Site Loader

Глава 3. Трехобмоточные трансформаторы и автотрансформаторы § 3.1. Трехобмоточные трансформаторы

В трехобмоточном трансформаторе на каждую трансформируемую фазу приходится три обмотки. За номинальную мощность такого трансформатора принимают номинальную мощность наиболее нагружаемой его обмотки. Токи, напряжения и сопротивления других обмоток приводят к числу витков этой, наиболее мощной обмотки. Принцип работы трехобмоточного трансформатора по существу не отличается от принципа работы обычного двухобмоточного трансформатора.

Существуют трехобмоточные трансформаторы с одной первичной и двумя вторичными обмотками и трансформаторы с двумя первичными и одной вторичной обмотками.

Рассмотрим основные уравнения, особенности работы и область применения трехобмоточного трансформатора с одной первичной обмоткой, имеющего наибольшее распространение (рис. 3.1, а). Первичная (наиболее мощная) обмотка этого трансформатора является намагничивающей и создает в магнитопроводе магнитный поток, который сцепляется с двумя вторичными обмотками и наводит в них ЭДС

и . Аналогично двухобмоточному трансформатору запишем для трехобмоточного трансформатора уравнение МДС:

Разделив (3.1) на w1, получим уравнения токов:

Здесь k12=w1/w2 — коэффициент трансформации между обмотками w1 и w2; k13 = w1/w3 — коэффициент трансформации между обмотками w1 и w3.

Пренебрегая током х.х. I0, получим упрощенное уравнение токов трехобмоточного трансформатора:

(3.4)

Экономическую целесообразность применения трехобмоточных трансформаторов можно объяснить тем, что, как это следует из (3.4), первичный ток трехобмоточного трансформатора равен не арифметической, а геометрической сумме приведенных вторичных токов. Учитывая это равенство, а также и то, что нагрузка на вторичные обмотки достигает номинального значения не одновременно, первичную обмотку трехобмоточного трансформатора рассчитывают на мощность, меньшую арифметической суммы номинальных мощностей обеих вторичных обмоток. Еще одно достоинство трехобмоточного трансформатора состоит в том, что он фактически заменяет два двухобмоточных.

Рис. 3.1. Трехобмоточный траисформатор с одной первичной и двумя вторичными обмотками

Обмотки трехобмоточиого трансформатора располагают на стержне обычно концентрически (рис. 3.1, б), при этом целесообразнее двустороннее расположение вторичных обмоток относительно первичной, тогда первичной является обмотка 2, а вторичными — обмотки 1 и 3. В этом случае взаимное влияние вторичных обмоток заметно ослабевает.

На крупных электростанциях иногда применяют трехобмоточные трансформаторы с двумя первичными обмотками (к каждой из них подключается генератор) и одной вторичной (от нее отходит линия электропередачи). Обычно это установки большой мощности, а поэтому в них применяют однофазные трехобмоточные трансформаторы, соединенные в трансформаторную группу (см. рис. 1.20, а).

§ 3.2. Автотрансформаторы

Автотрансформатор — это такой вид трансформатора, в котором помимо магнитной связи между обмотками имеется еще и электрическая связь. Обмотки обычного трансформатора можно включить по схеме автотрансформатора, для чего выход X обмотки wax соединяют с выводом а обмотки wax (рис. 3.2). Если выводы Ах подключить к сети, а к выводам ах подключить нагрузку ZH, то получим понижающий автотрансформатор. Если же выводы

ах подключить к сети, а к выводам Ах подключить нагрузку ZH, то получим повышающий автотрансформатор.

Рис. 3.2. Электромагнитная (а) и принципиальная (б) схемы однофазного понижающего автотрансформатора

Рассмотрим подробнее работу понижающего автотрансформатора. Обмотка wax одновременно является частью первичной обмотки и вторичной обмоткой. В этой обмотке проходит ток I12. Для точки а запишем уравнение токов:

, (3.5)

или

, (3.6)

т. е. по виткам wax проходит ток I12, равный разности вторичного I2 и первичного I1 токов. Если коэффициент трансформации автотрансформатора kA = wAx/wax,. немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить витки wax

проводом уменьшенного сечения. Введем понятие проходной мощности автотрансформатора, представляющей собой всю передаваемую мощность Sпр=U2I2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Spасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. В автотрансформаторе между первичной и вторичной цепями помимо
магнитной
связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр = U2I2 на составляющие. Воспользуемся для этого выражением (3.5). Подставив это выражение в формулу проходной мощности, получим

Sпр =U2I2=U2(I1+I12)=U2

I1+U2I12=Sэ+Sрасч. (3.7)

Здесь Sэ = U2I1, — мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе Sрасч = = U2I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магнитопровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка обмотки также становится меньше; следовательно, умень­шается расход меди на выполнение обмотки автотрансформатора. Одновременно умень­шаются магнитные и электрические потери, а КПД автотрансформатора повышается.

Таким образом автотрансформатор по сравнению с трансформатором равной мощ­ности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротехническая сталь), более высоким КПД, меньшими размерами и стои­мостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность S3, а следовательно, чем меньше расчетная часть проходной мощности.

Мощность SЭ передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

Sэ = U2I1=U2I2/kA=Sпр/kA, (3.8)

т.е. значение мощности SЭ обратно пропорционально коэффициенту трансформации автотрансформатора kA.

Рис. 3.3. Зависимость SЭ/SПР

от коэффициента трансформации автотрансформатора

Из графика (рис. 3.3) видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при kA = 1 вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (SЭ/SПР = 1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации kA < 2. При большом значении коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

1. Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и х (см. рис. 3.2, а) напряжение U1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з. (см. § 4.1), поэтому токи к.з. ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

2. Электрическая связь стороны ВН со стороной НН; это требует усиленной электрической изоляции всей обмотки.

3.При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

4. В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для понижения напряжения сетей ВН до значений НН, подводимого непосредственно к потребителям.

Рис. 3.4. Трехфазный автотрансформатор

Силовые автотрансформаторы широко применяют в линиях передачи и распределения электроэнергии для связи сетей смежных напряжений, например ПО и 220, 220/и 500-кВ и др. Такие автотрансформаторы обычно выполняют на большие мощности (до 500 МВ-А и выше). Обмотки трехфазных автотрансформаторов обычно соединяют в звезду (рис. 3.4).

Автотрансформаторы применяют в электроприводе переменного тока для уменьшения пусковых токов двигателей значительной мощности (см. § 15.2), а также для регулировки режимов работы злектрометаллургических печей. Автотрансформаторы малой мощности применяют в устройствах радио, связи и автоматики.

Рис. 3.5. Регулировочный одно­фазный автотрансформатор:

1 — ручка для перемещения кон­тактной щетки; 2 — щеткодержа­тель; 3 — обмотка

Широко распространены автотрансформаторы с переменным коэффициентом трансформации. В этом случае автотрансформатор снабжают устройством, позволяющим регулировать величину вторичного напряжения путем изменения числа витков wах (См. рис. 3.2). Осуществляется это либо переключателем, либо с помощью скользящего контакта (щетки), перемещаемого непо­средственно по зачищенным от изоляции витками обмотки. Такие автотрансформаторы, называемые регуляторами напряжения, могут быть однофазными (рис. 3.5) и трехфазными.

Контрольные вопросы

1. Каковы достоинства трехобмоточных трансформаторов?

2. Перечислите достоинства и недостатки автотрансформаторов.

3. Зависят ли достоинства автотрансформатора от коэффициента трансформации? Объясните, почему.

4. Объясните устройство автотрансформатора с переменным коэффициентом

трансформации.

Трехобмоточные трансформаторы и автотрансформаторы


⇐ ПредыдущаяСтр 3 из 8Следующая ⇒

Трехобмоточные трансформаторы и автотрансформаторы. Во многих случаях на подстанции нужны три номинальных напряжения – высшее , среднее и низшее . Для этого можно было бы использовать два двухобмоточных трансформатора (рисунок 3, а). Более экономично, чем два двухобмоточных, применять один трехобмоточный трансформатор (рис. 2.6, б), все три обмотки которого имеют магнитную связь (рис. 2.7, а). Еще более экономично применение трехобмоточных автотрансформаторов, условное обозначение которых в схемах электрических сетей приведено на рис. 2.6, в.

а — два двухобмоточных трансформатора; б –трехобмоточный трансформатор; в – автотрансформатор

Рисунок 3 – Схемы подстанций с тремя номинальными напряжениями

а, б – схемы соединения обмоток; в, г – Г-образная и упрощенная схемы замещения; д – схема опыта КЗ (ВН)

Рисунок 4 – Трехобмоточный трансформатор и автотрансформатор

Схема соединения обмоток автотрансформатора показана на рисунок 4, б. Обмотка низшего напряжения магнитно связана с двумя другими. Обмотки же последовательная и общая (П и О на рисунке 4, б) непосредственно электрически соединены друг с другом и, кроме того, имеют магнитную связь. По последовательной обмотке течет ток , а по общей – ( ). Номинальной мощностью автотрансформатора называют мощность, которую автотрансформатор может принять из сети высшего напряжения или передать в эту сеть при номинальных условиях работы:

(2.12)

Эта мощность также называется проходной. Она равна предельной мощности, которую автотрансформатор может передать из сети высшего напряжения в сеть среднего напряжения и наоборот при отсутствии нагрузки на обмотке низшего напряжения.

Последовательная обмотка П рассчитывается на типовую мощность

(2.13)

где – коэффициент выгодности, показывающий, во сколько раз меньше .

Напряжение общей обмотки меньше , ток в ней равен , поэтому ее мощность меньше . Можно показать, что мощность общей обмотки равна типовой.

Обмотка низшего напряжения также рассчитывается на или на мощность меньше . Ее номинальная мощность выражается через номинальную мощность автотрансформатора так:

(2.13а)

где для кВ 0,4; 0,5.

В трехобмоточном трансформаторе все три обмотки имеют мощность . В автотрансформаторе общая и последовательная обмотки рассчитаны на типовую мощность < , а обмотки низшего напряжения – на < . Таким образом, через понижающий автотрансформатор можно передать мощность, большую той, на которую выполняются его обмотки. Чем меньше коэффициент выгодности , тем более экономичен автотрансформатор по сравнению с трехобмоточным трансформатором. Чем ближе номинальные напряжения на средней и высшей сторонах автотрансформатора, тем меньше и тем выгоднее использовать автотрансформатор. При .

Схема замещения трехобмоточного трансформатора и автотрансформатора с >220кВ приведена на рисунке 4, в, а с кВ – на рисунке 4, г. Как и для двухобмоточкого трансформатора, в такой схеме замещения отсутствуют трансформации, т.е. идеальные трансформаторы, но сопротивления обмоток низшего и среднего напряжений приводят к высшему напряжению. Такое приведение соответствует умножению на квадрат коэффициента трансформации. Потери холостого хода и определяются так же, как и для двухобмоточного трансформатора. Потери – известная каталожная величина, а определяются из выражения (2.4) по каталожному значению %. Для трехобмоточных трансформаторов и автотрансформаторов задаются три значения потерь короткого замыкания по парам обмоток и три напряжения короткого замыкания по парам обмоток . Каждое из каталожных значений и относится к одному из трех возможных опытов короткого замыкания. Значения и определяются при замыкании накоротко обмотки низшего напряжения при разомкнутой обмотке среднего напряжения и подведении к обмотке высшего напряжения такого напряжения , чтобы ток в обмотке низшего напряжения трансформатора был равен номинальному. Схема этого опыта КЗ приведена на рисунке 4, д. Ненагруженная обмотка среднего напряжения изображена штрихами, чтобы подчеркнуть, что ток в ней равен нулю. Аналогично опыту КЗ для двухобмоточного трансформатора из данного опыта КЗ можно определить сумму сопротивлений обмоток высшего и низшего напряжений:

. (2.14)

Соответственно для опытов КЗ по другим обмоткам справедливы аналогичные выражения:

, (2.15)

. (2.16)

В уравнениях (2.12) – (2.16) три неизвестных – активные сопротивления обмоток трансформатора . Решив эти три уравнения с тремя неизвестными, получим выражения, аналогичные (2.12):

, (2.17)

, (2.18)

. (2.19)

В (2.17) – (2.19) величины , соответствующие лучам схемы замещения, определяются по каталожным значениям потерь КЗ для пар обмоток:

, (2.20)

, (2.21)

(2.22)

Аналогично этому по каталожным значениям напряжении КЗ для пар обмоток определяются напряжения КЗ для лучей схемы замещения :

(2.23)

(2.24)

(2.25)

По найденным значениям определяются реактивные сопротивления обмоток по выражениям, аналогичным (2.13) для двухобмоточного трансформатора. Реактивное сопротивление одного из лучей схемы замещения трехобмоточного трансформатора (обычно среднего напряжения) близко к нулю.

Все современные трехобмоточные трансформаторы выпускаются с одинаковыми номинальными мощностями обмоток. Для ранее выпускавшихся трансформаторов, имеющих различные мощности отдельных обмоток, каталожные значения , для пар обмоток должны быть приведены к одной мощности (обычно к мощности обмотки высшего напряжения). Приведение производится пропорционально отношению мощностей обмоток, а приведение – пропорционально квадрату этого отношения.

Для автотрансформаторов дополнительно указывается номинальная мощность обмотки низшего напряжения в долях номинальной мощности автотрансформатора, т.е. (2.13а). Значения для пар обмоток приведены к напряжению обмотки ВН и отнесены к . Значения отнесены к номинальной мощности автотрансформатора , а и – к номинальной мощности обмотки низшего напряжения, т.е. к . Эта особенность записи параметров определяется условиями опыта КЗ автотрансформаторов. Например, при КЗ (ВН) напряжение на обмотке ВН поднимается до такого значения, при котором в закороченной обмотке низшего напряжения, рассчитанной на , ток будет соответствовать не , а . При КЗ (ВС) ток в последовательной обмотке (рисунок 4,6) поднимается до значения, соответствующего (см. (2.22).

Приведенные к разным мощностям паспортные значения для пар обмоток автотрансформатора необходимо привести к одной мощности – номинальной. Как отмечалось выше, это приведение пропорционально отношению квадратов мощностей обмоток:

(2.26)

(2.27)

 

Аппаратура и материалы

Перечень аппаратуры представлен в таблице 1, схема электрических соединений – на рисунке 5.

 


Рекомендуемые страницы:

Глава 3. Трехобмоточные трансформаторы и автотрансформаторы


⇐ ПредыдущаяСтр 12 из 85Следующая ⇒

Трехобмоточные трансформаторы

В трехобмоточном трансформаторе на каждую трансформируемую фазу приходится три обмотки. За номинальную мощность такого трансформатора принимают номинальную мощность наиболее нагружаемой его обмотки. Токи, напряжения и сопротивления других обмоток приводят к числу витков этой, наиболее мощной обмотки. Принцип работы трехобмоточного трансформатора по существу не отличается от принципа работы обычного двухобмоточного трансформатора.

Существуют трехобмоточные трансформаторы с одной первичной и двумя вторичными обмотками и трансформаторы с двумя первичными и одной вторичной обмотками.

Рассмотрим основные уравнения, особенности работы и область применения трехобмоточного трансформатора с одной первичной обмоткой, имеющего наибольшее распространение (рис. 3.1, а). Первичная (наиболее мощная) обмотка этого трансформатора является намагничивающей и создает в магнитопроводе магнитный поток, который сцепляется с двумя вторичными обмотками и наводит в них ЭДС и . Аналогично двухобмоточному трансформатору запишем для трехобмоточного трансформатора уравнение МДС:

Разделив (3.1) на w1, получим уравнения токов:

Здесь k12=w1/w2— коэффициент трансформации между обмотками w1 и w2; k13 = w1/w3 — коэффициент трансформации между обмотками w1и w3.

Пренебрегая током х.х. I0, получим упрощенное уравнение токов трехобмоточного трансформатора:

(3.4)

Экономическую целесообразность применения трехобмоточных трансформаторов можно объяснить тем, что, как это следует из (3.4), первичный ток трехобмоточного трансформатора равен не арифметической, а геометрической сумме приведенных вторичных токов. Учитывая это равенство, а также и то, что нагрузка на вторичные обмотки достигает номинального значения не одновременно, первичную обмотку трехобмоточного трансформатора рассчитывают на мощность, меньшую арифметической суммы номинальных мощностей обеих вторичных обмоток. Еще одно достоинство трехобмоточного трансформатора состоит в том, что он фактически заменяет два двухобмоточных.

Рис. 3.1. Трехобмоточный траисформатор с одной первичной и двумя вторичными обмотками

Обмотки трехобмоточиого трансформатора располагают на стержне обычно концентрически (рис. 3.1, б), при этом целесообразнее двустороннее расположение вторичных обмоток относительно первичной, тогда первичной является обмотка 2, а вторичными — обмотки 1 и 3. В этом случае взаимное влияние вторичных обмоток заметно ослабевает.

На крупных электростанциях иногда применяют трехобмоточные трансформаторы с двумя первичными обмотками (к каждой из них подключается генератор) и одной вторичной (от нее отходит линия электропередачи). Обычно это установки большой мощности, а поэтому в них применяют однофазные трехобмоточные трансформаторы, соединенные в трансформаторную группу (см. рис. 1.20, а).

 

Автотрансформаторы

Автотрансформатор — это такой вид трансформатора, в котором помимо магнитной связи между обмотками имеется еще и электрическая связь. Обмотки обычного трансформатора можно включить по схеме автотрансформатора, для чего выход X обмотки waxсоединяют с выводом а обмотки wax(рис. 3.2). Если выводы Ах подключить к сети, а к выводам ах подключить нагрузку ZH, то получим понижающий автотрансформатор. Если же выводы ах подключить к сети, а к выводам Ах подключить нагрузку ZH, то получим повышающий автотрансформатор.

Рис. 3.2. Электромагнитная (а) и принципиальная (б) схемы однофазного понижающего автотрансформатора

Рассмотрим подробнее работу понижающего автотрансформатора. Обмотка waxодновременно является частью первичной обмотки и вторичной обмоткой. В этой обмотке проходит ток I12. Для точки а запишем уравнение токов:

,(3.5)

или

, (3.6)

 

т. е. по виткам wax проходит ток I12, равный разности вторичного I2 и первичного I1токов. Если коэффициент трансформации автотрансформатора kA= wAx/wax,. немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить витки waxпроводом уменьшенного сечения. Введем понятие проходной мощности автотрансформатора, представляющей собой всю передаваемую мощность Sпр=U2I2из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Spасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. В автотрансформаторе между первичной и вторичной цепями помимо магнитнойсвязи существует еще и электрическая.Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр = U2I2 на составляющие. Воспользуемся для этого выражением (3.5). Подставив это выражение в формулу проходной мощности, получим

Sпр =U2I2=U2(I1+I12)=U2I1+U2I12=Sэ+Sрасч. (3.7)

Здесь Sэ= U2I1, — мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе Sрасч= = U2I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магнитопровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка обмотки также становится меньше; следовательно, умень­шается расход меди на выполнение обмотки автотрансформатора. Одновременно умень­шаются магнитные и электрические потери, а КПД автотрансформатора повышается.

Таким образом автотрансформатор по сравнению с трансформатором равной мощ­ности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротехническая сталь), более высоким КПД, меньшими размерами и стои­мостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность S3, а следовательно, чем меньше расчетная часть проходной мощности.

Мощность SЭ передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

Sэ = U2I1=U2I2/kA=Sпр/kA, (3.8)

т.е. значение мощности SЭобратно пропорционально коэффициенту трансформации автотрансформатора kA.

Рис. 3.3. Зависимость SЭ/SПРот коэффициента трансформации автотрансформатора

Из графика (рис. 3.3) видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при kA = 1 вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (SЭ/SПР= 1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации kA< 2. При большом значении коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

1. Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и х(см. рис. 3.2, а) напряжение U1подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з. (см. § 4.1), поэтому токи к.з. ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

2. Электрическая связь стороны ВН со стороной НН; это требуетусиленной электрической изоляции всей обмотки.

3.При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

4. В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для понижения напряжения сетей ВН до значений НН, подводимого непосредственно к потребителям.

Рис. 3.4. Трехфазный автотрансформатор

Силовые автотрансформаторы широко применяют в линиях передачи и распределения электроэнергии для связи сетей смежных напряжений, например ПО и 220, 220/и 500-кВ и др. Такие автотрансформаторы обычно выполняют на большие мощности (до 500 МВ-А и выше). Обмотки трехфазных автотрансформаторов обычно соединяют в звезду (рис. 3.4).

Автотрансформаторы применяют в электроприводе переменного тока для уменьшения пусковых токов двигателей значительной мощности (см. § 15.2), а также для регулировки режимов работы злектрометаллургических печей. Автотрансформаторы малой мощности применяют в устройствах радио, связи и автоматики.

Рис. 3.5. Регулировочный одно­фазный автотрансформатор:

1 — ручка для перемещения кон­тактной щетки; 2 — щеткодержа­тель; 3 — обмотка

Широко распространены автотрансформаторы с переменным коэффициентом трансформации. В этом случае автотрансформатор снабжают устройством, позволяющим регулировать величину вторичного напряжения путем изменения числа витков wах (См. рис. 3.2). Осуществляется это либо переключателем, либо с помощью скользящего контакта (щетки), перемещаемого непо­средственно по зачищенным от изоляции витками обмотки. Такие автотрансформаторы, называемые регуляторами напряжения, могут быть однофазными (рис. 3.5) и трехфазными.

Контрольные вопросы

1. Каковы достоинства трехобмоточных трансформаторов?

2. Перечислите достоинства и недостатки автотрансформаторов.

3. Зависят ли достоинства автотрансформатора от коэффициента трансформации? Объясните, почему.

4. Объясните устройство автотрансформатора с переменным коэффициентом

трансформации.

 


Рекомендуемые страницы:

Глава 3. Трехобмоточные трансформаторы и автотрансформаторы § 3.1. Трехобмоточные трансформаторы

В трехобмоточном трансформаторе на каждую трансформируемую фазу приходится три обмотки. За номинальную мощность такого трансформатора принимают номинальную мощность наиболее нагружаемой его обмотки. Токи, напряжения и сопротивления других обмоток приводят к числу витков этой, наиболее мощной обмотки. Принцип работы трехобмоточного трансформатора по существу не отличается от принципа работы обычного двухобмоточного трансформатора.

Существуют трехобмоточные трансформаторы с одной первичной и двумя вторичными обмотками и трансформаторы с двумя первичными и одной вторичной обмотками.

Рассмотрим основные уравнения, особенности работы и область применения трехобмоточного трансформатора с одной первичной обмоткой, имеющего наибольшее распространение (рис. 3.1, а). Первичная (наиболее мощная) обмотка этого трансформатора является намагничивающей и создает в магнитопроводе магнитный поток, который сцепляется с двумя вторичными обмотками и наводит в них ЭДС и . Аналогично двухобмоточному трансформатору запишем для трехобмоточного трансформатора уравнение МДС:

Разделив (3.1) на w1, получим уравнения токов:

Здесь k12=w1/w2 — коэффициент трансформации между обмотками w1 и w2; k13 = w1/w3 — коэффициент трансформации между обмотками w1 и w3.

Пренебрегая током х.х. I0, получим упрощенное уравнение токов трехобмоточного трансформатора:

(3.4)

Экономическую целесообразность применения трехобмоточных трансформаторов можно объяснить тем, что, как это следует из (3.4), первичный ток трехобмоточного трансформатора равен не арифметической, а геометрической сумме приведенных вторичных токов. Учитывая это равенство, а также и то, что нагрузка на вторичные обмотки достигает номинального значения не одновременно, первичную обмотку трехобмоточного трансформатора рассчитывают на мощность, меньшую арифметической суммы номинальных мощностей обеих вторичных обмоток. Еще одно достоинство трехобмоточного трансформатора состоит в том, что он фактически заменяет два двухобмоточных.

Рис. 3.1. Трехобмоточный траисформатор с одной первичной и двумя вторичными обмотками

Обмотки трехобмоточиого трансформатора располагают на стержне обычно концентрически (рис. 3.1, б), при этом целесообразнее двустороннее расположение вторичных обмоток относительно первичной, тогда первичной является обмотка 2, а вторичными — обмотки 1 и 3. В этом случае взаимное влияние вторичных обмоток заметно ослабевает.

На крупных электростанциях иногда применяют трехобмоточные трансформаторы с двумя первичными обмотками (к каждой из них подключается генератор) и одной вторичной (от нее отходит линия электропередачи). Обычно это установки большой мощности, а поэтому в них применяют однофазные трехобмоточные трансформаторы, соединенные в трансформаторную группу (см. рис. 1.20, а).

§ 3.2. Автотрансформаторы

Автотрансформатор — это такой вид трансформатора, в котором помимо магнитной связи между обмотками имеется еще и электрическая связь. Обмотки обычного трансформатора можно включить по схеме автотрансформатора, для чего выход X обмотки wax соединяют с выводом а обмотки wax (рис. 3.2). Если выводы Ах подключить к сети, а к выводам ах подключить нагрузку ZH, то получим понижающий автотрансформатор. Если же выводы ах подключить к сети, а к выводам Ах подключить нагрузку ZH, то получим повышающий автотрансформатор.

Рис. 3.2. Электромагнитная (а) и принципиальная (б) схемы однофазного понижающего автотрансформатора

Рассмотрим подробнее работу понижающего автотрансформатора. Обмотка wax одновременно является частью первичной обмотки и вторичной обмоткой. В этой обмотке проходит ток I12. Для точки а запишем уравнение токов:

, (3.5)

или

, (3.6)

т. е. по виткам wax проходит ток I12, равный разности вторичного I2 и первичного I1 токов. Если коэффициент трансформации автотрансформатора kA = wAx/wax,. немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить витки wax проводом уменьшенного сечения. Введем понятие проходной мощности автотрансформатора, представляющей собой всю передаваемую мощность Sпр=U2I2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Spасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. В автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр = U2I2 на составляющие. Воспользуемся для этого выражением (3.5). Подставив это выражение в формулу проходной мощности, получим

Sпр =U2I2=U2(I1+I12)=U2I1+U2I12=Sэ+Sрасч. (3.7)

Здесь Sэ = U2I1, — мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе Sрасч = = U2I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магнитопровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка обмотки также становится меньше; следовательно, умень­шается расход меди на выполнение обмотки автотрансформатора. Одновременно умень­шаются магнитные и электрические потери, а КПД автотрансформатора повышается.

Таким образом автотрансформатор по сравнению с трансформатором равной мощ­ности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротехническая сталь), более высоким КПД, меньшими размерами и стои­мостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность S3, а следовательно, чем меньше расчетная часть проходной мощности.

Мощность SЭ передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

Sэ = U2I1=U2I2/kA=Sпр/kA, (3.8)

т.е. значение мощности SЭ обратно пропорционально коэффициенту трансформации автотрансформатора kA.

Рис. 3.3. Зависимость SЭ/SПР от коэффициента трансформации автотрансформатора

Из графика (рис. 3.3) видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при kA = 1 вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (SЭ/SПР = 1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации kA < 2. При большом значении коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

1. Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и х (см. рис. 3.2, а) напряжение U1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з. (см. § 4.1), поэтому токи к.з. ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

2. Электрическая связь стороны ВН со стороной НН; это требует усиленной электрической изоляции всей обмотки.

3.При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

4. В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для понижения напряжения сетей ВН до значений НН, подводимого непосредственно к потребителям.

Рис. 3.4. Трехфазный автотрансформатор

Силовые автотрансформаторы широко применяют в линиях передачи и распределения электроэнергии для связи сетей смежных напряжений, например ПО и 220, 220/и 500-кВ и др. Такие автотрансформаторы обычно выполняют на большие мощности (до 500 МВ-А и выше). Обмотки трехфазных автотрансформаторов обычно соединяют в звезду (рис. 3.4).

Автотрансформаторы применяют в электроприводе переменного тока для уменьшения пусковых токов двигателей значительной мощности (см. § 15.2), а также для регулировки режимов работы злектрометаллургических печей. Автотрансформаторы малой мощности применяют в устройствах радио, связи и автоматики.

Рис. 3.5. Регулировочный одно­фазный автотрансформатор:

1 — ручка для перемещения кон­тактной щетки; 2 — щеткодержа­тель; 3 — обмотка

Широко распространены автотрансформаторы с переменным коэффициентом трансформации. В этом случае автотрансформатор снабжают устройством, позволяющим регулировать величину вторичного напряжения путем изменения числа витков wах (См. рис. 3.2). Осуществляется это либо переключателем, либо с помощью скользящего контакта (щетки), перемещаемого непо­средственно по зачищенным от изоляции витками обмотки. Такие автотрансформаторы, называемые регуляторами напряжения, могут быть однофазными (рис. 3.5) и трехфазными.

Контрольные вопросы

1. Каковы достоинства трехобмоточных трансформаторов?

2. Перечислите достоинства и недостатки автотрансформаторов.

3. Зависят ли достоинства автотрансформатора от коэффициента трансформации? Объясните, почему.

4. Объясните устройство автотрансформатора с переменным коэффициентом

трансформации.

Трехобмоточный автотрансформатор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Трехобмоточный автотрансформатор

Cтраница 1

Трехобмоточные автотрансформаторы ( рис. 5 — 7) имеют три обмотки: последовательную, общую и низшего напряжения. Последовательная и общая обмотки имеют между собой как магнитную, так и электрическую связь. Обмотка низшего напряжения с двумя другими обмотками имеет только магнитную связь. В трехфазном трехобмоточном автотрансформаторе или в трехфазной группе из однофазных трехобмоточны автотрансформаторов последовательная и общая обмотки соединяются по схеме звезды с глухозаземленной нейтралью, а обмотка низшего напряжения соединяется в треугольник.  [1]

Трехобмоточный автотрансформатор может работать в автотрансформаторном режиме, как рассмотрено выше, а также в трансформаторном и смешанном режимах. Рассмотрим чисто трансформаторный режим работы автотрансформатора.  [2]

Трехобмоточные автотрансформаторы применяются на распре-шлительных подстанциях с подключением к трем линиям электропередачи с разными напряжениями.  [4]

Трехобмоточные автотрансформаторы ( рис. 5.7) имеют три обмотки: последовательную — П, общую О и низшего напряжения — НН.  [5]

Трехобмоточные автотрансформаторы и трансформаторы, предназначенные для работы в блоке с генераторами, допускают длительную перегрузку по напряжению до 10 % при нагрузке, не превышающей номинальную.  [6]

Трехобмоточные автотрансформаторы ( рис. 5.7) имеют три обмотки: последовательную — П, общую О и низшего напряжения — НН.  [7]

Обмотки трехобмоточного автотрансформатора размещают на стержнях так же, как обмотки трехобмоточного трансформатора.  [9]

В трехобмоточных автотрансформаторах обмотки ВН и СН связаны электрически и соединены в звезду.  [10]

В трехобмоточных автотрансформаторах обмотки ВН и СН связаны электрически и соединены в звезду с заземленной нейтралью, а обмотка НН соединяется в треугольник для улучшения формы кривой напряжения ( см. гл.  [11]

Конструктивная схема трехобмоточного автотрансформатора представлена на рис. 11 — 1, а. Обмотки обозначены буквами ВН, СН, НН, а также цифрами 1, 2, 3 соответственно. Изображенное на рис. 11 — 1, а расположение обмоток ( первая от магнитопровода — НН, затем — СН, снаружи — ВН) в настоящее время является типовым. В эксплуатации имеются автотрансформаторы прежних выпусков, у которых обмотка НН расположена между СН и ВН.  [12]

Схема замещения трехобмоточного автотрансформатора представлена трехлучевой звездой, изображенной на рис. 11 — 5, б, аналогично схеме замещения трехобмоточного трансформатора. Как и выше, активным сопротивлением обмоток и активной проводимостью автотрансформатора пренебрегаем.  [13]

При расчете потерь для трехобмоточного автотрансформатора с автотрансформаторной связью двух обмоток и трансформаторной связью между этими обмотками и третьей обмоткой следует учитывать замечания, изложенные в § 7 — 1, относительно расчета потерь для трехобмоточных трансформаторов и указания § 3 — 2 относительно расчета автотрансформаторов.  [14]

Отечественной промышленностью выпускаются в основном трехобмоточные автотрансформаторы с обмотками ВН, СН, НН, причем автотрансформаторная связь вводится между обмотками ВН и СН, а третья обмотка связана только электромагнитно. Обмотка НН, электрически не связанная с обмотками ВН и СН, предназначается прежде всего для компенсации токов тройной частоты, свободная циркуляция которых обеспечивается при соединении в треугольник. Кроме того, эта обмотка используется для подсоединения генератора или синхронного компенсатора, а также для питания потребителей собственных нужд электростанции.  [15]

Страницы:      1    

Глава 3. Трехобмоточные трансформаторы и автотрансформаторы § 3.1. Трехобмоточные трансформаторы

В трехобмоточном трансформаторе на каждую трансформируемую фазу приходится три обмотки. За номинальную мощность такого трансформатора принимают номинальную мощность наиболее нагружаемой его обмотки. Токи, напряжения и сопротивления других обмоток приводят к числу витков этой, наиболее мощной обмотки. Принцип работы трехобмоточного трансформатора по существу не отличается от принципа работы обычного двухобмоточного трансформатора.

Существуют трехобмоточные трансформаторы с одной первичной и двумя вторичными обмотками и трансформаторы с двумя первичными и одной вторичной обмотками.

Рассмотрим основные уравнения, особенности работы и область применения трехобмоточного трансформатора с одной первичной обмоткой, имеющего наибольшее распространение (рис. 3.1, а). Первичная (наиболее мощная) обмотка этого трансформатора является намагничивающей и создает в магнитопроводе магнитный поток, который сцепляется с двумя вторичными обмотками и наводит в них ЭДС и . Аналогично двухобмоточному трансформатору запишем для трехобмоточного трансформатора уравнение МДС:

Разделив (3.1) на w1, получим уравнения токов:

Здесь k12=w1/w2 — коэффициент трансформации между обмотками w1 и w2; k13 = w1/w3 — коэффициент трансформации между обмотками w1 и w3.

Пренебрегая током х.х. I0, получим упрощенное уравнение токов трехобмоточного трансформатора:

(3.4)

Экономическую целесообразность применения трехобмоточных трансформаторов можно объяснить тем, что, как это следует из (3.4), первичный ток трехобмоточного трансформатора равен не арифметической, а геометрической сумме приведенных вторичных токов. Учитывая это равенство, а также и то, что нагрузка на вторичные обмотки достигает номинального значения не одновременно, первичную обмотку трехобмоточного трансформатора рассчитывают на мощность, меньшую арифметической суммы номинальных мощностей обеих вторичных обмоток. Еще одно достоинство трехобмоточного трансформатора состоит в том, что он фактически заменяет два двухобмоточных.

Рис. 3.1. Трехобмоточный траисформатор с одной первичной и двумя вторичными обмотками

Обмотки трехобмоточиого трансформатора располагают на стержне обычно концентрически (рис. 3.1, б), при этом целесообразнее двустороннее расположение вторичных обмоток относительно первичной, тогда первичной является обмотка 2, а вторичными — обмотки 1 и 3. В этом случае взаимное влияние вторичных обмоток заметно ослабевает.

На крупных электростанциях иногда применяют трехобмоточные трансформаторы с двумя первичными обмотками (к каждой из них подключается генератор) и одной вторичной (от нее отходит линия электропередачи). Обычно это установки большой мощности, а поэтому в них применяют однофазные трехобмоточные трансформаторы, соединенные в трансформаторную группу (см. рис. 1.20, а).

§ 3.2. Автотрансформаторы

Автотрансформатор — это такой вид трансформатора, в котором помимо магнитной связи между обмотками имеется еще и электрическая связь. Обмотки обычного трансформатора можно включить по схеме автотрансформатора, для чего выход X обмотки wax соединяют с выводом а обмотки wax (рис. 3.2). Если выводы Ах подключить к сети, а к выводам ах подключить нагрузку ZH, то получим понижающий автотрансформатор. Если же выводы ах подключить к сети, а к выводам Ах подключить нагрузку ZH, то получим повышающий автотрансформатор.

Рис. 3.2. Электромагнитная (а) и принципиальная (б) схемы однофазного понижающего автотрансформатора

Рассмотрим подробнее работу понижающего автотрансформатора. Обмотка wax одновременно является частью первичной обмотки и вторичной обмоткой. В этой обмотке проходит ток I12. Для точки а запишем уравнение токов:

, (3.5)

или

, (3.6)

т. е. по виткам wax проходит ток I12, равный разности вторичного I2 и первичного I1 токов. Если коэффициент трансформации автотрансформатора kA = wAx/wax,. немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить витки wax проводом уменьшенного сечения. Введем понятие проходной мощности автотрансформатора, представляющей собой всю передаваемую мощность Sпр=U2I2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Spасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. В автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр = U2I2 на составляющие. Воспользуемся для этого выражением (3.5). Подставив это выражение в формулу проходной мощности, получим

Sпр =U2I2=U2(I1+I12)=U2I1+U2I12=Sэ+Sрасч. (3.7)

Здесь Sэ = U2I1, — мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе Sрасч = = U2I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магнитопровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка обмотки также становится меньше; следовательно, умень­шается расход меди на выполнение обмотки автотрансформатора. Одновременно умень­шаются магнитные и электрические потери, а КПД автотрансформатора повышается.

Таким образом автотрансформатор по сравнению с трансформатором равной мощ­ности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротехническая сталь), более высоким КПД, меньшими размерами и стои­мостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность S3, а следовательно, чем меньше расчетная часть проходной мощности.

Мощность SЭ передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

Sэ = U2I1=U2I2/kA=Sпр/kA, (3.8)

т.е. значение мощности SЭ обратно пропорционально коэффициенту трансформации автотрансформатора kA.

Рис. 3.3. Зависимость SЭ/SПР от коэффициента трансформации автотрансформатора

Из графика (рис. 3.3) видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при kA = 1 вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (SЭ/SПР = 1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации kA < 2. При большом значении коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

1. Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и х (см. рис. 3.2, а) напряжение U1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з. (см. § 4.1), поэтому токи к.з. ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

2. Электрическая связь стороны ВН со стороной НН; это требует усиленной электрической изоляции всей обмотки.

3.При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

4. В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для понижения напряжения сетей ВН до значений НН, подводимого непосредственно к потребителям.

Рис. 3.4. Трехфазный автотрансформатор

Силовые автотрансформаторы широко применяют в линиях передачи и распределения электроэнергии для связи сетей смежных напряжений, например ПО и 220, 220/и 500-кВ и др. Такие автотрансформаторы обычно выполняют на большие мощности (до 500 МВ-А и выше). Обмотки трехфазных автотрансформаторов обычно соединяют в звезду (рис. 3.4).

Автотрансформаторы применяют в электроприводе переменного тока для уменьшения пусковых токов двигателей значительной мощности (см. § 15.2), а также для регулировки режимов работы злектрометаллургических печей. Автотрансформаторы малой мощности применяют в устройствах радио, связи и автоматики.

Рис. 3.5. Регулировочный одно­фазный автотрансформатор:

1 — ручка для перемещения кон­тактной щетки; 2 — щеткодержа­тель; 3 — обмотка

Широко распространены автотрансформаторы с переменным коэффициентом трансформации. В этом случае автотрансформатор снабжают устройством, позволяющим регулировать величину вторичного напряжения путем изменения числа витков wах (См. рис. 3.2). Осуществляется это либо переключателем, либо с помощью скользящего контакта (щетки), перемещаемого непо­средственно по зачищенным от изоляции витками обмотки. Такие автотрансформаторы, называемые регуляторами напряжения, могут быть однофазными (рис. 3.5) и трехфазными.

Контрольные вопросы

1. Каковы достоинства трехобмоточных трансформаторов?

2. Перечислите достоинства и недостатки автотрансформаторов.

3. Зависят ли достоинства автотрансформатора от коэффициента трансформации? Объясните, почему.

4. Объясните устройство автотрансформатора с переменным коэффициентом

трансформации.

5.3. Трансформаторы и автотрансформаторы. Справочник по проектированию электрических сетей

5.3.1. Основные определения и обозначения

Трансформаторы предназначены для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока. Различают двух-, трех- и многообмоточные трансформаторы, имеющие соответственно две, три и более гальванически не связанные обмотки. Передача энергии из первичной цепи трансформатора во вторичную происходит посредством магнитного поля.

Автотрансформатором называется трансформатор, две или более обмотки которого гальванически связаны так, что они имеют общую часть. Обмотки АТ связаны электрически и магнитно, и передача энергии из первичной цепи во вторичную происходит как посредством магнитного поля, так и электрическим путем.

В трансформаторе вся энергия трансформируется из первичной энергии во вторичную, тогда как в АТ только часть всей энергии трансформируется, а другая часть передается непосредственно из системы одного напряжения в систему другого напряжения без трансформации.

В трансформаторе первичная и вторичная обмотки с напряжением U1 и U2 имеют токи I1 и I2, протекающие в противоположных направлениях. В АТ часть первичной обмотки используется в качестве вторичной, что позволяет понизить напряжение во вторичной обмотке до U2. При этом часть первичной обмотки включает в себя вторичную и дополнительную часть с напряжением (U1 ? U2). Ток, протекающий в общей части обмотки АТ, является разностью двух токов (I2 ? I1). Поэтому общая часть обмотки может быть изготовлена из провода меньшего сечения, рассчитанная на разность токов (I2? I1) вместо полного тока I2.

С другой стороны, первичная обмотка, имеющая более высокое напряжение, как бы уменьшена до последовательной части АТ, имеющей n1 ? п2 витков вместо полного числа витков n1. Следовательно, первичная обмотка уменьшается пропорционально величине (n1 ? n2) /n1, а вторичная — пропорционально (I2 ? I1)/I2. Это позволяет получить экономию активных материалов и размеров АТ по сравнению с трансформатором.

Для сравнения трансформаторов и автотрансформаторов приняты такие понятия, как «проходная» (Sпр) и «типовая» (Sт) мощности АТ.

Проходная мощность — мощность, передаваемая АТ во вторичную сеть, типовая мощность — мощность двухобмоточного трансформатора, имеющего параметры данного АТ.

Чем выше коэффициент трансформации (U/U), тем б?льшая выгода достигается с помощью АТ.

Различают силовые трансформаторы общего назначения, предназначенные для включения в сети, не отличающиеся особыми условиями работы, или для непосредственного питания совокупности приемников электрической энергии, не отличающихся особыми условиями работы, характером нагрузки или режимом работы. Силовые трансформаторы специального назначения, предназначены для непосредственного питания сетей и приемников электроэнергии, если эти сети и приемники отличаются особыми условиями работы, характером нагрузки или режимом работы. К числу таких сетей и приемников электроэнергии относятся, например, подземные рудничные и шахтные сети и установки, выпрямительные установки, электрические печи и т. п. Ниже приводятся номинальные данные по силовым трансформаторам общего назначения (мощность, напряжение обмоток и т. д.), соответствующие условиям их работы, установленным нормативными документами.

Номинальной мощностью двухобмоточного трансформатора является номинальная мощность каждой из его обмоток, в трехобмоточном трансформаторе — наибольшая из номинальных мощностей трех его обмоток.

За номинальное напряжение обмотки принимается напряжение между соответствующими зажимами, связанными с данной обмоткой при холостом ходе трансформатора.

По исполнению трансформаторы могут быть трехфазными и однофазными. В трехфазном трансформаторе под обмоткой обычно понимают совокупность соединенных между собой обмоток одного напряжения разных фаз. В двухобмоточном трансформаторе различают обмотку ВН, присоединяемую к сети высокого напряжения, и обмотку НН, присоединяемую к сети низкого напряжения. Обмотку трансформатора, к которой подводится электрическая энергия, называют первичной, а обмотку, от которой энергия отводится, — вторичной. В трехобмоточном трансформаторе различают обмотки ВН, СН[6] и НН.

По виду охлаждающей среды различают сухие и масляные трансформаторы. Трансформаторы с естественным воздушным охлаждением (сухие трансформаторы) обычно не имеют специальной системы охлаждения. В масляных трансформаторах в систему охлаждения входят: бак трансформатора, заливаемый маслом, для мощных трансформаторов — охладители, вентиляторы, масляные насосы, теплообменники и т. д.

Ряды номинальных мощностей, на которые разрабатываются трансформаторы по ГОСТ 9680—77, приведены ниже, кВА:

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *