Site Loader

Содержание

Амперметр — Википедия

Материал из Википедии — свободной энциклопедии

Токовые клещи — амперметр для бесконтактного измерения больших токов.

Схема включения амперметра

Galvanometer diagram.png

Амперме́тр (от ампер + μετρέω «измеряю») — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора.

В электрическую цепь амперметр включается последовательно[1] с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале — 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения

[2]. Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания): это приведёт к короткому замыканию!

Бесконтактное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется токоизмерительные клещи (на фото).

Общая характеристика

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.

Приборы со стрелочной головкой

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

Приборы с цифровым индикатором

В последнее время приборы со стрелочной измерительной головкой стали вытесняться приборами с цифровым индикатором на основе жидких кристаллов и светодиодов.

Принцип действия стрелочной измерительной головки

Принцип действия самых распространённых в амперметрах систем измерения:

  • В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки прямо пропорционален силе тока, поэтому шкала магнитоэлектрического прибора линейна. Направление поворота стрелки зависит от направления протекающего через рамку тока, поэтому магнитоэлектрические амперметры непригодны для непосредственного измерения силы переменного тока (стрелка будет дрожать возле нулевого значения), и требуют правильной полярности подключения в цепи постоянного тока (иначе стрелка будет отклоняться левее нуля).
  • В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
  • В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

Включение амперметра в электрическую цепь

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано — чаще всего 75 мВ). При высоких напряжениях (выше 1000В) — в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока — магнитные усилители.

См. также

Примечания

  1. Важно знать! Подключение амперметра напрямую к источнику напряжения приводит к протеканию токов короткого замыкания, и может вызвать возгорание токовых шунтов, измерительного трансформатора и всего прибора. Для предотвращения такой ситуации, амперметр может быть оснащён цепями защиты на основе плавких предохранителей и быстродействующих автоматических выключателей.
  2. ↑ Это особенно заметно в низковольтных схемах, в которых падение напряжения на элементах схемы сравнимо с напряжением на зажимах амперметра (типичное значение — десятки милливольт).

Ссылки

Литература


принцип работы и общая характеристика

Амперметр – измерительный прибор, необходимый чтобы узнать силу тока. Они могут быть стрелочными и цифровыми.  Цифровой амперметр более удобен и такие модели стали очень популярными в последнее время, постепенно вытесняя аналоговые стрелочные. Как и любой другой измерительный прибор характеристик электрического тока, амперметр рассчитан на определенную величину тока, то есть при превышении предельной величины силы тока в цифровом приборе сработает защита либо он вовсе перегорит.

В данной статье будет рассказано о том, как устроен, работает, как и где может использоваться цифровой амперметр и в чем его отличия от привычных аналоговых. В качестве бонуса, материал содержит несколько видеоматериалов и один скачиваемый файл по данной теме.

Цифровой амперметр, вольтметр в одном корпусе

Цифровой амперметр, вольтметр в одном корпусе

Виды амперметров

Точность показаний прибора зависит от принципа действия и вида устройства.

Существует два основных вида амперметров:

  1. Аналоговые.
  2. Цифровые.

Первый вид в свою очередь делится на следующие устройства:

  • Магнитоэлектрические.
  • Электромагнитные.
  • Электродинамические.
  • Ферродинамические.

По виду измеряемого тока амперметры делятся:

  • Для переменного тока.
  • Для постоянного тока.

Существуют и другие специализированные приборы для измерения тока, которые применяются в узконаправленных областях, и не распространены так широко, как перечисленные выше.

Два цифровых амперметра

Два цифровых амперметра

Принцип работы и виды устройства

Амперметр — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале — 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения.

Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Комплектное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется «токоизмерительные клещи».

Что такое цифровой амперметр и чем он лучше обычного

Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания), что может привести к коротким замыканиям!

Общая характеристика

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.

Приборы со стрелочной головкой наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока. Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Интересно почитать! Что такое варистор и где его применяют.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры. Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

Цифровые амперметры разных моделейЦифровые амперметры разных моделей

Цифровые амперметры разных моделей

Принцип работы цифрового прибора

Цифровой амперметр постоянного тока позволяет измерить и определить постоянный ток – как отрицательной, так и положительной полярности. На направление тока указывает точка, размещенная в крайнем правом разряде. Удобство применения данного устройства состоит в отсутствии необходимости подключения шунта. Амперметр цифровой постоянного тока может монтировать в источники питания, стойки приборов, стенды, зарядные устройства и прочее. Такой прибор советуют использовать, чтобы контролировать работу двигателей, DС-DС преобразователей, источников питания и инверторов.

Амперметр постоянного тока цифровой включается спустя три минуты после подключения питания. В случае установки в зарядное устройство рекомендуется предварительно к выводам питания амперметра подключить конденсатор 470 mF 25 v. Индикатор не отображает незначащие нули. Учитывая обширный выбор диапазонов, амперметр с успехом функционирует в одном из двадцати вариантов режима работы. При этом каждый режим предполагает применение одного из трех шунтов: на мкА, мА или Амперы.

Что такое цифровой амперметр и чем он лучше обычного

Предел измерения колеблется в диапазоне 1мкА – 1000А. Для работы следует выбрать один из 60 предложенных пределов измерений.

Как уже было отмечено, каждый режим работает на основе подходящего шунта. Следует помнить, что номинальное напряжение любого шунта не должно превышать 75мВ. В качестве примера можно рассмотреть режим 2, который работает только с шунтами 5мкА, 5мА или 5А. Для программирования режимов применяется пять джамперов.

Перед включением модуля рекомендуется запрограммировать режим его работы. После включения модуль выдаст сведения относительно выбранного режима работы. Если, допустим, выбран режим измерения токов в пределах 25А, то включенный модуль будет мигать несколько раз «25.0», что указывает на режим работы «5». В таком случае необходимо использование одного из шунтов: 25А, 25мкА или 25мА. При выборе недопустимого режима будет мигать значок «Err», указывающий на ошибку.

Как работает цифровой амперметр

Как работает цифровой амперметр

Следует помнить, что измерять можно только в одной полярности, если же ток измеряется в обратной полярности, то это будет отображаться, как «000». Для питания модуля предназначен встроенный литиевый аккумулятор  CR2032, рассчитанный на двадцать дней бесперебойной работы. К тому же, источником питания может послужить внешняя батарея и любой другой источник с постоянным током 3В. Особенности подключения состоят в том, что внешний источник питания 3В следует подключить плюсом к контакту «3V», а минусом – к «0V».

Еще одним обязательным условием является наличие гальванической развязки для внешнего источника питания от источника, который измеряет ток. Важно не забыть встроенный литиевый элемент при использовании внешнего источника питания. Чтобы сэкономить батарею, измеряя ток в автомобиле, можно воспользоваться реле, которое отключает питание модуля во время выключения зажигания. Сделанные самостоятельно шунты или резисторы можно использовать для малых токов. При этом рекомендуется применять металлопленочные резисторы, которые в меньшей степени зависят от температурного режима. Как правило, в устройстве используют константановую или манганиновую проволоку.

Интересно почитать: что такое клистроны.

Виды устройства и принцип работы

Для определения значения тока в электрической цепи, применяют специальные приборы – амперметры. Амперметр включается последовательно в исследуемую цепь, и, в силу крайне малого собственного внутреннего сопротивления, данный измерительный прибор не вносит сколь-нибудь существенных изменений в электрические параметры цепи.

Шкала прибора градуирована в амперах, килоамперах, миллиамперах или микроамперах. Для расширений пределов измерений, амперметр может быть включен в цепь через трансформатор или параллельно шунту, когда лишь малая доля измеряемого тока проходит через прибор, а основной ток цепи течет через шунт.

Популярные модели цифровых амперметров

Сегодня есть два особо популярных типа амперметров – механические амперметры — магнитоэлектрические и электродинамические, и электронные — линейные и трансформаторные.

В классическом магнитоэлектрическом амперметре со стрелкой и градуированной шкалой, через подвижную катушку прибора проходит определенная часть измеряемого тока, обратнопропорциональная сопротивлению катушки, включенной параллельно калиброванному шунту малого сопротивления.

Ток (прямой или выпрямленный) проходящий через катушку приводит к повороту стрелки магнитоэлектрического амперметра, и угол наклона стрелки оказывается пропорционален величине измеряемого тока. Ток через катушку амперметра создает на ней крутящий момент благодаря взаимодействию собственного магнитного поля с магнитным полем установленного стационарно постоянного магнита. И поскольку стрелка соединена с катушкой-рамкой, она наклоняется на соответствующий угол и указывает значение тока на шкале.

Электродинамический амперметр устроен несколько более сложным образом. В нем есть две катушки — одна неподвижная, а вторая — подвижная. Катушки соединены между собой последовательно или параллельно. Когда токи проходят через катушки, то их магнитные поля взаимодействуют, в итоге подвижная катушка, с которой соединена стрелка, отклоняется на угол, пропорциональный величине измеряемого тока.

Что такое цифровой амперметр и чем он лучше обычного

В приборах, предназначенных для измерения значительных токов, основной ток всегда проходит через шунт малого сопротивления, а катушка соединенная со стрелкой, принимает на себя только малую долю тока, выступая в роли проводящего ответвления от основного пути тока. Соотношения токов через измерительную рамку и через шунт обычно принимаются такими: 1 к 1000, 1 к 100 или 1 к 10.

Магнитоэлектрические амперметры

Принцип действия такого вида прибора основывается на взаимодействии магнитного поля магнита и подвижной катушки, находящейся в корпусе прибора. Достоинствами такого амперметра является низкое потребление электроэнергии при функционировании, высокая чувствительность и точность измерений. Все магнитоэлектрические амперметры оснащены равномерной градуировкой шкалы измерений. Это позволяет произвести измерения с высокой точностью.

К недостаткам магнитоэлектрического амперметра относится его сложность внутренней конструкции, наличие движущейся катушки. Такой прибор не является универсальным, так как он действует только для постоянного тока. Несмотря на недостатки, магнитоэлектрический вид прибора широко применяется в различных областях промышленности, в лабораторных условиях.

Электромагнитные устройства

Амперметры с электромагнитным принципом работы не имеют в своем устройстве движущейся катушки, в отличие от магнитоэлектрических моделей. Устройство их значительно проще. В корпусе находится специальное устройство и один или несколько сердечников, которые установлены на оси. Электромагнитный амперметр имеет меньшую чувствительность, по сравнению с магнитоэлектрическим прибором. А значит, точность его измерений будет ниже. Преимуществами таких приборов является универсальность работы. Это означает, что они могут измерять силу тока как в цепи постоянного, так и переменного тока. Это значительно расширяет его сферу применения.

Электромагнитные амперметры

Электромагнитные амперметры

Электродинамические приборы

Метод работы таких приборов заключается во взаимодействии электрических полей токов, которые проходят по электромагнитным катушкам. Конструкция прибора состоит из подвижной и неподвижной катушки. Универсальная работа на любом виде тока является основным достоинством электродинамических амперметров. Из недостатков стоит выделить большую чувствительность, так как они реагируют даже на незначительные магнитные поля, расположенные в непосредственной близости к ним. Подобные поля способны создавать для электродинамических приборов большие помехи, поэтому такие амперметры применяют только в защищенном экраном месте.

Ферродинамические приборы

Такие приборы, обладают наибольшей эффективностью и точностью измерений. Магнитные поля, расположенные рядом с прибором, не оказывают на него заметного влияния, поэтому нет необходимости в установке дополнительных защитных экранов.

Конструкция такого амперметра включает в себя замкнутый ферримагнитный провод, а также сердечник и неподвижную катушку. Такое устройство позволяет повысить надежность работы прибора. Поэтому ферродинамические виды амперметров чаще всего используются в военной промышленности и оборонных учреждениях. К его преимуществам также можно отнести удобство и простоту пользования, точность всех измерений, по сравнению с ранее рассмотренными видами приборов.

Цифровые устройства

Кроме рассмотренных приборов, существует цифровой вид амперметров. В настоящее время они все шире используются в различных сферах производства, а также в бытовых условиях. Такая популярность цифровых приборов связана с удобством пользования, небольшими размерами и точными измерениями. Вес прибора также очень незначительный. Цифровые модификации используют в различных условиях, он невосприимчив к вибрациям, в отличие от механических аналоговых приборов.

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Цифровые приборы, не боятся незначительных механических ударов, которые возможны от работающего рядом оборудования. Расположение в вертикальной или горизонтальной плоскости прибора не имеет влияния на его работоспособность, так же как изменение температуры и давления. Поэтому такой прибор применяют в условиях внешней среды.

Более подробно о работе трехфазного выпрямителя переменного тока рассказано в статье Измерительные приборы. Если у вас остались вопросы, можно задать их в комментариях на сайте. А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение статьи хотелось бы выразить благодарность источникам информации для подготовки материала:

www.electrosam.ru

www.vserele.ru

www.shop.p-el.ru

www.pue8.ru

www.electrik.info

www.rakurs-spb.ru

Предыдущая

ИнструментарийКак подключить амперметр к цепи переменного или постоянного тока

Принцип устройства амперметра

Измерительный прибор амперметр – что это и как лучше выбрать

Для того, чтобы измерить силу тока в электрической цепи, используют такой измерительный прибор, как амперметр.

Его подключают последовательно на том участке электроцепи, где будут проводиться замеры. Довольно важным условием для того, чтобы получить точные результаты, является внутренний тип сопротивления измерительного устройства.

В магазинах РФ представлен широкий ассортимент устройств. Они могут отличаться диапазоном измерений, стоимостью и уровнем погрешностей. Рекомендации экспертов помогают найти идеальный баланс между стоимостью и техническими параметрами.

Рекомендации по подбору

Сфера использования. Все амперметры можно поделить на две группы по области применения.

  • Профессиональные модели отличаются по высокой точности и огромным диапазоном измерений. Но стоят такие устройства крайне дорого, а также есть сложности в подключении.
  • Приборы бытового типа могут отличаться простотой использования. Они отлично сочетают доступную стоимость и удобство работы.

Принцип действия. Амперметры могут отличаться по принципу действия и конструкции.

  1.  Магнитоэлектрические модели прекрасно работают в электроцепях с малой силой постоянного тока.Устройства электромагнитного типа все чаще стали применять в сетях, где есть переменный ток. Они могут производить замеры на производстве с высокой токовой силой.
  2. Магнитоэлектрические модели прекрасно работают в электроцепях с малой силой постоянного тока.
  3. Ферродинамические устройства могут отличаться высокой надежностью, и они не будут бояться магнитного поля, что дает возможность устанавливать их в контролируемых автоматических системах.
  4. Термоэлектрические амперметры прекрасно зарекомендовали себя при измерении тока переменного тип в цепи с высокой частоты.
  5. Цифровые модели являются самыми удобными и современными в применении. Они выделяются компактными габаритами и низким уровнем погрешности. Такие устройства не боятся механического влияния или вибрации.

Индикация. Для визуального определения токовой силы применяется два варианта индикации.

  • Приборы стрелочного типа отличаются простотой, доступной стоимостью и надежностью. В конструкции могут быть использованы электронные схемы, которые делают показания намного точнее.
  • Цифровая индикация будет упрощать снятие показаний, и они получаются намного точнее. Но стоят такие модели, оснащенные цифровым дисплеем, куда дороже.

Набор дополнительных опций. Компании-изготовители оснащают свои изделия около полезных опций.

  1. Подсветка внутри дисплея дает возможность снимать показания в любое удобное время без использования приборов освещения.
  2. DIN рейка будет упрощать подключение амперметра до электрической сети.
  3. Защитные крышки во внешних разъемах будут обеспечивать пользовательскую безопасность.

Мы выбрали для вас 7 самых лучших устройство для измерения тока. Купить их можно в специальных магазинах страны. При распределении мест мы опирались на экспертное мнение, с учетом отзывов отечественных потребителей.

Рейтинг лучших устройств

АВВ АМТD-2-R 2CSG213655R4011

Принцип устройства амперметра АВВ АМТD-2-R 2CSG213655R4011 таков, что он обладает высокой точностью. Прибор способен определять силу постоянного тока, а погрешность всего 0.5%. эксперты будут отмечать высокое качество изготовления, долговечность и надежность устройства. Цифровой прибор будет подключаться через шунт, и потребляемая мощность составляет 4 ВА. Компания-изготовитель предусмотрела горизонтальный тип ориентации, и это крайне важно учесть при установке амперметра (метод монтажа DIN 3.5 см). Измерительное устройство весит всего лишь 0.3 кг. Диапазон измерения токовой силы составляет от 5 до 600 А. Модель завоевывает первое место в обзоре. Профессиональные мастера по электрике нахваливают итальянский прибор благодаря качественному изготовлению, высокую точность, удобство использования. Недостатком устройства будет высокая стоимость.

Плюсы:

  • Высокое качество сборки.
  • Высокая точность.
  • Надежность.
  • Удобство в работе.

Рассмотрим еще один прибор.

АВВ АМТD-1 2СSМ320000R1011

Для того, чтобы производить замер силы переменного тока, прекрасно подойдет именно это устройство. Прибор тоже итальянский, и он обладает модульным исполнением, а подключение до сети проводится через DIN рейку. Определять токовую силу можно в широком диапазоне от 5 до 600 А. Эксперты смогли по достоинству оценить высокую измерительную точность (класс точности составляет 0.5%). Для удобства выполнения работы цифровые амперметры оснащены подсветкой для дисплея. Потери электроэнергии не более 2 Вт. Монтировать устройство можно и вертикально, и горизонтально. Вес всего 0.31 кг. Модель заняла второе место в обзоре. У отечественных производителей нет претензий к качеству создания, точности измерения и надежности устройства итальянского производства. Минусом можно назвать высокую стоимость.

Плюсы:

  • Высокая измерительная точность.
  • Большой диапазон измерений.
  • Подсветка на дисплее.
  • Высокое качество изготовления.

Рассмотрим, кто забрал «бронзу».

DigiТОР АМ-3м

Для того, чтобы измерять силу тока переменного типа в трехфазной сети отлично подойдет именно этот амперметр. На цифровом трехстрочном дисплее будут отражаться результаты на всех фазах. Эксперты по достоинству оценили демократичную стоимость и малый вес (0.15 кг) украинского приборы. Он будет уступать лидерам обзора лишь в диапазоне измерений, от 1 до 63 А, и в точности показаний (погрешность составляет 1.5%). В актив устройства можно заносить устойчивость к помехам и вибрации. Устройство устанавливаю в электрический щиток, размеры выреза должны быть аккурат 0.68*0.68 метров. Рабочий интервал температуры составляет от +5 до +50 градусов. Модель стала замыкающей призовой тройкой этого обзора. Российским потребителям устройство понравилось за простоту монтажа, весьма точные измерения и демократичную стоимость.

Плюсы:

  • Высокое качество сборки.
  • Устойчивость к помехам и вибрации.
  • Трехфазное подключение.
  • Малый вес.

Минусы:

  • Ограниченный измерительный интервал.

Четвертый измерительный прибор (амперметр) вам понравится не меньше.

ЕКF РRОхima АD-723

Трехфазный амперметр российского производства понравился экспертам за счет наличия сенсорной панели управления, а также цифрового дисплея. Посредством такого прибора можно измерит силу переменного тока, подключая его до сети через трансформатор. Энергетические приборы при работе составляют 6 ВА. В актив изделию можно заносить высокую степень точности (погрешность всего 0.5%), а также малый вес 0.23 кг и демократичная стоимость. Правда, изготовитель не продумал подсветку дисплея, а еще модель уступает лидерам в плане габаритов. В щите потребуется сделать нишу 0.72*0.72 метра. Устройства остановилось в шаге от призового пьедестала. Электрики довольны тем, что измерения очень точные, сборка высокого качества, а стоимость демократичная. Из минусов выделим громоздкость и полное отсутствие хотя бы какой-то подсветки.

Плюсы:

  • Трехфазное подключение.
  • Приемлемая стоимость.
  • Высокая степень точности.
  • Надежность.

Минусы:

  • Громоздкость.
  • Нет никакой подсветки.

Пятый прибор не менее интересный.

DigiТОР АVМ-1

В одно и то же время измерять токовую силу и напряжение в однофазной сети дает возможность амперметр-вольтметр. Прибор представляет собой продукт сотрудничества украинских разработчиков и изготовителя из России. Эксперты отметили конкурентоспособную стоимость, прекрасную измерительную точность (погрешность составляет 1%). Посредством этого устройства можно производить замеры тока в диапазоне от 1 до 63 А. Интервал напряжения переменного типа составляет от 40 до 400 В. Амперметр-вольтметр требуется для установки в отапливаемом помещении при температуре воздуха от +5 до +50 градусов (степень защиты от пыли и влаги составляет IР 20). Пользователям из Росси устройство понравилось за простоту подключения (будет занимать пару мест на рейке), сборку высокого качества и доступную стоимость. Но есть случаи попадания в торговую сеть изделий бракованного типа.

Плюсы:

  • Устройства электромагнитного типа все чаще стали применять в сетях, где есть переменный токДоступная стоимость.
  • Минимальная степень погрешности.
  • Простое подключение.
  • Два устройства в одном.

Минусы:

  • В магазины попадает бракованная продукция.

Рассмотрим предпоследнее устройство.

ЕКF РRОхimа АD-G31

Это электроизмерительный цифровой амперметр попал на 6-е место обзора благодаря высокой точности (погрешность составляет 0.5%). Изготовитель установил специальное устройство с микропроцессором, которое и будет обеспечивать скорость и точность результатов. Прибор можно подключать через особый трансформатор, который и будет ограничивать диапазон измерения силы переменного тока. Изделие обладает модульным исполнением с установкой на DIN рейку. Энергетические потери при работе составляет 6 Вт. Экспертам понравилось интуитивно понятное управление, а еще все кнопки расположены под дисплеем цифрового типа. Отечественные пользователи лестно отзываются о точности измерений, простоте установки и доступности в плане цены. К минусам отнесем отсутствие подсветки на дисплее, а также нестабильное сборочное качество.

Плюсы:

  • Удобство управления.
  • Демократичная стоимость.
  • Простота установки.
  • Точность измерений.

Минусы:

  • Отсутствие подсветки на дисплее.
  • Качество сборки хромает.

Рассмотрим последний экземпляр.

ТDМ SQ1102-0057

Теперь вы знаете, как выбрать амперметр, но прежде рассмотрим последний прибор. Именно на него сейчас самая низкая стоимость. Он требуется для измерения силы переменного тока в цепях однофазного типа. Эксперты обратили внимание на корпус прибора, который изготовлен из негорючего самозатухающего пластика. Электрическая безопасность подключения будет обеспечена защитными крышками на внешних подсоединенных зажимах. В актив устройству требуется занести высокую степень защиты от влаг и пыли IР 54. А вот в точности измерений (погрешность составляет 1.5%) и рабочем диапазоне от 5 до 200 А устройство уступает лидерам обзора. Люди отдают предпочтение стрелочным амперметрам по низкой цене, простоте применения, безопасность. Минусами прибора можно назвать невысокую точность и ограниченный измерительный диапазон.

Плюсы:

  • Безопасность.
  • Простота включения.
  • Надежность.
  • Низкая стоимость.

Минусы:

  • малый измерительный диапазон.
  • Не очень высокая точность.

Обратите внимание, что этот рейтинг носит исключительно субъективный характер, не является рекламой и не будет служить руководством к покупке. До этого требуется консультация со специалистом.

устройство прибора, принцип действия и применение

Амперметр – это прибор для измерения силы тока. Единицей измерения это величины являются амперы. Шкала на этих измерительных приборах нанесена в миллиамперах, килоамперах или просто амперах, в зависимости от величины силы тока в данном случае. Одной из главных мер безопасности является условие, то, что нельзя использовать амперметр, подключенный напрямую к источнику питания, так как это может вызвать короткое замыкание в цепи.

В статье рассмотрена структура амперметра, из чего состоит его устройство, как работает и какие особенности он имеет. Для наглядности, в статье содержатся два видеоролика и один скачиваемый файл по выбранной теме.

Аналоговые амперметры

Аналоговые амперметры

Приборы для измерения силы тока

Если в каком-либо проводнике течет ток, то он характеризуется такой величиной, как «сила тока». Сила тока в свою очередь характеризуется количеством электронов, которые проходят через поперечное сечение проводника за единицу времени. Но мы все учились в школе и знаем, что электронов в проводнике миллиарды миллиардов и считать количество электронов было бы бессмысленно.

Поэтому ученые вывернулись из этой ситуации и придумали единицу измерения силы тока и назвали ее «Ампер», в честь французского физика-математика Андре Мари Ампера. Что же собой представляет 1 Ампер?

Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение провода проходит заряд, равный 1 Кулону. Или простым языком, все электроны в сумме должны давать заряд в 1 Кулон и они должны в течение одной секунды пройти через поперечное сечение проводника.

Шкала амперметра

Шкала амперметра

Если учесть, что заряд одного электрона 1.6х10-19 , то можно узнать, сколько электронов в 1 Кулоне. А вот для того, чтобы измерять амперы, ученые придумали прибор и назвали его «амперметром».

Амперметр – прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в амперах, килоамперах, миллиамперах или микроамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно; для увеличения предела измерений – с шунтом или через трансформатор.

Амперметр – это прибор для измерения силы тока в электрической цепи. Любой амперметр рассчитан на измерение токов определенной величины. В электронике в основном оперируют микроАмперами (мкА), миллиАмперами (мА), а также Амперами (А). Следовательно, в зависимости от величины измеряемого тока приборы для измерения силы тока делятся на амперметры (PA1), миллиамперметры (PA2) и микроамперметры (PA3).

двойной вольметр-амперметр

двойной вольметр-амперметр

Измерение значений переменного тока

Знать силу тока, проходящую через определенный участок цепи довольно важно. Это помогает рассчитать сечение кабеля и избежать перегрева токопроводящих жил. Эта статья поможет начинающим электрикам разобраться в нюансах работы и подключения измерительного прибора. Но сначала вспомним немного азов из школьной программы.

Устройство амперметра и принцип его действия

Как известно, амперметром называется измерительный прибор, позволяющий определить силу постоянного и переменного тока в электрической цепи. В зависимости от планируемой сферы применения, шкалу измерительного устройства градуируют в амперах, микро- или миллиамперах. Для измерений больших величин используется прибор, шкала которого разделена на килоамперы.

Схема цифрового амперметра

Схема цифрового амперметра

Сотые будут соответствовать четвертому дисплею, которого у нас нет, например «03», если мы ищем нуль сверху, ошибка будет больше, например «08». Повторение процесса три раза в лучшем случае должно быть идеальным.

Виды амперметров

При настройке в режиме напряжения достаточно, измерение в режиме амперметра должно быть правильным, принимая во внимание небольшое смещение, обсуждаемое по мере увеличения тока. Такую же настройку можно было бы сделать, но без подключенной нагрузки, тогда было бы проверено, что текущие измерения теперь более точны, но тогда напряжение на нагрузке несколько меньше.

Таблица технических характеристик амперметров

Таблица технических характеристик амперметров различных параметров.

Магнитоэлектрические приборы

Устройства, реагирующие на магнитные явления (магнитоэлектрические) применяют для того, чтобы замерить токи очень маленьких значений в цепях с постоянным током. Внутри них нет ничего лишнего, кроме катушки, подсоединенной к ней стрелки и шкалы с делениями.

Электромагнитные устройства

В отличие от магнитоэлектрических их можно применять и для сетей с переменным током, чаще всего в цепях промышленного назначения с частотой в пятьдесят герц. Электромагнитным амперметром можно пользоваться для замеров в цепях с большой силой тока.

Термоэлектрический тип

Используют для измерения переменного тока с высокой частотой. Внутри прибора установлен нагревательный элемент (проводник с высоким сопротивлением) с термопарой. Из-за проходящего тока нагревается проводник, и термопара фиксирует величину. Из-за возникающего тепла отклоняется рамка со стрелкой на определенный угол.

Основанные на электродинамике

Можно применять не только для замеров силы постоянного тока, но и переменного. Из-за особенностей прибора, его можно применять в таких сетях, где частота достигает двухсот герц. Электродинамический амперметр используется в основном как контрольный измеритель для проверки приборов.

Устройство амперметра и принцип его действия

Они сильно реагируют на сторонние магнитные поля и на перегрузки. Из-за этого в качестве измерителей используются редко.

Ферродинамические приборы

Очень надежные приборы, которые обладают высокой прочностью и мало подвергаются воздействию магнитных полей, возникающих не в приборе. Такого рода амперметры устанавливают в автоматические контролирующие системы как самописцы.

Бывает так, что шкалы прибора недостаточно и необходимо увеличить значения, которые стоит замерить. Чтобы этого достичь используется шунтирование (проводник с высоким сопротивлением присоединяется параллельно прибору). Например, чтобы установить значение силы в сто ампер, а прибор рассчитан всего на десять, то присоединяют шунт, у которого значение сопротивления в девять раз ниже, чем у прибора.

Интересно почитать: Что такое варистор и где его применяют.

Устройство и подключение шунта

Для подключения амперметра используют стандартный шунт, представляющий собой медную пластину, закрепленную на изоляторе из карболита. На медной пластине с каждой стороны имеется по два винта: потенциальные и токовые зажимы. В комплекте идут заводские изделия, имеющие установленное сопротивление и рассчитанные на определенную силу тока.

аналоговый амперметр

аналоговый амперметр

Чтобы правильно включить шунт в цепь измерения, придерживайтесь следующего алгоритма:

  • Выбирать изделие следует с большими показателями предполагаемых значений. Например, если предполагаемая сила тока в проверяемой линии составляет 12–15 A, выбирается изделие, позволяющее проводить замеры до 20 A;
  • Далее подключаются измерительные провода от амперметра к потенциальным зажимам на медной планке;
  • Измеряемая линия обесточивается;
  • Затем отсоедините питающие провода от устройства, на котором нужно проверить потребляемое значение;
  • Шунт включается в разрыв электрической линии: отсоединенные провода подключаются к токовым зажимам.

Теперь включается питание, и снимаются показания с амперметра. После этого линия опять обесточивается, измеряющее устройство отключается, а соединения восстанавливаются.

Устройство амперметра и принцип его действия

Обратите внимание! Полученные показания умножаются на коэффициент, который указывается на изоляционной пластине шунта. Если этот коэффициент не указан, можно самостоятельно рассчитать цену деления прибора. Для этого максимальное значение шкалы умножается на расчетные показатели дополнительной пластины.

Особенности расчета

Если стандартные шунты с заводскими обозначениями отсутствуют, эти значения можно рассчитать самостоятельно, если вместо сопротивления использовать промышленные резисторы. В этом случае поступают следующим образом:

  1. Чтобы расширить диапазон шкалы измерений, параллельно к устройству подсоединяется резистор, через который проходит основная часть тока. При этом через измеряющее устройство проходит незначительная часть, достаточная для замеров;
  2. Следующим шагом определяется максимальное значение тока. Для этого вольтметром, соблюдая полярность, измеряется напряжение на источнике питания. Также определяется общее сопротивление цепи, на которое делится величина напряжения;
  3. Теперь нужно узнать сопротивление обмотки амперметра. Эта величина указывается в паспорте к прибору или измеряется самостоятельно;
  4. Остается рассчитать требуемое сопротивление резистора, используемого в качестве шунта. Для этого максимальный ток умножается на общее сопротивление линии, а полученное значение делится на номинальное напряжение источника питания.

Теперь вы знаете не только как , но и как правильно его подключить в электрическую цепь. Надеемся, что этот материал помог вам выйти из ситуации, когда шкалы измерения прибора не хватает для точных замеров. Мы разобрались, что для этого нужно подключить стандартный шунт или рассчитать его самостоятельно. Для определения значения тока в электрической цепи, применяют специальные приборы – амперметры.

Амперметр включается последовательно в исследуемую цепь, и, в силу крайне малого собственного внутреннего сопротивления, данный измерительный прибор не вносит сколь-нибудь существенных изменений в электрические параметры цепи. Шкала прибора градуирована в амперах, килоамперах, миллиамперах или микроамперах. Для расширений пределов измерений, амперметр может быть включен в цепь через трансформатор или параллельно шунту, когда лишь малая доля проходит через прибор, а основной ток цепи течет через шунт.

Интересно почитать: что такое клистроны.

Усиление полной шкалы амперметра

Величина силы отталкивания и, следовательно, амплитуда движения иглы зависит от величины тока, протекающего через катушку. Ранее сообщалось, что объем любого инструмента может быть расширен. В случае амперметра для этой цели используется устройство под названием «шунт».

Это позволяет ему проходить только через движущуюся катушку прибора, то ток, который он может терпеть. Шунт формируется сопротивлением давления омического значения ниже, чем показание движущейся катушки прибора, что позволяет пропустить другую часть тока, не допускаемого.

Цифровой амперметр

Цифровой амперметр

Для того чтобы по показанию вольтметра определить напряжение на зажимах приемника энергии или генератора, необходимо его зажимы соединить с зажимами вольтметра так, чтобы напряжение на приемнике (генераторе) было равно напряжению на вольтметре. Сопротивление вольтметра должно быть большим по сравнению с сопротивлением приемника энергии (или генератора) с тем, чтобы его включение не влияло на измеряемое напряжение (на режим работы цепи).

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробно об устройстве амперметра и как его использовать рассказано в материале  Лабораторная работа по электрическим измерениям. Если у вас остались вопросы, можно задать их в комментариях на сайте. А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.go-radio.ru

www.elektrorostov.ru

www.elektro911.ru

www.completerepair.ru

www.electricalschool.info

www.biathlonmordovia.ru

Предыдущая

ИнструментарийКак выбрать паяльник для микросхем

Следующая

ИнструментарийКак подключить амперметр к цепи переменного или постоянного тока

Амперметр — Википедия. Что такое Амперметр

Токовые клещи — амперметр для бесконтактного измерения больших токов.

Схема включения амперметра

Galvanometer diagram.png

Амперме́тр (от ампер + μετρέω «измеряю») — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора.

В электрическую цепь амперметр включается последовательно[1] с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале — 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения[2]. Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания): это приведёт к короткому замыканию!

Бесконтактное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется токоизмерительные клещи (на фото).

Общая характеристика

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.

Приборы со стрелочной головкой

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

Приборы с цифровым индикатором

В последнее время приборы со стрелочной измерительной головкой стали вытесняться приборами с цифровым индикатором на основе жидких кристаллов и светодиодов.

Принцип действия стрелочной измерительной головки

Принцип действия самых распространённых в амперметрах систем измерения:

  • В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки прямо пропорционален силе тока, поэтому шкала магнитоэлектрического прибора линейна. Направление поворота стрелки зависит от направления протекающего через рамку тока, поэтому магнитоэлектрические амперметры непригодны для непосредственного измерения силы переменного тока (стрелка будет дрожать возле нулевого значения), и требуют правильной полярности подключения в цепи постоянного тока (иначе стрелка будет отклоняться левее нуля).
  • В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
  • В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

Включение амперметра в электрическую цепь

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано — чаще всего 75 мВ). При высоких напряжениях (выше 1000В) — в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока — магнитные усилители.

См. также

Примечания

  1. Важно знать! Подключение амперметра напрямую к источнику напряжения приводит к протеканию токов короткого замыкания, и может вызвать возгорание токовых шунтов, измерительного трансформатора и всего прибора. Для предотвращения такой ситуации, амперметр может быть оснащён цепями защиты на основе плавких предохранителей и быстродействующих автоматических выключателей.
  2. ↑ Это особенно заметно в низковольтных схемах, в которых падение напряжения на элементах схемы сравнимо с напряжением на зажимах амперметра (типичное значение — десятки милливольт).

Ссылки

Литература

Амперметр — Википедия. Что такое Амперметр

Токовые клещи — амперметр для бесконтактного измерения больших токов.

Схема включения амперметра

Galvanometer diagram.png

Амперме́тр (от ампер + μετρέω «измеряю») — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора.

В электрическую цепь амперметр включается последовательно[1] с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале — 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения[2]. Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания): это приведёт к короткому замыканию!

Бесконтактное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется токоизмерительные клещи (на фото).

Общая характеристика

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.

Приборы со стрелочной головкой

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

Приборы с цифровым индикатором

В последнее время приборы со стрелочной измерительной головкой стали вытесняться приборами с цифровым индикатором на основе жидких кристаллов и светодиодов.

Принцип действия стрелочной измерительной головки

Принцип действия самых распространённых в амперметрах систем измерения:

  • В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки прямо пропорционален силе тока, поэтому шкала магнитоэлектрического прибора линейна. Направление поворота стрелки зависит от направления протекающего через рамку тока, поэтому магнитоэлектрические амперметры непригодны для непосредственного измерения силы переменного тока (стрелка будет дрожать возле нулевого значения), и требуют правильной полярности подключения в цепи постоянного тока (иначе стрелка будет отклоняться левее нуля).
  • В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
  • В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

Включение амперметра в электрическую цепь

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано — чаще всего 75 мВ). При высоких напряжениях (выше 1000В) — в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока — магнитные усилители.

См. также

Примечания

  1. Важно знать! Подключение амперметра напрямую к источнику напряжения приводит к протеканию токов короткого замыкания, и может вызвать возгорание токовых шунтов, измерительного трансформатора и всего прибора. Для предотвращения такой ситуации, амперметр может быть оснащён цепями защиты на основе плавких предохранителей и быстродействующих автоматических выключателей.
  2. ↑ Это особенно заметно в низковольтных схемах, в которых падение напряжения на элементах схемы сравнимо с напряжением на зажимах амперметра (типичное значение — десятки милливольт).

Ссылки

Литература

Как измерить силу электрического тока в цепи: 3 способа

В процессе эксплуатации различного оборудования возникает  необходимость проверки основных электрических параметров его работы. Это нужно как для проверки определенных характеристик, так и для ремонтных работ. Одним из наиболее сложных и опасных измерений является определение величины токовой нагрузки. Поэтому для всех начинающих электриков будет актуально узнать, как измерить силу электрического тока в цепи правильно и безопасно.

Используемые приборы

Измерить силу тока можно различными способами, однако далеко не все из них применимы в повседневной жизни. К примеру, различные измерительные трансформаторы, подключаемые в  цепь, крайне неудобно переносить по дому и даже хранить на полке в гараже. Поэтому актуальными средствами измерительной техники являются амперметры, мультиметры и клещи. Далее рассмотрим детально особенности работы и применения каждого из них. 

Амперметр

Это один из наиболее простых измерительных приборов, который реагирует на изменение токовой нагрузки.  С электротехнической точки зрения амперметр представляет собой нулевой или бесконечно малое сопротивление. Поэтому в случае приложения напряжения только к прибору, в нем возникнет ток короткого замыкания, из-за чего амперметр включается в цепь последовательно замеряемой нагрузке. Для наглядности стоит пояснить, что измерить силу тока в розетке нельзя, так как без нагрузки (в случае разомкнутой цепи) ток в ней не протекает, на контактах розетки присутствует только напряжение, поэтому подключение амперметра напрямую приведет к замыканию.

Под электрическим током подразумевается направленное движение заряженных частиц, которое проходит через поперечное сечение проводника  за определенную единицу времени. Поэтому запомните, что токовая нагрузка возникает лишь от включения бытового электроприбора к источнику питания. Включение амперметра отдельно к точке электроснабжения или отдельно к рабочему двухполюснику никоим образом не даст информации о силе тока. Если рассмотреть пример на схеме, то чтобы замерить амперы вы должны включить прибор в линию последовательно к объекту измерения:

Пример подключения амперметраРис. 1. Пример подключения амперметра

Как видите, основная сложность заключается в том, что процесс измерения происходит непосредственно в момент протекания электрической энергии, соответственно, велика вероятность поражения электрическим током в случае нарушения технологии.

Чтобы избежать плачевных последствий, необходимо соблюдать такие правила:

  • Подключение производится только при отсутствии напряжения;
  • Измерительные провода должны быть заизолированы, а места подключения удалены от человека, при необходимости исключена возможность прикосновения к ним;
  • Выведение амперметра из цепи измерения тока также выполняется при снятом напряжении.

Так как амперметр является узконаправленным прибором для измерения силы тока, его редко кто хранит у себя дома. Поэтому если вы хотите приобрести приспособление, куда выгоднее обзавестись мультиметром, который обладает значительно более широким функционалом.

Мультиметр

Этот прибор также называют тестером, Ц-эшкой, поэтому в обиходе можно встретить разные поколения мультиметра. Принцип использования мультиметра в качестве средства для измерения тока в цепи полностью аналогично амперметру, как по схеме включения, так и по предъявляемым мерам предосторожности. Однако следует отметить, что мультиметр мультиметру рознь, поэтому перед включением тестера обязательно посмотрите, подходит ли он, чтобы измерить ток в вашем случае.

Из конструктивных особенностей сразу отметим:

  • Диапазон измерения – выставляется переключателем на определенную величину силы тока. Выбирается таким, чтобы предполагаемая нагрузка его не превышала, но была соизмеримой.
  • Род тока – переменный или постоянный, заметьте, что некоторые модели мультиметров предоставляют возможность измерить только один вариант.
  • Разделение на слаботочные и силовые измерения – такие приборы имеют отдельную шкалу на мА, мкА и отдельную для А. Также в них могут располагаться отдельные разъемы, чтобы подключить щупы.
  • Наличие защиты от перегрузки при подключении измерительных устройств, обозначается отметкой unfused. Которая свидетельствует о наличии предохранителя, способного предотвратить выход со строя мультиметра от протекания чрезмерной силы тока.

По способу отображения информации все мультиметры подразделяются на циферблатные и дисплейные. Первые из них – довольно устаревшая модель, ориентироваться по ним смогут только искушенные электрики, знакомые с основами метрологии. Новичок же может запутаться в показаниях на шкале, цене деления или какими единицами измеряется нагрузка. Поэтому применение цифрового прибора куда проще и удобнее, на дисплее отображается конкретное число.

Токоизмерительные клещи

Это наиболее удобный прибор, так как чтобы измерить силу тока токоизмерительными клещами, нет нужды разрывать цепь. Конструктивно клещи представляют собой разъемный магнитопровод,  в который и помещается проводник, на котором вы хотите померить силу тока. Токоизмерительные клещи имеют схожесть с тем же мультиметром, а в более продвинутых моделях вы встретите такой же переключатель с функцией определения мощности, напряжения, сопротивления, силы тока и разъемы для подключения щупов.

Как измерить силу тока в цепи

Для измерения электрического тока в цепи куда удобнее использовать современные устройства – мультиметры или клещи, особенно для одноразовых операций. А вот стационарный амперметр подойдет для тех ситуаций, когда вы планируете постоянно контролировать силу тока, к примеру, для контроля заряда батарейки или аккумулятора в автомобиле.

Постоянного тока

Разрыв электрической цепи организовывается до начала измерений при отключенном напряжении. Даже в низковольтных цепях вы можете вызвать замыкание батарейки, которое моментально приведет к потере электрического заряда. Далее рассмотрим пример измерения в цепи постоянного тока с помощью мультиметра, для этого:

Использование мультиметра для измерения постоянного токаРис. 2. Использование мультиметра для измерения постоянного тока
  • подключите щупы к соответствующим вводам в тестер – черный в COM, красный в разъем с пометкой mA, A или 10A, в зависимости от устройства;
  • при помощи «крокодилов» соедините щупы тестера с цепью измерения последовательно;
  • установите переключателем нужный род тока и предел измерений;
  • можете подключить нагрузку и произвести измерения, на дисплее мультиметра отобразится искомое значение.

Но заметьте, подключать мультиметр следует на короткий промежуток времени, так как он может перегреться и выйти со строя.

Переменного тока

Цепь переменного напряжения может измеряться как мультиметром, так и токоизмерительными клещами. Но, в связи с опасностью переменного бытового напряжения для жизни человека, эту процедуру целесообразнее выполнять клещами без измерительных щупов и без разрыва цепи.

Использование клещей для измерения переменного токаРис. 3. Использование клещей для измерения переменного тока

Для этого вам нужно:

  • переключить ручку в положение переменных токов на нужную позицию нагрузки, если она изначально неизвестна, то сразу выбирают максимальный диапазон;
  • нажать боковую скобу, которая разомкнет клещи;
  • поместить внутрь клещей токоведущую жилу и отпустить кнопку.
  • данные измерений отобразятся на дисплее, при необходимости их можно зафиксировать соответствующей кнопкой.

Производить измерения можно как на изолированных, так и на оголенных жилах. Но заметьте, в область обхвата должен попадать только один проводник, сразу в двух измерить не получится.

Реальные примеры измерения тока

Далее рассмотрим несколько вариантов того, как подключить измерительный прибор в бытовых нуждах. При замерах батареек вам необходимо один щуп приложить к контакту батарейки, а второй к контакту нагрузки, второй контакт нагрузки подключается к свободной клемме батарейки.

Измерение силы тока в цепи батарейкиРис. 4. Измерение силы тока в цепи батарейки

Если вы хотите проверить токовую нагрузку в обмотках трехфазного электродвигателя, измерительный прибор подключается поочередно в каждую фазу или если у вас есть три амперметра,  можете использовать их одновременно. Для этого щупы подключаются одним концом к выводам обмоток в борно, а вторым, к питающему проводу соответствующей фазы.

Измерение силы тока в цепи электродвигателяРис. 5. Измерение силы тока в цепи электродвигателя

Способы на видео

Что такое амперметр? — Определение, типы, шунтирующий амперметр и сопротивление затуханию

Определение: Измеритель , используемый для измерения тока, известен как амперметр . Ток — это поток электронов, единицей которого является ампера. Следовательно, прибор, который измеряет потоки тока в амперах, известен как амперметр или амперметр.

Идеальный амперметр имеет нулевое внутреннее сопротивление . Но практически амперметр имеет небольшое внутреннее сопротивление.Диапазон измерения амперметра зависит от значения сопротивления.

Символическое представление

Заглавная буква A представляет амперметр в цепи.

ammeter-symbol

Подключение амперметра в цепи

Амперметр соединен последовательно с цепью , так что все электроны измеряемого тока проходят через амперметр. Потеря мощности происходит в амперметре из-за измеряемого тока и их внутреннего сопротивления.Цепь амперметра имеет низкое сопротивление , поэтому в цепи происходит небольшое падение напряжения.

ammeter-circuit

Сопротивление амперметра поддерживается низким по двум причинам.

  • Весь измеряемый ток проходит через амперметр.
  • Низкое падение напряжения на амперметре.

Типы амперметров

Классификация амперметра зависит от их конструкции и типа тока, протекающего через амперметр.Ниже приведены типы амперметра относительно конструкции.

  1. Амперметр с постоянной подвижной катушкой.
  2. Движущийся железный амперметр.
  3. Электродинамический амперметр.
  4. Амперметр выпрямительного типа.

В настоящее время амперметр делится на два типа.

1. Амперметр PMMC — В приборе PMMC проводник расположен между полюсом постоянного магнита. Когда ток течет через катушку, он начинает отклоняться.Отклонение катушки зависит от величины протекающего через нее тока. Амперметр PMMC используется только для измерения постоянного тока.

2. Амперметр с подвижной катушкой (MI) — Амперметр MI измеряет как переменный, так и постоянный ток. В этом типе амперметра катушка свободно перемещается между полюсами постоянного магнита. Когда ток проходит через катушку, он начинает отклоняться под определенным углом. Отклонение катушки пропорционально току, проходящему через катушку.

3. Электродинамометр Амперметр — Используется для измерения как переменного, так и постоянного тока. Точность прибора высокая по сравнению с приборами PMMC и MI. Калибровка прибора одинакова как для переменного, так и для постоянного тока, т. Е. Если DC калибрует прибор, то без повторной калибровки он используется для измерения переменного тока.

4. Выпрямительный амперметр — используется для измерения переменного тока. Приборы, использующие выпрямительный прибор, который преобразует направление тока и передает его в прибор PMMC.Такой тип прибора используется для измерения тока в цепи связи.

Прибор для измерения постоянного тока известен как амперметр постоянного тока, а амперметр для измерения переменного тока известен как амперметр переменного тока,

Амперметр Шунт

Ток высокого значения напрямую проходит через амперметр, что приводит к повреждению их внутренней цепи. Для устранения этой проблемы сопротивление шунта подключается параллельно с амперметром.

ammeter

Если большой измеряемый ток проходит через цепь, большая часть тока проходит через шунтирующее сопротивление .Сопротивление шунта не влияет на работу амперметра, то есть движение катушки остается неизменным.

Влияние температуры в амперметре

Амперметр — чувствительное устройство, на которое легко влияет температура окружающей среды. Изменение температуры вызывает ошибку в показаниях. Это может уменьшить сопротивление затоплению. Сопротивление, имеющее нулевой температурный коэффициент, называется сопротивлением затуханию. Он соединяется последовательно с амперметром. Сопротивление затоплению уменьшает влияние температуры на счетчик.

swamping-resistance

Амперметр имеет встроенный предохранитель, который защищает амперметр от сильного тока. Если через амперметр протекает значительный ток, предохранитель сломается. Амперметр не может измерять ток до тех пор, пока новый не заменит предохранитель.

,
Что такое амперметр шунт? — Определение и расчет сопротивления шунта

Определение: Амперметр-шунт — это устройство, которое обеспечивает низкое сопротивление пути протеканию тока . Он подключается параллельно с амперметром . В некоторых амперметрах шунт встроен в прибор, а в других он внешне подключен к цепи.

Почему Шунт подключается параллельно с амперметром?

Конструкция амперметра для измерения слабого тока. Для измерения сильного тока шунт подключается параллельно амперметру . Значительная часть измеряемого тока проходит через шунт из-за низкого сопротивления и небольшого количества тока, проходящего через амперметр.

Шунт подключается параллельно к амперметру, из-за чего напряжение на счетчике падает, а шунт остается тем же . Таким образом, движение указателя не зависит от шунта.

Расчет сопротивления шунта

Рассмотрим схему, используемую для измерения тока I.Схема имеет амперметр и шунт, которые подключены параллельно друг другу. Конструкция амперметра для измерения малого тока скажем, I м . Величина тока I , проходящего через счетчик, очень велика, и он сожжет счетчик. Для измерения тока I в цепи требуется шунт. Следующее выражение вычисляет значение сопротивления шунта.

ammeter-circuit

Поскольку шунт подключается параллельно с амперметром, то между ними происходит такое же падение напряжения.

ammeter-shunt-equation-1

Ток шунта ammeter-shunt-equation-2

Поэтому уравнение сопротивления шунта дается как,

ammeter-equation-3

Отношение полного тока к току, необходимого для перемещения катушки амперметра, называется умножающей силой шунта.

Умножающая сила дана, как ammeter-shunt-equation-4 Сопротивление шунта становится, ammeter-shunt-equation-5

Строительство Шунта

Ниже приведены требования к шунту.

  • Сопротивление шунта остается постоянным во времени.
  • Температура материала остается неизменной, даже если через цепь протекает значительный ток.
  • Температурный коэффициент прибора и шунта остается низким и одинаковым. Температурный коэффициент показывает связь между изменением физических свойств устройства относительно изменения температуры.

Магайнин и Константин используют для изготовления шунта в приборах постоянного и переменного тока соответственно.

,
Что такое выпрямительный амперметр? — Преимущества и объяснение

Счетчик обычно используется для измерения определенного количества. Единицей тока является ампера, а измеритель, который измеряет ток, называется амперметром. Выпрямительный амперметр использует подвижную катушку вместе с выпрямителем для измерения тока. Основное использование выпрямителя заключается в преобразовании переменного тока в постоянный ток.

Выпрямительный амперметр состоит из четырех выпрямительных элементов, которые расположены в форме моста вместе с амперметром с подвижной катушкой.Принципиальная схема элементов мостового выпрямителя показана на рисунке ниже.

rectifier-ammeter-working

В приборе с подвижной катушкой постоянного тока шунт используется для защиты движущегося инструмента от сильного тока. Но в случае выпрямительного амперметра использование шунта невозможно, поскольку ток, проходящий через прибор с подвижной катушкой, постоянно изменяется из-за сопротивления выпрямителя.

Преимущества выпрямителя Амперметр

Преимущества выпрямительного амперметра подробно описаны ниже.

  1. Диапазон частот инструмента можно легко расширить с 20 Гц до высокой звуковой частоты.
  2. Прибор требует очень низкого рабочего тока.
  3. имеет единую шкалу.
  4. Точность прибора лежит в пределах ± 5% при нормальных условиях эксплуатации.

Факторы, влияющие на производительность выпрямителя Амперметр

Ниже приведены факторы, которые влияют на работу амперметра выпрямителя.

  1. Форма волны тока и напряжения влияет на работу прибора выпрямителя.
  2. Элемент выпрямителя имеет некоторое сопротивление, которое влияет на производительность прибора.
  3. Переменная температура также влияет на работу прибора.
  4. Выпрямитель имеет некоторую емкость, и эта емкость влияет на работу прибора.
  5. Прибор имеет низкую чувствительность к переменному току по сравнению с постоянным током.

Из-за низкой нагрузки в приборе используется трансформатор небольшого размера.

,

Что такое омметр? — Омметр 9001 серии, определения, серии и шунта

Определение: Счетчик , который измеряет , сопротивление и непрерывность электрической цепи и их компонентов , такой тип счетчика известен как омметр. Это измеряет сопротивление в Ом. Микроомметр используется для измерения , сопротивления l , а мегаомметра измеряет высокого сопротивления цепи.Омметр очень удобен в использовании, но менее точен .

Типы омметра

Омметр дает приблизительное значение сопротивления. Это очень портативный и, следовательно, используется в лаборатории. Это имеет три типа; это последовательный омметр, шунтирующий омметр и многодиапазонный омметр. Подробное объяснение их типов приведено ниже.

Омметр серии

Последовательный омметр, компонент или цепь измерительного сопротивления соединены последовательно с измерителем.Значение сопротивления измеряется с помощью механизма Д’Арсонваля, соединенного параллельно с шунтирующим резистором R 2 . Параллельное сопротивление R 2 соединено последовательно с сопротивлением R 1 и аккумулятором. Компонент, сопротивление которого используется для измерения, соединен последовательно с клеммами A и B.

Принципиальная схема последовательного омметра показана на рисунке ниже.

series-type-ohmmeter

Когда значение неизвестного сопротивления равно нулю, через измеритель протекает большой ток.В этом состоянии сопротивление шунта регулируется до тех пор, пока счетчик не покажет полный ток нагрузки. Для тока полной нагрузки указатель отклоняется к нулю 0 Ом.

scale-of-ohmmeter

Когда неизвестное сопротивление R x удаляется из цепи, сопротивление цепи становится бесконечным, и ток через цепь не протекает. Указатель счетчика отклоняется в сторону ∞ (бесконечность). Измеритель показывает бесконечное сопротивление при нулевом токе и нулевое сопротивление при протекании через него тока полного диапазона.

Когда неизвестное сопротивление подключено последовательно с цепью и если их сопротивление высокое, указатель счетчика отклоняется влево. А если сопротивление низкое, то указатель отклоняется вправо.

Омметр с шунтовым типом

Измеритель, в котором измерительное сопротивление подключено параллельно с батареей, называется шунтирующим омметром. Он в основном используется для измерения сопротивления низкого значения.

Принципиальная электрическая схема шунтирующего омметра показана на рисунке ниже.

shunt-type-ohmmeter

Батарея (E), базовый счетчик (R м ) и регулируемое сопротивление являются основными компонентами шунтирующего омметра. Неизвестное сопротивление подключено через клеммы A и B.

Когда значение неизвестного сопротивления равно нулю, ток счетчика становится равным нулю. И если сопротивление становится бесконечным (то есть, клеммы A и B разомкнуты), то ток проходит через батарею, и указатель показывает отклонение в полном масштабе влево. Омметр шунтового типа имеет нулевую отметку (без тока) слева от шкалы и бесконечность справа.

shunt-type-ohmmeter

Многодиапазонный омметр

Диапазон этого типа омметра очень велик. Счетчик имеет регулятор, который выбирает диапазон в соответствии с потребностями.

multirange-ohmmeter

Например, предположим, что мы используем измеритель для измерения сопротивления менее 10 Ом. Для этого сначала мы должны установить диапазон 10 Ом. Сопротивление, значение которого используется для измерения, подключается параллельно с измерителем. Величина сопротивления определяется по отклонению указателя.

,

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *