбителей. Нареканий не было. В авторском варианте трансформатор брался ШЛ25/40-25. Ток использовался на 3А (необходимости на больший ток не было). Блок индикации выполнен на микросхеме КР572ПВ2А. Печатная плата разрабатывалась, в зависимости от применяемых деталей. Удачного повторения. Все вопросы по e-mail.

Автор: Patrin
Патрин Анатолий
г.Кирсанов, Россия,
Тамбовская обл.

Дата публикации: 16.07.2004

Мнения читателей
  • Sibirsky / 17.03.2010 — 19:19
    Точный аналог LM723(uA723 и т.д.) — (КР)142ЕН14. ( см. справочник \»Микросхемы для линейных источников питания и их применение\», изд-во \»Додека\», 1996год, ISBN-5-87835-009-2 стр. 85 — 90). В справочнике есть краткая инфа и по 142ЕН1,142ЕН2, КР142ЕН1,КР142ЕН2. 723-я была прототипом для ЕН1,ЕН2. Наши \»конструляторы\» упростили (испохабили) оригинальную видларовскую схему, и на свет появилась 142ЕН1,ЕН2. Несколько более близки к оригиналу КР142ЕН1 и КР142ЕН2. (ДА-ДА! \»Нутрянка\» КР142ЕН1,ЕН2 ОТЛИЧАЕТСЯ от таковой в 142ЕН1,ЕН2!) Личные впечатления о 723-ей. Собрал макет стабилизатора 0 — 50в (не по этой, по своей схеме, т.н. \»плавающий стабилизатор\»). Пробовал и КР142ЕН14 (92г.!!) и LM723 от SGS-Thomson, все работает (неверующим предлагаю поискать ИСПРАВНЫЕ 142ЕН14). При Uвых = 25V напряжение гуляет на 10 — 30mV (для ЕН14, LM723 стабильнее, но не сильно). Источник опорного напряжения очень стабилен — грел микросхему паяльником,опорное напряжение не изменилось и на сотню микровольт. А вот усилитель ошибки (ОУ) — дерьмо. Мерял лабораторным вольтметром В7-78/1.
  • Shahter / 24.02.2010 — 12:49
    Где ж точная копия если распиновка другая?! http://professor-one.nm.ru/istok%20pitaniya.html
  • oldcock / 20.03.2009 — 08:25
    Обозначенный VT1 p-n-p тразистор никак не может быть типа КТ601, ибо оный имеет проводимость n-p-n. Ишо не очень ясно куда подключать питание DD1, видимо к эмиттеру VT1…
  • UA9MGM / 17.03.2009 — 03:14
    LM723 — это не наша КР142ЕН2, ЕН1А-Г, ЕН14! ПОЛНЫХ ОТЕЧЕСТВЕННЫХ АНАЛОГОВ НЕТ! Неверующим предлагаю собрать БП с панелькой для LM723 и поочереди вставлять КР142ЕНxx 🙂 Удачи!
  • ТИХОНОВИЧ / 06.10.2008 — 21:21
    РАБОТАЕТ НОРМАЛЬНО. СПАСИБО ЗА ПОЛЕЗНУЮ ВЕЩЬ.ИСПОЛЬЗУЮ ДЛЯ ПИТАНИЯ С НЕБОЛЬШИМИ ДОРАБОТКАМИ УСИЛИТЕЛЬ И МАГНИТОЛУ В АВТОБУСЕ С 24 ВОЛЬТОВЫМ ЭЛ. ОБОРУДОВАНИЕМ.
  • DMJ / 24.12.2006 — 15:16
    LM723 — это наша КР142ЕН2 (точная копия) или К142ЕН2 (в другом корпусе с отличиями в цоколевке)

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *