Регулируемый блок питания для начинающих. 30 В 5 А
Добрый день, уважаемые читатели. Сегодня посмотрим на регулируемый импульсный блок питания. Простой и дешевый вариант.Я три года назад делал простенький регулируемый БП, но запросы растут, мне понадобился БП мощнее для тестов фар и усилителей. Так как я не электронщик, навороченный и мощный БП мне не нужен (даже по п18) и я выбрал самый простой вариант.
Что же нам обещает фирма wanptek:
- 1 канал (только плюсовое напряжение)
- 30 В и 5 А (есть версия на 10 А)
- грубая и точная настройка напряжения и тока
- Стабилизация напряжения, ограничение тока
- Защиты от КЗ и перегрева.
Посылка
Доставка ТККоробка из плотного картона:
Характеристики на коробке:
Внутри мягкие вставки что бы БП не болтался по коробке:
Комплектация:
Сам регулируемый БП, инструкция на английском, сетевой кабель (1,3 м) и выходной кабель с «крокодилами».
Выходной кабель 2х1 кв мм. изоляция на 300 В длина 80 см. Сетевой кабель приличного качества, 3х0,75 кв. мм. евровилка с заземлением, а с другой стороны разъем: я такие разъемы называю «компьютерные».
Инструкция:
Технические характеристики:
Входное напряжение: AC 110 В,60 Гц или 220 В, 50 Гц
Выходное напряжение: 0 ~ 30 В
Выходной ток: 0 ~ 5 А
Шаг регулировки напряжения: 0.1 В
Регулировка тока: 0.01 A
Пульсации напряжения: Vpp≤1%
Стабильность напряжения: CV≤1%+10mV
Температурный дрейф: 3000 PPM
Разрядность дисплея: 3
Точность отображения напряжения: ±1% + 1 знак
Точность отображения тока: ±1% + 2 знака
Рабочая температура: -10~45℃ влажность ≤90%
Температура хранения: -20~60℃ влажность ≤80%
Размеры: 80 * 230 * 165 см
Масса: примерно 1449 г
Масса:
Внешний вид:
Не хватает ручки для переноски сверху. Клавиша включения и выходные клеммы спереди внизу.
Сзади:
Прорези для вентилятора, бесполезный в наших реалиях переключатель 110 В/200 В и сетевое гнездо, оснащенное предохранителем на 250 В 2 А.
Управление простое и логичное:
Поворотные ручки — резисторы. Все логично: слева ток — грубо и точно, справа напряжение.
Можно установить лимиты по току, нужно замкнуть выходы БП (при напряжении <10 В), ждем мигания индикатора СС, вращая рукоятку тока, выставляем лимит.
Снизу:
Резиновые ножки. Они кстати оставляют следы.
Экран:
Вот тут небольшая печаль — всего три разряда. Индикаторы показывают режимы постоянного тока/ напряжения.
Всегда интересно что у таких приборов внутри.
Разборка:
Снимаем крышку открутив 8 винтов:
Она металлическая, как и остальной корпус кроме передней панели. Аккуратно покрашена порошковой краской.
Внутренняя компоновка:
Силовая плата стоит вертикально.
С другой стороны пластина радиатор:
Толщина 3 мм.
Силовая плата:
Виден входной и выходной фильтры. Входные конденсаторы на 250 В, выходные (один не допаяли!) 35 В 1000 мкф.
На радиаторе висят пару полевиков 2SK3569, диод в таком же корпусе TO220 и термистор, что бы подключать вентилятор, когда нагреется радиатор.
Выходные шунты:
Плата управления и индикации:
Самая заметная большая TM1638 управляет индикаторами, замечен так же микроконтроллер STM8S003F3. ШИМ контроллер на TL494.
Вентилятор:
Работает тихо.
Маркировка вентилятора:
Тестирование:
У меня нет специального образования по электрическим делам, тестировать буду на бытовом уровне.
Точность отображения напряжения:
Особо быстрой регулировку не назовешь, но значения держит цепко.
Броски при включении:
и выключении:
Тестирование на максимальную мощность:
На работе нашлась подходящая нагрузка — 200 метров монтажного провода 0,75 мм2. Сопротивление около 6 Ом, изоляция хорошо держит температуру.
Номинальный ток:
Половина мощности:
Проверим КПД на максимальной мощности:
От сети потребляет 223*0,68=151,64 Вт, выдает 28,7*4,99=143,213 Вт КПД=94%
Аксакалы в электронике конечно найдут в нем кучу недостатков, но надо учитывать небольшую цену и ориентированность на новичков.
Я как мог рассказал о приборе, и считаю, что для домашнего использования новичкам этот БП подойдет.
Есть купон JE119, делает цену 45.99$, работает до 28 февраля.
Спасибо за просмотр! Удачных конструкций.
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Лабораторный источник питания 30В 5А
После изготовления нескольких проектов, требовавших токи до десятка ампер, естественно с возможностью регулировать напряжение, решено было построить новый мощный источник питания, который должен заменить старый на Lm317. Но чтобы устройство получилось действительно лабораторным и универсальным, оно должно ещё мерять температуру, конденсаторы и дросселя.
Технические характеристики самодельного БП
- Регулируемый источник питания 0-32 В и 0.002-7 A
- Измерение температуры DS18B20
- Измерение емкости от 1pF к 100mF
- Измерение индуктивности 0,001uH — 100H
- Возможность заряжать разные аккумуляторы
Модуль выпрямителя источника питания
- трансформатор 200 Вт 24 В
- дополнительный потенциометр 1k для точного регулирования напряжения
- конденсатор фильтра — 10000uF / 63V
- выпрямительные диоды на 8 A
Принципиальная схема БП 30В 5А
Список деталей для сборки блока питания:
R1 = 2,2 K 1W
R2 = 82 Ohm 1/4W
R3 = 220 Ohm 1/4W
R4 = 4,7 K 1/4W
R5, R6, R13, R20, R21 = 10K 1/4W
R7 = 0,47 Ohm 5W
R8, R11 = 27 K 1/4W
R9, R19 = 2,2 K 1/4W
R10 = 270 K 1/4W
R12, R18 = 56 K 1/4W
R14 = 1,5 K 1/4W
R15, R16 = 1 K 1/4W
R17 = 33 Ohm 1/4W
R22 = 3,9 K 1/4W
RV1 = 100K переменный
P1, P2 = 10 K линейный
C1 = 3300uF/50V
C2, C3 = 47uF/50V
C4 = 100nF полиэстер
C5 = 200nF полиэстер
C6 = 100pF керамика
C7 = 10uF/50V
C8 = 330pF керамика
C9 = 100pF керамика
D1, D2, D3, D4 = 1N5402 2А
D5, D6 = 1N4148
D7, D8 = 5,6V стабилитрон
D9, D10 = 1N4148
D11 = 1N4001 1A
Q1 = BC548
Q2 = 2N2219
Q3 = BC557, BC327
Q4 = 2N3055
U1, U2, U3 = TL081
D12 = LED
Охлаждение блока питания
Измерение температуры производится с включением внешнего датчика, благодаря миниджеку, который переключает разъем 2 (в данном случае Vdd и DQ массы, общим для обоего датчиков).
Есть регулируемое охлаждение при максимальных оборотах на температуре 40C. Внутренний датчик измеряет температуру радиатора. При выходе 10 В и 7 A максимальная температура (в комнате 18C) достигнута через 10 минут и держится стабильно 45C.
- радиатор 192x70x50 мм с фрезерованием под вентиляторы на 12 В, анодированный черный
- термистор LM317 + 4k7 вентилятора контроллер
- на радиаторе установлены 3xTIP3055 + 3x0R22, 2x 0R47 5W в металлическом корпусе, термистор и датчик температуры DS18B20.
Измерительная система ЛБП
Измеритель V / A / Т: готовый модуль измерителя напряжения и тока с возможностью измерения температуры и индикации мощности, всё одновременно отображено на дисплее 2×20 HD47.
L / C-метр: тоже готовый купленный на китайском сайте (ссылки не будут — выбирайте любой сами под свои потребности). Вот его описание:
- Модель: LC100-A
- Размер: 81 x 47 x 30 мм (L * W * H)
- Питание: + 5v, интерфейс miniUSB
- Точность измерения: 1%
- Диапазон измерения малой емкости: 0.01 pF — 10 uF
- Минимальное разрешение : 0.01 pF
- Диапазон измерения большой емкости 1 uF — 100 mF
- Минимальное разрешение: 0,01 uF
- Диапазон измерения индуктивности: 0,001 uH — 100 mH
- Диапазон измерения большой индуктивности: 0,001 mH — 100H
- Минимальное разрешение: 0,001 uH
- Диапазон тестовых частот: L / C около 500 кГц
- ЖК-дисплей: 1602
Корпус устройства изготовлен из алюминиевой плиты, задний лист перфорированный, с порошковым покрытием, передний — черный анодированный.
На передней панели 3 пары разъемов банан — 5В, 12В, 0-32В. Регулятор грубой и точной настройки вольтажа.
Если не требуется столь большой ток, его можно ограничить установкой вместо резистора 0,23R, R7 = 0,47R, что даст 3 A на выходе. Но учтите, что с током 5-7 A можно заряжать автомобильные аккумуляторные батареи, тем более, что индикатор имеет функцию измерения заряда. Так что данный БП ещё прекрасно работает как зарядное устройство. Ещё один вариант аналогичного устройства смотрите по ссылке.
Лабораторный блок питания своими руками 0-30В 0-5А
Некоторым радиолюбителям необходимо иметь в своем арсенале лабораторный блок питания от нуля вольт, иногда это необходимо, а иногда это просто модно. Сегодня у нас статья посвящена именно такому блоку. Мы рассмотрим подробно пошаговую сборку этого ЛБП, а также в процессе сборки постараемся кратко раскрыть основные принципы работы ее узлов.
Лабораторный блок питания своими руками 0-30В 0-5А
Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.
Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.
Лабораторный блок питания – пошаговая сборка
Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.
После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.
Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay.
Шаг. 1 Установка элементов, отвечающих за регулировку напряжения
Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.
Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.
На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.
Шаг. 2 Установка конденсаторов фильтра
Устанавливаем конденсаторы С3; С4; С8 – С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.
Шаг. 3 Подключение силовых транзисторов
Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 – R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.
При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В) откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно! Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.
Шаг. 4 Балансировка транзисторов
Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.
Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.
Если транзисторы отказываются работать в паре, но работают в этой схеме нормально по отдельности – следует уменьшить R1 до 10 Ом.
Шаг. 5 Подключение питания для ОУ и периферии
В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор.
Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2 (положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905 устанавливается конденсатор С14.
После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812 должно быть 12 В.
Шаг. 6 Установка операционного усилителя и элементов стабилизации тока
Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .
Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.
С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.
Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.
На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.
Шаг. 7 Установка нуля
Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).
Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.
С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения – 1,25 В (минус 1,25 В) на делителе.
Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.
Шаг. 8 Установка защитных диодов
Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.
Шаг. 9 Настройка ограничения максимального тока
- Выставляем на блоке 12В.
- Р2 устанавливаем на максимум (т.е. регулировка тока включена максимальная) – на выходе 12 В.
- Р1 – на минимум (подстройка максимального тока) т.е. выходной ток будет ноль и напряжение упадет до 0 – горит светодиод.
- Берем нихромовую спираль сопротивлением 2 Ом. и подключаем ее к выходу.
- С помощью Р1 начинаем регулировать ток. Когда на выходе 5 А, можно остановиться. В это время вольтметр будет показывать 10 В.
Теперь с помощью Р2 будет доступный диапазон тока 0 – 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.
Шаг. 10 Подключение вольтамперметра
При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.
Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3 можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.
Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!
Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.
Как и обещали, плату блока можно скачать тут:
Ну и демонстрация работы лабораторного блока питания:
Присылайте в комментах фото, какой лабораторный блок питания получился у Вас, собранный по этой схеме, будем добавлять в статью – так станет интереснее!
Работы наших читателей
Первым решил поделиться своей поделкой Денис Фролов. До этой сборки вообще не имел дела с радиоэлектроникой. Трансформатор используется тороидальный. Плата вытравлена при помощи фоторезиста, наклеена навигация. Денис решил немного усложнить блок, добавлена настольная зарядка для девайсов.
Следующим прислал свой фотоотчет Старков Сергей. Радиоэлектроникой занимался еще с 15ти летнего возраста. Трансформатор брал на 160 ватт с вых. 12,25,36 вольт. Корпус так же как и трансформатор взят с какого-то киповского оборудования. Вольтамперметр как и у всех – китайский. Лицевую часть делал в программе FrontDesigner 3.0, распечатал на струйном принтере на фотобумаге и покрыл лаком. корпус правда еще не успел покрасить.
Прекрасную работу прислал нам Роберт Ганеев из Татарстана. Плату Роберт изменил под свой корпус, использовал три транзистора TIP36C, при сборке возникли небольшие трудности с параллельной работой трех транзисторов. Проблему решили уменьшением R1 до 10 Ом.
