Site Loader

Содержание

Литиевые аккумуляторы для авто – мифы и реальность — Информация

Существует категория автомобилистов, которые пользуются машиной, как компьютером – она выполняет свои функции, и какой смысл разбираться, что там под капотом, какая у аккумулятора емкость, насколько он быстро разряжается? И это, в общем-то, верно. Каждый должен заниматься своим делом. Однако есть и другие владельцы авто, которым абсолютно небезразличен ресурс, параметры заряда, масса АКБ. Видимо, именно для них были придуманы литиевые системы аккумуляторных батарей. Зачем они нужны? Чем отличаются от обычных батарей? Об этом предлагаем поговорить дальше.

 

В наш динамичный век, когда на улице можно встретить гибридное авто или электрокар, литиевая аккумуляторная батарея вряд ли может стать диковинкой. Такие системы аккумулирования электроэнергии встречаются во многих транспортных средствах. Да возьмем, хотя бы, Toyota Prius C, которая так популярна в США! Кстати, такие технологии осваивают не только японцы, ярким подтверждением чему может служить новенький Ford Fusion Hybrid. То есть, в роли тяговых батарей литиевые аккумуляторы выглядят прекрасно. Но почему не использовать их же в виде стартерных АКБ? Существуют нюансы. Но для начала о преимуществах.

 

Основные плюсы «лития» по сравнению с традиционными АКБ:

 

  • Меньший вес, что сказывается на общей массе авто.
  • Более продолжительный период хранения заряда.
  • Способность выдерживать большее количество зарядных и разрядных циклов.

 

Кроме того, следует отметить, что литиевые аккумуляторы обладают намного большим соотношением выходного тока к емкости аккумулятора. А это значит, что по сравнению с обычными АКБ требуется существенно меньше энергии для выполнения аналогичного объема работы. В то же время, не стоит рассматривать «литий», как панацею от всех бед, такие аккумуляторы не лишены целого ряда недостатков.

 

Несколько слов о минусах литиевых аккумуляторов

 

  • Существенное падение мощности литиевых батарей с падением температуры окружающей среды.

 

  • Высокая требовательность к степени заряда, по причине чего случаются сбои в локальных ячейках.

 

  • Высокая цена, которая для сравнения со свинцово-кислотными АКБ составляет около 1500 против 100 долларов США, например, за аккумуляторы Bosch. Другими словами, за «литий» приходится, в среднем, платить в 15 раз больше. 

 

Более того конкурентами традиционных аккумуляторных батарей литиевые аккумуляторы могут стать только тогда, когда у них будет встроенная цепь заряда. Что это значит? Проще говоря, на обычное авто, рассчитанное под стандартный аккумулятор, литиевую батарею без переделок не поставишь. То ли дело McLaren MP4-12C или Porsche GT3, здесь все продумано изначально, и сделано на заводе.

 

Вместо послесловия

 

О том, что литиевые автомобильные аккумуляторы по своим техническим характеристикам выше, чем свинцово-кислотные, далеко не «на голову». Единственный весомый плюс – вес. Но ведь для стокового авто разница в пару килограмм не так уж существенно, ведь выступать на треке в этом случае не нужно. В то же время, даже при желании отдать около полутора тысяч долларов, и поставить на свою машину «литий», сделать это будет непросто, так как для достижения данной цели придется вносить существенные конструктивные изменения в систему электроники авто. Хотя, возможно, при снижении цены, и эта проблема решится легко. Будем ждать!

04.03.2013, 43171 просмотр.

Литиевый аккумулятор вместо стартерного [развенчание мифов]

Почему тяговый аккумулятор стартерному не товарищ

Литий-ионные аккумуляторы (Li-ion) разгружают работу двигателей в гибридных автомобилях и выполняют роль основного источника питания в электрических моделях. Такие АКБ называют тяговыми. Пример Toyota Prius C, Ford Fusion Hybrid. Тяговые АКБ также ставят на электрокары. Восполняют затраченную энергию тяговые АКБ от сети, от энергии вырабатываемой при рекуперативном торможении, от генератора автомобиля.
Стартерные АКБ это батареи отдающие мощный заряд «пускового» тока в диапазоне от 250 до 1000 Ампер для запуска двигателя. Питают бортовую сеть машины – музыку, системы безопасности, свет. Затраченную энергию стартерный АКБ восполняет от работы генератора и при рекуперативном торможении.
В качестве стартерных АКБ в обычных бензиновых или дизельных автомобилях литий-ионные батареи не подходят. Чтобы ответить на вопрос: «Почему?» вначале разберемся в плюсах и минусах литиевых батарей.
Подробней о видах аккумуляторов писали здесь.

Преимущества литий-ионных АКБ над свинцово-кислотными:

  • литиевые электробатареи легче свинцово-кислотных
  • дольше хранят заряд;
  • выдерживают больше циклов заряда/разряда;
  • объем литий-ионных аккумуляторов выше свинцово-кислотных;
  • выше выдача более высокого напряжения;
  • в них нет «эффекта памяти»;
  • дольше хранятся при правильных условиях;
  • медленней стареют – жизненный цикл около 10 лет.

Минусы Li-ion аккумуляторов:

  • Li-ion аккумулятор состоит из ячеек, которые капризны к неправильной зарядке. Если аккумулятор перезарядить или полностью разразить, из строя могут выйти внутренние ячейки, потребуется их замена;
  • рабочий диапазон температур литиевой батареи от -20 до + 50 С, при этом наблюдается снижение емкости батареи при сильных морозах и перебои в работе при высокой температуре на улице;
  • плохо заряжаются при отрицательных температурах;
  • к концу жизненного цикла теряют емкость;
  • взрывоопасны при нарушении герметичности;
  • литий – ионные АКБ стоят, в среднем, $1700 против $120 за свинцово-кислотный.

Все недостатки Li-ion батарей, кроме себестоимости, можно решить путем вдумчивой инженерии.

Почему литиевый аккумулятор не применим в обычном автомобиле?

Генератор переменного тока автомобиля не сможет зарядить литиевый аккумулятор правильно, из-за чего батарея придет в негодность. Но решение есть. Гоночные автомобили типа Porsche GT3, GT2, предлагают комплектацию с опциональным литий – ионным АКБ. Система зажигания в таких автомобилях построена с конвертером заряда, который берет выход от генератора переменного тока и преобразует его для заряда литиевого аккумулятора, заряжая по определенным правилам. Специальная цепь равномерно распределяет заряд между всеми четырьмя ячейками Li-ion батареи. Применение литий-ионных АКБ оправдано либо в странах с умеренным климатом, либо на гоночном треке, где важен вес автомобиля, а денег от спонсоров куры не клюют – при весе в 6 кг литиевая батарея на 10 кг легче свинцовой.

Нужен ли литиевый АКБ в автомобиле в качестве стартерного?

Подведем итоги. Литиевый АКБ также хорош в обычном ДВС автомобиле, как и плох. Основное превосходство такого аккумулятора над свинцово-кислотным в продолжительности жизни, весе, объеме. Минусы – перебои в работе при очень низких и высоких температурах, цена, взрывоопасность.
Остается надеяться, что ученые найдут способ удешевить себестоимость литий – ионных аккумуляторов и увеличить их способность сопротивления быстрой разрядке во время морозов. Решение проблем литиевой батареи совершит прорыв в автомобильной промышленности, что скажется на повышении продаж тех марок автомобилей, которые в числе первых получат литиевые АКБ в виде стартерных. О других прорывах в области аккумуляторных батарей писали тут.

Литиевый аккумулятор для автомобиля: преимущества и недостатки

Литиевый аккумулятор для автомобиля набирает все большую популярность. Легкие литиевые аккумуляторы разработаны для целого ряда транспортных средств, начиная от мотоциклов и заканчивая военной техникой. Растущий спрос на них заставил поставщиков и ученых сосредоточиться на повышении плотности энергии, рабочей температуры, безопасности, долговечности, времени зарядки и выходной мощности литий-ионных батарей.

Разработка литиевых АКБ началась с 1912 года под руководством Г.Н Льюиса, но появились первые литиевые неперезаряжаемые источники питания только в начале 1970-х годов. В 1980-х годах попытались разработать перезаряжаемый питающий элемент, но разработка не удалась из-за нестабильности в металлическом литии, используемом в качестве основного материала.

Литиевая батарея использует литий в качестве анода. АКБ Lion используют графит в качестве анода и активных материалов в катоде.

В связи с нестабильностью лития во время зарядки ученые стали использовать неметаллический раствор с использованием лития. В 1991 году фирма «SONY» запатентовала первый ион Li батарею. Продолжая развиваться, она остается популярной и перспективной на мировом рынке.

Свинцово-кислотные источники питания уступают литий-ионным автомобильным аккумуляторам по многим показателям. Вес литиевых АКБ на 80 % легче свинцово-кислотных. В батарее Lion долгое время сохраняется зарядка, срок службы достигает десяти лет.

С другой стороны, цена на автомобильные литиевые аккумуляторы в несколько раз превышает стоимость свинцово-кислотных.

Автомобильный литий-ионный аккумулятор часто используется в электромобилях. Электромобиль приводится в движение, используя энергию источника питания.

Типы батарей электромобиля

В электромобилях используется три типа аккумуляторных батарей: свинцово-кислотные, батареи гидрида металла никеля и литий-ионные источники питания.

Свинцово-кислотные АКБ изобретены в 1859 году и считаются привычной формой источника питания. Они использовались во всех типах автомобильного транспорта. Это вид жидких батарей, которые содержат емкости со слабым раствором серной кислоты.

Свинцовые электроды и кислота используется для производства электроэнергии в АКБ. Источник питания не имеет сложности в обслуживании и отличается небольшой стоимостью. Но содержит опасные газы, которые приводят к взрыву при неправильной эксплуатации.

Никель-металлогидридные аккумуляторы используются с 1980 года. Это маленькая, легкая и вместительная батарея, которая имеет высокую плотность и не содержит никаких токсических металлов.

Литий-ионные аккумуляторы для автомобилей используются с начала 1990 года. Они отличаются очень высокой плотностью энергии.

Из-за облегченных и низких требований к техническому обслуживанию, литий-ион используется в электронных устройствах, часто в портативных компьютерах.

Этот тип питающих элементов считается лучшим для питания электромобилей.

Какие бывают типы литий-ионных батарей и где используются

В настоящее время используются три вида LIB, которые отличаются материалами катода.

Катоды лития, содержащие кобальт (Limo2).

Этот тип особенно эффективен. Кобальтовый ион Со3+ маленький, поэтому катод построен таким образом, что литий-ионные катоды легко перемещаются. Это важно для высокой плотности энергии и емкости, чтобы выпускать маленькие и легкие батареи. Используется в портативной электронике и электромобилях.

Литий-кобальтовый оксид LiCoO2 (LCO) – это тонкое устройство чувствительно к повреждениям, поэтому используется лишь в электроприборах.

Литий-Никель-Кобальт-Оксид Алюминия (LiNiO.8Co0.15Alo.05 или NCA) является надежным соединением. Обеспечивая хорошую плотность энергии и высокую мощность, эти материалы используются как литиевые аккумуляторы 12 вольт для автомобиля.

Литий-Никель-Марганец-Кобальт-Оксиды (NMC) – прочнее и долговечнее, чем тип NCA. Большинство производителей электромобилей используют этот катодный материал. При этом существует несколько вариантов, в которых металлы содержат никель, марганец и кобальт в различных соотношениях. Чем больше доля никеля – тем выше содержание энергии.

Катоды из оксида фосфора-железа-лития (LiFePO4 или LFP).

Этот вид также прочен, но имеет низшую плотность энергии, чем катоды LiMО2. Китайские производители используют для электромобилей городского цикла. Заряда хватает на короткие расстояния.

Катоды из оксида марганца-лития (LiMn2O4 или LMO).

Этот вид раньше использовался в электромобилях, но катоды, содержащие кобальт, превосходят их по стабильности и плотности энергии.

В этом видео описаны подробные характеристики ионных аккумуляторов, размеры, состав и расшифровки маркировок.

Преимущества литиевых аккумуляторов

  • Очень высокая плотность энергии. Превосходит в четыре раза свинцово-кислотные источники питания.
  • Высокое напряжение клеток. Литий-ионная ячейка заменяет три ячейки NiCd или NiMH, которые обеспечивают только 1,2 вольта. Ученые в настоящее время работают над обеспечением более высокого напряжения в клетках. Чем больше напряжение в клетках, тем меньше клеток требуется. Это дает возможность сделать батарею легче и вместительнее.
  • Переносят высокие токи разряда. Это позволяет работать автомобильным приборам, таким как холодный стартер или приводы для гибридных автомобилей с маленькой емкостью АКБ.
  • Увеличивают мощность и производительность, в зависимости от требований.
  • Имеют возможность быстрой зарядки.
  • Отсутствует эффект памяти – полная разрядка не влияет на продолжительность срока службы.
  • Низкая скорость саморазряда (от трех до пяти процентов в месяц, сохранят работоспособность до десяти лет).
  • При заряде батареи на 100 % способна отдать энергию тока без технических повреждений.

Вариации базового химического состава (например, различные анодные и катодные материалы) позволяют разнообразить характеристики производительности для конкретных применений.

Также доступны батареи маленького размера. Материал электрода и керамические электролиты могут быть разделены на твердые (оксид алюминия/силикагель) или гибкие (акриловые волокна) подложки для производства энергии высокой плотности для тонких и плоских батарей.

Недостатки литий-ионных батарей

  • Чувствительность к глубокой разрядке, перегрузка и слишком высокая температура. Но на практике это редко является проблемой. Аккумуляторы уже имеют встроенную электронику, которая защищает от негативных влияний. При использовании LIB без встроенной электроники рекомендуется использовать зарядное устройство, которое для нее предназначено.
  • Повышенная чувствительность к высоким и низким температурам. Оптимальная рабочая температура в пределах 10–35 градусов. При низких температурах мощность батареи падает. Также существуют специально предназначенные ионные источники питания для низких температур, которые поддерживают заряд при температуре -40 градусов, только с ограниченными разрядными потоками.

Безопасность литиевых батарей

При перегреве или перезарядке LIB могут подвергаться разрушению. Это приведет к утечке ядовитых газов, взрыву и пожару. Чтобы этого избежать, батарея лития содержит отказоустойчивую схему, которая отключает источник питания, когда напряжение находится в опасном диапазоне.

Короткое замыкание приведет к перегреву, возгоранию и взрыву. Литий-ионные аккумуляторы, в отличие от свинцово-кислотных, изготавливаются под высоким давлением, они имеют легковоспламеняющийся жидкий электролит. Их качество строго контролируется при изготовлении.

Литий-ионный аккумулятор для автомобиля имеет множество положительных характеристик, но использование его в бензиновых и дизельных двигателях не эффективно и в данное время не применяется. Генератор, который вырабатывает переменный ток в автомобиле, не приспособлен заряжать данный вид аккумуляторов.

Это видео расскажет об использовании литий-ионных аккумуляторов для бензиновых и дизельных двигателей.

Как заряжать литиевый аккумулятор: виды зарядных устройств

Время прочтения: 5 мин

Дата публикации: 11-08-2020

На данный момент, в зависимости от сферы применения, наиболее популярными являются два вида аккумуляторных батарей: литиевые и свинцово-кислотные. Свинцовые аккумуляторы постепенно теряют популярность, так как не отличаются высокой плотностью энергии и длительным ресурсом. Если требуется максимально компактный источник питания, всегда выбор падает именно на литиевые АКБ.

Как и в случае со свинцово-кислотными аналогами, литиевые аккумуляторные батареи делятся на множество типов. Наиболее распространенными являются литий-ионные (Li-ion) и литий-полимерные (Li-pol). Именно они используются в мобильных гаджетах и даже в электрокарах. К примеру, в Tesla model S установлено более 7 тысяч литий-ионных аккумуляторов Panasonic Li-ion NCR18650B.

Большая часть техники, где используются литиевые аккумуляторы, имеют встроенные механизмы зарядки, поэтому пользователю требуется лишь подключиться к электросети. В иных случаях заряд требуется осуществлять самостоятельно. Чтобы аккумулятор служил долго, его требуется правильно заряжать.

Как заряжать литиевый аккумулятор, чтобы ему не навредить? Несмотря на очевидность, попробуем разобраться, чем заряжать литиевый аккумулятор можно, а чем — нельзя.

 

Что надо знать об аккумуляторе

Процесс заряда всегда зависим от того, какой аккумулятор заряжается. Нельзя одинаковым режимом пополнять заряд разных по характеристикам и типам моделей.

Если обобщить, то приблизительно подобрать правильный режим заряда можно при наличии данных о типе аккумулятора, его емкости и напряжении.

  • Тип АКБ. Почему важно знать тип? Достаточно сравнить номинальное напряжение литий-титанатного и литий-ионного аккумулятора. 2,4В и 3,7В соответственно. Нетрудно догадаться, к каким последствиям может привести заряд литий-титанатной батареи неким абстрактным зарядным устройством для литиевого аккумулятора, которое предназначено именно для Li-ion.
  • Емкость АКБ. Данный параметр заряжаемого аккумулятора важен из-за того, что ток, как правило, подбирается в процентном соотношении к номинальной емкости. Литий-ионные аккумуляторы, например, не рекомендуется заряжать током выше, чем 0,5С-1С (ток, равный 50% и 100% соответственно по отношению к емкости в ампер-часах). Этот показатель может значительно меняться от модели к модели. Яркий тому пример — литий-титанатные АКБ, некоторые модели которых позволяют зарядку токами, в сотни раз превышающими номинальную емкость.
  • Напряжение АКБ. Тип литиевого аккумулятора говорит лишь о напряжении одной ячейки или отдельного элемента питания, состоящего из одной ячейки. Тем не менее, для выбора зарядного устройства или подходящего режима на уже имеющемся ЗУ, надо знать суммарное напряжение всей цепи, так как оно может быть многократно нарощено путем последовательного соединения ячеек. В уже готовых аккумуляторах на основе множества ячеек напряжение всегда указано в маркировке.

Как зарядить АКБ

Нередко пользователи интересуются в сети, как заряжать литиевый аккумулятор мотоцикла. Учитывая, что литиевый АКБ для мотоцикла — это устройство фабричное, а не самодельное, вся важная информация, в том числе и ток заряда, обычно размещена на бирке. Другое дело — это когда имеется элемент питания, собранный из одной или множества ячеек, в том числе из упомянутых ранее аккумуляторов panasonic.

Важно учитывать наличие в аккумуляторе или в схеме защиты в виде BMS. BMS — это контроллер, который выполняет сразу множество функций. Он может защищать элементы питания от опасных значений напряжения и тока, балансировать элементы на последних стадиях заряда, а также осуществлять регулировку подаваемого напряжения. Зарядка литий-ионных аккумуляторов напрямую может представлять опасность для АКБ, особенно если используется кустарное ЗУ. Применять кустарные приспособления как на основе трансформатора с диодным мостом, так и на основе переделанных компьютерных блоков питания не рекомендуется даже для свинцово-кислотных АКБ.

Если по какой-то причине в литиевом аккумуляторе отсутствует BMS, на ЗУ требуется выставить напряжение, являющееся максимальным для данного типа батарей. К примеру, литий-ионные АКБ при полном заряде выдают 4,2В на одну ячейку, а LiFePO4 — 3,65. Если ток, при этом, превышает 0,5С, рекомендуется его ограничить. Если ЗУ не позволяет регулировать ток, понизить его можно путем снижения выходного напряжения. Как только оно будет достигнуто, его можно поднять до конечного показателя, соответствующего полному заряду аккумулятора.

В случае с литиевыми аккумуляторами, оборудованных BMS (к счастью, таких большинство), все куда проще. Контроллер попросту не допустит подачу опасных номиналов тока и напряжения. Единственное исключение — это когда пользователь самостоятельно припаивает BMS к своей сборке батарей. В таком случае нельзя гарантировать, что контроллер настроен верно в соответствии с требованиями, предъявляемыми конкретным блоком аккумуляторов. В принципе, если пользователь делает сборку АКБ и самостоятельно припаивает контроллер — видимо, он знает, что делает.

Как бы там ни было, лучшим способом безопасно и на 100% зарядить аккумуляторную батарею любого типа — это использовать умное зарядное устройство, работающее в автоматическом режиме. Такое устройство не просто выдает постоянный ток с определенным номиналом напряжения, а изменяет режим заряда в зависимости от стадии. Также важным преимуществом являются многочисленные настраиваемые параметры, позволяющие использовать один и тот же прибор с абсолютно разными сборками аккумуляторов.

К выбору зарядного устройства следует относиться максимально серьезно, так как во многом от качества заряда зависит срок службы аккумулятора. И если аккумулятор состоит из множества ячеек с высокой суммарной стоимостью, то даже небольшое увеличение срока службы экономит заметную сумму.

Сервис объявлений OLX: сайт объявлений в Украине

Днепр, Новокодакский Сегодня 07:55

Хмельницкий Сегодня 07:55

Кобыжча Сегодня 07:55

Киев, Оболонский Сегодня 07:55

IBM создала емкий, безопасный и дешевый аккумулятор со сверхбыстрой зарядкой

| Поделиться Исследовательское подразделение IBM разработало аккумулятор нового типа. Он дешевле существующих литий-ионных аналогов, менее огнеопасны и заряжаются до 80% за пять минут, а компоненты для их производства можно получить из самой обычной морской воды.

Аккумуляторы без тяжелых металлов

Специалисты IBM Research разработали аккумулятор из новых материалов, который по ряду характеристик значительно превосходит широко распространенные сегодня литий-ионные батареи. Об этом говорится в сообщении, размещенном в блоге исследовательского подразделения компании (IBM Research) на ее официальном сайте.

В сегодняшних аккумуляторах, которые используются в ряде устройств: от фитнес-браслетов и смартфонов до электромобилей, часто применяются тяжелые металлы, в частности кобальт и никель. Например, в литий-ионных аккумуляторах катод (отрицательный электрод) может выполняться из кобальтата лития или никелата лития. Сами по себе эти металлы могут представлять угрозу как здоровью человека, так и окружающей среде. Кроме того, их запасы ограничены, а при добыче кобальта, по данным Financial Times, используются детский труд.

Новая технология IBM предполагает создание аккумулятора на базе трех новых материалов, среди которых тяжелых металлов нет. Химический состав материалов, из которых выполнены анод, катод и жидкий электролит, исследователи не раскрывают, однако уверяют, что необходимые материалы могут быть получены из обыкновенной морской воды и то, что они значительно дешевле используемых в современных литий-ионных батареях.

Преимущества новой технологии

По словам специалистов IBM Research их разработка превосходит литий-ионную технологию по многим важным параметров. Так, если верить ученым, их аккумулятор сможет заряжаться до уровня 80% за пять минут, при этом вероятность воспламенения такого устройства значительно ниже по сравнению с литий-ионными аналогами. У последних меньшая температура возгорания.

Исследователь, работающий с системой дифференциальной электрохимической масс-спектроскопии в IBM Research, которая измеряет количество газа, выделившегося из элемента батареи во время зарядки/разрядки

Энергетическая плотность новинки сопоставима с передовыми образцами литий-ионных аккумуляторов (более 800 Вт*ч/л), а ее энергоэффективность превышает 90%.

Кроме того, исследователи утверждают, что проведенные ими тесты показали возможность применения этой технологии при изготовлении аккумуляторов с весьма продолжительным сроком службы, однако не приводят каких-либо конкретных данных на этот счет.

Сферы применения аккумуляторов IBM

Исследователи полагают, что продукция на основе разработанной ими технологии может найти применение в энергетике, автомобиле- и авиастроении.

Несмотря на то, что исследования находятся на ранней стадии, IBM Research заключила контракты на совместную разработку нового поколения аккумуляторов и инфраструктуры для их совершенствования и производства с Mercedes-Benz Research, Central Glass (производитель электролитов) и Sidus (производитель аккумуляторных батарей).

Не без помощи искусственного интеллекта

IBM Research также сообщает, что в своей работе команда использует технологию искусственного интеллекта (ИИ), называемую семантическим обогащением. Она применяется для дальнейшего улучшения характеристик батареи путем выявления наиболее подходящих и безопасных материалов.

Альтернативные разработки

Существуют и другие технологии, способные заменить собой литиевые аккумуляторы и положить конец их далеко не самым экологичным и этичным производству и утилизации.

Как устроены российские UC-платформы

ПО

В декабре 2018 г. CNews писал о том, что ученые Иллинойского университета в Чикаго разработали новую технологию производства аккумуляторных батарей для мобильных устройств, в основе которой лежит принцип использования неупорядоченных частиц оксида магния и непосредственно магниевого анода.

Еще одна группа американских ученых, на этот раз из Калифорнийского технологического университета, создала аккумулятор на основе фторидов – химических соединений фтора с другими элементами таблицы Менделеева. Подобные АКБ в теории характеризуются способностью держать заряд до восьми раз дольше в сравнении с литий-ионными и литий-полимерными. Опять же, они намного безопаснее оных ввиду неподверженности влиянию повышенной температуры окружающей среды или нагреву во время подзарядки.

В ноябре 2018 г. стало известно, что в Китае стартовало производство аккумуляторов с твердым электролитом, которые в обозримом будущем могут стать частью мобильной техники и транспортных средств. Предполагалось, что они придут на смену литий-ионным батареям за счет большей компактности и безопасности.

Дмитрий Степанов



Массовость твердотельных батарей поставлена под сомнение — ДРАЙВ

Твердотельные батареи несут больший запас энергии на единицу массы. Они вовсю осваивают микроэлектронику (на снимке как раз миниатюрная полностью керамическая перезаряжаемая ячейка TDK CeraCharge). А в автомобильной сфере они ещё экзотика, хотя попытки внедрения были.

Выходец из Теслы Джин Бердичевски, ныне генеральный директор калифорнийской компании Sila Nanotechnologies, назвал твердотельные батареи «ложной надеждой». Несколько обескураживающий тезис, учитывая огромное внимание к этому подвиду литиевых аккумуляторов со стороны крупных игроков.

Компетенция Sila Nanotechnologies — перспективные материалы для аккумуляторов, в том числе электроды.

Напомним, в твердотельных батареях применяются не только твёрдые электроды, но и твёрдый электролит, в отличие от жидкого электролита или геля в классических литий-ионных ячейках. Бердичевски считает, что трудности с твердотельной технологией (рост дендритов на электродах, микротрещины в электролите) в обозримом будущем преодолены не будут, а вот более традиционные литиево-ионные аккумуляторы ещё удивят. Их ждут рост удельных параметров и снижение цены в массовом производстве.

У выбора типа ячеек есть экономическая составляющая. Крупные аккумуляторные заводы и ряд ещё намеченных к постройке заточены под литиево-ионные блоки. Массовый переход на твердотельные потребует замены большой части оборудования, тем самым обесценит уже сделанные инвестиции. (По часовой стрелке: Tesla в Неваде, CATL в Ниндэ, SK в Джорджии.)

В исследовательской работе, написанной Бердичевски вместе с техническим директором Sila Глебом Юшином, утверждается, что катоды из фторидов металлов или серы в сочетании с анодом из кремния дадут отличные результаты. В том числе они якобы помогут снизить стоимость литиевых ячеек для массового рынка. На заре литиевой технологии в 1991-м ценник составлял $4000 за киловатт-час, к 2007 году он упал до $200 с небольшим, сейчас это около $150, а боссы Sila Nanotechnologies предсказывают $50 к 2030 году и $30 к 2040-му.

Доказательство того, что твердотельные батареи в автопроме могут быть серийными: сегодня представлен электробус Mercedes-Benz eCitaro G. Покупателям дан выбор между литиево-ионными батареями последнего поколения (NMC) или твердотельными. Первые выигрывают по скорости зарядки, а их ёмкость равна 396 кВт•ч, вторые не особо быстро заряжаются, зато их ёмкость достигает 441 кВт•ч!

Интересно, насколько оценка Sila верна. Ведь в твердотельные батареи вложено немало средств. Исследования и совместные проекты в этой области затеяли такие гиганты, как Toyota и Volkswagen, но их последние батарейные модели всё же полагаются на более традиционные литиево-ионные ячейки. Фирма Fisker интенсивно работала над твердотельными аккумуляторами, но до готовности их ещё не довела. Так что запускать свою линейку серийных электрокаров, видимо, будет без них. На твердотельные аккумуляторы очень рассчитывала компания Dyson, но весь её автомобильный проект попал под нож. Кажется, не унывают лишь китайцы: серийный седан Enovate ME-S в 2021 году должен выйти на рынок именно с твердотельной батареей.

ATX20-HD Литиевый аккумулятор для автоспорта — антигравитационные аккумуляторы

Серия HEAVY DUTY
Литиевая батарея размера OEM (прямая замена)

Antigravity Batteries с гордостью представляет НОВЫЕ ATX20-HD и ATX30-HD. НОВАЯ серия HD (Heavy Duty) была специально разработана, чтобы предложить ЗНАЧИТЕЛЬНО больше ампер-часов (на 6 Ач на батарею) и мощность, чем в исходных версиях ATX20 / 30, чтобы удовлетворить особые потребности тех, кто ищет самый компактный, но мощный аккумулятор. .Эти аккумуляторы предназначены для таких специальных применений, как туристические мотоциклы с большим количеством аксессуаров, гоночные и уличные автомобили, экспериментальные самолеты и многое другое. Проще говоря, это самые мощные и компактные аккумуляторы, доступные от любого производителя.

НОВЫЕ Heavy Duty ATX20 и ATX30 не имеют встроенной функции запуска от внешнего источника RE-START, но предлагают более глубокий уровень разряда для большей полезной емкости и большей мощности для проворачивания. Они также предлагают ПОЛНУЮ систему управления батареями (BMS) для защиты батареи от чрезмерной разрядки и перезарядки, а также имеют тепловую защиту.Это обеспечивает максимально безопасный и длительный жизненный цикл.

Многие приложения

Эти батареи предназначены для тех специальных применений, где требуется чрезвычайно компактный размер с максимально возможным количеством ампер-часов. Мы разработали эти аккумуляторы для использования в уличных / гоночных мотоциклах, гоночных мотоциклах и автомобилях *; Большие туристические велосипеды, которым нужна дополнительная вместимость; и другие виды использования, такие как экспериментальный самолет. Их можно использовать даже для питания аксессуаров 12 В.(* Из-за более низкой емкости в ампер-часах, не рекомендуется для уличных автомобилей.)

Преимущество антигравитации

ATX20 — это стандартный размер, используемый в большом количестве транспортных средств Powersports, таких как туристические мотоциклы, UTV, квадроциклы и т. Д. Часто клиенты могут модифицировать или добавлять дополнительные аксессуары к этим автомобилям и нуждаться в более мощной батарее с большей емкостью в ампер-часах. Именно здесь наши модели HD предлагают более чем в ДВА раза емкость литиевых батарей конкурентов того же размера! Они также оснащены кнопкой проверки индикатора напряжения на батарее, чтобы вы могли легко проверить ее уровень заряда.Если вы хотите также отслеживать состояние и статус вашей батареи через Bluetooth, вы можете использовать Lithium Battery Tracker.

Литий-ионный апгрейд для вашего автомобиля, но не тот, который вы ожидаете

Увеличьте / Антигравитационная батарея на месте, с адаптером монитора Bluetooth.

Брэдли Игер

От iPhone до Teslas технология литий-ионных аккумуляторов повсеместна в современном мире. Это химия, которую выбирают для широкого круга приложений из-за ее высокой плотности заряда относительно ее массы, что, в свою очередь, дает такие вещи, как ноутбуки высокого класса, которые могут работать более 10 часов без подзарядки при весе менее четырех фунтов. .

А как насчет того свинцово-кислотного комка, болтающегося в моторном отсеке вашей машины? Истоки этой батареи восходят к середине 19 века, но даже сегодня вы все еще найдете эту архаичную технологию, обслуживающую электроны, в подавляющем большинстве транспортных средств на дорогах, включая электромобили.

В последние годы некоторые автопроизводители начали делать литий-ионные стартерные батареи доступными для своих автомобилей, но батареи в значительной степени ограничивались дорогими дополнительными предложениями в спортивных автомобилях высокого класса от таких компаний, как Porsche и McLaren.Антигравитация хочет это изменить.

  • Это Antigravity H7, стартерная литий-железо-фосфатная батарея на 12 В.

    Брэдли Айгер

  • В 2009 году Porsche представила литий-ионную стартерную батарею 12 В в качестве опции за 1700 долларов, но только на своих легких автомобилях: 911 GT3, GT3 RS и Boxster Spyder.

    Порше

  • Слева литий-ионный аккумулятор Antigravity. Справа обычный свинцово-кислотный аккумулятор на 12В.

    Брэдли Айгер

  • Обычные свинцово-кислотные батареи тяжелые — эта весит 45 фунтов (20 кг).

    Брэдли Айгер

  • Батарея Antigravity такого же размера, но весит всего 15,8 фунта (7,2 кг).

    Брэдли Айгер

  • Аккумулятор, установленный в Dodge Hellcat.

    Брэдли Айгер

  • После установки батарея Antigravity работала отлично.

    Брэдли Айгер

  • Литий-ионный аккумулятор сократил вес этого Dodge Hellcat на целых 29 фунтов.

    Брэдли Айгер

Эта компания из Лос-Анджелеса является детищем Скотта Шафера, инженера и энтузиаста производительности, который видел надпись на стене более десяти лет назад. «Еще в 2010 году я купил одну из самых первых литиевых батарей для мотоциклов», — объясняет он.«Я нашел его на онлайн-форуме — это был парень, который создавал их на заказ. Я думал, что это потрясающий продукт, но в итоге он просуществовал всего около трех месяцев, прежде чем он потерпел неудачу. Вскоре после этого я начал в сотрудничестве с инженером по аккумуляторным батареям, который работал в SBC Global. Мы обсудили недостатки этой мотоциклетной аккумуляторной батареи, и он объяснил, что если мы сделаем то, то и то, мы сможем создать что-то с гораздо большей надежностью ».

Вскоре они приступили к работе над созданием собственной литиевой батареи для мотоциклов.«Изначально мы просто делали аккумуляторы для себя и своих друзей, которые проводили трек-день», — говорит Шафер. «И со временем, просто находясь на трассе и разговаривая с людьми об этом, мы начали получать все больше и больше заказов на эти батареи».

Реклама

Команда быстро переросла гаражный операционный центр Шафера и переехала во все более крупные помещения, поскольку слухи о его новом продукте распространились среди энтузиастов.«Именно тогда мы сделали формованный пластиковый корпус и начали делать их похожими на настоящие батарейки», — шутит он. «И тогда это действительно стало законным продуктом».

Перенесемся на десять лет вперед, и теперь Antigravity является одним из ведущих поставщиков литий-железо-фосфатных батарей не только для силовых видов спорта, но и для замены автомобильных аккумуляторов на 12 В. «Были и другие компании, которые начали свою деятельность примерно в то же время, что и мы, но они не могли или не хотели развиваться по мере появления новых технологий», — говорит нам Шафер.

«Настоящее препятствие, которое нам нужно было преодолеть, — это разработка внутренней системы управления, которая делает эти батареи безопасными и долговечными в этих типах приложений. Мы знали, что продукт должен соответствовать определенному стандарту, и поэтому мы разработали нашу систему управления батареями — это защищает литий от попадания в ситуации, когда тепловой разгон может быть проблемой из-за перезарядки или других проблем. А тип химического состава лития, который мы используем, — это фосфат железа или LiFePO4. В целом, это считается самой безопасной литиевой технологией. доступно сегодня.«

Реальный тест

Antigravity предлагает автомобильные аккумуляторы, которые подходят практически к любому легковому автомобилю, представленному сегодня на рынке, поэтому мы решили протестировать его новейшую и лучшую модель на Dodge Challenger последней модели, в котором используется аккумулятор размера H7. Помимо преимуществ плотности заряда и абсолютной новизны концепции, батареи Antigravity предлагают несколько важных преимуществ по сравнению со свинцово-кислотными батареями, которые имеют значение в реальном использовании.

«Батарея имеет встроенную функцию аварийного запуска», — отмечает Шафер.«Так что, если вы случайно оставите включенными фары или аккумулятор полностью разрядится по какой-либо другой причине, аккумулятор перейдет в спящий режим и сохраняет резервную емкость, которая может обеспечить еще четыре или пять запусков двигателя, чтобы вы могли снова запустить автомобиль». В то время как к этой функции можно получить доступ с помощью кнопки на самой батарее, Antigravity предоставляет брелок, который также позволяет запускать функцию удаленно.

Реклама

Компания также предлагает удаленный монитор батареи, который прикрепляется к клеммам батареи и сообщает о состоянии заряда батареи мобильному устройству через Bluetooth.Приложение можно бесплатно загрузить в Apple App Store и Google Play, и оно может отправлять push-уведомления, если уровень заряда аккумулятора падает ниже установленного пользователем порога. Приложение также можно использовать для контроля пускового напряжения и проверки системы зарядки.

  • Главный экран приложения Battery Tracker.

  • Программа проверит, правильно ли заряжается аккумулятор.

    Антигравитация

  • Приложение Battery Tracker показывает пусковое напряжение.

    Антигравитация

  • Страница настроек Battery Tracker.

    Антигравитация

«Изначально мы стремились к рынку производительности, но есть ряд других факторов, которые делают литий лучше и для обычных приложений», — отмечает Шафер. «Например, у него гораздо более мощный пусковой ток, чем у свинцово-кислотной батареи — вероятно, в два-три раза больше.Это означает более легкий запуск двигателя и меньшую нагрузку на стартер, будь то на улице очень холодно или очень жарко ».

Но основная причина, по которой Schafer изначально ориентировалась на рынок производительности, заключается в том, что литиевые батареи весят значительно меньше, чем их свинцово-кислотные аналоги. Сняв заводскую батарею с нашего Challenger, мы поставили каждую на весы для ванной. Наша заводская свинцово-кислотная батарея весила даже 45 фунтов (20 кг). Антигравитационная батарея? Чуть менее 16 фунтов (7 кг), или примерно треть веса.Проведя сравнение A / B, выбирая один за другим, разница действительно ошеломляющая.

Конечно, потеря 30 фунтов не совсем преобразит автомобиль, который весит более двух тонн, но для автокроссеров и людей, строящих гоночные автомобили, сбросить 30 фунтов без потери функциональности в транспортном средстве было бы похоже на получение манны от автомобильных богов. Вы также можете возразить, что при весе в 4400 фунтов (1996 кг) Challenger (и на самом деле большинство современных серийных автомобилей) мог бы использовать всю возможную экономию веса.

С установленной новой батареей обещание Schafer облегчить запуск двигателя стало очевидным — звук стартера на самом деле изменился из-за заметно более высокой скорости вращения коленчатого вала. Приложение для мониторинга батареи также работало как шарм, без проблем подключаясь к машине, даже когда мы находились внутри здания и за несколько стен от машины.

Реклама

«Продолжайте снижать цену»

Но вот что интересно: в то время как хорошая свинцово-кислотная батарея H7 стоит около 250 долларов, Antigravity H7 обойдется вам в 829 долларов.Это может быть трудная пилюля для всех, кроме самых отъявленных энтузиастов — или людей, у которых есть машины, которые простаивают в течение длительного времени, — но ущерб вашему кошельку может быть не таким серьезным, как предполагает высокая цена: в то время как вы Если бы повезло, что у традиционных свинцово-кислотных аккумуляторов срок службы превышает четыре года, литиевые аккумуляторы могут прослужить в два раза дольше, а то и дольше.

И глядя на дорогу, Шафер говорит, что обеспечение жизнеспособности технологии для среднего автомобилиста — одна из основных задач Antigravity.«Есть надежда и дальше снижать цену, сохраняя при этом функции, которые в настоящее время есть у батареи, и расширять набор функций по ходу дела — интеграцию Bluetooth-мониторинга в саму батарею и тому подобное. Но сейчас на самом деле речь идет о том, чтобы сделать ее лучше. доступны для семьи с минивэном или человека, которому нужно заменить новую батарею в свой ежедневный пригородный поезд ».

К счастью, устойчивый прогресс — и его неотъемлемое влияние на стоимость появляющихся технологий — должны помочь Antigravity сделать именно это.

литиевая автомобильная батарея | Advance Auto Parts

Каковы преимущества автомобильного литиевого аккумулятора? Литиевые батареи

являются привлекательным вариантом для некоторых водителей, поскольку они имеют репутацию более долговечных, чем свинцово-кислотные. Они также легкие и, как правило, имеют прочную конструкцию. И, как и в случае со многими новыми технологиями, цены начинают снижаться.

Узнайте, какой аккумулятор подходит для вашего автомобиля.

Что такое литиевая батарея?

Давайте посмотрим, что же такое автомобильный литиевый аккумулятор. Эти батареи не следует путать с литий-ионными батареями, предназначенными для питания электромобилей. Помимо того, что их конструкция отличается и они намного мощнее, эти батареи также более дорогие. Тем не менее, технология на основе лития — это то, что объединяет обе батареи, как практичная и более эффективная альтернатива обычным свинцово-кислотным конструкциям.Литиевые батареи, также известные как литий-металлические батареи, представляют собой батареи, в которых в качестве анода используется литий, а не цинк. Литиевые элементы связаны с более высокой плотностью заряда и могут производить более высокое напряжение, чем типичные угольно-цинковые или щелочные батареи. Кроме того, как и все типы автомобильных аккумуляторов, литиевые батареи являются одноразовыми, поэтому их технология во всех смыслах сильно отличается от перезаряжаемых литий-ионных аккумуляторов.

В магазинах

Advance Auto Parts предлагается бесплатное тестирование и установка аккумуляторов *.

Лучше ли они классических свинцово-кислотных аккумуляторов?

Короткий ответ — да … вроде как. У литиевых батарей есть очевидные преимущества. Однако, несмотря на то, что со временем их цены начинают снижаться, эти аккумуляторы все еще далеко выходят за рамки бюджетов многих автовладельцев. Имея это в виду, у Advance Auto Parts есть отличные альтернативы, которые подойдут для любого бюджета.

Доступные и надежные альтернативы литиевым батареям

Многие водители согласятся, что им нужен надежный и долговечный аккумулятор.DieHard оправдывает эти ожидания на протяжении нескольких поколений. На каждую батарею DieHard предоставляется гарантия, а на DieHard Platinum — ошеломляющая четырехлетняя гарантия. Линейка DieHard, которая теперь доступна в Advance Auto Parts, соответствует практически любым потребностям автомобиля и бюджету каждого водителя.

Advance также бесплатно утилизирует старую батарею. Найдите ближайший к вам магазин автозапчастей Advance.

* Тестирование и установка автомобильных аккумуляторов доступны на большинстве автомобилей в большинстве мест, если это не запрещено законом.

Прибывают

миллионов электромобилей. Что происходит со всеми дохлыми батареями? | Наука

Измельченный аккумулятор электромобиля может давать металл, пригодный для вторичной переработки, но производителям аккумуляторов зачастую дешевле использовать новые материалы.

Аргоннская национальная лаборатория

Ян Морс,

Аккумулятор Tesla Model S — это произведение сложной инженерной мысли. Тысячи цилиндрических ячеек с компонентами, полученными со всего мира, преобразуют литий и электроны в энергию, достаточную для того, чтобы снова и снова разгонять автомобиль на сотни километров без выбросов из выхлопной трубы. Но когда срок службы батареи подходит к концу, ее зеленые преимущества исчезают. Если он попадает на свалку, его клетки могут выделять проблемные токсины, в том числе тяжелые металлы.А переработка батареи может быть опасным делом, предупреждает материаловед Дана Томпсон из Университета Лестера. Если врезаться слишком глубоко в ячейку Тесла или в неправильном месте, она может вызвать короткое замыкание, возгорание и выделение токсичных паров.

Это лишь одна из многих проблем, с которыми сталкиваются исследователи, включая Томпсона, которые пытаются решить возникающую проблему: как утилизировать миллионы аккумуляторов для электромобилей (EV), которые производители планируют производить в течение следующих нескольких десятилетий.Современные аккумуляторы электромобилей «на самом деле не предназначены для вторичной переработки», — говорит Томпсон, научный сотрудник Института Фарадея, исследовательского центра, занимающегося проблемами аккумуляторов в Соединенном Королевстве.

Это не было большой проблемой, когда электромобили были редкостью. Но сейчас технологии набирают обороты. Несколько автопроизводителей заявили, что планируют отказаться от двигателей внутреннего сгорания в течение нескольких десятилетий, и отраслевые аналитики прогнозируют, что к 2030 году на дорогах появится не менее 145 миллионов электромобилей по сравнению с 11 миллионами в прошлом году.«Люди начинают понимать, что это проблема», — говорит Томпсон.

Правительства постепенно начинают требовать некоторого уровня переработки. В 2018 году Китай ввел новые правила, направленные на поощрение повторного использования компонентов аккумуляторных батарей электромобилей. Ожидается, что Европейский Союз завершит свои первые требования в этом году. В Соединенных Штатах федеральное правительство еще не выдвинуло требований по утилизации, но несколько штатов, включая Калифорнию, крупнейший автомобильный рынок страны, изучают возможность установления своих собственных правил.

Соблюдение требований непросто. Батареи сильно различаются по химическому составу и конструкции, что затрудняет создание эффективных систем утилизации. Клетки часто скрепляются прочным клеем, что затрудняет их разборку. Это привело к возникновению экономических препятствий: производителям аккумуляторов зачастую дешевле покупать только что добытые металлы, чем использовать переработанные материалы.

Ученый-материаловед Дана Томпсон разрабатывает растворители для извлечения ценных металлов из отработанных автомобильных аккумуляторов.

Институт Фарадея

Более совершенные методы переработки не только предотвратят загрязнение, отмечают исследователи, но также помогут правительствам повысить свою экономическую и национальную безопасность за счет увеличения поставок основных металлов для батарей, которые контролируются одной или несколькими странами. «С одной стороны, [утилизация аккумуляторов электромобилей] — это проблема утилизации отходов. А с другой стороны, это возможность для производства устойчивого вторичного потока критически важных материалов », — говорит Гэвин Харпер, исследователь из Бирмингемского университета, изучающий вопросы политики в области электромобилей.

Чтобы ускорить переработку отходов, правительства и промышленность вкладывают деньги в целый ряд исследовательских инициатив. Министерство энергетики США (DOE) вложило около 15 миллионов долларов в центр ReCell для координации исследований ученых из академических кругов, промышленности и государственных лабораторий. Соединенное Королевство поддержало проект ReLiB, объединяющий несколько организаций. По словам Линды Гейнс, которая занимается переработкой аккумуляторов в Аргоннской национальной лаборатории Министерства энергетики США, по мере роста индустрии электромобилей потребность в прогрессе становится насущной.«Чем раньше мы сможем все сдвинуть с мертвой точки, — говорит она, — тем лучше».

Аккумуляторы

EV сконструированы как матрешки. Обычно основной пакет содержит несколько модулей, каждый из которых состоит из множества ячеек меньшего размера (см. Рисунок ниже). Внутри каждой ячейки атомы лития перемещаются через электролит между графитовым анодом и катодным листом, состоящим из оксида металла. Батареи обычно определяются металлами в катоде. Существует три основных типа: никель-кобальт-алюминий, фосфат железа и никель-марганец-кобальт.

Сейчас переработчики в первую очередь нацелены на металлы в катоде, такие как кобальт и никель, которые стоят дорого. (Литий и графит слишком дешевы для переработки, чтобы быть экономичным.) Но из-за небольшого количества металлы подобны иголкам в стоге сена: их трудно найти и восстановить.

Новая жизнь для отработанных ячеек

Ученые работают над тем, чтобы аккумуляторы для электромобилей, которые продаются сегодня, можно было переработать в 2030 году и в последующий период, когда тысячи аккумуляторов будут выходить из строя каждый день.Батареи для электромобилей бывают разных конструкций, но, как правило, они имеют общие компоненты.

Корпус аккумулятораПризматическая ячейкаКонтроллер заряда аккумулятораЭлектрический жгутВыход аккумуляторной батареи EV-аккумуляторТяжелые батареи придают электромобилям низкий центр тяжести. Аккумуляторный блок EV Внутри блока электрические компоненты управляют зарядом и стабильностью десятков модулей. Конструкции различаются и включают прямоугольные призматические ячейки (внизу справа) и цилиндрические ячейки (внизу, слева).Корпус элемента Соединение между ячейками Выход модуля Корпус модуля 1 Катод Катод обычно содержит наиболее ценный перерабатываемый материал, состоящий из многих металлов. Цилиндрическая ячейка Прочный стальной корпус затрудняет открытие этих элементов. Часто прочный клей объединяет тысячи ячеек в блоки.2 АнодОтрицательные электроды состоят из компонентов на основе графита, углерода или кремния.3 Электролит и разделитель Литий проходит через разделительный лист, пропитанный электролитом.123 Компоненты ячейки В каждой ячейке находятся основные компоненты батареи.Они выделяют и накапливают электричество при перемещении атомов лития между электродами.

К. Бикель / Science

Чтобы извлечь эти иглы, переработчики используют два метода, известных как пирометаллургия и гидрометаллургия. Более распространенной является пирометаллургия, при которой переработчики сначала механически измельчают элемент, а затем сжигают его, оставляя обугленную массу из пластика, металлов и клея.На этом этапе они могут использовать несколько методов для извлечения металлов, включая дальнейшее сжигание. «Pyromet, по сути, обращается с батареей как с рудой» прямо из шахты, — говорит Гейнс. Гидрометаллургия, напротив, включает погружение аккумуляторных материалов в лужи с кислотой, в результате чего получается насыщенный металлами суп. Иногда два метода сочетаются.

У каждого есть свои преимущества и недостатки. Например, пирометаллургия не требует от переработчика информации о конструкции или составе батареи или даже о том, полностью ли она разряжена, чтобы безопасно двигаться вперед.Но это энергоемко. Гидрометаллургия может извлекать материалы, которые нелегко получить путем сжигания, но может включать химические вещества, представляющие опасность для здоровья. А извлечение желаемых элементов из химического супа может быть трудным, хотя исследователи экспериментируют с соединениями, которые обещают растворять определенные металлы батареи, но оставляют другие в твердой форме, что облегчает их восстановление. Например, Томпсон определил одного кандидата, смесь кислот и оснований, называемую глубоким эвтектическим растворителем, которая растворяет все, кроме никеля.

Исследования показали, что оба процесса производят большое количество отходов и выбрасывают парниковые газы. И бизнес-модель может быть шаткой: большинство операций зависит от продажи рекуперированного кобальта, чтобы оставаться в бизнесе, но производители аккумуляторов пытаются отказаться от этого относительно дорогого металла. Если это произойдет, переработчики могут остаться пытаться продавать груды «грязи», — говорит материаловед Ребекка Сиз из Университета Пердью.

Круги вторсырья

Пирометаллургия превращает отработанные батареи в шлак, а гидрометаллургия растворяет их в кислотах.Оба нацелены на извлечение катодных материалов. Идеальным вариантом является прямая переработка, при которой катод восстанавливается в неповрежденном виде. Но для того, чтобы переработка была жизнеспособной, она должна быть конкурентоспособной по стоимости с добытыми материалами.

Горное дело

К. Бикель / Science

Идеальным вариантом является прямая переработка, при которой катодная смесь останется нетронутой.Это привлекательно для производителей аккумуляторов, потому что переработанные катоды не потребуют тяжелой обработки, отмечает Гейнс (хотя производителям, возможно, все же придется оживить катоды, добавив небольшое количество лития). «Итак, если вы думаете об экономике замкнутого цикла, [прямая переработка] — это меньший круг, чем пиромет или гидромет».

При прямой переработке рабочие сначала собирают электролит пылесосом и измельчают аккумуляторные элементы. Затем они удаляли связующие с помощью тепла или растворителей и использовали технику флотации для разделения материалов анода и катода.В этом случае материал катода напоминает детскую присыпку.

До сих пор эксперименты по прямой переработке были сосредоточены только на отдельных элементах и ​​дали всего десятки граммов катодного порошка. Но исследователи из Национальной лаборатории возобновляемой энергии США построили экономические модели, показывающие, что этот метод, если его масштабировать при правильных условиях, может быть жизнеспособным в будущем.

Однако, чтобы реализовать прямую переработку, производители аккумуляторов, переработчики и исследователи должны решить множество проблем.Один из них — убедиться, что производители маркируют свои батареи, чтобы переработчики знали, с какими элементами они имеют дело, и имеют ли катодные металлы какую-либо ценность. Гейнс отмечает, что с учетом быстро меняющегося рынка аккумуляторов катоды, производимые сегодня, могут не найти будущего покупателя. Переработчики будут «восстанавливать динозавра. Этот продукт никому не нужен ».

Техник из Германии проверяет разрядку сгоревшей литий-ионной батареи перед дальнейшей переработкой.

Вольфганг Раттай / Reuters

Еще одна проблема — это эффективный взлом открытых аккумуляторных батарей электромобиля. Для демонтажа прямоугольного аккумуляторного отсека Nissan Leaf может потребоваться 2 часа. Ячейки Тесла уникальны не только своей цилиндрической формой, но и практически неразрушимым полиуретановым цементом, который удерживает их вместе.

Исследователи отмечают, что инженеры

могли бы создавать роботов, которые могли бы ускорить разборку батареи, но прилипчивые проблемы остаются даже после того, как вы попадете внутрь ячейки.Это связано с тем, что для удержания анодов, катодов и других компонентов на месте используется больше клея. Один растворитель, который переработчики используют для растворения катодных связующих, настолько токсичен, что Европейский Союз ввел ограничения на его использование, а Агентство по охране окружающей среды США определило в прошлом году, что он представляет «необоснованный риск» для рабочих.

«С точки зрения экономики вам нужно разобрать… [и] если вы хотите разобрать, то вам нужно избавиться от клея», — говорит Эндрю Эбботт, химик из Университета Лестера и консультант Томпсона.

Чтобы упростить процесс, Томпсон и другие исследователи призывают производителей электромобилей и аккумуляторов разрабатывать свои продукты с учетом вторичной переработки. Идеальная батарея, по словам Эбботта, была бы похожа на рождественский взломщик, праздничный подарок в Великобритании, который открывается, когда получатель тянет за каждый конец, показывая конфеты или сообщение. В качестве примера он приводит Blade Battery, литий-феррофосфатный аккумулятор, выпущенный в прошлом году китайским производителем электромобилей BYD. В его упаковке отсутствует компонент модуля, вместо этого плоские ячейки хранятся непосредственно внутри.Ячейки легко снимаются вручную, без борьбы с проволокой и клеем.

Blade Battery появилась после того, как в 2018 году в Китае начали возлагать на производителей электромобилей ответственность за утилизацию аккумуляторов. В настоящее время в стране перерабатывается больше литий-ионных батарей, чем во всем остальном мире вместе взятых, в основном с использованием пиро- и гидрометаллургических методов.

Страны, переходящие к аналогичной политике, сталкиваются с рядом острых вопросов. Во-первых, говорит Томпсон, кто должен нести основную ответственность за переработку.«Это моя ответственность, потому что я купил [электромобиль], или это ответственность производителя, потому что они его сделали, и они его продают?»

В Европейском союзе один ответ может появиться позже в этом году, когда официальные лица опубликуют первое правило континента. Ожидается, что в следующем году группа экспертов, созданная штатом Калифорния, вынесет рекомендации, которые могут иметь большое влияние на любую политику США.

Между тем исследователи

Recycling говорят, что эффективная переработка аккумуляторов потребует большего, чем просто технологический прогресс.Высокая стоимость перевозки горючих предметов на большие расстояния или через границу может препятствовать переработке. В результате размещение центров переработки в правильных местах может иметь «огромное влияние», — говорит Харпер. «Но возникнет настоящая проблема в системной интеграции и объединении всех этих различных фрагментов исследований».

Эбботт говорит, что нельзя терять зря. «Чего вы не хотите, так это производства батареи, которую невозможно разобрать на 10 лет», — говорит он.«Этого еще не происходит, но люди кричат ​​и опасаются, что это произойдет».

как мир будет производить достаточно?

Эра электромобилей приближается. Ранее в этом году американский автомобильный гигант General Motors объявил, что он намерен прекратить продажу бензиновых и дизельных моделей к 2035 году. Audi, базирующаяся в Германии, планирует прекратить производство таких автомобилей к 2033 году. Многие другие автомобильные транснациональные корпорации выпустили аналогичные дорожные карты. . Внезапно медлительность крупных автопроизводителей с электрификацией своих автопарков превращается в спешку к выходу.

Электрификация личной мобильности набирает обороты, о чем несколько лет назад не могли и мечтать даже самые ярые ее сторонники. Во многих странах правительственные поручения ускорят перемены. Но даже без новой политики или правил половина мировых продаж легковых автомобилей в 2035 году будет приходиться на электроэнергию, согласно данным консалтинговой компании BloombergNEF (BNEF) в Лондоне.

Это масштабное промышленное преобразование знаменует собой «переход от топливоемкой к материалоемкой энергетической системе», как заявило Международное энергетическое агентство (МЭА) в мае 1 .В ближайшие десятилетия сотни миллионов транспортных средств выйдут на дороги с массивными батареями внутри (см. «Переход на электричество»). И каждая из этих батарей будет содержать десятки килограммов материалов, которые еще предстоит добыть.

Источник: исх. 2

Предвидя мир, в котором будут преобладать электромобили, материаловеды работают над двумя большими проблемами. Один из них — как сократить количество металлов в батареях, которые являются дефицитными, дорогими или проблематичными, поскольку их добыча сопряжена с серьезными экологическими и социальными издержками.Другой — улучшить переработку аккумуляторов, чтобы ценные металлы в отработанных автомобильных аккумуляторах можно было эффективно повторно использовать. «Вторичная переработка будет играть ключевую роль в этом процессе», — говорит Кваси Ампофо, горный инженер, ведущий аналитик BNEF по металлургии и добыче полезных ископаемых.

Производители аккумуляторов и автомобилей уже тратят миллиарды долларов на сокращение затрат на производство и переработку аккумуляторов электромобилей (EV) — отчасти благодаря государственным стимулам и ожиданию предстоящих нормативных актов.Национальные спонсоры исследований также основали центры по изучению более эффективных способов производства и переработки батарей. Поскольку добыча металлов в большинстве случаев все еще обходится дешевле, чем их переработка, ключевая цель состоит в разработке процессов извлечения ценных металлов с достаточно низкой стоимостью, чтобы конкурировать с только что добытыми металлами. «Больше всего говорят о деньгах», — говорит Джеффри Спангенбергер, инженер-химик из Аргоннской национальной лаборатории в Лемонте, штат Иллинойс, который руководит финансируемой США инициативой по переработке литий-ионных аккумуляторов под названием ReCell.

Литиевое будущее

Первой задачей исследователей является сокращение количества металлов, которые необходимо добывать для аккумуляторов электромобилей. Количество различается в зависимости от типа аккумулятора и модели автомобиля, но один автомобильный литий-ионный аккумулятор (типа, известного как NMC532) может содержать около 8 кг лития, 35 кг никеля, 20 кг марганца и 14 кг кобальт, согласно данным Аргоннской национальной лаборатории.

Аналитики не ожидают в ближайшее время отказа от литий-ионных аккумуляторов: их стоимость упала настолько резко, что они, вероятно, станут доминирующей технологией в обозримом будущем.Сейчас они в 30 раз дешевле, чем тогда, когда они впервые вышли на рынок в качестве небольших портативных батарей в начале 1990-х годов, даже несмотря на то, что их производительность улучшилась. BNEF прогнозирует, что стоимость литий-ионных аккумуляторных батарей для электромобилей к 2023 году упадет ниже 100 долларов США за киловатт-час, что примерно на 20% ниже, чем сегодня (см. «Резкое снижение стоимости аккумуляторов»). В результате электромобили, которые по-прежнему дороже обычных, должны достичь паритета цен к середине 2020-х годов. (По некоторым оценкам, электромобили уже дешевле, чем автомобили с бензиновым двигателем, в течение всего срока их службы, благодаря меньшей стоимости питания и обслуживания.)

Для производства электричества литий-ионные батареи перемещают ионы лития из одного слоя, называемого анодом, в другой, катод. Они разделены еще одним слоем — электролитом. Катоды — это главный ограничивающий фактор в характеристиках аккумуляторов, и именно в них находятся самые ценные металлы.

Катод типичного литий-ионного аккумуляторного элемента представляет собой тонкий слой слизи, содержащей микромасштабные кристаллы, которые часто похожи по структуре на минералы, встречающиеся в естественной коре или мантии Земли, такие как оливины или шпинели.Кристаллы соединяют отрицательно заряженный кислород с положительно заряженным литием и различными другими металлами — в большинстве электромобилей это смесь никеля, марганца и кобальта. Перезарядка батареи вырывает ионы лития из этих кристаллов оксида и притягивает ионы к аноду на основе графита, где они хранятся, зажатые между слоями атомов углерода (см. «Электрическое сердце»).

Источник: адаптировано из G. Harper et al. Natur e 575 , 75–86 (2019) и G. Предложение et al.Природа 582 , 485–487 (2020).

Сам по себе литий не является дефицитом. В июньском отчете BNEF 2 подсчитано, что текущие запасы этого металла — 21 миллион тонн, по данным Геологической службы США — достаточны для перехода на электромобили до середины века. А запасы — это податливая концепция, потому что они представляют собой количество ресурса, который можно экономично добыть при текущих ценах и с учетом текущих технологий и нормативных требований.Для большинства материалов, если спрос возрастет, в конечном итоге тоже появятся запасы.

По словам Ампофо, по мере того как автомобили электрифицируются, проблема заключается в увеличении производства лития для удовлетворения спроса. «В период с 2020 по 2030 год он вырастет примерно в семь раз».

Это может привести к временному дефициту и резким колебаниям цен, говорит он. Но икота на рынке не изменит картину в долгосрочной перспективе. «По мере наращивания производственных мощностей эта нехватка, вероятно, исчезнет сама собой», — говорит Хареш Камат, специалист по хранению энергии в Исследовательском институте электроэнергетики в Пало-Альто, Калифорния.

Солевые месторождения на заводе по производству лития на солончаках Уюни в Потоси, Боливия Фото: Карлос Бесерра / Bloomberg / Getty

Увеличение добычи лития несет в себе собственные проблемы для окружающей среды: существующие формы добычи требуют большого количества энергии (для лития, извлекаемого из породы) или воды (для извлечения из рассолов). Но более современные методы извлечения лития из геотермальной воды с использованием геотермальной энергии для управления процессом считаются более безопасными.И, несмотря на этот ущерб окружающей среде, добыча лития поможет заменить разрушительную добычу ископаемого топлива.

Исследователей больше беспокоит кобальт, который является наиболее ценным ингредиентом современных аккумуляторов электромобилей. Две трети мировых запасов добываются в Демократической Республике Конго. Активисты-правозащитники выразили обеспокоенность по поводу условий там, в частности по поводу детского труда и вреда для здоровья рабочих; как и другие тяжелые металлы, кобальт токсичен при неправильном обращении.Можно использовать альтернативные источники, такие как богатые металлами «конкреции», обнаруженные на морском дне, но они представляют свою собственную опасность для окружающей среды. Никель, еще один важный компонент аккумуляторов электромобилей, также может столкнуться с нехваткой 3 .

Управление металлами

Для решения проблем с сырьем ряд лабораторий экспериментировали с катодами с низким содержанием кобальта или без кобальта. Но материалы катода должны быть тщательно спроектированы так, чтобы их кристаллическая структура не разрушалась, даже если более половины ионов лития удаляется во время зарядки.А полный отказ от кобальта часто снижает удельную энергию батареи, говорит ученый-материаловед Арумугам Мантирам из Техасского университета в Остине, потому что он изменяет кристаллическую структуру катода и то, насколько прочно он может связывать литий.

Мантирам принадлежит к числу исследователей, которые решили эту проблему — по крайней мере, в лаборатории — показав, что кобальт может быть удален с катодов без ущерба для рабочих характеристик. 4 . «Материал, не содержащий кобальта, о котором мы сообщаем, имеет ту же кристаллическую структуру, что и оксид лития-кобальта, и, следовательно, такую ​​же плотность энергии» или даже лучше, — говорит Мантирам.Его команда добилась этого, отрегулировав способ производства катодов и добавив небольшие количества других металлов, сохранив при этом кристаллическую структуру оксида кобальта катода. Мантирам говорит, что внедрение этого процесса на существующих заводах должно быть несложным, и основал новую фирму под названием TexPower, чтобы попытаться вывести ее на рынок в течение следующих двух лет. Другие лаборатории по всему миру работают над безкобальтовыми батареями: в частности, новаторский производитель электромобилей Tesla из Пало-Альто, Калифорния, заявил, что планирует исключить металл из своих аккумуляторов в ближайшие несколько лет.

Сунь Янг-Кук из Университета Ханян в Сеуле, Южная Корея, — еще один ученый-материаловед, достигший аналогичных показателей в работе с бескобальтовыми катодами. Sun говорит, что при создании новых катодов могут остаться некоторые технические проблемы, потому что процесс основан на переработке богатых никелем руд, для чего может потребоваться дорогая атмосфера чистого кислорода. Но многие исследователи теперь считают проблему кобальта практически решенной. Мантирам и Сан «показали, что можно делать действительно хорошие материалы без кобальта, и [они] работают очень хорошо», — говорит Джефф Дан, химик из Университета Далхаузи в Галифаксе, Канада.

Рабочие добывают кобальт возле шахты между Лубумбаши и Колвези в Демократической Республике Конго Фото: Федерико Скоппа / AFP / Getty

Никель, хотя и не такой дорогой, как кобальт, тоже не дешев. Исследователи тоже хотят удалить его. «Мы решили проблему нехватки кобальта, но из-за того, что мы так быстро масштабируемся, мы идем прямо к проблеме никеля», — говорит Гербранд Седер, ученый-материаловед из Национальной лаборатории Лоуренса Беркли в Беркли, Калифорния.Но удаление как кобальта, так и никеля потребует перехода на совершенно другие кристаллические структуры катодных материалов.

Один из подходов — использовать материалы, называемые неупорядоченными каменными солями. Они получили свое название из-за своей кубической кристаллической структуры, которая похожа на структуру хлорида натрия, где кислород играет роль хлора, а смесь тяжелых металлов заменяет натрий. За последнее десятилетие команда Седера и другие группы показали, что определенные богатые литием каменные соли позволяют литию легко входить и выходить — важное свойство, позволяющее производить повторную зарядку 5 .Но, в отличие от обычных катодных материалов, неупорядоченные каменные соли не требуют, чтобы кобальт или никель оставались стабильными во время этого процесса. В частности, они могут быть сделаны из марганца, который дешев и в большом количестве, говорит Седер.

Утилизация лучше

Если батареи будут производиться без кобальта, исследователи столкнутся с непредвиденными последствиями. Металл является основным фактором, который делает переработку аккумуляторов экономичной, поскольку добыча других материалов, особенно лития, в настоящее время обходится дешевле, чем переработка.

На типичном заводе по переработке аккумуляторы сначала измельчаются, в результате чего элементы превращаются в порошкообразную смесь всех используемых материалов. Затем эта смесь распадается на элементарные составляющие либо путем ее сжижения в плавильном заводе (пирометаллургия), либо путем растворения в кислоте (гидрометаллургия). Наконец, металлы осаждаются из раствора в виде солей.

Механический измельчитель батарейных модулей, показанный на этом фото на заводе по переработке отходов в Дузенфельде в Германии Фото: Вольфрам Шролл / Duesenfeld

Исследования были сосредоточены на улучшении процесса, чтобы сделать переработанный литий экономически привлекательным.Подавляющее большинство литий-ионных аккумуляторов производится в Китае, Японии и Южной Корее; соответственно, возможности рециркуляции там растут быстрее всего. Например, расположенная в Фошане компания Guangdong Brunp — дочерняя компания CATL, крупнейшего в Китае производителя литий-ионных элементов — может перерабатывать 120 000 тонн батарей в год, по словам представителя компании. Это эквивалент того, что будет использоваться в более чем 200 000 автомобилей, и компания способна восстановить большую часть лития, кобальта и никеля. Политика правительства способствует этому: в Китае уже есть финансовые и нормативные стимулы для компаний, производящих аккумуляторные батареи, которые получают материалы у компаний по переработке, а не импортируют только что добытые, — говорит Ханс Эрик Мелин, управляющий директор консалтинговой компании Circular Energy Storage в Лондоне.

Европейская комиссия предложила строгие требования по переработке аккумуляторов, которые могут быть введены поэтапно с 2023 года — хотя перспективы блока по развитию отечественной индустрии переработки являются неопределенными. 6 . Администрация президента США Джо Байдена, тем временем, хочет потратить миллиарды долларов на развитие отечественной индустрии производства аккумуляторов для электромобилей и поддержку утилизации, но еще не предложила правила, выходящие за рамки существующего законодательства, классифицирующие аккумуляторы как опасные отходы, которые необходимо безопасно утилизировать. .Некоторые начинающие компании в Северной Америке заявляют, что они уже могут извлекать большую часть металлов из аккумуляторных батарей, включая литий, по затратам, которые сопоставимы с затратами на их добычу, хотя аналитики говорят, что на данном этапе общая экономическая выгода только потому, что кобальт.

Измельченный аккумуляторный порошок, или «черная масса», очищается от пластин на предприятии по переработке аккумуляторов Li-Cycle в Кингстоне, Онтарио, Канада. Фото: Christinne Muschi / Bloomberg / Getty

Более радикальный подход состоит в том, чтобы повторно использовать катодные кристаллы, а не разрушать их структуру, как это делают гидро- и пирометаллургия.ReCell, совместное предприятие стоимостью 15 миллионов долларов, которым управляет Спангенбергер, включает три национальных лаборатории, три университета и множество игроков отрасли. Он разрабатывает методы, которые позволят переработчикам извлекать катодные кристаллы и перепродавать их. Одним из важнейших шагов после того, как батареи были измельчены, является отделение катодных материалов от остальных с помощью тепла, химикатов или других методов. «Причина, по которой мы с таким энтузиазмом относимся к сохранению кристаллической структуры, заключается в том, что для ее создания потребовалось много энергии и ноу-хау.В этом заключается большая ценность », — говорит Линда Гейнс, физико-химик из Аргонна и главный аналитик ReCell.

Эти методы обработки работают с различными кристаллическими структурами и составами, говорит Гейнс. Но если центр переработки получает поток отходов, который включает в себя многие типы батарей, различные типы катодного материала в конечном итоге попадут в котел для переработки. Это может усложнить попытки выделить различные типы катодных кристаллов. Хотя процессы, разработанные ReCell, позволяют легко отделить никель, марганец и кобальт от других типов ячеек, таких как, например, те, которые используют фосфат лития-железа, им будет трудно разделить два типа, которые оба содержат кобальт и никель, но в разных пропорции.По этой и другим причинам, для аккумуляторов будет крайне важно иметь какой-то стандартизованный штрих-код, который сообщает переработчикам, что находится внутри, говорит Спангенбергер.

Рабочий автомобильной фирмы Renault готовится разобрать аккумулятор. Компания заявляет, что перерабатывает все свои аккумуляторы для электромобилей — на данный момент всего пару сотен в год Фото: Оливье Геррен, Photothèque Veolia

Еще одно потенциальное препятствие заключается в том, что химический состав катодов постоянно развивается.Катоды, которые производители будут использовать через 10–15 лет — в конце жизненного цикла современных автомобилей — вполне могут отличаться от нынешних. Самый эффективный способ получить материалы — это для производителя собрать свои собственные батареи в конце жизненного цикла. И батареи должны разрабатываться с нуля так, чтобы их было легче разбирать, добавляет Гейнс.

Специалист по материалам Эндрю Эбботт из Университета Лестера, Великобритания, утверждает, что переработка будет намного более прибыльной, если она пропускает стадию измельчения и напрямую разбирает клетки.Он и его сотрудники разработали метод разделения катодных материалов с помощью ультразвука 7 . Это лучше всего работает в аккумуляторных элементах, которые упакованы плоско, а не свернуты (как обычные «цилиндрические» элементы), и, добавляет Эбботт, может сделать переработанные материалы намного дешевле, чем первичные добытые металлы. Он участвует в правительственной программе Великобритании по исследованию устойчивости батарей под названием ReLiB стоимостью 14 миллионов фунтов стерлингов (19 миллионов долларов США).

Увеличьте объем

Какие бы процессы переработки не стали стандартными, масштабирование поможет.По словам Мелина, хотя в сообщениях СМИ надвигающийся поток отработанных батарей описывается как надвигающийся кризис, аналитики видят в этом большие возможности. Как только у миллионов больших батарей закончится срок службы, появится эффект масштаба, который сделает переработку более эффективной, а экономическое обоснование этого — более привлекательной.

Трубопровод по производству электромобилей на заводе Nio в Хэфэе, Китай Фото: Цилай Шен / Bloomberg / Getty

Аналитики говорят, что пример свинцово-кислотных аккумуляторов — тех, с которых заводятся бензиновые автомобили — дает повод для оптимизма.Поскольку свинец токсичен, эти батареи классифицируются как опасные отходы и подлежат безопасной утилизации. Но вместо этого была создана эффективная промышленность, в которой их перерабатывают, даже несмотря на то, что свинец дешев. «Более 98% свинцово-кислотных аккумуляторов восстанавливаются и перерабатываются», — говорит Камат. «Ценность свинцово-кислотного аккумулятора даже ниже, чем у литий-ионного аккумулятора. Но из-за объема в любом случае есть смысл утилизировать », — говорит Мелин.

Может пройти некоторое время, прежде чем рынок литий-ионных аккумуляторов достигнет своего полного размера, отчасти потому, что эти аккумуляторы стали исключительно долговечными: нынешние автомобильные аккумуляторы могут прослужить до 20 лет, говорит Камат.В типичном электромобиле, продаваемом сегодня, аккумуляторная батарея переживет автомобиль, в который он был встроен, говорит Мелин.

Это означает, что когда старые электромобили отправляются на металлолом, аккумуляторы часто не выбрасывают и не перерабатывают. Вместо этого их вынимают и повторно используют для менее требовательных приложений, таких как стационарные накопители энергии или приводы лодок. После десяти лет использования автомобильный аккумулятор, такой как Nissan Leaf, который первоначально имел 50 киловатт-часов, потеряет не более 20% своей емкости.

Еще один майский отчет МЭА, организации, известной своими исторически осторожными прогнозами, включал дорожную карту 8 по достижению к середине века чистых нулевых выбросов, которая включает переход на электрический транспорт в качестве краеугольного камня. Уверенность в том, что это достижимо, отражает растущий консенсус среди политиков, исследователей и производителей в отношении того, что проблемы электрификации автомобилей теперь полностью решаемы — и что если мы хотим иметь хоть какую-то надежду удержать изменение климата на управляемом уровне, нельзя терять время. .

Но некоторые исследователи жалуются, что электромобили, похоже, соответствуют невыполнимым стандартам с точки зрения воздействия их батарей на окружающую среду. «Было бы неудачно и контрпродуктивно отказываться от хорошего решения, настаивая на идеальном решении», — говорит Камат. «Это, конечно, не означает, что мы не должны активно работать над вопросом утилизации батарей».

Как работает литий-ионный аккумулятор электромобиля — Easy Electric Life

Впервые поступив в продажу в 1991 году, литий-ионный аккумулятор был первоначально создан для сектора бытовой электроники.Он быстро стал применяться в других приложениях и в конечном итоге стал стандартом для всех устройств, требующих портативной перезаряжаемой батареи. Он вытеснил никель-кадмиевые (NiCd) и никель-металлогидридные (Ni-MH) технологии.

Работа литий-ионного аккумулятора

Принцип, лежащий в основе литий-ионного аккумулятора, заключается в циркуляции электронов путем создания разности потенциалов между двумя электродами, одним отрицательным и другим положительным, которые погружены в проводящую ионную жидкость, называемую электролит.Когда батарея питает устройство, электроны, накопленные в отрицательном электроде, высвобождаются через внешнюю цепь и перемещаются к положительному электроду: это фаза разряда. И наоборот, когда аккумулятор заряжается, энергия, поставляемая зарядным устройством, отправляет электроны обратно от положительного электрода к отрицательному.

Различные типы батарей различаются в зависимости от типа ионов, материалов электродов и соответствующих электролитов. В 12-вольтовой свинцово-кислотной батарее, которая традиционно использовалась для питания стартера автомобиля с двигателем внутреннего сгорания, например, используется электролит, содержащий ионы свинца, и электроды на основе свинца.Что касается литий-ионного аккумулятора, в нем используются ионы лития (Li +): отсюда и название этой технологии.

Литий-ионный аккумулятор, такой как аккумулятор внутри автомобиля, например ZOE, спроектирован как сборка отдельных аккумуляторных блоков (ячеек), соединенных друг с другом и контролируемых специальной электронной схемой. Количество ячеек, размер каждой ячейки и способ их расположения определяют как напряжение, подаваемое батареей, так и ее емкость, то есть количество электричества, которое она может хранить.Обычно это выражается в ватт-часах (Втч) или в киловатт-часах (кВтч) в автомобильной промышленности.

Свойства литий-ионных аккумуляторов

Литий-ионные аккумуляторы можно найти как в бытовой электронике (телефоны, ноутбуки), так и в электромобилях. Основная причина такого масштабного успеха, по сути, заключается в плотности хранения, которую позволяет литий-ионная технология.

Это понятие плотности относится к соотношению между емкостью аккумулятора, обеспечиваемой аккумулятором, и его объемом или весом.Для сравнения: литий-ионный аккумулятор имеет плотность от 300 до 500 Вт · ч / кг, то есть примерно в десять раз больше, чем свинцово-кислотный аккумулятор.

Пока мы ждем потенциального развития таких инноваций, как твердотельные батареи, литий-ионная технология сегодня представляет собой лучший компромисс между емкостью, объемом и массой в секторе электромобилей. Он предлагает высокое напряжение, простую подзарядку и долговечность, которые подходят для сценариев использования, дополняющих друг друга на протяжении всего жизненного цикла, в соответствии с принципами циркулярной экономики .

Авторские права: Pagecran, Olivier Le Moal

Все электромобили в вашей стране

Откройте для себя наш ассортимент

Читайте также

Электромобиль

Различные способы хранения энергии

10 июня 2021

Посмотреть больше

Электромобиль

Все, что нужно знать о подключаемом гибридном автомобиле

10 июня 2021

Посмотреть больше

Электромобиль

Все, что нужно знать о зарядке гибридного автомобиля

09 июня 2021

Посмотреть больше

исследователей разработали долговечные твердотельные литиевые батареи — Harvard Gazette

Долговечные батареи с быстрой зарядкой необходимы для расширения рынка электромобилей, но сегодняшние литий-ионные батареи не отвечают потребностям — они слишком тяжелые, слишком дорогие и слишком долго заряжаются.

На протяжении десятилетий исследователи пытались использовать потенциал твердотельных литий-металлических батарей, которые содержат значительно больше энергии в том же объеме и заряжаются за меньшее время по сравнению с традиционными литий-ионными батареями.

«Литий-металлический аккумулятор считается святым Граалем для химии аккумуляторов из-за его высокой емкости и плотности энергии», — сказал Синь Ли, доцент кафедры материаловедения Гарвардской школы инженерии и прикладных наук им. Джона А. Полсона (SEAS). .«Но стабильность этих батарей всегда была плохой».

Теперь Ли и его команда разработали стабильную литий-металлическую твердотельную батарею, которую можно заряжать и разряжать не менее 10 000 раз — гораздо больше циклов, чем было продемонстрировано ранее — при высокой плотности тока. Исследователи объединили новую конструкцию с коммерческим катодным материалом с высокой плотностью энергии.

Эта аккумуляторная технология может увеличить срок службы электромобилей до бензиновых — от 10 до 15 лет — без необходимости замены аккумулятора.Благодаря своей высокой плотности тока аккумулятор может проложить путь для электромобилей, которые могут полностью заряжаться в течение 10-20 минут.

Исследование опубликовано в журнале Nature.

Доцент Синь Ли и его команда разработали стабильную литий-металлическую батарею, которую можно заряжать и разряжать не менее 10 000 раз. Элиза Гриннелл / Гарвард SEAS

«Наше исследование показывает, что твердотельная батарея может фундаментально отличаться от коммерческой литий-ионной батареи с жидким электролитом», — сказал Ли.«Изучая их фундаментальную термодинамику, мы можем раскрыть превосходные характеристики и использовать их многочисленные возможности».

Большой проблемой с литий-металлическими батареями всегда была химия. Литиевые батареи перемещают ионы лития от катода к аноду во время зарядки. Когда анод изготовлен из металлического лития, на поверхности образуются игольчатые структуры, называемые дендритами. Эти структуры врастают в электролит и пробивают барьер, разделяющий анод и катод, вызывая короткое замыкание или даже возгорание батареи.

Чтобы преодолеть эту проблему, Ли и его команда разработали многослойную батарею, в которой между анодом и катодом размещены различные материалы разной стабильности. Эта многослойная батарея из разных материалов предотвращает проникновение дендритов лития не за счет их полной остановки, а за счет их контроля и сдерживания.

Думайте о батарее как о бутерброде BLT. Сначала идет хлеб — металлический литий-анод — а затем салат — графитовое покрытие. Затем слой томатов — первый электролит — и слой бекона — второй электролит.Завершите его еще одним слоем помидоров и последним куском хлеба — катодом.

Аккумулятор BLT. Сначала идет хлеб — металлический литий-анод — а затем салат — графитовое покрытие. Затем слой томатов — первый электролит — и слой бекона — второй электролит. Завершите его еще одним слоем помидоров и последним куском хлеба — катодом. Предоставлено: Лиза Берроуз / Гарвард SEAS

Первый электролит (химическое название Li 5.5 PS 4.5 Cl 1.5 или LPSCI) более стабилен с литием, но склонен к проникновению дендритов. Второй электролит (Li 10 Ge 1 P 2 S 12 или LGPS) менее стабилен с литием, но кажется невосприимчивым к дендритам. В этой конструкции дендритам позволяют прорастать через графит и первый электролит, но они останавливаются, когда достигают второго. Другими словами, дендриты прорастают через салат и помидоры, но останавливаются на беконе. Барьер для бекона не дает дендритам проталкивать аккумулятор и закорачивать его.

«Наша стратегия включения нестабильности для стабилизации батареи кажется нелогичной, но точно так же, как якорь может направлять и контролировать шуруп, врезающийся в стену, точно так же наше руководство по многослойному дизайну и контролирует рост дендритов», — сказал Лухан Йе. соавтор статьи и аспирант SEAS.

«Разница в том, что наш якорь быстро становится слишком тугим, чтобы дендрит не мог просверлить отверстие, поэтому рост дендрита останавливается», — добавил Ли.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *