Радиосхемы. — Микросхема КР142ЕН19А- регулируемый стабилизатор напряжения
Микросхема КР142ЕН19А- регулируемый стабилизатор напряжения
категория
Схемы начинающим радиолюбителям
материалы в категории
И. НЕЧАЕВ, г. Курск
Журнал Радио, 2000 год, №6
Отечественная промышленность выпускает интересный полупроводниковый прибор — микросхему КР142ЕН19А. Она представляет собой параллельный стабилизатор напряжения.
Невысокая цена и большие функциональные возможности позволяют широко использовать микросхему в различных блоках питания и узлах аппаратуры как источник опорного напряжения либо регулируемый стабилитрон.
В отличие от обычного стабилитрона, КР142ЕН19А имеет выводы не только анода и катода, но и входа управления (рис. 1,а). Здесь под анодом будем понимать электрод, на который подается плюс стабилизируемого напряжения. Выпускается микросхема в корпусе, напоминающем транзистор (рис. 1,б).
Подавая на управляющий вход напряжение с анода (рис. 2,а) или резнетивного делителя (рис. 2,6), включенного между анодом и катодом, можно изменять напряжение стабилизации от 2,5 до 30 В.
Ток стабилизации может лежать в пределах 1…100 мА, а дифференциальное сопротивление не превышает 0,5 Ом. Наибольшая мощность рассеяния достигает 0,4 Вт, а ток входа управления — 5 мкА. Ток через резистивный делитель желательно выбирать не менее 0,5 мА.
Для постройки маломощного стабилизатора напряжения (параллельного типа) последовательно с микросхемой включают балластный резистор (R1 на рис. 2), а нагрузку подключают к выводам анода и катода, как это делают в случае с обычным стабилитроном. Рассчитывают такой стабилизатор по методике, аналогичной для стабилитрона.
Если нужно плавно изменять выходное напряжение стабилизатора, в него вводят переменный либо подстроечный резистор (рис. 3). Тогда минимальное напряжение нетрудно рассчитать по формуле: формуле: Uмин = 2.5·[1 + R2/(R3 + + R4)] В. а максимальное Uмакс = = 2.5·[1 + (R2 + R3)/R4] В. Сопротивление балластного резистора определяют так: R1 = (Uвхмин — Uвых)/(Icтмин +Iдеп+Iстмакс ). где Iстмин можно принять равным 1 мА.
Если нагрузка должна потреблять больший ток, чем может обеспечить микросхема, в стабилизатор вводят биполярный транзистор (рис. 4) соответствующей мощности. Следует заметить, что резистивный делитель в этом случае включают между выходом стабилизатора и общим проводом. В итоге получится компенсационный стабилизатор напряжения с регулирующим транзистором. Несмотря на простоту, такой стабилизатор зачастую превосходит по параметрам специализированные интегральные стабилизаторы напряжения (микросхемы серий К142, КР142).
На рис. 5 приведена схема стабилизированного блока питания с микросхемой КР142ЕН19А, который предназначен для работы с плейером, маломощным радиоприемником и другой аппаратурой. Его удобно встроить в сетевой адаптер с нестабилизированным и переключаемым выходным напряжением.
Трансформатор, диодный мост и конденсатор фильтра С1 используют от адаптера. Вместо имеющегося переключателя на одно направление придется установить аналогичный по габаритам на два направления. Большинство деталей размещают методом навесного монтажа, транзистор (КТ815А—КТ815Г, КТ817А—КТ817Г) снабжают теплоотводом. Сопротивление каждого из резисторов R3 — R5 рассчитывают по формуле: R= R2/(Uвых/2,5-1).
При испытании этого блока получились весьма хорошие результаты: коэффициент стабилизации составил несколько сотен, а амплитуда пульсаций выходного напряжения при токе нагрузки 200 мА — не более 2…3 мВ.
При налаживании блока более точно выходные напряжения устанавливают подбором резисторов R3 — R5.
Более мощный блок, который использовался для питания стационарной радиостанции Си-Би диапазона с выходной мощностью 10 Вт, был выполнен по схеме, приведенной на рис. 6. Здесь для повышения коэффициента стабилизации вместо резистора применен стабилизатор тока на полевом транзисторе, а для обеспечения выходного тока 3 А и более использован мощный составной биполярный транзистор с коэффициентом передачи тока базы 1000 и более. Выходное напряжение можно регулировать в небольших пределах (11,5…14 В) подстроенным резистором R2.
Трансформатор Т1 должен обеспечивать на обмотке II переменное напряжение около 15 В при максимальном токе нагрузки. На такой же ток подбирают диоды выпрямительного моста и транзистор VT2 (его устанавливают на теплоотвод).
При испытании блока коэффициент стабилизации при токе нагрузки 2 А оказался более 1000, а выходное сопротивление — около 0,005 Ом.
Необычное применение микросхемы КР142ЕН19А — RadioRadar
Разное
Главная Радиолюбителю Разное
Как известно, микросхема КР142ЕН19А — прецизионный аналог стабилитрона с регулируемым напряжением стабилизации, поэтому обычно используется в различных блоках питания. Однако она способна работать и в других радиолюбительских конструкциях, о которых рассказывается в статье.
Возможности использования указанной микросхемы в несколько иных режимах, по сравнению с основным назначением, обусловлены тем, что в ее состав входят такие узлы, как источник образцового напряжения и операционный усилитель с выходным каскадом на транзисторе. Функциональная схема ее приведена на рис. 1 [1], а условное обозначение и цоколевка выводов — соответственно на рис. 2,а и 2,б [2].
Рис.1. Функциональная схема КР142ЕН19А
Рис.2. КР142ЕН19А: а) Условное обозначение, б) Цоколевка выводов
Схема простейшего усилительного каскада, который можно выполнить на указанной микросхеме, приведена на рис. 3, а его передаточная характеристика — на рис. 4. Если нагрузочный резистор R2 выбран сравнительно большого сопротивления (несколько кило-ом), характеристика оказывается пологой из-за того, что узлы микросхемы потребляют ток около 1 мА. В случае же использования резистора сопротивлением менее килоома характеристика станет крутой и более линейной.
Рис.3. Усилительный каскад
Рис.4. Передаточная характеристика усилительного каскада
При работе микросхемы в линейном режиме она может быть использована в стабилизаторе напряжения (ее основное назначение), стабилизаторе тока, различных генераторах и усилителях. В нелинейном режиме она выполняет функцию компаратора с напряжением срабатывания около 2,5 В. Причем такой компаратор обладает стабильным напряжением срабатывания, определяемым источником образцового напряжения.
Несколько слов о самой микросхеме. К сожалению, один из ее недостатков, ограничивающий сферы применения, — небольшая допустимая мощность рассеяния. Так, при напряжении стабилизации 20 В максимальный ток не должен превышать 20 мА. Устранить этот недостаток нетрудно «умощнением» микросхемы с помощью транзистора (рис. 5). Основные характеристики будут определяться микросхемой, а максимальные ток и мощность — транзистором. Для указанного на схеме они составляют соответственно 4 А и 8 Вт. В случае, если на корпусе конструкции минусовое напряжение, транзистор допустимо смонтировать непосредственно на нем.
Рис.5. Умощнение микросхемы с помощью транзистора (VT1)
На рис. 6,а приведена схема маломощного стабилизатора тока. Работает он так. Ток нагрузки протекает через резистор R1. Как только напряжение на резисторе превысит 2,5 В, ток через микросхему и резистор R3 возрастет. Напряжение на нагрузке уменьшится до такого значения, при котором напряжение на входе управления микросхемы установится равным 2,5В.
Рис.6. а) Маломощный стабилизатор тока, б) Стабилизатор с транзисторным ‘усилителем’ тока
Стабилизируемый ток задается резистором R1, сопротивление которого определяют по формуле
R1 = 2,5/Iн,
где 2,5 — падение напряжения на резисторе, В; Iн — ток через нагрузку, А, который не должен превышать 0,1 А. Зная напряжение питания Uпит и указанный максимальный ток нагрузки, подсчитывают сопротивление резистора R3:
R3 = (Uпит — 2,5)/Iн.
Причем напряжение питания следует выбирать таким, чтобы на нагрузке было обеспечено требуемое напряжение, поэтому подобное устройство рекомендуется использовать, например, для зарядки аккумуляторов емкостью до 0,75 А-ч.
Эта формула нужна для определения минимального сопротивления резистора R3 для случая, когда Rн = 0 (например, КЗ). Тогда стабилизация будет, но она не нужна.
Гораздо большие возможности у другого стабилизатора (рис. 6,б) с транзисторным «усилителем» тока. Здесь сопротивление резистора R1 определяют по вышеприведенной формуле, а мощность его — исходя из протекающего максимального тока нагрузки, который может достигать 4 А с указанным на схеме транзистором.
Наличие у микросхемы высокой крутизны и удовлетворительной линейности передаточной характеристики позволяет выполнить на ее основе усилитель ЗЧ, нагрузкой которого может стать динамическая головка сопротивлением не менее 50 Ом (рис. 7,а). Хотя он не отличается высокой экономичностью, но весьма прост в изготовлении и обеспечивает выходную мощность до 150 мВт, достаточную для озвучивания небольшого помещения.
Рис.7. а) Усилитель ЗЧ, б) Предварительный усилитель
В другом усилителе (рис. 7,б), который обладает усилением около 100 раз (40 дБ) и может стать предварительным, в качестве нагрузки использован резистор R4. Коэффициент усиления здесь регулируют подстроенным резистором R1, а подбором резистора R3 в обоих усилителях устанавливают оптимальную рабочую точку, обеспечивающую максимальное неискаженное выходное напряжение.
Большой коэффициент усиления микросхемы КР142ЕН19А позволяет собирать на ней различные генераторы. В качестве примера на рис.8,а приведена схема RC-генератора, частота выходного сигнала которого близка к 1000 Гц, — она задается фазосдвигающей цепочкой C1R3C2R4C4. Цепь обратной связи R1R2C3R5 обеспечивает автоматическую установку режима по постоянному току.
На рис. 8,б показана схема другого генератора ЗЧ и одновременно акустического сигнализатора. Частотозадающим элементом в нем служит пъезоизлучатель BQ1 типа ЗП-1 (подойдет другой аналогичный). Отрицательная обратная связь по напряжению через резистор R1 обеспечивает режим по постоянному току. Генерация возникает на резонансной частоте пъезоизлучателя.
Рис.8. а) RC-генератор, б) Генератор ЗЧ и одновременно акустический сигнализатор
Преобразователь сигнала синусоидальной формы в прямоугольную допустимо выполнить по схеме, приведенной на рис. 9,а. Его чувствительность устанавливают подстроечным резистором R1 от нескольких милливольт до 2,5 В. Питают преобразователь напряжением 4…30 В, при этом амплитуду выходного сигнала можно получить от 1 В почти до половины напряжения питания, а на вход подавать сигнал частотой до 50 кГц.
Рис.9. а) Преобразователь сигнала синусоидальной формы в прямоугольную, б) Мультивибратор на двух микросхемах
На двух микросхемах удастся построить мультивибратор (рис. 9,б), на выходе которого формируется сигнал прямоугольной формы. Частота колебаний определяется емкостью конденсатора С1, номиналами резисторов R3, R4 и может лежать в широких пределах — от долей герц до десятков килогерц.
Конечно, возможности «нестандартного» использования микросхемы КР142ЕН19А не ограничиваются приведенными примерами.
Источники
- Янушенко Е. Микросхема КР142ЕН19.— Радио, 1994, №4, с. 45, 46.
- Нечаев И. Стабилизаторы напряжения с микросхемой КР142ЕН19А. — Радио, 2000, №6, с. 57, 58.
Автор: И.НЕЧАЕВ, г. Курск
Дата публикации: 22.07.2003
Мнения читателей
- geniy / 29.11.2017 — 14:54
По поводу схемы усилителя: hi-fi на нем не получишь, но для озвучки сигналов с контроллера вполне подходит, да и голосовые сообщения озвучивает нормально. А правильную схему рекомендую посмотреть в appnote для tl431. - DimoniyJ / 26.09.2015 — 08:01
Полный бред. Это стабилитрон. В качестве усилителя работать будет ужасно. Перепутана цоколевка - серж / 14.06.2015 — 12:25
ууужжжас — слов нет - goblin / 01.10.2014 — 09:40
я считаю это респект! хочу изготовить унч!!! добавив ещё одну тл-ку и пару комплиментарных полевиков(истоковый повторитель) по 10а и 100в при питалове 30в однополяра получим переменки 30в минус 2.5(мин.насыщения 1й тл-ки как унч)минус (два напряжения отсечки прим 10в и стабилизаторе 2й тл-ки) и умножим на средний коэфф для унч 0.75.. =13.5 вольт! на 4 ома это будет 43 ватта! а 2 устройства (стерео) поместятся в коробок!!! - Юрий / 04.01.2014 — 15:35
Все Вы забыли что это все же стабилитрон - сэр / 27.04.2012 — 17:30
Катод и Анод перепутан на всех схемах и цоколёвка тоже, автору НЕУД. - [email protected] / 18.04.2012 — 06:21
подумать иногда нипомешает придурок -это кто возле дурака - Татьяна / 01.02.2012 — 16:41
У Придурка в голове — хрень полная (на то он и придурок)) - Татьяна / 01.02.2012 — 16:41
У Придурка в голове — хрень полная (на то он и придурок)) - придурок / 04.03.2011 — 16:41
хрень полная - anatoliy563 / 12.01.2011 — 10:01
Очень полезная информация. Спасибо. - ІГОР / 23.10.2010 — 05:57
Искать в литературе нету времени,на компе это проще. СПАСИБО. - Slava / 25.11.2009 — 13:28
На рис. 6,а для TL431 анод с катодом перепутан
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
КР142ЕН19
Микросхема представляет собой регулируемый стабилизатор напряжения параллельного типа (интегральный аналог стабилитрона) и предназначена для использования в качестве ИОН и регулируемого стабилитрона. Изготовлена по планарно-эпитаксиальной технологии с изоляцией p-n перехода. Содержит 21 интегральный элемент. | |
Назначение выводов: 1 — опорное напряжение; 2 — анод; 3 — катод. | Схема регулирования напряжения Схема включения при минимальном |
Электрические параметры: Опорное напряжение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,44…2,55 В Входной ток по входу опорного напряжения . . . . . . . . . . . . . . . . . ≤ 5 мкА Нестабильность по напряжению опорного напряжения . . . . . . . . . ≤ 0,12%/В Нестабильность по току опорного напряжения . . . . . . . . . . . . . . . .≤ 20%/А Динамическое сопротивление . . . . . . . . . . . . . . . . . . . . . . . . . . . .≤ 0,5 Ом Предельно допустимые режимы эксплуатации: Рекомендации по применению: На схемах включения: Uка=Uоп(1+R2/R3)+Iвх,опR2 |
Понравилась статья? Поделись с друзьями!
Термостат на КР142ЕН19А CAVR.ru
Рассказать в:стройство предназначено для управления нагревательным прибором, при помощи которого, например, поддерживается оптимальная температура в овощехранилище или террариуме, инкубаторе. Благодаря использованию в качестве компаратора интегрального стабилизатора КP142Eh29A схема получилась простой. На вход компаратора А1 напряжение поступает с делителя на резисторах R1-R2-R3. Терморезистор R3 служит измерителем температуры и располагается непосредственно внутри объекта, а котором нужно поддерживать температуру. Гальваническая развязка между электросетью и терморезистором достигается использованием промежуточного реле К1 и сетевого трансформаторного адаптера для питания. Пока температура ниже требуемой сопротивление терморезистора высоко и напряжение на управляющем входе микросхемы А1 более 2,5V. Микросхема открыта, и через нее протекает ток, достаточный для срабатывания и удержания контактов реле К1. В этом случае, контакты реле находятся в противоположном показанному на схеме положении и подают открывающий так на управляющий электрод симистора VS1- Он открыт и через него поступает напряжение на нагреватель «Нагр». В это время происходит нагрев в объекте, и нагрев терморезистора R3. Терморезистор используется с отрицательным ТКС, поэтому, напряжение на управляющем входе А1 постепенно уменьшается и в какой-то момент оно становится меньше 2.5V, выходной ток микросхемы А1 падает ниже 2 мА и реле отпускает контакты. Симистор запирается и подача напряжения на нагреватель прекращается. Необходимый температурный порог устанавливается переменным резистором R1. В схеме используется реле BT24S, рассчитанное на 24V, с переключающей группой контакте. Как показали опыты, эти реле уверенно работают при снижении напряжения на обмотку до 10-12V, но все же желательно использовать другое маломощное реле, с обмоткой на 10-12V. например, отечественное РЭС-55А. При использовании симистора КУ208 мощность нагревателя может быть до 2000W (при мощности до 200W радиатор симистору не требуется). Терморезистор типа KMT, MMT, CT1. Можно и другого сопротивления, но это потребует соответственного изменения R1 и R2.
Раздел: [Конструкции простой сложности]
Сохрани статью в:
Оставь свой комментарий или вопрос:
Зарядное устройство на КР142ЕН19А
Микросхему КР142ЕН19А иногда называют «регулируемым стабилитроном». Действительно, дополненная двумя резисторами, она позволяет получить высокостабильный аналог стабилитрона с рабочим напряжением 2,5…30 В, рабочим током 1,2…100мА и максимальной рассеиваемой мощностью 400 мВт.
Чуть выше приведена схема зарядного устройства для батареи из пяти последовательно соединенных аккумуляторов ЦНК-0,45. Зарядный ток задан конденсаторами C1, С2 и составляет около 45 мА (десятая часть емкости батареи). Максимальное напряжение, которое может быть подано на батарею, определено микросхемой DA1 и соотношением сопротивлений резисторов R3-R5. Конденсатор C3 служит не столько для сглаживания пульсаций выпрямленного напряжения, сколько для шунтирования импульса зарядного тока конденсаторов С1 и С2 в момент включения устройства в сеть. Исключить превышение импульса тока через микросхему можно также увеличением сопротивления резистора R1 (правда, это приведет к увеличению рассеиваемой на нем мощности и емкости конденсаторов C1, С2). Диод VD2 необходим для предупреждения разрядки батареи после отключения устройства от сети. Если устройство используется автономно, этот диод не нужен. Тогда резистор R4 должен быть сопротивлением 3,3 кОм.
Конденсатор С1 К73-16 на напряжение 250 В и С2 — К73-17 на 400 В. Конденсатор СЗ — К50-35, постоянные резисторы — МЛТ, подстроечный R3 — СПЗ-19а. Диодный мост VD1 и диод VD2 допустимо заменить любыми диодами с рабочим током не менее 300 мА и обратным напряжением не ниже 400 В (VD2 — не менее 20 В).
Перед настройкой устройства движок резистора R3 необходимо установить в положение максимального сопротивления (верхнее по схеме). Подключив к выходу устройства вместо батареи резистор сопротивлением 220 Ом, нужно убедиться, что напряжение на нем не превышает 7 В (1,4 В, помноженные на количество аккумуляторов батареи). Далее следует зарядить полностью разряженную батарею с помощью этого устройства в течение 15 часов, измерив на начальном этапе ток зарядки (изменить его можно подбором конденсатора С2).
Затем вместо батареи подключают к устройству нагрузочный резистор сопротивлением 15кОм, включают устройство и как можно точнее устанавливают на нем подстроечным резистором напряжение, равное напряжению на заряженной батарее. Такая регулировка обеспечит по окончании зарядки остаточный ток через батарею около 0,5 мА, что безопасно для нее.
Если произведение максимального напряжения батареи на зарядный ток превысит допустимую для микросхемы мощность 400 мВт. ее следует «умощнить» транзистором средней или большой мощности, снабженным (если это нужно) теплоотводом.
Печатные платы схем:
скачать архив