Site Loader

Что фильтрует сетевой фильтр: ammo1 — LiveJournal

Сетевой фильтр — одно из устройств, про которое существует множество мифов и домыслов.

Некоторые уверены, что сетевые фильтры чуть ли не стабилизируют напряжение и делают его полезным, тёплым и ламповым. Другие уверены, что сетевой фильтр — это обычный удлинитель.

Сегодня я расскажу, что же на самом деле представляет из себя сетевой фильтр и чем он полезен.


Итак, внешне любой сетевой фильтр — это колодка с несколькими розетками (от одной до восьми), выключателем, предохранителем и сетевым проводом (от 0.5 до 5 метров).

Электронный компонент у сетевого фильтра обычно один — это варистор (обычно на 470 вольт).

Пока напряжение на варисторе ниже порогового значения, он имеет очень большое сопротивление (единицы ГОм), когда напряжение превышает порог, сопротивление варистора резко снижается до десятков Ом.

Фактически, варистор, включенный с розетками параллельно, при превышении порогового напряжения, создаёт короткое замыкание в цепи. Если импульс высокого напряжения очень короткий, варистор просто сгладит его, «замкнувшись» на время импульса.

К сожалению варистор в сетевом фильтре не поможет при превышении сетевого напряжения (например из-за перекоса фаз при отгорании ноля (http://ammo1.livejournal.com/224208.html), так как его номинал слишком большой — 470 вольт, а напряжение при перекосе фаз может составлять 250-380 вольт.

Если бы варистор был бы на меньшее напряжение (380-400 вольт), он мог бы спасать нагрузку при перекосе фаз, создавая короткое замыкание и отключая предохранитель (при этом сам варистор скорее всего взорвался бы).

В сетевом фильтре Buro я обнаружил сложную конструкцию. Варистор защищён многоразовым предохранителем и отдельная неоновая лампа показывает, сработал ли предохранитель.

Второй компонент сетевого фильтра — автоматический предохранитель. Он отключает розетки при коротком замыкании или превышении допустимого тока. Предохранитель многоразовый. Если он «вылетел» нужно подождать несколько минут и нажать его кнопку.

Выключатели у сетевых фильтров бывают однополюсные (узкие) и двухполюсные (широкие). Лучше покупать сетевые фильтры с широкими выключателями — они отключают оба сетевых провода и не может возникнуть ситуация, когда выключатель отключил ноль, а фаза осталась на всех устройствах, подключённых к фильтру.

У большинства сетевых фильтров на корпусе есть отверстия для крепления на стену, но у самых дешёвых (например, Гарнизон), таких отверстий нет.

Большинство сетевых фильтров имеют провод сечением 0.75 мм². Он обеспечивает максимальный ток нагрузки до 10 А (мощность до 2200 Вт), однако лучше не превышать ток 6 А (1320 Вт) и не подключать через фильтр мощные электроприборы (чайники, нагреватели). С большой вероятностью предохранитель фильтра будет «вылетать» при закипании чайника, включённого в фильтр.

Главная польза от сетевого фильтра — выключатель и предохранитель. Что касается защиты от импульсных помех с помощью варистора, нужно понимать, что в блоках питания устройств, которым требуется такая защита, варисторы уже есть, а устройствам с традиционным трансформаторным блоком питания такая защита не нужна.

© 2015, Алексей Надёжин

P.S. Этот пост впервые был опубликован в моём блоге в 2015 году: https://ammo1.livejournal.com/631987.html


Основная тема моего блога — техника в жизни человека. Я пишу обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё я делаю репортажи из интересных мест и рассказываю об интересных событиях.
Добавьте меня в друзья здесь. Запомните короткие адреса моего блога: Блог1.рф и Blog1rf.ru.

Второй мой проект — lamptest.ru. Я тестирую светодиодные лампы и помогаю разобраться, какие из них хорошие, а какие не очень.

Новый универсальный подход к защите сетей переменного тока

Перенапряжение, вызванное разрядами молний, и сбои в электросети переменного тока могут оказывать пагубное воздействие на широкий ряд электронного оборудования. Ущерб, полученный в результате перенапряжения и перегрузок по току, приводит к дорогостоящим простоям оборудования и затратам на ремонт, снижает доверие потребителей к производителю. Необходим новый подход к защите входного питания по переменному току, который обеспечит интеграцию надежной схемы защиты. При этом помехи в режиме нормальной работы приложения должны быть минимальными, чтобы уменьшить износ компонентов и продлить срок службы оборудования.

Мы рассмотрим методологию скоординированной защиты цепей, в которой используется новые гибридные защитные устройства. В статье описываются специальные функции в новом универсальном решении по защите питания по переменному току, а также результаты лабораторных испытаний Bourns по моделированию выбросов в электросети переменного тока и при разрядах молний. мы приведем несколько примеров приложений, в которых обеспечивается новый уровень защиты, позволяющий в максимальной мере повысить надежность и сократить время простоя.

Анализ защиты цепей переменного тока с использованием металлооксидных варисторов (MOV) диаметром 14 и 20 мм показал, что полная защита сети достигается путем такой координации группы защитных компонентов, когда каждый из них защищает находящиеся поблизости компоненты (см. рис. 1).


Рис. 1. Вольтамперные характеристики компонентов универсальной защиты по переменному току и варисторов

Требования к функциям универсальной защиты по переменному току

К настоящему времени не появилось универсальное решение для защиты от перегрузки по току и перенапряжения. Такое решение с максимально полной защитой по напряжению независимо от величины бросков входного напряжения позволило бы смягчить требования к расчетным допускам и связанные с этим затраты на компоненты последующих цепей. Идеальный подход к защите цепи требует автоматического сброса в каждом полупериоде, чтобы при необходимости обеспечивалась непрерывная защита. для универсальной защиты источника переменного тока от перенапряжения защитное устройство должно ограничивать пропускание мощности для предотвращения возгорания в случае отказа или повреждения компонента.

В соответствии с этими требованиями компания Bourns разработала новое гибридное защитное устройство IsoMOV. Это решение по самозащите работает в комбинации с sMD-предохранителями singl Fuse от Bourns, высокоскоростным защитным (HSP) устройством TBU и компонентами тиристорного устройства защиты от перенапряжения (TISP). Такой комплексный подход, обеспечивающий защиту оборудования при питании переменным током от выбросов, скачков и перенапряжения, в полной мере подходит для критически важных приложений, где недопустим отказ или обслуживание затруднено. защитная схема, в которой применяется компонент IsoMOV от Bourns, позволяет повысить надежность, улучшить время безотказной работы системы и гарантийное обслуживание, а также уменьшить расходы в течение жизненного цикла.

Принцип работы защитной схемы.

На рисунке 2 показана схема защиты. Сетевое питание подается на левый порт, а защищаемое оборудование подключается к правому порту. Проследим работу схемы в направлении справа налево, начав с TISP-устройства.


Рис. 2. Диаграмма цепи универсальной защиты переменного тока

Устройство TISP представляет собой тиристор, который срабатывает, если напряжение на защищаемой нагрузке превышает номинальное напряжение пробоя. при выборе TISP-устройства следует понимать, что его напряжение пробоя сыграет ключевую роль в предотвращении повреждений, вызванных чрезмерным напряжением в защищаемой цепи. Напряжение пробоя позволяет точно подобрать максимальное напряжение, необходимое для защиты той или иной цепи. Ниже рассматриваются рабочие режимы универсальной схемы защиты от сети переменного тока.

1. Если бросок напряжения вызовет срабатывание TISP-устройства, закоротится линия переменного тока. избыточный потребляемый ток переведет высокоскоростное защитное устройство TBU от Bourns в состояние блокировки. при блокировании этим устройством чрезмерного тока нагрузка и TISP-устройство, по сути, отключаются от линии переменного тока во избежание повреждений.

2. При блокировке тока высокоскоростным защитным TBU-устройством входное напряжение продолжает расти, пока не сработает гибридное защитное устройство IsoMOV от Bourns, чтобы ограничить напряжение величиной максимального номинального напряжения блокировки HSP TBU-устройства.

3. Если напряжение продолжит увеличиваться, пока ток через устройство IsoMOV не превысит номинальное значение броска напряжения устройства, устройство SinglFuse от Bourns разомкнется и необратимо отключит цепь от линии переменного тока.

Если защищаемой нагрузке потребуется ток, превышающий ток срабатывания HSP TBU-устройства, оно перейдет в состояние блокировки, и схема вернется в прежний рабочий режим (шаги 2 и 3). Когда входное напряжение переменного тока принимает нулевое значение, схема возвращается в исходное состояние и может либо возобновить нормальную работу (что обычно происходит в случаях появления перенапряжения, вызванного разрядом молнии), либо снова отключится в следующем полупериоде (обычно в случаях выбросов напряжения).

При разработке подобной схемы защиты сетей с переменным напряжением 220 в необходимо учесть ряд дополнительных ограничений. Как известно, напряжение ограничения варистора существенно зависит от тока. Эта зависимость сохраняется и у гибридных устройств IsoMOV от компании Bourns. Схемотехнический подход, представленный на рисунке 2, должен быть немного видоизменен.

Как правило, для защиты от сетей 220 в от перенапряжения применяются варисторы или гибриды IsoMOV с рабочим напряжением 275-300 В. При прохождении тестов согласно стандарту IEC61000-4-5 в сеть подается импульс 4 кВ через сопротивление 2 Ом, что обеспечивает ток величиной 2 кА(форма импульса: 8/20 мкс). Лучший варистор и IsoMOV при таком уровне тока ограничит напряжение на уровне 850-900 В, что может оказаться критичным для применения TBU c максимальным импульсным напряжением 850 В (см. ВАХ варистора MOV-14D471K на рисунке 3). Потребуется заменить тиристор в выходном каскаде с шунтирующей характеристикой на ограничивающий TVs-диод 430-450 В, например в корпусе SMCJ, благодаря чему напряжение ограничится уровнем 700 В (макс.

).


Рис. 3. ВАХ варистора MOV-14D471K

Если оставить тиристор в выходном каскаде, то тогда при его срабатывании все напряжение приложится к TBU и оно может выйти из строя. Следовательно, в выходном каскаде сетей 220 В требуется ограничивающий (TVs-диод, варистор), а не закорачивающий компонент, как тиристор.

На рисунке 4 показана реакция схемы на бросок напряжения в сети переменного тока. TISP-устройство активируется при напряжении около 220 В. Это типичное значение, выбранное для сетей электропитания с номинальным напряжением 120 В AC. Напряжение выброса задается равным 200 В AC. Входное и выходное напряжения отслеживаются, пока не сработает TISP-устройство, после чего напряжение нагрузки падает до нуля в оставшейся части каждого полупериода. Далее мы увидим, что протестированные нами нагрузки защищенных импульсных источников питания (SMPS) продолжали работать при этих бросках напряжения.


Рис. 4. Принцип работы универсальной защиты питания при выбросах напряжения в сети переменного тока

На рисунке 5 показана реакция схемы на смоделированный согласно IEC 61000-4-5 импульс разряда молнии величиной 6000 в с длительностью 8×20 мкс по разным уровням. Такие выбросы длятся всего около 50 мкс. Продолжительность переходных процессов при коммутации и других импульсоподобных помехах в электросетях, как правило, меньше. Заметим, что эти тесты не проводились в сети переменного тока. На практике TBU-устройства, перешедшие в состояние блокировки из-за разряда молнии или в результате другого переходного процесса, остаются в этом состоянии до тех пор, пока напряжение линии электропередачи не примет следующее нулевое значение.


Рис. 5. Реакция схемы на переходный процесс при разряде молнии; напряжение: 6 кВ; длительность по разным уровням: 8×20 мкс

Из осциллограммы на рисунке 4 видно, что входное напряжение ограничено устройством IsoMOV от Bourns величиной около 400 В.

Генератор получает ток от конденсатора, заряженного до 6000 В. Следовательно, управляющее напряжение составляет 6000 В — 400 В = 5600 В. Поскольку характеристический импеданс генератора равен 2 Ом, расчетный пиковый ток равен 2800 А.

На рисунке 6 показана осциллограмма того же сигнала, что и на рисунке 5, но во временном масштабе 1 мкс/дел, что соответствует 10-кратному увеличению изображения переходного процесса, возникшего в результате разряда молнии. Вид сигнала в канале 4 показывает реакцию TISP-устройства на перенапряжение. В этих измерениях явно присутствует звон. Звон в канале 1, главным образом, вызван переключением генератора импульсов, взаимодействующего с высоковольтным пробником. Заметим, что в канале 4 (при защищенной нагрузке) звон не наблюдается. Кроме того, некоторый звон в канале 1 являются реакцией трансформатора, управляющего напряжением переменного тока, когда TBU-устройство внезапно переключается в состояние блокировки.


Рис. 6. Более полное представление осциллограммы переходного процесса в схеме в результате разряда молнии 6 кВ, 8×20 мкс

Из этого теста можно сделать вывод, что в случае довольно-таки сильного разряда молнии пиковое напряжение, испытываемое защищаемой нагрузкой, составляет всего около 230 В.

Приложение: выбросы напряжения в уличной системе освещения

Уровень мощности 150-Вт уличного светодиодного светильника с импульсным преобразователем и функцией регулировки яркости задан равным 50 Вт.

На рисунке 7 показаны сигналы напряжения и тока от электросети 120 В АС. Ток светильника имеет почти синусоидальную форму; при этом потребляемая им мощность между нулевыми точками тока и напряжения невелика. Нагрузка мала и имеет емкостной характер. Пиковое потребление тока составляет примерно 600 мА.


Рис. 7. Напряжение и сила тока уличного светильника при мощности 50 Вт в электросети 120 В АС

На рисунке 8 показан светильник при той же мощности и напряжении питания 277 В АС. В светильник установлена схема защиты (с использованием того же 220-В TISP-устройства). Видно, что питание светильника прекращается при напряжении около 210 В. При тестировании приложения в лаборатории Bourns наблюдался небольшой звон в линии переменного тока — так отреагировала индуктивность лабораторного силового трансформатора на внезапную блокировку тока TBU-устройством.


Рис. 8. Напряжение и ток уличного светильника при установленной мощности 50 Вт в защищенной линии 277 В AC

Заметим, что светильник потреблял большие токи (до 3 А) до срабатывания TISP-устройства. В точке его срабатывания на каждом пике каждого полупериода светильник потреблял около 600 вт!

Выше упоминалось, что в нормальном режиме работы электросети пиковый ток светильника составил около 600 мА, а форма сигнала была близка к синусоидальной. В этом тесте выбросы напряжения не повлияли на светоотдачу осветительного прибора.

Приложение: компьютерный блок питания.

Стандартный блок питания ноутбуков с выходной мощностью 64 вт при входном напряжении 90-240 в АС работает с резистивной нагрузкой. Потребляемая мощность: 43 вт.

На рисунке 9 показаны сигналы напряжения и тока от сети 120 в АС. Ток источника питания имеет почти синусоидальную форму. Источник работает в режиме коммутации при нулевом токе (ZVS). Нагрузка мала и имеет емкостной характер. Пиковое потребление тока: около 700 мА.


Рис. 9. Сигналы напряжения и тока 64-Вт компьютерного блока питания при нагрузке 43 Вт в электросети 120 В АС

На рисунке 10 показан блок питания компьютера с той же нагрузкой 43 вт, работающий при 277 в АС с установленной схемой защиты (с использованием того же 220-в TISP-устройства). Испытания в лаборатории Bourns показали, что напряжение источника питания прерывается при 210 в. И в этот раз наблюдался звон в линии переменного тока в результате реакции индуктивности лабораторного силового трансформатора на внезапную блокировку тока HSP TBU-устройством.


Рис. 10. Напряжение и ток компьютерного блока питания мощностью 64 Вт при нагрузке 43 Вт в защищенной линии 277 В АС

Заметим, что в тесте Bourns источник питания потреблял большие токи (до 3 А) перед срабатыванием TISP-устройства. в точке срабатывания на каждом пике каждого полупериода источник потреблял около 600 вт! И, как уже упоминалось, в нормальном рабочем режиме сети источник питания потреблял пиковый ток 700 мА, форма сигнала которого была близка к синусоидальной. величина этого тока контролировалась защитным TBU-устройством.

Было установлено, что выброс напряжения не повлиял на работу источника питания.

Компромиссы между сопротивлением и эффективностью

В активной схеме защиты по переменному току TBU-устройство включено последовательно в линию сети. В лабораторной установке Bourns использовались четыре параллельно установленных устройства TBU-CA085-500-WH. Номинальный ток срабатывания каждого из них составляет 750 мА; сопротивление: 10,7 Ом; напряжение отключения: 850 в. Ток срабатывания составного устройства: 3 А; сопротивление: 2,7 Ом.

В таком виде схема защиты представляет собой компромиссное решение между стоимостью и дополнительной стоимостью, обеспечиваемой сопротивлением TBU-устройства. величина тока срабатывания не важна, если его достаточно для поддержки пускового и рабочего токов защищаемой нагрузки. При срабатывании TISP-устройства ток короткого замыкания из линии переменного тока мгновенно отключит TBU-устройство.

Сопротивление TBU-устройства может вызывать потери мощности, как видно из рисунков 11-12. Заметим, что более высокие пиковые токи, возникающие в «режиме защиты» с ограничением, в нормальном рабочем режиме приведут к увеличению потерь в сравнении с токами, форма которых близка к синусоидальной. В таких случаях следует найти приемлемый компромисс между стоимостью и эффективностью.


Рис. 11. Эффективность защитного устройства для уличного светильника при 50 Вт


Рис. 12. Эффективность защитного устройства для блока питания компьютера с нагрузкой 43 Вт

Выводы

Универсальная конструкция, в которой используется SMD-предохранитель SinglFuse вместе с гибридным защитным устройством IsoMOV, обеспечивает постоянную защиту по переменному току с помощью четырех небольших компонентов. Прежде реализация такой защиты не представлялась возможной с помощью компонентов гораздо большего размера, что повышало риск возгорания и разрушения.

Компания Bourns предлагает современные компоненты, площадь которых не превышает одного квадратного дюйма, для защиты входов сетей переменного тока. Благодаря тому, что работа этих компонентов точно скоординирована, они защищают друг друга и нагрузку от перенапряжения, вызванного разрядами молний, шума и скачков напряжения в сетях переменного тока, а также в любых других состояниях перенапряжения, которые в противном случае могли бы повредить эксплуатируемое оборудование.

Опубликовано в журнале «Электронные Компоненты» №12, 2021 г.

Техподдержка: [email protected]

Варистор MOV для 220 В переменного тока [4978]: Sunrom Electronics

  • Все продукты 2378
  • Защита цепи 35
  • МОВ/ЗОВ 3

Защита электроники от скачков и скачков напряжения

Код продукта 4978

Доступный Мы отправляем в тот же день , если заказ сделан до 13:00 (исключая праздничные дни), то курьер обычно занимает 2-5 дней.

Доступность в режиме реального времени

На складе: 150 №.
Заводское время выполнения для большего количества: 15 дней

Количество ценообразования

Количество:

Цена (дисконтирование%)

1-49:

.11.11.11.11.11.11.11.11.11. 11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.

50-99 :

11,21 рупий/- (5%)

100-499 :

10,62 рупий/- (10%)

500-999 :

/-10,13 рупий

1000+ :

10,03 рупий/- (15%)

Загрузки
Спецификация MOV

14D471K — варисторный MOV для 220 В переменного тока

Sunrom Код продукта для заказа:

4978

переходные процессы переключения.
Многие пользователи спрашивают нас , что MOV имеет маркировку 470 В, так как же он подходит для приложения 220 В.
Позвольте мне объяснить
Сеть переменного тока, которую вы получаете, говорит, что 220 В RMS. Таким образом, пиковое напряжение составляет 308 В = 220 В x 1,4 (VPeak = VRMS × √2). Таким образом, он подходит для сетей переменного тока 220 В.

Лидеры продаж

Код продукта: 1307

1 711,00 рупий/-

Простое управление записью, чтением файлов и каталогов на USB-накопителе с помощью простых в использовании команд, подобных DOS, с последовательным интерфейсом.

Последовательный UART к USB-накопителю

Код продукта: 1453

1 100,00 рупий/-

Кабель длиной 1 метр для легкой связи ПК с микроконтроллером. Прямые провода уровня 5V/3V UART(RX/TX), создает виртуальный последовательный COM-порт на ПК.

Кабель USB-TTL UART — FTDI FT230X

Код продукта: 1113

1 925,00 рупий/-

Последовательный вход UART, простой в использовании для статических и прокручиваемых сообщений.

Подвижный светодиодный дисплей для сообщений 362×72 мм

Код продукта: 6578

145,00 рупий/-

Простое расширение USB-порта с платы на панель и монтаж с помощью болтов M3

Удлинительный кабель USB для монтажа на панель A-Match A-Female — 30 см

Код продукта: 7183

Rs.175.00/-

ARM Cortex-M3, 32-битный, 72 МГц RISC MCU 32-бит 128KB Flash 2,5V/3,3V, заменяет STM32F103C8T6

APM32F103CBT6888T6

APM32F103CBT6888T6

APM32F103C. СТМ32Ф103К8

Код продукта: 1451

950,00 рупий/-

Удобная связь вашего ПК с микроконтроллером. Прямые контакты UART (RX/TX) уровня 5 В/3 В, создание виртуального последовательного COM-порта на ПК.

Модуль USB-TTL UART — FTDI FT230X

Код продукта: 6463

1 299,00 рупий/-

Точное измерение деталей и размеров с помощью четкого цифрового дисплея. Очень полезно при проектировании печатных плат для создания посадочных мест и проверки компонентов и размеров отверстий.

Цифровой штангенциркуль, 150 мм (6 дюймов), нержавеющая сталь

Код продукта: 3901

250,00 рупий/-

Бесконтактный RFID, 3,3 В, SPI, диапазон около 3 см, на основе чипа NXP MF-RC522

14D471K Металлооксидный варистор (MOV), диск 14 мм

Артикул: 26060

5,00 EGP

14D471K Металлооксидный варистор (MOV), диск 14 мм

  • Высокое напряжение
  • Высокое значение тока
  • Двунаправленный
  • Защита от перенапряжения
  • Быстрое время отклика

В наличии

14D471K Металлооксидный варистор (MOV), диск 14 мм количество

Артикул: 26060 Категория: Варисторы

  • Описание
  • Отзывы (0)
14D471K Металлооксидный варистор (MOV), диск 14 мм

Серия MOV-14DxxxK, состоящая из 14-мм варисторных устройств с радиальными выводами, защищает от переходных перенапряжений, таких как молния, силовой контакт и силовая индукция. Металлооксидные варисторы предлагают выбор напряжения варистора от 18 В до 1800 В и среднеквадратичного напряжения от 11 В до 1100 В. Устройства имеют большой ток, высокую способность поглощения энергии и быстрое время отклика для защиты от переходных сбоев до номинального значения. пределы.

  • High voltage rating
  • High current rating
  • Bidirectional
  • Surge protection
  • Fast response time

Specifications:

Attribute Value
Varistor Voltage 470 В
Максимальное номинальное напряжение переменного тока 300 В
Максимальное номинальное напряжение постоянного тока 385 В
Clamping Voltage 775V
Clamping Current 50A
Material Metal
Energy 125J
Series MOV-14D
Diameter 16,5 мм
Максимальный импульсный ток 4500 А
Емкость 430 пФ
4 Длина40223 40mm
Thickness 5.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *