Напряжение цепи переменного тока | Электрикам
Переменное напряжение — это напряжение, которое изменяется с течением времени. Далее будем рассматривать только гармоническое переменное напряжение (изменяется по синусоиде).
u = Umsin(2πt + Ψ ) = Umsin(ωt + Ψ )
Где u = u(t) — мгновенное значение переменного напряжения [В].
Um — максимальное значение напряжения (амплитудное значение) [В].
f — частота равная числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с-1)
ω — угловая частота (омега) (единица угловой частоты — рад/с или с-1)
ω = 2πf = 2π/T
Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.
U — Действующее значение напряжения [В]:
Рассмотрим параметры напряжения в бытовой электросети.
Все мы знаем, что у нас дома в розетке поступает переменный ток, с напряжением 220 вольт и частотой 50 герц (в идеальных условиях) на самом деле допускается не большая погрешность как в меньшую, так и в большую сторону так, что не удивляйтесь если ваш вольтметр покажет не 220, а например 210 или даже 230 В.).
Большинство приборов измеряет не амплитудное, а действующее значение переменного напряжения, тока, мощности так, что если мы говорим что у нас напряжение сети 220, 380 В и т. д. то имеется виду именно действующие значения.
- Действующее значение напряжения U = 220 В.
- Амплитудное значение напряжения цепи переменного тока Um = U*√2 = 220 *√2 = 311 В.
- Угловая частота ω = 2πf = 3,14*2*50 = 314 рад/с.
- Начальная фаза Ψ = 0 град.
- Мгновенное значение u = 311sin(314t) В.
Действующее, амплитудное, среднее значение величины на синусоиде
Синусоида (синус) — самый наш идеальный и необходимый вариант. Используется на выходе из генераторов для передачи на расстояния и затем используется вами из розетки (какой ток в розетке?). Самый распространенный сигнал, вероятно, если я чего-то не знаю. Рассмотрим основные элементы графика переменного тока:
Период — это время, через которое функция начинает повторяться, величина обратная частоте. Обозначается буквой Т. Т=2тт/w.
тт — так почему-то в интернетах принято обозначать число “пи”, против толпы не попрешь, так сказать, хотя можно просто 3,14 написать или “пи”. Дело вкуса.
Амплитудное значение (амплитуда) — значения, в которых график синусоиды достигает максимумов. То есть для синусоиды таких значения два на период — положительное и отрицательное.
Действующее значение — это 0,707 от амплитудного значения. Есть у нас цепь — в этой цепи за время Т1 постоянный ток определенной величины I1 выделит определенное количество тепла Q1, если в той же цепи пустить переменный ток, то за тоже время Т1 он выделит такое же количества тепла Q1 при действующем значении равном I1. И это значение I1 для синусоиды будет равно 0,707 от амплитудного — что означает единица делить на корень из двух. Если вам интересно, откуда это такое взялось, то плиз велком:
Мгновенное значение — значение величины в определенный момент времени. Если посмотреть на синусоиду, то видно, что мгновенное значение постоянно передвигается и на протяжении одного периода постоянно меняет свои значения. В следующем периоде опять идет тем же путем. Остановись мгновение =) Значение мгновенного значения определяется как Im*sin(wt) — амплитудное значение умноженное на “синус омега тэ” — где “омега тэ” — произведение угловой скорости на момент времени. Омега равно два пи делить на период Т.
Среднее значение — сумма всех мгновенных значений за полпериода. Для синусоиды равно 0,6366197730950255438113531364418 ~ 0,637 от амплитудного значения. Если вновь стало интересно, откуда число, то ответ ниже на примере переменного тока:
Если амплитудное значение разделить на действующее значение, то мы получим, правильно корень из двух для синусоиды — его еще называют коэффициентом амплитуды. Если же мы разделим действующее значение на среднее — то получим для синусоиды 1,11 — это отношение называется коэффициентом формы кривой
Сколько инженеров, столько и форм кривых в электронике, а если серьезно, то существуют например такие: Форма сигнала меандр — сигнал, в котором отсутствуют четные гармоники, имеет прямоугольную форму. В отличие от прямоугольного импульса, у которого длительность сигнала и длительность паузы могут отличаться, у меандра они равны. Сигнал такой формы может встречаться в импульсных источниках бесперебойного питания и прочих электронных схемах, ШИМ.
Пилообразный сигнал — сигнал пилообразной формы может идти и в одну сторону и в другую (знак минус в формуле функции). Для создания этой и других форм сигналов применяются генераторы сигналов. Применяются в старых осциллографах, мониторах, как и треугольные.
Треугольный сигнал — у треугольного сигнала длина роста и длина падения равны.
Каждая из этих форм может быть представлена через преобразование фурье, смысл которого в разбиении функции на гармонические составляющие от единицы до бесконечности с набором определенных гармоник — нечетных например, как для меандра. В функциях выше, которые были построены в маткаде, смысл построения в следующем, чем больше составляющих вы берете для построения (ближе к бесконечности), тем красивее получается график.
Сохраните в закладки или поделитесь с друзьями
Самое популярное
Замер сетевого напряжения | Электроника для всех
Иногда нужно измерять амплитуду сетевого напряжения, или частоту или еще какие параметры. Вот как у меня тут — перед включением компрессорной установки надо убедиться, что напряжение в сети не ниже номинальной. Иначе движок не стартанет, а вентили могут не встать в нужное положение. Главная сложность тут в том, что крайне желательно иметь гальваническую развязку от сетевого напряжения. Т.е. напрямую измерять сетевую напругу через простой делитель может быть черевато.
▌Измерить толщину сиськи
Изначально в проекте было заложено вот такое решение:
На резистора гасится большая часть напряжения, стабилитрон стоит тут больше для подстраховки и в качестве обратного диода для противоположной полуволны. На деле он не особо нужен.
Ну, а дальше все просто. У оптопары h21L1M внутри стоит триггер Шмитта, т.е. есть некоторый гистерезис на включение и выключение. Включается он при токе через его светодиод примерно в 1мА, а выключается на токе 0.8мА.
Если посмотреть осциллограмму тока на светодиоде, сняв ее с резистора R35, то увидим такую картину для 220 вольт:
Включаться он должен на 100мВ, а выключаться на 80мВ, что будет 1мА и 0.8мА соответственно. Курсорами выделены моменты включения и выключения. Разница по времени, dx = 8.38ms
Если снизить напряжение до 110 вольт, то:
dx уменьшится до 6.94ms т.е. А что такое миллисекунда для микроконтроллера тикающего на мегагерцовых частотах? Да колоссальная величина! Замерить ее точно таймером в режие захвата не составляет проблем. Дальше сунуть в память таблицу соответствия и, казалось бы, все круто? Да, но не совсем…
Решение дешевое, простое. Но не слишком точное. А в ряде случаев его вообще не получится применить.
Вроде всяких там, сварочников, инверторов, мощных приводов и прочего. Что искажает форму синуса. Делая его вообще каким-то непотребным. А если это не синус, а херня какая-то, то все эти наши красивые построения основанные на таймингах пролетают. Во-первых, точность падает катастрофически, а она изначально была так себе. Во-вторых, калибровать придется каждый раз под новую сеть, раз и навсегда таблицы в память не забить. Ну и форма синуса зависит вовсе не от вас, а от ООО «Сварщик каннибал» расположенную в соседнем цехе.
Так что 220 вольт от 110 вы еще отличите, а вот о точности хотя бы до 5 вольт можно позабыть. Но в некоторых случаях большего и не требуется.
Мне же внезапно потребовалось. Поэтому начинаем переделывать исходный проект, доставшийся мне от предшественника.
Первая мысль была поставить на горячей стороне преобразователь напряжения в частоту, просунув его через ту же оптопару. Но его надо было чем то питать на горячей стороне. Ставить конденсаторный источник вообще не хотелось. Можно было бы, конечно, сунуть мелкий модуль 220AC-5DC на обратноходовике, вроде TSP-05. Есть на Али, стоит недорого.
Надо на этот модуль обзор не полениться сделать. Классная штука для питания всякой маломощной шняги от 220 вольт. Но получалось бы довольно громоздко. Считай питальник, потом ПНЧ, оптика…
▌Трансформатор
Второй мыслью был обычный трансформатор. Купить самый маленький силовой транс какой можно найти и на вторичке измерять напряжение. Спросил у Элемента, что у них есть такого рода — подобрали ТПК-2.
В принципе пригодно, но нашлось решение лучше.
Китаезы продают отличную штуку. Измерительный трансформатор ZMPT107.
Крошечная фитюлька размером с бульонный кубик. Держит до 3кВ на пробой, соотношение витков 1:1, но это трансформатор тока 2мА:2мА. То есть мы подаем ему на вход ток и снимаем ток. Ток на входе задается просто резистором последовательно, а для получения напряжения на выходе тоже применяется резистор, параллельно.
Т.е. схема примерно выглядит так:
R1 подбирается таким, чтобы ток через обмотку не превысил 2мА, максимум он держит 10мА, но после 2мА теряется линейность и на выходе будет невесть что. Напряжение у нас 220-250 вольт, берем по верхней планке. Но это действующее, а нам нужно амплитудное. Т.е. умножаем 250 на корень из 2, чтобы получить амплитудное. 250*1.41 = 353,5 вольта. Получаем, что первое сопротивление должно быть 180 кОм.
Напряжение микроконтроллера у меня 5 вольт, поэтому резистор R2 нужен такой, чтобы на 2мА на нем было примерно 4.5 вольта, пол вольта оставляем еще в запас. Это будет примерно 2.2кОм.
Все, на выходе амплитуда теперь в районе 5 вольт, но вот засада. Она переменная. А нам нужны измерения 0…5 вольт. Что делать? Выпрямлять.
▌Дайте мне диод!
Можно поставить диод, он срежет отрицательную полуволну. Но тут есть одна тонкость. Если просто в лоб поставить диод перед нагрузочным резистором:
То на обратной полуволне получается, что мы будем обрывать трансформатор тока, а что получается при обрыве источника тока? Правильно — бешеное напряжение. Ведь он будет изо всех сил пытаться продавить свои 2мА через ОГРОМНОЕ обратное сопротивление диода. В результате на диоде D1 высадится такое напряжение, что и пробить недолго. В таком включении ставить только мост или обратный диод D2, чтобы у тока всегда были пути на обратной полуволне.
Но это будет уже два диода. А зачем нам лишний полупроводник в схеме? Поэтому проще оставить параллельный резистор и после выпрямлять уже снятое напряжение.
Чтобы система работала, нужен еще один резистор. Дело в том, что у АЦП входное сопротивление ну очень большое, сравнимое с обратным включением диода, так что диод работать не будет, ему надо чтобы ток шел. Поэтому ставим второй резюк на 100кОм и с него уже снимаем наш сигнал.
Есть тут правда пара недостатков. Дело в том, что у нас у диода есть свое собственное падение, так что часть амплитуды мы на нем потеряем. Но это ерунда, мы же ее всегда можем скорректировать резистором, чуток приподняв. Хуже то, что у диода характеристика нелинейная, что вносит искажения.
Смотрите внимательней, синий это исходный синус с транса, а желтый это положительная полуволна с диода. От нулевой точки синус идет как и положено синусу, а вот диодная полуволна нарастает с заметной такой экспоненциальной кривизной и не доходит на величину падения на диоде (0.7 вольт примерно для 1N4148, что стоит у меня).
Экспонента берется из ВАХ диода
Мне, в моем проекте, это не сильно критично. НУ будет там возле нуля какая то кривуля, не важно.
▌Ваш диод говно, вы за кого меня принимаете? Дайте мне идеальный диод!
Но если бы было критично, то я бы сгородил идеальный диод. Делается он из диода и операционника. Схем много разных, первая что пришла в голову была такой.
Работает она просто.
Усилитель с отрицательной обратной связью, так что считаем что его входы закорочены между собой (виртуальное КЗ).
На положительной полуволне ток Iin=Uвх/R3 со входа как бы течет в землю через резистор R3. Но поскольку на самом деле никакого КЗ там нет, более того через входы ОУ ничего не втекает и не вытекает (ну почти, там ничтожный мизер в реале). То ток текущий через R3 равный Iin будет совершенно равен Iout который из выхода ОУ течет через R3 в землю. Образуя падение напряжения Uвых прямо пропорционально этому току через резистор. Т.е. Uвых = Iin*R3 = Uвх Без каких либо искажений.
На отрицательной полуволне ОУ попытается через обратную связь просадить свой инверсный выход ниже нуля, чтобы сравнять его с прямым. Но диод забитый туда не даст ему это сделать. Через R3 не потечет ток, а нет тока нет и напряжения. На выходе 0.
Вот такая вот незатейливая схема. Работает на двуполярном и однополярном питании.
Единственное, что для однополярного питания нужно брать усилок во-первых, строго однополярного питания (Single-supply) при этом способный принимать отрицательные значения на входах (Input Common-Mode Voltage Range), а во-вторых, с rail-2-rail выходом, иначе посрезает верхушки.
Т.е. ширпотреб вроде LM358 не прокатит, а что то вроде AD823 в самый раз. Для двуполярного питания же подойдет любой ширпотреб, ну может rail-2-rail будет не лишним, но опять же от напряжения питания зависит и требуемых уровней. Если не нужен полный размах от плюса до минуса питания, то ставим любое говно за три копейки и не паримся.
▌Нет! Засуньте вы этот диод знаете куда…
Второй вариант включения, немного получше, нет диода:
Тут включается напрямую в операционник. Соотношение резисторов точно такое же как и в первом варианте. Трансформатор закорачивается на виртуальную землю, а ток который там течет течет через резистор ОС. Но так как у нас питание однополярное, то нижняя полуволна просто зарывается в грунт. Требования к операционнику те же самые, что и в прошлой схеме. Rail-2-Rail и Single Supply.
▌Эй эй, зачем столько негатива? Будь на позитиве, бро!
Ну и третий вариант включения. Тут даже операционник не нужен, мы не выпрямляем и не срезаем нижнюю полуволну, а добавляем к ней постоянную составляющую. Закинув наш транс на середину делителя напряжения. Резистор на вторичке надо подобрать так, чтобы амплитуда не вылезала за напряжение питания и не проваливалась ниже его.
Результат выглядит примерно так:
Первый канал с выхода схемы, а второй канал зацеплен на середину делителя. Там будет точно ноль нашего сигнала.
▌А что Титов Китай?
Ну и для всяких ардуинщиков, не умеющих паять, есть готовый модуль.
Там же не али можно взять. Стоит не дорого, на нем схема с поднятием нуля на LM358 и можно еще амплитуду подкрутить переменником. Схемотехника там примерно следующая:
Но это не точно.
Вот что он выдает у меня в мастерской с сети:
Когда сети нет, то на выходе постоянка в 2.5 вольта. А появление сети дает вот такую синусоиду с центром 2.5 и размахом от 1 до 4 вольт. Подстроечником можно менять амплитуду сигнала, но это вот максимум. Выше уже начинаются искажения — срезает вершину.
И библотечка дуриковсякая для него на гитхабе.
Вот такие вот относительно простые варианты замерить сеть и не потерять гальваническую развязку.
Амплитуда напряжений — это… Что такое Амплитуда напряжений?
- Амплитуда напряжений
-
1 . Амплитуда напряжений — половина от разности максимального и минимального напряжений, возникающих в цикле изменения напряжений,
Амплитуда напряжений
sa, МПа
Наибольшее числовое положительное значение переменной составляющей цикла напряжений, равное полуразности максимального и минимального напряжений цикла:
Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.
- амплитуда колебательной скорости механической записи
- Амплитуда напряжений, МПа (кгс/см2)
Смотреть что такое «Амплитуда напряжений» в других словарях:
Амплитуда напряжений — Range of stress (Sr) Амплитуда напряжений. Алгебраическая разность между максимальным и минимальным напряжениями в одном цикле Sr = Smax – Smin (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и… … Словарь металлургических терминов
Амплитуда напряжений, МПа (кгс/см2) — sA Источник: РД 24.200.17 90: Сосуды и аппараты из титана. Нормы и методы расчета на прочность … Словарь-справочник терминов нормативно-технической документации
Амплитуда напряжений, МПа, (кгс/см2) — σА Источник: ГОСТ 25859 83: Сосуды и аппараты стальные. Нормы и методы расчета на прочность при малоцикловых нагрузках … Словарь-справочник терминов нормативно-технической документации
Допускаемая амплитуда напряжений, МПа (кгс/см2) — [σA] Источник: ГОСТ 25859 83: Сосуды и аппараты стальные. Нормы и методы расчета на прочность при малоцикловых нагрузках … Словарь-справочник терминов нормативно-технической документации
Амплитуда напряжения — Stress amplitude Амплитуда напряжения. Половина алгебраической разности между максимумом и минимумом напряжений цикла при повторно меняющихся напряжениях. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал ,… … Словарь металлургических терминов
Снятие остаточных напряжений — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/24 июля 2012. Пока процесс обсуждения … Википедия
допускаемая амплитуда переменных напряжений — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN allowable alternating stress amplitude … Справочник технического переводчика
Расчетная и допускаемая амплитуда условных упругих напряжений, МПа — sа, [sа] Источник: РД 26 15 88: Сосуды и аппараты. Нормы и методы расчета на прочность и герметичность фланцевых соединений … Словарь-справочник терминов нормативно-технической документации
Комплексная амплитуда — представление амплитуды А и фазы ψ гармонического колебания х = Acos (ωt + ψ) с помощью комплексного числа Ã=Aexp (iφ)=Acosφ + iAsinφ. При этом гармоническое колебание описывается выражением х = Re [Ã(expiωt)], где Re вещественная часть … Большая советская энциклопедия
СТО Газпром 2-3.5-252-2008: Методика продления срока безопасной эксплуатации магистральных газопроводов ОАО «Газпром» — Терминология СТО Газпром 2 3.5 252 2008: Методика продления срока безопасной эксплуатации магистральных газопроводов ОАО «Газпром»: Амплитуда напряжений sa, МПа Наибольшее числовое положительное значение переменной составляющей цикла… … Словарь-справочник терминов нормативно-технической документации
что такое амплитудное значение и действительное?
Не действительное, а действующее значение. Речь идет, видимо, о переменном токе. Сила переменного тока изменяется по синусоидальному закону. Амплитудное значение тока — это максимальное значение, соответствующее тому моменту времени, когда синусоида в максимуме. Это значит, что максимальную силу ток приобретает на мгновение, а все остальное время сила тока меньше амплитудной величины. Поэтому по величине амплитудного значения трудно судить о действии тока на проводник — например об скорости нагрева электроплиты. При переменном токе какое значение взять для расчетов? Какое сечение провода? Какую силу тока, если она меняется каждое мгновение? Вот здесь используют образно говоря «общий знаменатель» для переменного и постоянного токов. Когда производимая работа получается одинаковой при обоих видах тока (например, при нагреве плитки до 500 °С) , то неизвестная величина переменного тока приравнивается к известной величине постоянного тока. Это и есть действующее значение силы переменного тока. Только нужно понимать, что эта полученная величина силы переменного тока меньше его амплитудной величины. Можно грубо сказать, что действующее значение — это некое среднее значение силы тока за период. Но тупо делить пополам высоту синусоиды нельзя — зависимость производимой работы от силы тока нелинейная (квадратичная) . На самом деле действующее значение силы (или напряжения) переменного тока меньше его максимального значения в корень из двух раз. Чтобы иметь в сети действующее напряжение U=220 В, максимальное значение должно превышать его в 1,41 раза, т. е. Umax = 310U.
амплитудное — максимальное, действительное ну ясно
Осел из мульта ШРЭК ясно сказал драконихе — он не готов к отношениям такой амплитуды. Посмотри мульт и поймешь, что в школе физику учить надо было лучше.
амплитудное это размах от пика до пика а действенное это то-же амплитудное умноженное на 0.7 …наверное
Затуманили мозги окончательно. Амплитудное напряжение замеряешь осцилографом. Действуещее или эффективное напряжение замеряешь стрелочным (или цифровым) вольтметром.
Амплитудное — ну это понятно что. Если представить себе переменное напряжение (не обязательно синусоидальное) в виде осциллограммы, то вот самое низкое и самое высокое значение за период и будут амплитудными. Заметьте, что они НЕ ОБЯЗАТЕЛЬНО равны друг другу — такое равенство имеет место только для симметричной формы напряжения (синус, меандр, треугольник) . А вот если форма напряжения несимметричная — например, короткие импульсы, то амплитуды «плюса» и «минуса», вообще говоря, друг другу не равны. Действующее значение — это характеристика теплового воздействия напряжения. По определению, за действующее (эффективное) значение переменного напряжения принимается такое постоянное напряжение, которое имеет такую же среднюю мощность. По закону Джоуля-Ленца, мгновенная мощность любого напряжения равна U²/R, и для чистого синуса, если его сюда тупо подставить и вспомнить формулы тригонометрии за восьмой класс, СРЕДНЯЯ за период мощность будет равна Uа²/2R. Поэтому для чистого синуса эффективное напряжение в корень из 2 раз меньше амплитудного. Ясное дело, что для напряжения другой формы соотношение между амплитудным и действующим будет тоже другим. Например, для меандра (прямоугольные импульсы скважности 2) действующее точно равно амплитудному.
однажды, сдавая экзамен в институте: мысль мелькнула: ну зачем девушкам учиться, итак натянут на себя?