Site Loader

Содержание

Почему напряжение в розетке именно 220 Вольт?

До XIX века человечество сталкивалось с электричеством эпизодически и приписывало этим встречам, как правило, чудодейственную природу. Молнии во время грозы, разряды на кончиках мачт кораблей (т.н. «огни святого Эльма») и уколы статического напряжения от трения шерсти, списывали на гнев богов, проявления призраков или других потусторонних сил.

Всё изменилось, когда за дело взялись учёные. В 1827 году была изобретена динамомашина — простое устройство, вырабатывающее электрический ток. Следом появились первые генераторы, позволяющие производить электричество продолжительное время. Первое, для чего стали использовать электрический ток — это искусственное освещение (использование которого оказалось очень удобным по сравнению с традиционными масляными и газовыми лампами).

Электрические лампы того времени состояли из двух угольных стержней с проводами, по которым подавался электрический ток. При соприкосновении стержни давали яркую электрическую дугу и получался вполне приличный источник искуственного освещения. При низком напряжении, свет был недостаточно ярким, а при высоком лампы быстро разрушались. В результате оптимальным напряжением стало 45 Вольт. Линии электропередач, подводимые к домохозяйству, рассчитывались на две лампы и поэтому по ним необходимо было подавать как минимум 90 вольт. Учитывая потери тока в проводах, в результате передавалось 110 вольт.

Со временем площадь покрытия электросетями и расстояния, на которые требовалось передавать ток, увеличивались и для уменьшения токопотерь, необходимо было повышать напряжение. К тому же, переменный ток вытеснил постоянный при передачи электроэнергии на большие расстояния и повышение напряжения стало неизбежным. В СССР со временем начали использовать 220 вольт на одной фазе, в Европе — 127 вольт (позднее перешли на 230), а в США до сих пор используется стандарт 110 вольт.

Установлению более современных и удобных стандартов в Европе «способствовала» (в грустном смысле) Вторая мировая война, когда при восстановлении поврежденной инфраструктуры было проще монтировать новые современные линии электропередач 220/230 Вольт, а не восстанавливать старые 110/127-вольтовые.

Таким образом, 220 вольт в розетке — компромисс между безопасностью для человека и потерями тока в проводах.

Подключение розетки на 220 Вольт своими руками

Электрическая розетка – установочное устройство штепсельного соединения, предназначение которого заключается в создании надежной коммутации (контакта) со штепсельной вилкой подключенного прибора. Эта коммутация должна быть безопасной для человека, для чего требуется исключить возможность любого контакта с находящимися под напряжением проводами и деталями. Среди бытовых розеток 220 вольт различают двухполюсные и трехполюсные. Первые, используются для подключения электроприборов в случаях, когда заземление корпуса не требуется. Трехполюсные имеют заземляющий нож для целей заземленияи могут использоваться только с вилками, также имеющими заземляющий контакт.

Розетки выпускаются для скрытой и открытой проводки, в самых разных вариантах исполнения: одно-, двух-, трехпозиционные (и более). К ним одновременно можно подключить несколько электроприборов.

Важно! При подключении нескольких электроприборов необходимо следить, чтобы суммарная их мощность не превышала максимально допустимую силу тока для используемой розетки (10 или 16 ампер). При разрешенной силе тока 10 ампер, максимально допустимая мощность одновременно подключаемых приборов не должна превышать 2,2 кВт.

Вопросы безопасности

К работам по установке розетки, как и к любым другим работам с электроустановочными устройствами, можно приступать только после отключения автомата в электрощите, от которого подключено устройство. В помещениях, где нет автомата, необходимо вывернуть пробки. После отключения автомата с помощью индикаторной отвертки, необходимо проверить отсутствие напряжения.

Схема подключения

Существует два способа подключения розеток: от распределительной коробки электропроводки в доме или квартире, или шлейфом (в этом случае последующее устройство подключается от предыдущего). Непосредственное подключение от распределительной коробки считается основным и самым надежным способом.

При подключении шлейфом уменьшается расход кабеля и количество кабелей в распределительной коробке. Однако существует запрет на подключение таким способом более четырех розеток. Кроме того, если пропадет контакт в одном из их, не станут работать все идущие за ним. При последовательном соединении (шлейфом) напряжение в собранной сети будет повышаться от первого электроустановочного устройства к последующим, что может привести к чрезмерному их нагреву. По этой причине подключение шлейфом целесообразно делать, когда к розеткам планируется подключать маломощные электроприборы: ночники, светильники, зарядные устройства для ноутбуков или телефонов. Подключение шлейфом силовых трехфазных розеток запрещено.

При составлении монтажного плана электропроводки помещения (квартиры, коттеджа), желательно подключать все одиночные устройства и их блоки к распределительной коробке напрямую. Особенно это касается блоков. Исключение можно сделать для находящихся рядом одиночных розеток при далеко расположенной распределительной коробке.

Внимание! Общепринятые цвета проводов в бытовой электропроводке: синий – ноль (нулевой рабочий), белый, черный, коричневый, серый или красный – фаза, желто-зеленый – нулевой защитный (заземляющий проводник).

Инструкция по подключению

Порядок действий для подключения электроустановочного устройства:

  • провода должны выступать из стены при установке встроенного устройства примерно на 50-70 мм и располагаться снизу;
  • провода зачищаются ножом от изоляции на длину 10 мм;
  • на изделии российского производства откручиваются болтики на контактах (не полностью!). На импортных изделиях провода вставляются в самозажимной контакт;
  • в боковые контакты устройства вставляются фаза и ноль, заземляющий проводник вставляется в центральный контакт;
  • болтики на контактах закручиваются отверткой с усилием, но так, чтобы не перетянуть их и не сломать;
  • перед установкой устройства в монтажную коробку надо проверить надежность зажатия проводов в контактах и их изоляцию;
  • устройство устанавливается в монтажную коробку, проверяется горизонтальность установки, распорные зажимы закручиваются, затем устанавливается планка и лицевая панель.

В одиночную монтажную коробку можно без проблем установить двойную розетку. По размеру она подходит. В боковые контакты устройства вставляются провода фаза и ноль, а заземляющий проводник вставляется в центральный контакт. У него есть незащищенные металлические пластины заземления.

При необходимости подключения нового электроустановочного устройства в старую монтажную коробку (в домах старой постройки в монтажную коробку обычно устанавливался металлический стакан) специалисты советуют выбирать розетки Schneider с двумя пластиковыми платформами, отверстия в которых можно использовать для вкручивания дюбель-шурупов. На стене делается разметка под дюбеля, отверстия просверливаются дрелью под небольшим углом, чтобы дюбели не попали в мягкий гипс. Платформы прикручиваются дюбель-шурупами и розетка устанавливается очень надежно. При такой установке не требуется менять старый металлический стакан на новый пластиковый.

Подключить розетку на 220 Вольт особого труда не составляет. Надо только для своей безопасности отключить соответствующий автомат в электрощите или выкрутить пробки. Зная цветовую маркировку проводов, дальше работа пойдет быстро.

 

Откуда в розетке может появиться 380В?

Всем привет! В данной статье хочу наглядно на рисунках показать в какой ситуации в обычных домашних розетках может появиться 380В и более вместо стандартных 220В. По новому ГОСТу даже 400В. Это очень высокое напряжение, от которого выходит из строя вся электронная бытовая техника, горят компрессоры холодильников, моторы и т.д. Мало того, что сама техника перегорает, так она еще может загореться и привести к пожару. Это очень опасно и поэтому про данную аварийную ситуацию нужно знать и нужно знать как от нее защититься.

Вот посмотрите ниже на фото какие напряжения были на разных фазах в одном коттеджном поселке Московской области. На фазе L1 было 391В, на фазе L2 было 319В, на фазе L3 было 426В. Данные устройства имеют некоторую погрешность в измерениях, но я думаю в такой ситуации плюс минус один вольт роли уже не играет. У людей сгорело очень много бытовой техники и теперь они пытаются найти правду и справедливость. А в доме, где стоят данные приборы, даже ничего и не заметили. Как мы видим высокое напряжение в нашей действительности это реальность и поэтому давайте вместе разберемся откуда в розетке может появиться 380В?

Ниже на рисунке я схематично изобразил дом. Представим, что это типичная многоэтажка. У них обычно в подвале находится вводной электрощит — ВРУ. От подстанции к нему всегда приходит 3-хфазное питание. По стоякам от ВРУ и до последнего этажа поднимаются четыре или пять жил, то есть все три фазы. Если пять жил, то это три фазы, нулевой рабочий и нулевой защитный проводники. Это современная система заземления. Ее применяют сейчас при строительстве новых домов. Если дом старый, то там скорее всего в шахте можно найти только четыре жилы — это три фазы и PEN проводник. Это старая система заземления. На своих рисунках я изобразил пятипроводную систему.

Итак, на каждом этаже присутствуют все три фазы. Но в квартиры заходит однофазное питание. Если на лестничной площадке три квартиры, то одна квартира подключена к фазе L1, вторая к L2 и третья к L3. Это делается, чтобы распределение нагрузки по фазам было более менее равномерным. Получается, что у квартир разные фазы, но общие нулевой рабочий (ноль) и нулевой защитный (заземление) проводники. В разных квартирах жильцы занимаются разными делами и включают разное количество потребителей. Поэтому нагрузка по фазам все равно не равномерная.

Теперь вспомним какие бывают соединения в электрике и как они влияют на ток и напряжение.

Все домашние потребители подключаются к сети параллельно. То есть к каждой розетке приходит свои фаза и ноль. При таком подключении в каждом потребителе будет одинаковое напряжение. По современному ГОСТу оно должно быть 230В. Поэтому в нормальной ситуации в каждой розетке должно быть 230В. Это правильно и все работает исправно. При параллельном подключении общий ток складывается из токов каждого участка цепи.

Последовательное соединение — это когда от источника питания пришел провод к потребителю на один контакт. Далее со второго контакта провод ушел на следующий потребитель на первый контакт. С его второго контакта — на третий потребитель и т.д. При последовательном соединении во всей цепи ток будет одинаковый у каждого потребителя, но напряжение будет разным. Общее напряжение всей цепи будет складываться из напряжений на каждом потребителе. Если потребители имеют разную мощность, то и напряжение на них будет разное. Последовательно розетки и потребители нельзя подключать. Так они исправно работать не смогут. Их нужно подключать только параллельно.

Ниже на рисунке все это наглядно показано.

Теперь пару слов о линейном и межфазном напряжении. Между любым фазным и нулевым рабочим проводниками напряжение (линейное) составляет 230В. Напряжение между разными фазами (межфазное) составляет 400В. Ниже также все наглядно показано. Думаю все понятно. Это же так легко)))

Так как в квартиры заходит одна из фаз и ноль, то во всех розетках присутствует 230В.

Когда все надежно подключено, то все работает в штатном режиме. Вот так «течет» ток в одной квартире. От источника питания к розетке электроны бегут по фазному проводнику. Далее они там стирают, варят, греют, светят и т.д. Поработав, уставшие электроны по нулевому рабочему проводнику возвращаются домой в источник питания. Не знаю успевают ли они там отдохнуть, но они снова по фазному проводнику бегут на работу. И так по кругу до бесконечности прямо как взрослые люди ))) Данный путь на рисунке я выделил красными жирными стрелками.

Так выглядит другая квартира.

Так вот, если со временем какой-нибудь контакт подключения проводника в ВРУ ослабевает и потом совсем пропадает, то это означает, что цепь движения тока нарушается. Если отгорит фазный проводник, то пропадет электричество в тех квартирах, которые подключены к данной фазе. Это как бы пол беды и не так страшно. Дома ничего опасного не произойдет и только не будет работать домашняя техника. Потом приедут местные электрики, прикрутят фазу обратно или заменят вставку и все заработает по прежнему. Но на долго ли…

Так откуда же в розетках может появиться 380В? Вот откуда. У всех потребителей один общий нулевой рабочий проводник (ноль). Вот если отгорит он, то подключение всех розеток станет последовательным. Смотрите следующий рисунок. Ноль оборван и по нему нет обратного пути к источнику тока, но есть путь по нулевому рабочему проводнику к другим розеткам, подключенным к другим фазам. В итоге получается, что потребители уже подключены последовательно и между разными фазами. А мы уже знаем, что между разными фазами 400В. Так как каждый потребитель имеет свою мощность, например, телевизор 300Вт, а духовой шкаф 2000Вт, то соответственно на них будет падать напряжение обратно пропорционально их мощности. На рисунке для наглядности я привел значения мощности 500Вт в одной квартире и 3500Вт в другой. Малыш извини, но тебе сегодня не повезло ))) Суммарное напряжение будет 400В, так как потребители подключены между разными фазами. А вот падение напряжения будет у каждого свое. Чем меньше мощность, тем выше будет напряжение и наоборот. Поэтому в квартире, где были подключены потребители суммарной мощностью 3500Вт, напряжение упадет до 50В. В другой квартире, где было включено мало потребителей мощностью 500Вт напряжение подскачет до 350В. А это уже очень опасное напряжение, которое выводит бытовую технику из строя.

Для большей наглядности описываемой ситуации я убрал лишнее. Вот так должно быть более понятнее. Наверное…

Вот отсюда в розетке и появляется 380В. Вот вам один из реальных примеров данной ситуации. К сожалению, они случаются довольно часто. Мало того, что люди несут материальный ущерб, так потом еще нужно много сил и энергии, чтобы что-то доказать.

Для защиты от такой ситуации можно использовать разные защитные устройства, например реле напряжения УЗМ-51М, УЗМ-50Ц, РН-106 или расцепители максимального напряжения Legrand POP (артикул 406286), IMSU от Schneider Electric и т.д.

Берегите себя и отноститесь к электричеству с особым вниманием.

Как в домашней розетке может появиться 380 Вольт

Доводилось ли вам слышать истории электриков о том, что в подъезде вашего дома произошел обрыв нуля, что в одном из домов разом перегорели лампочки, телевизоры, микроволновые печи, а также прочие дорогостоящие электроприборы, которым «посчастливилось» попасть под напряжение 380 Вольт? От обрыва или отгорания нулевого проводника не застрахован никто, поэтому разумно будет знать природу этого явления, причины возникновения нештатных ситуаций, а также способы защиты электроприборов.

Почему в розетке появляется 380В

Чтобы ответить на этот вопрос, давайте коротко рассмотрим систему электроснабжения многоквартирного дома. По сути, все электричество, которым обеспечивается дом, имеет 3 фазы: фаза A, фаза B и, естественно, фаза C. Величина действующего напряжения между любой парой фаз – 380 Вольт. По схеме соединения обмоток питающего трансформатора все фазы сводятся к одной точке, которая называется нулем. Величина действующего напряжения между любой фазой и нулем – 220 Вольт.

В любом многоквартирном доме питание производится путем равномерного распределения трехфазной линии по всем квартирам в подъезде. К примеру, если в подъезде имеется 60 квартир, то первая 20-ка квартир запитана от фазы A, вторая – от фазы B, третья – от фазы C. Все распределение энергии происходит сбалансировано и очень равномерно. Если бы все люди были роботами, включающими и выключающими электроприборы так, чтобы нагрузка по всем трем фазам была бы идентичной, то наличие нулевого проводника и не требовалось бы в принципе. Это легко проверить, проделав простой школьный опыт с тремя 40 Вт лампочками, включенными по схеме звезда в трехфазную сеть. В такой идеализированной цепи потребления весь ток от 3 фаз, сходящийся в нулевой точке, взаимно компенсируется, что делает возможным либо использование нулевого провода с малым сечением, либо отказ от такового. По сути, если нагрузка одинакова по трем фазам, то нулевой провод и не нужен. В реальной жизни такого, естественно, не бывает. К примеру, в одной квартире подъезда может гореть одна лампочка, во второй – работать телевизор, в третьей – вообще все выключено. Именно такое неравномерное распределение нагрузки по фазным цепям приводит к формированию некомпенсированного тока, который должен проходить через нулевой проводник. Если же нулевой проводник отгорел, оборвался, то в одной из квартир, как правило, с наименьшим электропотреблением, в розетках появляются не привычные 220 Вольт, а «убивающие» всю домашнюю электронику 380 Вольт. Напротив, в квартирах, где электропотребление было максимальным, происходит просадка напряжения. Естественно, винить соседей за это не стоит, ведь они не обязаны согласовывать с вами, когда включать электроприборы, а когда нет. Чтобы такого неприятного исхода не происходило, необходимо, во-первых, проверять надежность электрического контакта нулевого проводника, а во-вторых, устанавливать индивидуальное защитное оборудование, осуществляющее быстрое отключение нагрузки в вашем доме, если напряжение поднимется выше 270 Вольт. Практика показывает, что даже банальный стабилизатор напряжения, установленный на компьютер и телевизор, способен уберечь вас от дорогостоящего ремонта.

Как и где обрывается нулевой проводник

Основных причин, по которым происходит отгорание или обрыв нулевого проводника, две: 1– недостаточный гальванический контакт нулевого проводника в местах соединения, 2– чрезмерный некомпенсированный ток, идущий по нулевой линии. Разномастные импульсные всплески в сети, идущие от компьютеров с дешевыми блоками питания, резкие включения мощных нагрузок только на одну из фаз могут привести к отгоранию нулевого провода. Обрыв проводника происходит, как правило, в слабых местах – в плохо пропаянных контактах, скрутках, не советующих ПУЭ. Как говорится, где тонко, там и рвется.

Как защитить наши электроприборы

Помните, что для сложной электроники опасны как высокие скачки напряжения (выше 270 Вольт), так и просадки (ниже 120 Вольт). Как правило, при несоблюдении действующего напряжения в сети ломаются импульсные блоки питания. Самый идеальный вариант защиты заключается в покупке специального реле контроля напряжения. Такое реле молниеносно отключает всю домашнюю нагрузку в те моменты, когда значение действующего напряжения уходит за допустимые пределы.

Почему две фазы в розетке 220 вольт: с чем связана проблема?

В последнее время можно встретить массу разнообразных проблем, которые могут случиться с розеткой. Одной из наиболее распространенных проблем является две фазы в розетке 220 вольт.

Причины появления двух фаз в розетке

В этой статье мы постарались рассмотреть могут ли присутствовать две фазы в розетке на 220 в.

Как это происходит

Чтобы понять суть возникновения подобной неисправности сначала следует рассмотреть схему подключения розетка-выключатель-лампочка.

Розетка-выключатель-лампочка

На этой схеме будет видно, что напряжение будет подаваться по фазному проводу и возвращаться по нулевому. Теперь следует представить, что может произойти, если возникнет, обрыв нуля. Если в этом случае включить выключатель света, тогда напряжение будет проходить через нить накаливания либо включенный электроприбор перейдет в нулевой провод, так как нули связаны, направится к розетке по второму контуру.

При проверке напряжения в гнездах розетки можно увидеть две фазы. Если вы обеспечили надежное заземление квартиры, тогда нужно будет найти обрыв нулевого провода и восстановить контакт. Однако, если в квартире присутствует зануление электропроводки, тогда последствия могут быть не лучшими.

Причины неисправности

Основной причиной появления двух фаз на розетке чаще всего будет обрыв нуля. Потеря контакта также может произойти на этажном щитке на вводе в квартиру, в одной из распределительных коробок.

Этажный щиток

Если провод отгорает в щитке, тогда в квартире может погаснуть свет, но розетки будут работать, но только когда будет включен один из приборов либо освещение в комнате. Если вы выключите и проверите напряжение в розетке можно увидеть, что фаза будет только одна.

Квартирный щит

Иногда обрыв нуля может происходить в распределительной коробке одной из комнат. В этом случае перестанет гореть свет в этой комнате, а в остальных комнатах все будет работать. Чтобы решить подобную проблему вам потребуется открыть распределительную коробку и восстановить соединение проводов.

Еще одной достаточно распространенной причиной, почему две фазы в розетке может стать старая электропроводка. Чаще всего в таких квартирах вместо автоматических выключателей здесь будут стоять пробки. Если выбьет только нулевую пробку, тогда напряжение появится в двух гнездах. Чтобы не сталкиваться с подобной проблемой в дальнейшем следует заменить электропроводку.

Пробки на счетчике

Иногда обрыв нуля может произойти в стене. Обычно это может происходить из-за непрофессионализма. Если вы не знаете, где расположена проводка в стене, тогда при ремонте действовать следует осторожно. Даже, если вы будете вешать картину, тогда сначала необходимо убедиться, что здесь не проложена проводка. В ином случае гвоздем вы можете повредить нейтральный проводник и появится две фазы в розетках. Иногда провод также могут повредить грызуны. Чтобы защитить проводку от грызунов, вам следует прочесть нашу статью.

Теперь вы точно знаете, почему может появится напряжение в двух гнездах розетки и как можно ликвидировать подобную проблему.

Советы

Конечно, когда в розетках пропадает свет, тогда люди начинают проверять напряжение в розетках. Если во время проведения проверки вы заметили, что индикатор показывает фазу на двух проводах, тогда не следует волноваться. В большинстве случаев это совершенно не так. Убедиться в этом вы сможете следующим образом:

Возьмите мультиметр и проверьте напряжение в розетке. Если прибор покажет 0, тогда фаза у вас только одна, перетекающая на нулевой проводник.

Мультиметр

Это самый простой способ, который позволяет определить неисправность. Использовать индикаторную отвертку не рекомендуется, так как она не является точным методом проверки. Как видите, эта неисправность проводки необычная и поэтому может ввести в заблуждение, даже опытных электриков.

Читайте также: проходные выключатели или бистабильное реле.

Сколько ватт в розетке 220 вольт

Мощность розетки 220 в

Многие люди, изучая электрику и делая электропроводку в доме, сталкиваются с таким понятием как ампер. Сколько ампер в сети, какие нормы мощности есть для домашней сети переменного тока, какие характеристики имеет 220 вольтовая розетка? Об этом далее.

Нормы мощности в розетке 220в

Мощность является общей величиной, показателем перемножения напряжения с силой тока в бытовой сети 220 вольт. Обычная розетка при нормальном положении пропускает 10 ампер. Стоит указать, что на каждом объекте находится своя маркировка. Как правило, бытовая модель однофазной цепи пропускает в себя 6А, что равно 1,3 киловатту. Средняя модель рассчитана на 10А, а это 2,2 киловатта. Более мощная модель, используемая для бытовой электрической сети в квартире, дома и гараже, на 16А имеет показатель в 3,5 киловатт.

Усовершенствованная конструкция, которая подходит только для выделенной квартирной электролинии с электроплитой и бойлером, на 32 ампер пропускает 7 киловатт энергии. Отличается последняя наличием усовершенствованного штепсельного контакта, который исключает подключение простых вилок для бытовых электрических приборов.

Характеристики

Номинальную мощность, как и другие технические характеристики, производители прописывают на крышке, около ее контактов. Как правило, в стандартной модели прописывается количество гнезд, ширина, высота, глубина, заземляющий контакт, номинальный электроток и напряжение, материал и тип соединения. Нередко прописывается срок службы с гарантийным сроком.

Какой ток в розетках

Электрическим током называется упорядоченный или направленный вид движения заряженных частиц, на который действует электрическое поле. Этими частицами могут выступать электроны с протонами, ионами и нейтронами. Также это скорость и время, за которое изменяется электрический заряд. На данный момент узнать, какой находится электроток в розетках, можно, изучая технические характеристики каждой модели. Как правило, в условиях магазина подобная информация предоставляется. Он бывает равен 6,10, 16 и 32 по амперажу.

Как узнать какая мощность в амперах

Мощность на каждой розеточной модели прописывается рядом с показателем заряда электротока. Как правило, все данные даны в киловаттах, но, при желании, можно перевести значение в ватт. Стандартные модели для частного дома или квартиры имеют 1,3-3,5 квт. Более усовершенствованные приборы для заряда котла или бойлера имеют мощностный заряд в 7 киловатт электроэнергии.

Обратите внимание! По-другому узнать показатель можно через приведенную ниже формулу. Также это можно сделать, используя такой прибор как амперметр. Эти же самые действия легко выполняются с использованием мультиметра и ваттметра. В зависимости от разновидности измерительного оборудования электричества, показатели будут представлены в виде амперов, вт или киловаттах.

В целом, отвечая на вопрос, сколько ампер в розетке 220в, можно указать, что там находится в среднем 9,1-10 ампер при нормах мощности 2,2-2,4 киловатта. Розетка, кроме того, имеет и другие важные характеристики, которые влияют на силу тока и освещенность. Чтобы узнать, какая мощностная энергия находится в источнике, можно ознакомиться с технической инструкцией к ней, посчитать известные данные, подставив формулу, или попытаться сделать измерения амперметром или другим измерительным прибором.

Сколько ампер в розетке 220В ?

Чтобы узнать сколько ампер в обычной домашней розетке 220В, в первую очередь вспомним, что в Амперах измеряется сила тока:

Сила тока «I» – это физическая величина, которая равна отношению заряда «q», проходящего через проводник, ко времени (t), в течении которого он протекал.

Главное, что нам в этом определении важно — это то, что сила тока возникает лишь когда электричество проходит через проводник , а пока к розетке ничего не подключено и электрическая цепь разорвана, движения электронов нет, соответственно и ампер в такой розетке тоже нет.

В розетке, к которой не подключена нагрузка, ампер нет, сила тока равно нулю.

Теперь рассмотрим случай, когда в розетку подключен какой-то электроприбор и мы можем посчитать величину силы тока.

Если бы нашу электропроводку не защищала автоматика, установленная в электрощите, и максимальная подключаемая мощность оборудования (как и сила тока), ничем бы не контролировались, то количество ампер в бытовой розетке 220В могло быть каким угодно. Сила тока росла бы до тех пор, пока бы от высокой температуры не разрушились механизм розетки или провода.

При протекании высокого тока, проводники или места соединений, не рассчитанные на него, начинают нагреваться и разрушаются. В качестве примера можно взять спираль обычной лампы накаливания, которая, при прохождении электрического тока, раскаляется, но т.к. вольфрам, из которого она сделана – тугоплавкий металл, он не разрушается, чего нельзя ждать от контактов механизма розетки.

Чтобы рассчитать сколько ампер будет в розетке, при подключении того или иного прибора или оборудования, если под рукой нет амперметра, можно воспользоваться следующей формулой:

Формула расчета силы тока в розетке

I=P/(U*cos ф) , где I — Сила тока (ампер), P — мощность подключенного оборудования (Вт), U — напряжение в сети (Вольт), cos ф — коэффициент мощности (если этого показателя нет в характеристиках оборудования, принимать 0,95)

Давайте рассчитаем по этой формуле сколько ампер сила тока в обычной домашней розетке с напряжением (U) 220В при подключении к ней утюга мощностью 2000 Вт (2кВт), cos ф у утюга близок к 1.

Значит, при включении и нагреве утюга мощностью 2кВт, в сила тока в розетке будет около 9,1 Ампер.

При одновременном включении нескольких устройств в одну розетку, ток в ней будет равен сумме токов этого оборудования.

Какая максимальная величина силы тока для розеток

Чаще всего, современные домашние розетки 220В рассчитаны на максимальный ток 10 или 16 Ампер. Некоторые производители заявляют, что их розетки выдерживают и 25 Ампер, но таких моделей крайне мало.

Старые, советские розетки, которые еще встречаются в наших квартирах, вообще рассчитаны всего на 6 Ампер.

Максимум, что вы сможете встретить в стандартной типовой квартире, это силовую розетку для электроплиты или варочной панели, которая способна выдерживать силу тока до 32 Ампер.

Это гарантированные производителем показатели силы тока, который выдержит розетка и не разрушится. Эти характеристики обязательно указаны или на корпусе розетки или на её механизме.

При выборе электроустановочных изделий имейте ввиду, что, например, розетка на 16 Ампер выдержит около 3,5 киловатт мощности, а на 10 Ампер уже всего 2,2 Киловатт.
Ниже представлена таблица, максимальной мощности подключаемого оборудования для розеток, в зависимости от количества ампер, на которые они рассчитаны.

ТАБЛИЦА МАКСИМАЛЬНОЙ МОЩНОСТИ ОБОРУДОВАНИЯ ДЛЯ РОЗЕТОК, РАССЧИТАННЫХ НА ТОК 6, 10, 16, 32 Ампер

Чаще всего, всё бытовое электрооборудование, которое включается в стандартные розетки 220В, не превышает по мощности 3,5кВт, более мощные приборы имеют уже иные разъемы для подключения или поставляются без электрической вилки, в расчете на подключение к клеммам или к электрическим вилкам для силовых розеток.

Я советую всегда выбирать розетки рассчитанные на силу тока 16 Ампер или больше – они надежнее. Ведь чаще всего электропроводку в квартирах прокладывают медным кабелем с сечением жил 2,5 мм.кв. и ставят автомат на розетки на 16 Ампер. Поэтому, если вы выберете розетку, рассчитанную на 10 Ампер и подключите к ней большую нагрузку, то защитная автоматика не сработает, и розетка начнет греться, плавится, это может стать причиной пожара.

Если же у вас остались вопросы о характеристиках розеток или их выборе, обязательно пишите, постараюсь помочь. Кроме того, приветствуется любая критика, дополнения, мнения — пишите.

Как правильно говорить: 220 Вольт или 220 Ватт?

И как их не путать?

Правильно говорить и «220 Вольт» и «220 Ватт» Эти две числовые характеристики электрического тока обе присутствуют в физике. Но показатель «220 Ватт» используется для оценки величины потребляемой мощности, а «220 Вольт» для оценки величины напряжения в сети.

В быту чаще всего мы пользуемся выражением «220 Вольт» — это напряжение в наших внутридомовых электросетях. Эту цифру мы можем видеть на электроарматуре (розетках, выключателях и электро патронах)

Величина «220 Ватт» встречается очень редко в бытовой технике, настолько что ею можно пренебречь. Лично я за всю практику домашнего электрика встречал пару электро потребителей именно с этой цифрой.

Так что если вы не электротехник, не парте мозг, и вам про цифру «220 Ватт» можно забыть — говорите «220 Вольт». А электрик и так измеряет для себя мощность в основном в Амперах.

В Вольтах измеряется напряжение в сети.В домашней сети напряжение чаще всего как раз и есть 220Вольт .

Вольты имеют обозначение- V .

А вот мощность измеряется в Ваттах .Но , самые обычные наши домашние лампочки чаще всего имеют гораздо меньшую мощность, от 20 до 100 Ватт.

Большую мощность имеют лишь прожекторные лампы и лампы накаливания.

Дело в том, что это две разных величины двух разных характеристик.

Путать их — всё равно, что километры с килограммами, однако вольты с ваттами путают чаще. Упущение школьных учителей физики.

Вольт — единица напряжения. Ватт — единица мощности.

В розетке, дома или в офисе — 220 Вольт. Напряжение. А мощности там нет. Мощность — характеристика потребителя, того, что в розетку включаем. У любого электрического прибора указывается потребляемая мощность (как и рабочее напряжение). У усилителей, у акустических систем важной характеристикой является выходная мощность, в Ваттах.

Для тех, кто на физике дремал, рекомендуется (для общего развития) вот это видео:

Смотря, что Вам требуется, иногда в обозначение, нужны Ватты, а иногда Вольты. Для каждого случая это разные величины. V — Вольт. W — Ватты.

Вольты — это напряжение в сети. Ватты это потребляемая мощность.

Напряжение- это физическая величина, характеризующая величину отношения работы электрического поля в процессе переноса заряда из одной точки A в другую точку B к величине этого самого заряда. Проще говоря это разность потенциалов между двумя точками. Измеряется в Вольтах. Напряжение схоже по сути с величиной давления воды в трубе, чем оно выше тем быстрее вода течет из крана.

Величина стандартизированная и одинаковая для всех квартир, домов и гаражей равная 220 Вольт при однофазном электроснабжении. 220 вольт в электропроводке А для трехфазного подключения (изредка подключаются гаражи или отдельные большие частные дома)- она равна 380 Вольтам между тремя разноименными фазами, но между каждой отдельной фазой и нулем она опять будет равна 220 Вольтам.

Учитывайте, что допускается по ГОСТ 10 процентное отклонение для домашней электросети. Величина напряжения должна быть не менее 198 и не более 242 Вольт.

Сила тока- это физическая величина, равная отношению количества заряда за определенный промежуток времени протекающего через проводник к величине этого самого промежутка времени. Измеряется в Амперах.

Проще говоря, это количественный показатель потребляемой электроэнергии вашим каждым электроприбором в отдельности или всей квартиры в целом! токи в доме Силу тока приблизительно можно сравнить с потоком воды из крана, чем больше Мы его открываем, тем больше воды выливается за единицу времени или наоборот.

Напряжение (U), ток (I) и сопротивление (R) участка цепи тесно взаимосвязаны и пропорциональны между собой по закону ОМА: I = U/R. Он звучит следующим образом- Сила тока в участке цепи обратно пропорциональна сопротивлению участка цепи и прямо пропорциональна его напряжению на концах. Напряжение всегда равно 220 В в квартире и доме или 380 В в трехфазной сети. Переменными (изменяющимися ) будут две величины Сила тока и сопротивление, которые тесно напрямую взаимосвязаны, во сколько раз уменьшается сопротивление участка цепи- во столько раз увеличивается ток в этом же участке цепи. Сопротивление участка цепи измеряется в Омах и практически не применяется для описания характеристик электросети дома. Вместо него используется потребляемая мощность, которая зависит от подключенной нагрузки или мощности потребителей электрической энергии.Вольт, ампер, Ватт

Мощность вычисляется путем умножения величины напряжения на потребляемый ток электроприбором. Иными словами, ее можно сравнить с количеством воды в литрах, которое выльется из крана. Измеряется в Ваттах. А Ватт (Киловатт= 1000 Ватт)/часах ведется учет электроэнергии. Так если в течении часа будет работать телевизор мощностью 50 Ватт, то его потребление составит 50 Ватт/час, а за 2 часа соответственно- 100 Ватт/час или 0.1 кВтч.

Пример расчета потребляемой мощности- стиральная машина потребляет из розетки 220 Вольт силу тока величиной 10 А, 10 А *220 В= 2200 Вт или 2.2 Киловатта, т. к. один Киловатт равен 1000 Ватт.

Сколько приборов можно включить в розетку?

Для обычной жизни среднестатистической семьи требуется все больше электричества. Это связано с тем, что благосостояние населения нашей страны растет, появляются новые виды различных бытовых устройств.

Все чаще получается так, что количество розеток в квартире ограничено, а приборов, которые необходимо подключить и постоянно использовать, очень много.

В одну розетку можно подключать только ограниченное количество электроприборов

Какую нагрузку может выдержать одна розетка?

Вопрос о том, сколько можно вилок воткнуть в один удлинитель, довольно запутанный. Ведь существует множество факторов, от которых зависит выносливость электропроводки в каждом конкретном случае. Для того, чтобы определить возможности одной розетки, необходимо разобраться в некоторых понятиях и определениях.

Напряжение. Это физическая величина, которая показывает работу по перемещению заряда от одной точки электрической цепи до другой. Единицей измерения принят Вольт. Для нашей страны принято напряжение 220 V. Этот показатель обязательно нужно учитывать, так как он используется для расчёта нагрузки, которую выдерживает розетка.

Сила тока. Это отношение количества заряда, прошедшего через некоторую поверхность к времени этого прохождения. Измеряется она в Амперах. Для наших розеток эта величина, в основном, равна от 6,3А до 10А.

Приборы для измерения силы тока

Мощность. Показывает скорость преобразования, потребления или передачи электроэнергии какой-либо системы. Измеряется в Ваттах. Мощность электроприборов указывается в технических характеристиках, а так же, как правило, на корпусе.

Допустимая нагрузка на розетку – это показатель того количества Ватт, которое может выдержать как сама розетка, так и проводка, при одновременной работе нескольких приборов или одного мощного прибора.

Простой расчет с имеющимися у нас показателями будет выглядеть так: для расчета допустимого количества Ватт, нужно просто умножить силу тока на напряжение. Для наших отечественных розеток такой расчет будет выглядеть так: 6,3А * 220V = 1386 Вт. Таким образом, суммарная мощность приборов, которые можно одновременно подключить в одну розетку не должна превышать 1386 Вт.

Защита от скачков напряжения в квартире

Для того, чтобы предотвратить скачки напряжения в электросети и защитить проводку от перегрузки, нужно соблюдать осторожность в пользовании удлинителями и тройниками. Когда в сети возникает перегрузка, проводка начинает нагреваться и может произойти короткое замыкание, либо возгорание.

Немаловажен так же такой фактор, как сечение проводки (упрощенно – ее толщина), от которой зависит ее выносливость. Поэтому, в идеале, необходимо рассчитывать нагрузку не только на отдельные розетки, но и на всю электросеть квартиры. Тогда будет проще определить общую допустимую мощность электроприборов, ламп и люстр. Такие меры предосторожности особенно полезны в старых домах.

Чтобы не возникало проблем с недостатком розеток, планировать их расположение и количество необходимо заранее. При капитальном ремонте квартир, проводку часто полностью заменяют на новую, с большим сечением. В этом случае допустимо установить евророзетки, сила тока в которых от 10А до 16А, суммарная мощность электроприборов, соответственно может быть намного больше.

Существуют некоторые нормы, по которым в каждой комнате должно быть не менее 2 розеток (по 1 на каждые 4 кв м площади), а на кухне – 4. Но, на сегодняшний день этого количества бывает недостаточно. Чтобы не перегружать имеющиеся розетки, лучше провести дополнительные, с учетом общей допустимой нагрузки на проводку.

Соблюдая простые меры предосторожности, так же, поддерживая проводку в доме в исправном состоянии, можно обезопасить свое жилище от пожара и долго сохранять электроприборы в рабочем состоянии.

Как правильно говорить: 220 Вольт или 220 Ватт?

И как их не путать?

Правильно говорить и «220 Вольт» и «220 Ватт» Эти две числовые характеристики электрического тока обе присутствуют в физике. Но показатель «220 Ватт» используется для оценки величины потребляемой мощности, а «220 Вольт» для оценки величины напряжения в сети.

В быту чаще всего мы пользуемся выражением «220 Вольт» — это напряжение в наших внутридомовых электросетях. Эту цифру мы можем видеть на электроарматуре (розетках, выключателях и электро патронах)

Величина «220 Ватт» встречается очень редко в бытовой технике, настолько что ею можно пренебречь. Лично я за всю практику домашнего электрика встречал пару электро потребителей именно с этой цифрой.

Так что если вы не электротехник, не парте мозг, и вам про цифру «220 Ватт» можно забыть — говорите «220 Вольт». А электрик и так измеряет для себя мощность в основном в Амперах.

В Вольтах измеряется напряжение в сети.В домашней сети напряжение чаще всего как раз и есть 220Вольт .

Вольты имеют обозначение- V .

А вот мощность измеряется в Ваттах .Но , самые обычные наши домашние лампочки чаще всего имеют гораздо меньшую мощность, от 20 до 100 Ватт.

Большую мощность имеют лишь прожекторные лампы и лампы накаливания.

Дело в том, что это две разных величины двух разных характеристик.

Путать их — всё равно, что километры с килограммами, однако вольты с ваттами путают чаще. Упущение школьных учителей физики.

Вольт — единица напряжения. Ватт — единица мощности.

В розетке, дома или в офисе — 220 Вольт. Напряжение. А мощности там нет. Мощность — характеристика потребителя, того, что в розетку включаем. У любого электрического прибора указывается потребляемая мощность (как и рабочее напряжение). У усилителей, у акустических систем важной характеристикой является выходная мощность, в Ваттах.

Для тех, кто на физике дремал, рекомендуется (для общего развития) вот это видео:

Смотря, что Вам требуется, иногда в обозначение, нужны Ватты, а иногда Вольты. Для каждого случая это разные величины. V — Вольт. W — Ватты.

Вольты — это напряжение в сети. Ватты это потребляемая мощность.

Напряжение- это физическая величина, характеризующая величину отношения работы электрического поля в процессе переноса заряда из одной точки A в другую точку B к величине этого самого заряда. Проще говоря это разность потенциалов между двумя точками. Измеряется в Вольтах. Напряжение схоже по сути с величиной давления воды в трубе, чем оно выше тем быстрее вода течет из крана.

Величина стандартизированная и одинаковая для всех квартир, домов и гаражей равная 220 Вольт при однофазном электроснабжении. 220 вольт в электропроводке А для трехфазного подключения (изредка подключаются гаражи или отдельные большие частные дома)- она равна 380 Вольтам между тремя разноименными фазами, но между каждой отдельной фазой и нулем она опять будет равна 220 Вольтам.

Учитывайте, что допускается по ГОСТ 10 процентное отклонение для домашней электросети. Величина напряжения должна быть не менее 198 и не более 242 Вольт.

Сила тока- это физическая величина, равная отношению количества заряда за определенный промежуток времени протекающего через проводник к величине этого самого промежутка времени. Измеряется в Амперах.

Проще говоря, это количественный показатель потребляемой электроэнергии вашим каждым электроприбором в отдельности или всей квартиры в целом! токи в доме Силу тока приблизительно можно сравнить с потоком воды из крана, чем больше Мы его открываем, тем больше воды выливается за единицу времени или наоборот.

Напряжение (U), ток (I) и сопротивление (R) участка цепи тесно взаимосвязаны и пропорциональны между собой по закону ОМА: I = U/R. Он звучит следующим образом- Сила тока в участке цепи обратно пропорциональна сопротивлению участка цепи и прямо пропорциональна его напряжению на концах. Напряжение всегда равно 220 В в квартире и доме или 380 В в трехфазной сети. Переменными (изменяющимися ) будут две величины Сила тока и сопротивление, которые тесно напрямую взаимосвязаны, во сколько раз уменьшается сопротивление участка цепи- во столько раз увеличивается ток в этом же участке цепи. Сопротивление участка цепи измеряется в Омах и практически не применяется для описания характеристик электросети дома. Вместо него используется потребляемая мощность, которая зависит от подключенной нагрузки или мощности потребителей электрической энергии.Вольт, ампер, Ватт

Мощность вычисляется путем умножения величины напряжения на потребляемый ток электроприбором. Иными словами, ее можно сравнить с количеством воды в литрах, которое выльется из крана. Измеряется в Ваттах. А Ватт (Киловатт= 1000 Ватт)/часах ведется учет электроэнергии. Так если в течении часа будет работать телевизор мощностью 50 Ватт, то его потребление составит 50 Ватт/час, а за 2 часа соответственно- 100 Ватт/час или 0.1 кВтч.

Пример расчета потребляемой мощности- стиральная машина потребляет из розетки 220 Вольт силу тока величиной 10 А, 10 А *220 В= 2200 Вт или 2.2 Киловатта, т. к. один Киловатт равен 1000 Ватт.

Сила тока в сети: как узнать, сколько ампер в квартире, и какой ток в розетке – переменный или постоянный?

Человек, хоть частично знакомый с электричеством, знает какой ток протекает в розетке – переменный или постоянный. Но большинство граждан, которые пользуются благами электричества ежедневно, не задумываются об этом, и зря. Ответ на вопрос прост, ведь практически вся производимая электроэнергия относится к переменному току.

Какой ток в розетках постоянный или переменный?

98% вырабатываемой энергии – это переменный ток, и домашняя проводка не исключение. Переменный ток – это тот, который периодически изменяет величину и направление. Частота измеряется в Герцах (период изменения в секунду). Переменный ток производить намного легче чем постоянный, также не вызывает сложностей передача на большие расстояния. При передачи электроэнергии величина напряжения может как увеличиваться, так и уменьшаться неоднократно, поэтому розетки делаются для переменного значения. Но также существуют электронные приборы, которые питаются постоянным током, и их нужно приводить к одному типу.
  • легко передавать на большие расстояния;
  • простое генераторное оборудование, упрощение устройства электродвигателей;
  • отсутствие полярности.
  • расчеты проводятся на максимальное значение, по факту используется не более 70%;
  • электромагнитная индукция, приводящая к неравномерному распределению электричества по сечению проводника;
  • сложность проверки и измерения параметров;
  • увеличивается сопротивление, так как используется не весь кабель.

Для чего нужно знать сколько ампер в розетках в квартире

Сила тока измеряется в Амперах (А). Знать этот показатель необходимо, так как розетки различаются по нему.

Стандартные современные розетки рассчитаны на 6, 10 и 16 А. У советских приборов максимальный номинал равен 6,3 А. Для потребителей с повышенной мощностью выбирают соответствующие розетки, у которых повышенная стойкость к большим значениям.

Знание основ электротехники пригодится при поездке в другую страну. У государств могут различаться стандарты частоты и напряжений, и невозможно будет подключить привезенные с собой приборы к местной сети. Каждая розетка имеет маркировку, на которой указана максимальная сила тока.

Сила тока в розетке

Стандартами частоты в России и европейских странах является 50 Гц, в Америке – 60 Гц. Сила тока в квартирах ограничивается 16 Амперами, в частных загородных домах это значение может достигать 25 А.

Токовые измерения проводят различными способами. Можно опытным путем – подключить прибор в розетку, и если он функционирует — электроэнергия есть. Существуют мультиметры, которые замеряют значения, контрольные лампы, тестеры и индикаторы напряжения.

220 В

Номинальным напряжением в домашней сети является 220В, но на практике это значение может варьироваться. Отклонения до 20-25 Вольт.

На этот показатель влияют:

  • техническое состояние,
  • нагрузки сети,
  • загруженность электростанций.

Более 220 В

Для силовой электрической техники используются трехфазные сети, которые питаются напряжением 380 Вольт и выше. Чаще всего их можно встретить в электротранспорте – трамваях, троллейбусах, электричках. Для такого напряжения токовая нагрузка составляет до 32 А.

Сколько ампер в розетке 220В

Домашние розетки делаются на разную силу тока, которую она способна пропустить. Наибольшее значение – 16 А для напряжения в 220 Вольт. Каждая электророзетка промаркирована – если отмечено значение 6 А, то суммарная подключаемая нагрузка не более этого числа.

Нагрузка которую может выдержать соединение определяется по сумме подключенных электроприборов. Например микроволновая печь, стиральная машина подключаются через отдельные розетки не менее чем на 16 А, а для осветительных приборов, телефонов требуются устройства с меньшим номиналом.

Живя в ХХІ веке, используя блага научных открытий, человеку обязательно знать тип и величину тока, протекающего в домашней сети. Без этой информации невозможно купить электророзетку, правильно рассчитать нагрузку для электроприборов. Стандарты различаются для разных стран, и это стоит учитывать при поездке в другое государство.

Полезное видео

Розетки 220 Вольт

По умолчаниюПо имени (A — Я)По имени (Я — A)По цене (возрастанию)По цене (убыванию)По рейтингу (убыванию)По рейтингу (возрастанию)По модели (A — Я)По модели (Я — A)

15255075100

Распродажа

10/16A 250V, с экранированными контактами..

Распродажа

Распродажа

1 912.00 р. 1 529.60 р.

частотный разделитель каналов..

Распродажа

1 599.00 р. 1 279.20 р.

возможность обратной связи..

Распродажа

Распродажа

16 А , защитные шторки..

0/16A 250V, экранированные контакты, автоматические клеммы..

Распродажа

2 054.00 р. 1 643.20 р.

10/16A 250V, экранированные контакты, автоматические клеммы..

Распродажа

10/16A 250V, экранированные контакты..

Распродажа

10/16A 250V, экранированные контакты..

10/16 А 250 В, экранированные контакты, клеммы с автоматическим зажимом..

Распродажа

10/16 А 250 В, экранированные контакты, клеммы с автоматическим зажимом, защитные шторки..

Силовые розетки Bticino выпускаются одномодульные и двухмодульные. Оба варианта имеют защитные шторки для безопасности детей. Кроме того двухмодульные розетки Bticino, как и все итальянские розетки , выпускаемые для Европы и РФ, снабжены заземляющими контактами Shuko (от нем. Schutz-Kontakt ).

Что произойдет, если подключить прибор на 110 В к розетке 220 В?

Это зависит от характера устройства, но, как правило, если напряжение слишком высокое, он потребляет слишком много тока и сгорает, если напряжение слишком низкое, он потребляет слишком мало тока и / или не работает в соответствии со своими номинальными характеристиками. Математическая справка — закон Ома и треугольник мощности.

Если вы подключаете устройство на 110 В к розетке 220 В (то же, что и от 120 до 230 В, 240 В), вы можете только надеяться, что какое-то защитное устройство отключит питание устройства.
В противном случае:
Если это какое-то нагревательное устройство (тостер, лампа накаливания, лампа, лампочка, обогреватель), оно будет выделять тепло, почти в четыре раза превышающее расчетное, и, вероятно, сгорит за минуты или секунды. Если это какой-то привод переменного тока, он, скорее всего, очень быстро сгорит. Если это универсальный привод (или DC), он может раскручиваться вдвое по сравнению с предполагаемой скоростью и быстро изнашиваться.

Если вы подключите устройство на 220 В к розетке на 110 В , оно обычно прослужит немного дольше, прежде чем разрядится.
Но:
Механический привод переменного тока может не запуститься, или он может потреблять больше тока, чем рассчитано, и в конечном итоге перегореть.

Изоляция обычно не проблема, если нет серьезных недостатков в конструкции. Это ток — ваш враг, кусок провода, нагретый до 110 В (120 В), превратится в предохранитель на 220 В (230 В, 240 В) при прочих равных условиях. Определение мощности / нагрузки обычно выполняется инженером-проектировщиком для соответствия техническим характеристикам, установленным инженером-электриком.

Во всех случаях вы, вероятно, нарушаете местные правила, потому что в большинстве стран электрические розетки предназначены для подключения только определенных вилок, чтобы вы не допустили несоответствия напряжения устройства и напряжения розетки. В некоторых странах вас могут серьезно наказать, если что-то пойдет не так, потому что вы попробовали это сделать.

Вы можете просто купить преобразователь 110 В на 220 В, чтобы прибор работал бесперебойно.

Адаптеры и преобразователи в Европе от Рика Стивса

Рик Стивс

Европейская электрическая система отличается от нашей по двум параметрам: по напряжению тока и по форме вилки.Но поскольку большинство современных гаджетов имеют «двойное напряжение», то есть работают как от американского, так и от европейского тока, в наши дни большинству путешественников не нужно ничего делать, кроме как взять с собой несколько недорогих переходников.

Американские электроприборы работают от 110 вольт, а европейские — 220 вольт . Если вы видите диапазон напряжений, напечатанный на изделии или его вилке (например, «110–220»), вы в порядке в Европе. Некоторые старые приборы имеют переключатель напряжения с маркировкой 110 (США) и 220 (Европа) — переключайте его на 220 во время упаковки.

Даже старые устройства (и некоторые портативные игровые системы) не приспособлены для работы с разницей напряжения — вам понадобится отдельный громоздкий преобразователь. (Вместо этого подумайте о замене прибора или путешествии без него.)

Небольшой адаптер позволяет подключать вилки американского типа (два плоских штыря) к розеткам британской или ирландской розеток (для которых нужны три прямоугольных контакта) или к розеткам в континентальной Европе (для которых нужны два круглых контакта). Адаптеры недорогие — возьмите с собой горсть. Даже в поездке только на континент я держу под рукой британский адаптер для пересадок в Лондон.Прикрепите адаптер к вилке устройства с помощью изоленты или изоленты; иначе он легко может остаться в розетке (в отелях и пансионах иногда бывает коробка с брошенными адаптерами — спросите). Многие розетки в Европе встраиваются в стену; ваш адаптер должен быть достаточно маленьким, чтобы штыри правильно входили в розетку. (Хотя вы можете приобрести универсальные адаптеры, которые работают по всей Европе — или даже по всему миру, они, как правило, большие, тяжелые и дорогие.)

Хотя розетки в Швейцарии и Италии отличаются от розеток на континенте, большинство континентальных адаптеров работают нормально.(Швейцарские и итальянские розетки принимают вилки с тремя тонкими круглыми штырями, расположенными в треугольной форме; двухконтактные адаптеры работают до тех пор, пока у них нет более толстых штырей в стиле «Schuko» — и если корпус адаптера достаточно мал, чтобы вставьте в утопленную розетку.) Если по какой-либо причине ваш адаптер не работает в вашем отеле, просто обратитесь за помощью; отели с необычными розетками всегда найдут подходящий адаптер, чтобы одолжить вам.

В некоторых номерах бюджетных отелей есть только одна электрическая розетка, занятая лампой.В хозяйственных магазинах в Европе продаются дешевые трехсторонние переходники, которые позволяют не выключать лампу во время зарядки аккумулятора камеры и смартфона.

Могу ли я подключить 220 В к 240 В

Могу ли я подключить 220 В к 240 В

Можно ли использовать 220 В как 240 В?

Да, то же самое. Напряжение росло с годами. Когда-то 110/220 В, затем 115/230 В, а теперь 120/240 В. 120/240 — технически правильный термин, но обычно используются другие.

Могут ли устройства на 220 В бесперебойно работать с 240 В?

Чтобы ответить на этот вопрос, однако, в США более мощный источник питания.Причина использования 240 В в том, что это стандартизованная линия электропередачи. Некоторые европейские страны используют 220 В, в то время как другие говорят 230 В, но большинство устройств принимают 220–240 В.

Можно ли использовать 220 В в Великобритании в дополнение к вышеуказанному?

Вы можете использовать свою бытовую технику в Англии, если стандартное напряжение в вашей стране составляет 220–240 В (например, в Великобритании, Европе, Австралии и большинстве стран Азии и Африки). Однако, если разницы в напряжении нет, вы можете (на свой страх и риск) попробовать какое-то время использовать устройство.

Может ли Малайзия использовать 220 В в дополнение к вышеуказанному?

Все электрические розетки в Малайзии обеспечивают стандартное напряжение 240 В при стандартной частоте 50 Гц. Вы можете использовать все свои устройства в Малайзии, если выходное напряжение в вашей стране составляет от 220 до 240 В. В этом случае. большая часть Европы, Австралии, Великобритании и большей части Африки и Азии.

Могу ли я использовать 250 В в 240 В?

250 В — это максимальное напряжение, при котором вы должны его использовать.

Что произойдет, если я подключу кабель 250 В к усилителю 220–240 В?

Если вы живете в стране, где напряжение в сети составляет 220–240 В, усилитель будет работать с током (в амперах), который может выдержать кабель.250 В — это максимальное напряжение, при котором вы должны его использовать.

Есть ли разница между 220В и 240В?

Да, это то же самое. Напряжение росло с годами. Когда-то 110/220 В, затем 115/230 В, а теперь 120/240 В. 120/240 — технически правильный термин, но обычно используются другие.

Есть ли разница между 220 и 240 вольт?

Разница между розетками 220В и 240В — все, что нужно знать. Хороший пример — Мексика использует 220 вольт, в то время как США и Канада используют 240 вольт, но регион один.Большинство бытовых приборов рассчитано на напряжение 220 вольт и ниже. Это означает, что они могут работать от 220 или 240 вольт.

Что происходит, когда я подключаю 120 В к 240 В?

Когда вы подключаете устройство на 110 В к розетке 220 В (например, от 120 до 230 В, 240 В), все, на что вы можете надеяться, — это то, что некоторые устройства безопасности будут подавать питание на устройство. В противном случае электричество — ваш враг, горячий провод 110 В (120 В) превращается в предохранитель 220 В (230 В, 240 В), когда все остальное остается прежним.

Какие устройства используют 240 вольт?

Какие устройства используют розетки на 240 вольт?

Что происходит, когда вы подключаете 110 В к 220 В?

Могу ли я зарядить телефон 220В?

Как указывалось в других ответах, независимо от того, сколько энергии используется, вы не можете заряжать аккумулятор 220 В от источника питания 110 В.Вы можете зарядить его только до половины его стоимости. Время зарядки зависит от мощности, т. Е. От поставленной мощности.

Какие устройства используют 220 вольт?

Устройства на 220 и 240 В

Что такое 220В 240В?

Устройство с двойным напряжением может потреблять как 110–120 В, так и 220–240 В. К счастью, многие дорожные машины имеют два напряжения, поэтому вам понадобится только один переходник, также называемый дорожным адаптером. Эти устройства должны показывать приблизительно 100/240 В (V = напряжение) или 110-220 В переменного тока (VAC = вольт, переменный ток).

Как узнать, есть ли у меня розетка 220В?

Если вы посмотрите на электрическую схему 220–110 В, вы обнаружите, что цепь 220 В имеет два горячих провода. Это означает, что розетка на 220 В должна иметь дополнительный горячий разъем, который обычно делают из латуни. Также согласно условности горячие пряди окрашиваются в черный и красный цвет.

Какое напряжение в сети в Малайзии?

В чем разница между 110 В и 220 В?

110 В — это обычно ток, который кабель может выдержать до того, как он станет опасным, и напряжение на розетке.220 В — это просто 2 провода, которые вместе создают двойное напряжение розетки. А

220 и 230 вольт одинаковы?

Подключение к розетке на 230 В идентично подключению к розетке 220 или 240 В. Когда электричество подключено к дому, коммунальное предприятие обеспечивает электричество на 120 и 240 вольт с плюс-минус 5%. Следовательно, все 220, 230 и 240 вольт взаимозаменяемы и подключены одинаково.

Как использовать 110V в стране 220V?

Выбор подходящего инвертора или трансформатора

Могу ли я подключить 230В к 220В?

Да, это возможно.Разница всего 10 вольт. Электроника с номинальным напряжением 230 вольт работает от 200 и 250 вольт. Выходное напряжение никогда не устанавливается на уровне 220 или 110 вольт (в зависимости от страны).

Как выбрать преобразователь напряжения?

230В и 240В одинаковы?

В Северной Америке термины 220 В, 230 В и 240 В относятся к одному и тому же системному напряжению. Однако 208 В относится к другому уровню напряжения системы. Напряжение падает с электрическими зарядами, отсюда обычно ссылаются на напряжения ниже 120 и 240, например 110, 115, 220 и 230.

Что такое вилка G-типа?

Могу ли я подключить 220 В к 240 В

Что происходит, когда устройство подключено к ненадлежащему напряжению

Некоторые современные электронные продукты могут использовать двойное напряжение за счет импульсного источника питания с широким диапазоном входного сигнала. Это позволило использовать некоторые приборы в диапазоне напряжений от 100 до 240 В.

Однако другие электроприборы или приборы с определенными требованиями к напряжению могут работать только при определенном напряжении.Это приборы с одним входным напряжением, такие как электрические приборы с двигателями, обогреватели, осветительные приборы, фен, чайник и т. Д.

Если прибор на 110 В подключен к источнику питания 220 В, мощность может увеличиться в четыре раза в момент включения прибора. , и прибор будет быстро работать в условиях перенапряжения. Это может сопровождаться задымлением и вспышкой, либо плавкий предохранитель расплавится и защитная деталь будет повреждена. Электронный прибор с одним входом может быть поврежден из-за сгорания некоторых компонентов.

Если устройство 220 В подключено к источнику питания 110 В, результирующая мощность будет 1/4 при включении устройства. Лампа будет очень тусклой, а двигатель остановится или будет вращаться очень медленно. В общем, эти приборы вообще не будут работать. Кухонное оборудование с нагревательными элементами всегда будет в рабочем состоянии и может не достигать нужной температуры. Электронное устройство с одним входом не может быть серьезно повреждено, но не будет нормально работать.

Как правило, электрические приборы с одним входным напряжением могут нормально работать только при номинальном напряжении.Это приведет к электрическому ожогу и может вызвать серьезные последствия, такие как пожар, если входное напряжение будет выше нормального. Но если входное напряжение ниже номинального, электроприбор не может нормально работать или просто выйдет из строя, а также может вызвать повреждение двигателя. Только при номинальном напряжении электроприборы могут нормально работать. Если вы обнаружите, что ваш прибор представляет собой прибор с одним напряжением, а напряжение в этом месте не является рабочим напряжением, вы можете купить преобразователь напряжения для преобразования напряжения, чтобы обеспечить бесперебойную и безопасную работу вашего прибора.Вы можете приобрести преобразователь напряжения на наших сайтах.

Нидерланды (Голландия) — силовые вилки и розетки: нужен дорожный адаптер?

Планируете ли вы посетить Нидерланды (Голландия)? Выберите страну проживания, чтобы автоматически проверить, нужен ли вам адаптер для розетки питания или преобразователь напряжения в Нидерландах (Голландия).

Выберите страну проживания inSelect страны проживания в Соединенных Штатах AmericaUnited KingdomCanadaAustraliaIrelandSingaporeNew ZealandIndiaHong Kong AfghanistanÅland IslandsAlbaniaAlgeriaAmerican SamoaAmerican Дева IslandsAndorraAngolaAnguillaAntigua и BarbudaArgentinaArmeniaArubaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBrazilBritish Виргинского IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos ( Килинг) IslandsColombiaComorosCongo-BrazzavilleCongo-KinshasaCook IslandsCosta RicaCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland (Мальвинские) острова Фарерские IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGua temalaGuernseyGuineaGuinea-BissauGuyanaHaitiHondurasHungaryIcelandIndonesiaIranIraqIsle из ManIsraelItalyIvory CoastJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKosovoKuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacauMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmar (Бирма) NamibiaNauruNepalNetherlands (Голландия) Новый CaledoniaNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorthern Mariana IslandsNorwayOmanPakistanPalauPalestinePanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarRéunionRomaniaRussiaRwandaSaint BarthélemySaint Елены, Вознесения и Тристан-да CunhaSaint Киттс и NevisSaint LuciaSaint MartinSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Томе и PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSint MaartenSlovakiaSloveniaSolomon Ислан dsSomaliaSouth AfricaSouth KoreaSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyriaTaiwanTajikistanTanzaniaThailandTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос IslandsTuvaluUgandaUkraineUnited арабских EmiratesUruguayUzbekistanVanuatuVatican CityVenezuelaVietnamWallis и FutunaWestern SaharaYemenZambiaZimbabwe

Электричество в Нидерландах (Голландия)

В Нидерландах (Голландия) силовые вилки и розетки типа C и F.Стандартное напряжение составляет 230 В, а стандартная частота — 50 Гц.

Какие вилки и розетки в Нидерландах (Голландия)?

В Нидерландах (Голландия) вилки и розетки имеют тип C и F. Посмотрите следующие изображения.

  • Тип C: также известен как стандартная вилка «евро». Эта розетка также работает с вилкой E и вилкой F.
  • Тип F: также известен как «Schuko». Эта розетка также работает с вилкой C и вилкой E.
Тип C: Эта розетка также работает с вилкой E и FT Тип F: Эта розетка также работает с вилкой C и E

Купите сетевой (дорожный) адаптер

Мы не • Продам адаптеры для розеток.Мы отсылаем вас к Amazon, где вы найдете большой выбор адаптеров для путешествий.

Вы также можете проверить карту, чтобы увидеть использование различных вилок и розеток в мире.

Какое напряжение и частота в Нидерландах (Голландия)?

В Нидерландах (Голландия) стандартное напряжение 230 В, частота 50 Гц. Вы можете использовать свои электроприборы в Нидерландах (Голландия), если стандартное напряжение в вашей стране находится в пределах от 220 до 240 В (как в Великобритании, Европе, Австралии и большей части Азии и Африки).Производители учитывают эти небольшие отклонения. Если стандартное напряжение в вашей стране находится в диапазоне 100–127 В (как в США, Канаде и большинстве стран Южной Америки), вам понадобится преобразователь напряжения в Нидерландах (Голландия). Вы также можете рассмотреть возможность использования комбинированного адаптера сетевой вилки / преобразователя напряжения.

Если частота в Нидерландах (Голландия) (50 Гц) отличается от частоты в вашей стране, не рекомендуется использовать вашу бытовую технику. Но если разницы в напряжении нет, вы можете (на свой страх и риск) попробовать использовать прибор в течение короткого времени.Будьте особенно осторожны с движущимися, вращающимися и связанными со временем приборами, такими как часы, бритвы или электрические тепловентиляторы.

Чтобы быть уверенным, проверьте этикетку на приборе. Некоторым приборам не нужен преобразователь. Если на этикетке указано «ВХОД: 100–240 В, 50/60 Гц», устройство можно использовать во всех странах мира. Это обычное дело для зарядных устройств планшетов / ноутбуков, фотоаппаратов, сотовых телефонов, зубных щеток и т. Д.

Дорожные адаптеры от Amazon

Что-нибудь еще нужно?

Проверьте, собрали ли вы все для поездки, в КОНТРОЛЬНОМ СПИСКЕ TRAVELER’S !

Хотите добавить информацию на эту страницу? Присылайте нам свои предложения или замечания.Прочтите наш отказ от ответственности.

типов 220 розеток | Networx

Большинство домов в США подключено к 110-вольтовым выключателям и розеткам (фактически от 110 до 125 вольт). Однако в некоторых более крупных приборах используется более высокое напряжение, и им может потребоваться 220 розеток. Есть два основных типа розеток 220, и они требуют дополнительных мер предосторожности и специального оборудования для проводки. Подключение 220 розеток может быть особенно опасным, поэтому наймите профессионального электрика, если у вас нет большого опыта в электромонтажных работах.Если вы делаете это самостоятельно, всегда отключайте питание цепи перед началом.

Розетки с тремя и четырьмя контактами

Сушилки, плиты, холодильники и другие крупные приборы требуют 220 розеток. Требования к питанию четко обозначены на приборах, которые также имеют вилки одного из двух необычных типов.

Традиционная конфигурация для 220 розеток имеет три больших прямоугольных отверстия, расположенных в виде треугольника. Два слота предназначены для черного и красного проводов цепи.Третий слот предназначен для нейтрального провода, который должен быть подключен к нулевой шине в электрическом щите.

Большинство новых сушилок и других приборов имеют вилки с четырьмя отверстиями, как того требуют последние электрические нормы. В этом типе установки заземляющий и нейтральный провода подключаются отдельно, для чего требуется специальный тип электрического кабеля. Розетка 220 также должна быть подключена к специальному типу двойного прерывателя. Его можно подключить к паре выключателей на 110 вольт, но при отказе может сработать только один выключатель, если оба выключателя не слиплись.

Посторонние устройства

Отведенные 220 розеток необходимы для сушильных машин и другой крупной бытовой техники. Однако, если у вас есть чужой компьютер или другое устройство, не стоит переделывать домашнюю проводку и добавлять 220 розеток. Вместо этого используйте либо базовый повышающий трансформатор напряжения для небольшой электроники (но не фены), либо сверхмощный трансформатор для больших нагрузок. Они преобразуют 220-вольтовые устройства для безопасной работы от 120-вольтового напряжения и обычно имеют вилки европейского или азиатского типа.Не пытайтесь использовать переходные вилки в розетках 110 для прямого подключения устройств, рассчитанных на 220 розеток. Вы можете повредить компоненты и создать опасность возгорания.

Чтобы подключить сушилку, холодильник, плиту или другой крупный прибор, может потребоваться установка розеток 220 с тремя или четырьмя контактами. Оба требуют специального оборудования и, возможно, профессиональной помощи.

Чтобы работа была сделана правильно, наймите профессионального электрика.

Обновлено 12 марта 2018 г.

Почему в мире так много разных напряжений, вилок и розеток?

Ученым уже несколько десятилетий известно, что выбросы твердых частиц с судов могут оказывать сильнейшее влияние на низколежащие слоисто-кучевые облака над океаном.На спутниковых снимках части океанов Земли испещрены яркими белыми полосами облаков, которые соответствуют морским путям. Эти искусственно освещенные облака являются результатом крошечных частиц, производимых кораблями, и они отражают больше солнечного света обратно в космос, чем невозмущенные облака, и гораздо больше, чем темно-синий океан под ними. Поскольку эти «корабельные следы» блокируют часть солнечной энергии от достижения поверхности Земли, они предотвращают некоторое потепление, которое в противном случае произошло бы.

Формирование корабельных следов регулируется теми же основными принципами, что и все образования облаков.Облака появляются естественным образом, когда относительная влажность превышает 100 процентов, вызывая конденсацию в атмосфере. Отдельные облачные капли образуются вокруг микроскопических частиц, называемых ядрами конденсации облаков (CCN). Вообще говоря, увеличение CCN увеличивает количество облачных капель при уменьшении их размера. Через явление, известное как Эффект Туми , эта высокая концентрация капель увеличивает отражательную способность облаков (также называемую альбедо ). Источники CCN включают аэрозоли, такие как пыль, пыльца, сажа и даже бактерии, а также антропогенные загрязнения с заводов и кораблей.В удаленных частях океана большинство CCN имеют естественное происхождение и содержат морскую соль от ударов океанских волн.

Спутниковые снимки показывают «следы кораблей» над океаном: яркие облака, которые образуются из-за частиц, выброшенных кораблями. Джефф Шмальц / Группа быстрого реагирования MODIS / GSFC / NASA

Целью проекта MCB является рассмотрение вопроса о том, может ли намеренное добавление большего количества морской соли CCN к низким морским облакам охладить планету. CCN будет образовываться путем распыления морской воды с судов.Мы ожидаем, что распыленная морская вода мгновенно высохнет в воздухе и образует крошечные частицы соли, которые поднимутся в облачный слой за счет конвекции и будут действовать как семена для облачных капель. Эти сгенерированные частицы будут намного меньше, чем частицы от ударов волн, поэтому будет только небольшое относительное увеличение массы морской соли в атмосфере. Цель состоит в том, чтобы создать облака, которые будут немного ярче (на 5-10 процентов) и, возможно, более продолжительными, чем обычные облака, в результате чего больше солнечного света будет отражаться обратно в космос.

« Солнечное вмешательство в климат » — это общий термин для таких проектов, как наш, которые связаны с отражением солнечного света для уменьшения глобального потепления и его наиболее опасных последствий. Другие предложения включают разбрызгивание отражающих силикатных шариков на полярные ледяные щиты и введение материалов с отражающими свойствами, таких как сульфаты или карбонат кальция, в стратосферу. Ни один из подходов в этой молодой области недостаточно изучен, и все они несут потенциально большие неизвестные риски.

Вмешательство солнечного климата , а не , замена для сокращения выбросов парниковых газов, что необходимо. Но такое сокращение не повлияет на потепление от существующих парниковых газов, которые уже находятся в атмосфере. Поскольку последствия изменения климата усиливаются и достигаются переломные моменты, нам могут потребоваться варианты предотвращения самых катастрофических последствий для экосистем и жизни человека. И нам потребуется четкое понимание как эффективности, так и рисков, связанных с технологиями солнечного воздействия на климат, чтобы люди могли принимать информированные решения о том, следует ли их внедрять.

Наша команда, базирующаяся на Вашингтонский университет , Исследовательский центр Пало-Альто (PARC) и Тихоокеанская северо-западная национальная лаборатория объединяют экспертов в области моделирования климата, взаимодействия аэрозолей и облаков, динамики жидкости и распылительных систем. Мы видим несколько ключевых преимуществ в повышении яркости морских облаков по сравнению с другими предлагаемыми формами воздействия солнечного климата на климат. Использование морской воды для генерации частиц дает нам свободный, обильный источник экологически безвредного материала, большая часть которого будет возвращена в океан в результате осаждения.Кроме того, MCB может быть выполнен с уровня моря и не будет зависеть от самолетов, поэтому затраты и связанные с ними выбросы будут относительно низкими.

Воздействие частиц на облака носит временный и локальный характер, поэтому эксперименты с MCB можно проводить на небольших площадях и в короткие периоды времени (возможно, распыление в течение нескольких часов в день в течение нескольких недель или месяцев) без серьезного воздействия на окружающую среду или глобальный климат. Эти небольшие исследования все же дадут важную информацию о влиянии осветления.Более того, мы можем быстро прекратить использование MCB с очень быстрым прекращением его действия.

Солнечное вмешательство в климат — это общий термин для проектов, которые включают отражение солнечного света для уменьшения глобального потепления и его наиболее опасных последствий.

Наш проект охватывает три важнейшие области исследований. Во-первых, нам нужно выяснить, можем ли мы надежно и предсказуемо увеличить отражательную способность. Для этого нам нужно количественно оценить, как добавление сгенерированных частиц морской соли изменяет количество капель в этих облаках, и изучить, как облака ведут себя, когда в них больше капель.В зависимости от атмосферных условий MCB может влиять на такие вещи, как скорость испарения облачных капель, вероятность выпадения осадков и время жизни облаков. Количественная оценка таких эффектов потребует как моделирования, так и полевых экспериментов.

Во-вторых, нам нужно больше моделирования, чтобы понять, как MCB повлияет на погоду и климат как на местном, так и на глобальном уровне. Крайне важно изучить любые негативные непредвиденные последствия с помощью точного моделирования, прежде чем кто-либо подумает о реализации. Наша команда изначально фокусируется на моделировании реакции облаков на дополнительные CCN.В какой-то момент нам придется проверить нашу работу с мелкомасштабными полевыми исследованиями, которые, в свою очередь, улучшат региональное и глобальное моделирование, которое мы будем запускать, чтобы понять потенциальные воздействия MCB при различных сценариях изменения климата.

Третьей важной областью исследований является разработка распылительной системы, которая может производить частицы такого размера и концентрации, которые необходимы для первых небольших полевых экспериментов. Ниже мы объясним, как мы решаем эту проблему.

Одним из первых шагов в нашем проекте было определение облаков, наиболее подверженных осветлению.Путем моделирования и наблюдательных исследований мы определили, что наилучшей целью является слоисто-кучевых облаков , которые являются маловысотными (около 1-2 км) и неглубокими; нас особенно интересуют «чистые» слоисто-кучевые облака, в которых мало CCN. Увеличение альбедо облаков с добавлением CCN обычно сильно в этих облаках, тогда как в более глубоких и более высококонвективных облаках их яркость определяют другие процессы. Облака над океаном, как правило, представляют собой чистые слоисто-кучевые облака, что хорошо, потому что повышение яркости облаков над темными поверхностями, такими как океан, приведет к наибольшему изменению альбедо.Они также удобно расположены рядом с жидкостью, которую мы хотим распылить.

В явлении, называемом эффектом Туми, облака с более высокой концентрацией мелких частиц имеют более высокое альбедо, что означает, что они обладают большей отражающей способностью. Вероятность появления дождя в таких облаках меньше, а удерживаемая облачная вода будет поддерживать высокое альбедо. С другой стороны, если сухой воздух сверху облака смешивается (унос), облако может производить дождь и иметь более низкое альбедо. В полной мере влияние MCB будет заключаться в сочетании эффекта Туми и этих настроек облака. Роб Вуд

Основываясь на нашем типе облака, мы можем оценить количество генерируемых частиц, чтобы увидеть измеримое изменение альбедо. Наш расчет включает типичные концентрации аэрозолей в чистых морских слоисто-кучевых облаках и увеличение концентрации CCN, необходимое для оптимизации эффекта осветления облаков, который, по нашим оценкам, составляет от 300 до 400 на кубический сантиметр. Мы также принимаем во внимание динамику этой части атмосферы, называемой морским пограничным слоем, учитывая как глубину слоя, так и примерно трехдневную продолжительность жизни частиц в нем.С учетом всех этих факторов, по нашим оценкам, одна система распыления должна непрерывно подавать примерно 3х10 15 частиц в секунду в облачный слой, который покрывает около 2000 квадратных километров. Поскольку вероятно, что не каждая частица достигнет облаков, мы должны стремиться к тому, чтобы на порядок или два больше.

Мы также можем определить идеальный размер частиц на основе начальных исследований моделирования облаков и соображений эффективности. Эти исследования показывают, что распылительная система должна генерировать капли морской воды, которые при высыхании превращаются в кристаллы соли диаметром всего 30–100 нанометров.Если размер меньше, то частицы не будут действовать как CCN. Частицы размером более пары сотен нанометров по-прежнему эффективны, но их большая масса означает, что на их создание тратится энергия. А частицы, размер которых значительно превышает несколько сотен нанометров, могут иметь негативный эффект, поскольку они могут вызвать выпадение дождя, которое приведет к потере облаков.

Нам необходимо четкое понимание как эффективности, так и рисков, связанных с технологиями солнечного воздействия на климат, чтобы люди могли принимать информированные решения о том, применять ли их.

Для создания сухих кристаллов соли оптимального размера требуется распыление капель морской воды диаметром 120–400 нм, что на удивление трудно сделать с точки зрения энергоэффективности. Обычные форсунки, в которых вода проходит через узкое отверстие, создают туман диаметром от десятков микрометров до нескольких миллиметров. Чтобы уменьшить размер капель в десять раз, давление через сопло должно увеличиться более чем в 2000 раз. Другие распылители, такие как ультразвуковые распылители в домашних увлажнителях, также не могут производить достаточно маленькие капли без чрезвычайно высоких частот и требований к мощности.

Решение этой проблемы потребовало нестандартного мышления и опыта в производстве мелких частиц. Это где Пришел Арман Нойкерманс .

После успешной карьеры в HP и Xerox, специализирующихся на производстве частиц тонера и струйных принтеров, в 2009 году к Нойкермансу обратились несколько выдающихся ученых-климатологов, которые попросили его применить свой опыт в создании капель морской воды. Он быстро собрал кадры добровольцев — в основном инженеров и ученых на пенсии ., и в течение следующего десятилетия эти самопровозглашенные «старые соли» решили эту задачу. Они работали в лаборатории Кремниевой долины, взятой напрокат, используя оборудование, купленное в их гаражах или из собственных карманов. Они исследовали несколько способов получения желаемого распределения частиц по размеру с различными компромиссами между размером частиц, энергоэффективностью, технической сложностью, надежностью и стоимостью. В 2019 году они переехали в лабораторию PARC, где у них есть доступ к оборудованию, материалам, объектам и другим ученым, имеющим опыт в аэрозолях, гидродинамике, микротехнологии и электронике.

Тремя наиболее многообещающими методами, идентифицированными командой, были шипучие форсунки, распыление соленой воды в сверхкритических условиях и электрораспыление для формирования конусов Тейлора (которые мы объясним позже). Первый вариант был признан наиболее простым для быстрого масштабирования, поэтому команда продвинулась вперед. В шипучей форсунке сжатый воздух и соленая вода перекачиваются в один канал, где воздух проходит через центр, а вода кружится по сторонам.Когда смесь выходит из сопла, она производит капли размером от десятков нанометров до нескольких микрометров, с подавляющим числом частиц желаемого диапазона размеров. Шипучие форсунки используются в самых разных областях, включая двигатели, газовые турбины и покрытия распылением.

Ключ к этой технологии заключается в сжимаемости воздуха. Когда газ течет через ограниченное пространство, его скорость увеличивается с увеличением отношения давлений на входе и выходе.Это соотношение сохраняется до тех пор, пока скорость газа не достигнет скорости звука. Когда сжатый воздух покидает сопло со звуковой скоростью и попадает в окружающую среду, которая находится под гораздо более низким давлением, воздух подвергается быстрому радиальному расширению, которое разрывает окружающее водяное кольцо на крошечные капли.

Соавтор Гэри Купер и стажер Джессика Медрадо тестируют шипучую насадку внутри палатки. Кейт Мерфи

Нойкерманс и компания обнаружили, что шипучая форсунка работает достаточно хорошо для небольших испытаний, но эффективность — энергия, необходимая на каплю правильного размера — все еще требует повышения.Два основных источника отходов в нашей системе — это необходимое количество сжатого воздуха и большая часть слишком больших капель. Наши последние усилия были сосредоточены на изменении конструкции путей потока в сопле, чтобы требовать меньших объемов воздуха. Мы также работаем над фильтрацией крупных капель, которые могут вызвать дождь. И чтобы улучшить распределение капель по размеру, мы рассматриваем способы увеличения заряда капель; отталкивание между заряженными каплями будет препятствовать коалесценции, уменьшая количество капель слишком большого размера.

Хотя мы делаем progress с шипучей насадкой, никогда не помешает иметь запасной план. И поэтому мы также изучаем технологию электроспрея , которая может дать спрей, в котором почти 100 процентов капель находятся в пределах желаемого диапазона размеров. В этом методе морская вода подается через излучатель — узкое отверстие или капилляр — в то время как экстрактор создает большое электрическое поле. Если электрическая сила аналогична величине поверхностного натяжения воды, жидкость деформируется в конус, обычно называемый конусом Тейлора .При превышении некоторого порогового напряжения наконечник конуса излучает струю, которая быстро распадается на сильно заряженные капли. Капли разделяются, пока не достигнут своего рэлеевского предела , точки, где отталкивание заряда уравновешивает поверхностное натяжение. К счастью, типичная проводимость поверхностной морской воды (4 Сименса на метр) и поверхностное натяжение (73 миллиньютона на метр) дают капли желаемого размера. Конечный размер капель можно даже настроить с помощью электрического поля до десятков нанометров, с более узким распределением по размерам, чем мы получаем от механических сопел.

На этой схеме (не в масштабе) изображена система электрораспыления, которая использует электрическое поле для создания водяных конусов, которые распадаются на крошечные капли. Кейт Мерфи

Электрораспыление относительно просто продемонстрировать с помощью одной пары эмиттер-экстрактор, но один эмиттер производит только 10 7 –10 9 капель в секунду, тогда как нам нужно 10 16 –10 17 в секунду. Для производства такого количества требуется массив размером до 100 000 на 100 000 капилляров.Создание такого массива — непростая задача. Мы полагаемся на методы, которые чаще ассоциируются с облачными вычислениями, чем с настоящими облаками. Используя те же методы литографии, травления и осаждения, которые используются при создании интегральных схем, мы можем изготовить большие массивы крошечных капилляров с выровненными экстракторами и точно расположенными электродами.

Изображения, полученные с помощью сканирующего электронного микроскопа, показывают капиллярные излучатели, используемые в системе электрораспыления. Кейт Мерфи

Тестирование наших технологий представляет собой еще один набор проблем.В идеале мы хотели бы знать начальное распределение капель соленой воды по размерам. На практике это практически невозможно измерить. Большинство наших капель меньше длины волны света, что исключает возможность бесконтактных измерений на основе светорассеяния. Вместо этого мы должны измерять размеры частиц ниже по потоку, после того, как шлейф эволюционировал. Наш основной инструмент, называемый , сканирующий спектрометр электрической подвижности , измеряет подвижность заряженных сухих частиц в электрическом поле для определения их диаметра.Но этот метод чувствителен к таким факторам, как размер комнаты и воздушные потоки, а также к тому, сталкиваются ли частицы с предметами в комнате.

Для решения этих проблем мы построили герметичную палатку объемом 425 кубометров, оснащенную осушителями, вентиляторами, фильтрами и набором подключенных датчиков. Работа в палатке позволяет нам распылять в течение более длительных периодов времени и с помощью нескольких форсунок, при этом концентрация частиц или влажность не становятся выше, чем мы наблюдаем в поле. Мы также можем изучить, как струи распыления от нескольких сопел взаимодействуют и развиваются с течением времени.Более того, мы можем более точно имитировать условия над океаном и настраивать такие параметры, как скорость и влажность воздуха.

Часть команды в испытательной палатке; Слева направо: «Old Salts» Ли Гэлбрейт и Гэри Купер, Кейт Мерфи из PARC и стажер Джессика Медрадо. Кейт Мерфи

В конечном итоге мы перерастем палатку , и нам придется переехать в большое закрытое пространство, чтобы продолжить наши испытания. Следующим шагом будет тестирование на открытом воздухе для изучения поведения шлейфа в реальных условиях, хотя и не с достаточно высокой скоростью, чтобы мы могли измерить возмущение облаков.Мы хотели бы измерить размер и концентрацию частиц далеко за нашим распылителем, от сотен метров до нескольких километров, чтобы определить, поднимаются ли частицы или опускаются вниз, и насколько далеко они распространяются. Такие эксперименты помогут нам оптимизировать нашу технологию, ответив на такие вопросы, как нужно ли добавлять тепло в нашу систему, чтобы побудить частицы подняться в облачный слой.

Данные, полученные в ходе этих предварительных испытаний, также будут полезны для наших моделей. И если результаты модельных исследований будут обнадеживающими, мы можем перейти к полевым экспериментам, в которых облака становятся достаточно яркими для изучения ключевых процессов.Как обсуждалось выше, такие эксперименты будут проводиться в течение небольшого и короткого времени, так что любое воздействие на климат не будет значительным. Эти эксперименты обеспечат критическую проверку нашего моделирования и, следовательно, нашей способности точно предсказать воздействие MCB.

До сих пор неясно, может ли MCB помочь обществу избежать наихудших последствий изменения климата, или это слишком рискованно или недостаточно эффективно, чтобы быть полезным. На данный момент мы недостаточно знаем, чтобы отстаивать его реализацию, и мы определенно не предлагаем его в качестве альтернативы сокращению выбросов.Цель нашего исследования — предоставить политикам и обществу данные, необходимые для оценки MCB как одного из подходов к медленному потеплению, предоставляя информацию как о его потенциале, так и о рисках. С этой целью мы отправили наши экспериментальные планы на рассмотрение Национальное управление океанических и атмосферных исследований США и для открытой публикации в рамках исследования Национальной академии наук США исследований в области воздействия солнечного климата. Мы надеемся, что сможем пролить свет на возможность использования MCB в качестве инструмента для повышения безопасности планеты.

Статьи с вашего сайта

Статьи по теме в Интернете

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.