VK
Odnoklassniki
comments powered by HyperCommentsХарактеристики блока питания: Выходное напряжение регулируется от 0 до 30 вольт. Выходной ток 5 ампер. Падение напряжения при токе от 1 до 6 ампер ничтожно мало и на выходных показателях не отражается. Данный блок питания содержит три основных узла: внутренний сетевой узел питания VD1- VD4, C1- C7, DA1, DA2, узел защиты от перегрузки и короткого замыкания на VS1, R1- R4, VD3 и основной узел – регулируемый стабилизатор напряжения VT2- VT7, VD4-VD5, R4-R14, C8. Диод HL1 индицирует перегрузку по току или короткому замыканию в нагрузке. Основной узел – регулируемый стабилизатор напряжения компенсационного типа. Он содержит входную дифференциальную ступень на транзисторах VT5, VT7, две ступени усиления на транзисторах VT3 и VT2, и регулирующий транзистор VT 1. Элементы VT4, VT6, VD4, VD5, R5 — R8, R10 образуют стабилизаторы тока. Конденсатор C8 предотвращает самовозбуждение блока. Выходное напряжение регулируется резистором R13. Верхняя граница напряжения – подстроечным резистором R14. Конструкция и детали. Мощность трансформатора T1 должна быть не менее 100 – 160 ватт, ток обмотки II – не менее 4 – 6 ампер. Ток обмотки III – в пределах 1…2 ампер. Транзистор VT1 следует устанавливать на ребристые алюминиевые радиаторы площадью более 1450 кв.см. Резистор R4 подбирают экспериментально, по току срабатывания защиты. Резисторы R 7 и R 14 – многооборотные СП5-2. Резистор — R13 любой переменный. Микросхемы DA1 и DA2 можно заменить аналогичными отечественными КР142ЕН5А и КР1162ЕН5А. Их мощность позволяет стабилизированное напряжение ± 5 вольт для питания внешних нагрузок с током потребления до 1 ампер. Данной нагрузкой является цифровая панель, которая используется для цифровой индикации напряжения и тока в блоках питания. Если не использовать цифровую панель, то микросхемы DA1 и DA2 можно заменить микросхемами 78L05 и 79L05. Диоды VD3 – VD5 можно заменить на диоды КД522Б. Цифровая панель состоит из входного делителя напряжения и тока, микросхемы КР572ПВ2А и индикации из четырех семисегментных светодиодных индикаторов. Резистор R4 цифровой панели состоит из двух отрезков константанового провода =1 мм и длиной 50 мм. Разница в номинале резистора должна превышать 15 — 20 %. Резисторы R2 и R6 марки СП5-2 и СП5-16ВА. Переключатель режимов индикации напряжения и тока типа П2К. Микросхема КР572ПВ2А представляет собой преобразователь на 3,5 десятичных разрядов, работающий по принципу последовательного счета с двойным интегрированием, с автоматической коррекцией нуля и определением полярности входного сигнала. Для индикации использовались импортные светодиодные семисегментные индикаторы KINGBRIGT DA56 – 11 SRWA с общим анодом. Конденсаторы С2 – С4 желательно применять пленочные типа К73-17. Вместо импортных семисегментных светодиодов можно применить отечественные с общим анодом типа АЛС324Б. Все радиокомпоненты устройства: VD1 — VD4 — RS600 VD5 — VD8 — КС407А VD9 — АЛ307Б VD10 — КД102А VD11 — 1N4148 VD12 — 1N4148 C1 — 10000 мкФ х 50 вольт C2 — 100 мкФ C3 — 100 мкФ C4 — 10 мкФ C5 — 10 мкФ C6 — 10 n C7 — 10 n C8 — 33 n R1 — 330 Ом R2 — 3 кОм R3 — 33 Ом R4 — 2,4 кОм R5 — 150 Ом R6 — 2,2 кОм R7 — 10 кОм R8 — 330 кОм R9 — 6,8 кОм R10 — 1 кОм R11 — 5,1 кОм R12 — 5,1 кОм R13 — 10 кОм R14 — 2,2 кОм VT1 — КТ827А VT2 — КТ815Г VT3 — КТ3107А VT4 — КТ3102А VT5 — КТ315Д VT6 — КТ315Д VT7 — КТ315Д Цифровая панель индикации напряжения и тока. С помощью резистора R8 устанавливают более точное показание напряжения. После чего, к выходу блока питания подсоединяют переменный резистор мощностью 10 … 30 ватт, по амперметру выставляют ток равным 1 ампер и резистором R 6 выставляют значение на индикаторе. Показание должно быть 1,00. При токе 500 мА – 0,50, при токе 50 мА – 0,05. Таким образом, индикатор может индицировать ток от 10 мА, то есть 0,01. Максимальное значение индикации тока 9,99 ампер. Для большей разрядности индикации можно применить схему на КР572ПВ6. Контактные площадки U и I на печатной плате цифровой панели, с помощью гибких проводников подключаются к точкам соответствующих индикаторов HG 2 и HG 1. Микросхему КР572ПВ2А можно заменить на импортную микросхему ICL7107CPL. |
Регулируемый блок питания 30V 5A
Всем привет. Цель была собрать приличный источник питания 30V 5A, сделанный на популярных и не дорогих радиоэлементах, которые можно найти в закромах или местном радиорынке. Для постройки нового блока питания использован трансформатор, конденсаторы (2x 3300 мкФ), мощные выпрямительные диоды для моста, реле и всякая мелочь.
Схема БП на 30V 5A
Лабораторный блок питания 30 В 5 A — схема для сборкиИзготовление электроники блока питания по этой схеме. Всего сделано несколько подобных БП по этой схеме и очень довольны её работой — легко в настройке и без сбоев.
Напряжение на конденсаторах составляет примерно 42V, максимальное напряжение на выходе регулируемого источника питания составляет 33 В.
Мощный регулируемый транзистор — KD502 от Tesla. Индикатор — копия AVT 2857, также тут включается вентилятор когда температура радиатора достигнет 40C. Питание прибора, реле и вентилятора реализовано на отдельном небольшом трансформаторе.
Выход включается с помощью реле с помощью переключателя на передней панели. Блок имеет точное и грубое регулирование напряжения и тока.
Корпус самодельного БП
Пришлось немного постараться чтобы все поместилось внутри и чтобы была достаточная вентиляция в корпусе. Корпус покрыт грунтовкой, а затем покрашен черным цветом.
Передняя панель — дополнение к оригинальной пластиковой рамке металлический лист толщиной 1 мм.
Блок питания проверен на нагрузке в виде лампочки или резистора, при 30V отдача более 3А, при 5V — 5А. Однако учитывая мощность трансформатора, это значения при долговременной постоянной нагрузке, на практике мало когда используется максимум возможностей такого блока питания и в пиках он выдаст гораздо более 5-ти ампер.
Топ 10 регулируемых блоков питания с Aliexpress, а также купоны площадки
Топ 10 регулируемых блоков питания с Aliexpress, а также купоны площадки. В топике представлены интересные и полезные сетевые адаптеры и регулируемые блоки питания для питания различной электроники, устройств и прочей техники. Также присутствуют купоны площадки.
Купоны площадки:
Последняя распродажа года на площадке Aliexpress подходит к концу. Успей купить все что нужно с максимальной скидкой! Купоны площадки периодически стоит проверять ЗДЕСЬ
Сейчас действуют следующие промокоды:
NYSALE3— скидка $3 для заказов от $30
INHNSP41— скидка $8 для заказов от $50
Регулируемый БП 3-12V/3A со скрытым переключателем и USB-выходом:
Ссылка на товар — ЗДЕСЬ
Довольно интересный блок питания со скрытым регулятором напряжения и USB-выходом. Скрытый регулятор позволяет запитывать различные устройства (приставки, роутеры, модемы и ТВ-боксы) без опаски случайного повышения напряжения, как в случае с «барашком». Маленькие дети также не смогут случайно выкрутить напругу на максимум. Качество хорошее, пригодятся в случае поломки штатных.
Регулируемый БП 3-12V/3A с открытым переключателем:
Ссылка на товар — ЗДЕСЬ
Аналог предыдущего, но уже с переключателем на внешней стороне. На выходе можно получить честные 3А, в комплекте несколько видов разъемов, что позволяет использовать этот блок питания взамен сгоревших БП от цифровых приставок, роутеров, модемов и ТВ-боксов. Качество хорошее, в качестве резервного должен быть. На выбор евро и американская вилка.
Регулируемый БП 3-24V/5A:
Ссылка на товар — ЗДЕСЬ
Можно сказать, что это одна из «народных» моделек, отличающаяся компактными размерами и хорошими характеристиками. На странице товара можно выбрать нужный тип вилки и выходные параметры. Я имею в наличие вариант с выходным напряжением 3-12V и максимальной силой тока 5А. Нареканий нет, для быстрого подключения устройств хватает. Присутствует цифровой вольтметр.
Регулируемый DC-DC модуль питания RD6006:
Ссылка на товар — ЗДЕСЬ
Не совсем готовый блок питания, поскольку ему требуется соответствующий БП, но все остальные функции выполняет. Имею такой в наличие, нареканий нет. Эта самая последняя модель с выходом 60V и током отдачи до 6А. Появилась сравнительно недавно, но уже сумела завоевать популярность, так как имеет понятный интерфейс и интересные функции. Рекомендую!
Регулируемый БП 0-220V/0-60A:
Ссылка на товар — ЗДЕСЬ
Альтернатива — здесь
Новые блоки питания с регулировкой в широких пределах. Выполнены в стандартном корпусе и позволяют легко регулировать напряжение на выходе. Для контроля напряжения имеют встроенный вольтметр. Этакий сверхдешевый вариант регулируемого БП, кому не требуется стабилизация (ограничение) тока aka режим CC. Можно запитывать инструмент, если сила тока позволяет.
Регулируемый БП 30V/10A Wanptek LW-K3010D:
Ссылка на товар — ЗДЕСЬ
Хороший и недорогой блок питания. В сети можно найти десятки обзоров на него, качество хорошее. По габаритам чуть больше знаменитых БП Gophert. Управление очень простое, два регулятора позволяют работать блоку питания в режиме CC или CV, т.е. со стабилизацией тока или напряжения. Не имеет ячеек памяти, т.е. самый базовый вариант, но зато недорого.
Регулируемый блок питания GOPHERT NPS-1601 (30V/5A):
Ссылка на товар — ЗДЕСЬ
Еще один «народный» блок питания. Качественный, надежный, недорогой и неубиваемый — это все GOPHERT. Это новая модель, лишенная некоторых мелких «граблей», таких как выходные разъемы на задней крышке (они тут спереди), бОльшая разрядность вольтметра/амперметра и многое другое. Я уже который год имею модель CPS-3010, полет отличный. Рекомендую!
Лабораторный блок питания KORAD KA3005D (30V/5A):
Ссылка на товар — ЗДЕСЬ
Еще один проверенный временем вариант, но уже в виде лабораторного источника питания, т.е. на основе понижающего трансформатора с памятью и другими режимами. По идее схемотехника выполнена не на основе ШИМ-модуляции и пульсации минимальны. Более габаритный и тяжелый, но это особенность всех линейных блоков питания.
Как самому сделать мощный регулируемый лабораторный блок питания 0-30 вольт 0-3 ампер
Всем привет. Сегодня заключительный обзор, сборка лабораторного линейного блока питания. Сегодня много слесарных работ, изготовление корпуса и финальная сборка. Обзор размещен в блоге «DIY или Сделай Сам», надеюсь я тут никого не отвлекаю и не кому не мешаю тешить свой взгляд прелестями Лены и Игоря))). Всем кому интересны самоделки и радиотехника — Добро пожаловать!!!ВНИМАНИЕ: Очень много букв и фото! Трафик!
Добро пожаловать радиолюбитель и любитель самоделок! Для начала давайте вспомним, этапы сборки лабораторного линейного блока питания. Непосредственно к данному обзору не имеет отношения, потому разместил под спойлер:
Этапы сборки
Первый обзор. Сборка силового модуля. Плата, радиатор, силовой транзистор, 2 переменных многооборотных резистора и зеленый трансформатор (из Восьмидесятых ®) Как подсказал мудрый kirich, я самостоятельно собрал схему, которую китайцы продают в виде конструктора, для сборки блока питания. Я сначала расстроился, но потом решил, что, видать схема хороша, раз китайцы её копируют… В то же время вылезли и детские болячки этой схемы (которые полностью были скопированы китайцами), без замены микросхем на более «высоковольтные», на вход нельзя подавать больше 22 вольт переменного напряжения… И несколько более мелких проблем, которые подсказали мне наши форумчане, за что им огромное спасибо. Совсем недавно будущий инженер «AnnaSun» предложила свою версию избавления от трансформатора. Конечно каждый может модернизировать свой БП как угодно, можно и импульсник поставить в качестве источника питания. Но у любого импульсника (быть может кроме резонансных) на выходе куча помех, и эти помехи частично перейдут на выход ЛабБП… А если там имульсные помехи, то (ИМХО) это не ЛабБП. Потому я не буду избавляться от «зеленого трансформатора».Поскольку это линейный блок питания, у него есть характерный и существенный недостаток, вся лишняя энергия выделяется на силовом транзисторе. Для примера, на вход мы подаем 24В переменного напряжения, которое после выпрямления и сглаживания превратится в 32-33В. Если на выход присоединить мощную нагрузку, потребляющую 3А при напряжении 5В, вся оставшаяся мощность (28В при токе 3А), а это 84Вт, будет рассеиваться на силовом транзисторе, переходя в тепло. Одним из способов предотвратить эту проблему, и соответственно повысить КПД, это поставить модуль ручного или автоматического переключения обмоток. Данный модуль был рассмотрен в 2-м моем обзоре:
Для удобства работы с блоком питания и возможности мгновенного отключения нагрузки, с схему был введен дополнительный модуль на реле, позволяющий включать или выключать нагрузку. Этому был посвящен мой третий обзор.
К сожалению, из-за отсутствия нужных реле (нормально замкнутых), данный модуль работал некорректно, потому он будет заменен другим модулем, на D-триггере, позволяющий включать или выключать нагрузку при помощи одной кнопки.
Вкратце расскажу про новый модуль. Схема довольно известная (прислали мне ссылку в личку):
Немножко модифицировал её под свои нужды и собрал такую плату:
С обратной стороны:
На это раз никаких проблем не было. Все работает очень четко и управляется одной кнопкой. При подаче питания, на 13 выходе микросхемы всегда логический ноль, транзистор (2n5551) закрыт и реле обесточено — соответственно нагрузка не подключена. При нажатии кнопки, на выходе микросхемы появляется логическая единица, транзистор открывается и реле срабатывает подключая нагрузку. Повторное нажатие на кнопку возвращает микросхему в исходное состояние.
Какой же блок питания без индикатора напряжения и тока? Потому в 4-м обзоре я попытался сделать ампервольтметр самостоятельно. В принципе получился неплохой прибор, однако он имеет некоторую нелинейность в диапазоне от 0 до 3.2А. Эта погрешность никак не будет влиять при использовании данного измерителя, скажем в зарядном устройстве для АКБ автомобиля, но недопустима для Лабораторного БП, потому, я заменю этот модуль, китайскими щитовыми прецизионными вольтметром и амперметром с дисплеями, имеющими 5 разрядов… А собранный мною модуль найдет применение в какой-нибудь другой самоделке.
Наконец-то приехали из Китая более высоковольтные микросхемы, о чем я Вам рассказал в 5-ом обзоре. И теперь можно подавать на вход 24В переменного тока, не опасаясь, что пробьет микросхемы…
Теперь дело осталось за «малым», изготовить корпус и собрать все блоки вместе, чем я и займусь в этом финальном обзоре по данной тематике.
Поискав готовый корпус, ничего подходящего не нашел. У китайцев есть неплохие коробки, но, к сожалению, цена их, а особенно стоимость доставки — запредельная…
Отдать китайцам 60 баксов мне «жаба» не позволила, да и глупо такие деньги отдавать за корпус, можно еще немного добавить и купить готовый ЛабБП. По крайней мере, корпус из этого Бп выйдет хороший.
Потому я поехал на строительный базар и купил 3 метра алюминиевого уголка. С его помощью будет собран каркас прибора.
Подготавливаем детали нужного размера. Расчерчиваем заготовки и спиливаем уголки при помощи отрезного диска. Обзор на мою версию дремеля.
Затем выкладываем заготовки верхней и нижней панели, чтобы прикинуть, что получится.
Пробуем расположить модули внутри
Сборка идет на потайных винтах (под шляпку зенкером, разенковывается отверстие, что бы головка винта не выступала над уголком), и гайках с обратной стороны. Потихоньку появляются очертания каркаса блока питания:
И вот каркас собран… Не очень ровный, особенно по углам, но думаю, что покраска скроет все неровности:
Размеры каркаса под спойлером:
Измерение размеров
К сожалению времени мало свободного, потому слесарные работы продвигаются медленно. Вечерами за неделю изготовил лицевую панель из листа алюминия и панельку под вход питания и предохранитель.
Расчерчиваем будущие отверстия под Вольтметр и Амперметр. Посадочное гнездо должно быть размерами 45.5мм на 26.5мм
Обклеиваем посадочные отверстия малярным скотчем:
И отрезным диском, при помощи дремеля делаем пропилы (скотч нужен, что бы не выйти за размеры гнезд, и не испортить панель царапинами) Дремель быстро справляется с алюминием, но на 1 отверстие уходит 3-4 отрезных диска
Опять была заминка, банально, кончились отрезные диски для дремеля, поиск по всем магазинам Алматы ни к чему не привел, потому пришлось ждать диски из Китая… Благо пришли быстро за 15 дней. Дальше работа пошла более весело и быстро…
Пропилил дремелем отверстия под цифровые индикаторы, и обработал напильником.
Ставим на «уголки» зеленый трансформатор
Примеряем радиатор с силовым транзистором. Он будет изолирован от корпуса, так как на радиаторе установлен транзистор в корпусе ТО-3, а там сложно изолировать коллектор транзистора от корпуса. Радиатор будет стоять за декоративной решеткой с вентилятором охлаждения.
Обработал наждачкой на бруске лицевую панель. Решил примерить все что будет на ней закреплено. Получается вот так:
Два цифровых измерителя, кнопка включения нагрузки, два многооборотных потенциометра, выходные клеммы и держатель светодиода «Ограничение тока». Вроде ничего не забыл?
С обратной стороны лицевой панели.
Разбираем все и красим черной краской с баллончика каркас блока питания.
На заднюю стенку прикрепляем на болты декоративную решетку (куплено на авторынке, анодированный алюминий для тюнига воздухозабора радиатора 2000 тенге (6.13USD))
Вот так получилось, вид с обратной стороны корпуса блока питания.
Ставим вентилятор для обдува радиатора с силовым транзистором. Я прикрепил его на пластиковые черные хомуты, держит хорошо, внешний вид не страдает, их почти не видно.
Возвращаем на место пластиковое основание каркаса с уже установленным силовым трансформатором.
Размечаем места крепления радиатора. Радиатор изолирован от корпуса прибора, т.к. на нем напряжение равное напряжению на коллекторе силового транзистора. Думаю, что он хорошо будет обдуваться вентилятором, что позволит значительно снизить температуру радиатора. Вентилятор будет управляться схемой снимающей информацию с датчика (терморезистора) закрепленного на радиаторе. Таким образом вентилятор не будет «молотить» в пустую, а будет включатся при достижении определенной температуры на радиаторе силового транзистора.
Прикрепляем на место лицевую панель, поглядеть что получилось.
Декоративной решетки осталось много, потому решил попробовать сделать П-образную крышку корпуса блока питания (на манер компьютерных корпусов), если не понравится, переделаю на что-нибудь другое.
Вид спереди. Пока решетка «наживлена» и еще не плотно прилегает к каркасу.
Вроде неплохо получается. Решетка достаточно прочная, можно смело ставить сверху что-либо, ну а про качество вентиляции внутри корпуса, даже не стоит говорить, вентиляция будет просто отличная, по сравнению с закрытыми корпусами.
Ну чтож, продолжаем сборку. Подключаем цифровой амперметр. Важно: не наступайте на мои грабли, не используйте штатный разъем, только пайка непосредственно к контактам разъема. Иначе будет в место тока в Амперах, показывать погоду на Марсе.
Провода для подключения амперметра, да и всех остальных вспомогательных устройств должны быть максимально короткими.
Между выходными клеммами (плюс-минус) установил панельку из фольгированного текстолита. Очень удобно прочертив изолирующие бороздки в медной фольге, создавать площадки для подключения всех вспомогательных устройств (амперметр, вольтметр, плата отключения нагрузки и т.п.)
Основная плата установлена рядом с радиатором выходного транзистора.
Плата переключения обмоток установлена над трансформатором, что позволило значительно сократить длину шлейфа проводов.
Наступил черед собрать модуль дополнительного питания для модуля переключения обмоток, амперметра, вольтметра и т.п.
Поскольку у нас линейный — аналоговый БП, будем использовать так же вариант на трансформаторе, никаких импульсных блоков питания. 🙂
Вытравливаем плату:
Впаиваем детали:
Тестируем, ставим латунные «ножки» и встраиваем модуль в корпус:
Ну вот, все блоки встроены (кроме модуля управления вентилятором, который будет изготовлен позже) и установлены на свои места. Провода подключены, предохранителя вставлены. Можно проводить первое включение. Осеняем себя крестом, закрываем глаза и даем питание…
Бабаха и белого дыма нет — уже хорошо… Вроде на холостом ходу ничего не греется… Нажимаем кнопку включения нагрузки — зажигается зеленый светодиод и щелкает реле. Вроде все пока нормально. Можно приступать к тестированию.
Как говорится, «скоро сказка сказывается, да не скоро дело делается». Опять выплыли подводные камни. Модуль переключения обмоток трансформатора работает некорректно с силовым модулем. При напряжении переключения с первой обмотки на следующую происходит скачек напряжения, т.е при достижении 6.4В происходит скачек до 10.2В. Потом конечно можно уменьшить напряжение, но это не дело. Сначала я думал, что проблема в питании микросхем, поскольку их питание тоже от обмоток силового трансформатора, и соответственно растет с каждой последующей подключенной обмоткой. Потому попробовал дать питание на микросхемы с отдельного источника питания. Но это не помогло.
Потому есть 2 варианта: 1. Полностью переделать схему. 2. Отказаться от модуля автоматического переключения обмоток. Начну с 2 варианта. Полностью без переключения обмоток я остаться не могу, потому как вариант мириться с печкой мне не нравится, потому поставлю тумблер- переключатель позволяющий выбирать подаваемое напряжение на вход БП из 2-х вариантов 12В или 24В. Это конечно «полумера», но лучше чем вообще ничего.
Заодно решил поменять амперметр на другой подобный, но с зеленым цветом свечения цифр, поскольку красные цифры амперметра светятся довольно слабо и при солнечном свете их плохо видно. Вот что получилось:
Вроде так получше. Возможно, так же, что я заменю вольтметр на другой, т.к. 5 разрядов в вольтметре явно избыточно, 2 разряда после запятой вполне достаточно. Варианты замены у меня есть, так что проблем не будет.
Ставим переключатель и подключаем к нему провода. Проверяем.
При положении переключателя «вниз» — максимальное напряжение без нагрузки составило около 16В
При положении переключателя вверх — доступно максимальное напряжение для данного трансформатора 34В (без нагрузки)
Теперь ручки, долго не стал придумывать варианты и нашел пластмассовые дюбели подходящего диаметра, как внутреннего, так и внешнего.
Отрезаем трубочку нужной длины и надеваем на штоки переменных резисторов:
Затем надеваем ручки и фиксируем винтами. Поскольку трубка дюбеля достаточно мягкая, ручка фиксируется очень хорошо, что бы сорвать её необходимы значительные усилия.
Обзор получился очень большим. Потому не буду отнимать Ваше время и вкратце протестируем Лабораторный блок питания.
Помехи осциллографом мы уже смотрели в первом обзоре, и с тех пор ничего не изменилось в схемотехнике.
Потому проверим минимальное напряжение, ручка регулировки в крайнем левом положении:
Теперь максимальный ток
Ограничение тока в 1А
Максимальное ограничение тока, ручка регулировки тока в крайне правом положении:
На этом Всё мои дорогие радиогубители и сочувствующие… Спасибо всем, кто дочитал до конца. Прибор получился брутальный, тяжелый и я надеюсь надежный. До новых встреч в эфире!
UPD: Осциллограммы на выходе блока питания при включении напряжения:
И выключения напряжения:
UPD2: Друзья с форума «Паяльник» дали идею, как с минимальными переделками схемы запустить модуль переключения обмоток. Спасибо всем за проявленный интерес, буду доделывать прибор. Поэтому — продолжение следует.