Site Loader

Содержание

Математическая запись объединенного закона фарадея для электролиза. Законы Фарадея в химии и физике — краткое объяснение простыми словами

Законыэлектролиза (законыФарадея)

Поскольку прохождение электрического тока через электрохимические системы связано с химическими превращениями, между количеством протекающего электричества и количеством прореагировавших веществ должна существовать определенная зависимость. Она была открыта Фарадеем и получила свое выражение в первых количественных законах электрохимии, названных впоследствии законами Фарадея.

Первый закон Фарадея . Количества веществ, превращённых при электролизе, пропорциональны количеству электричества, прошедшего через электролит :

D m =k э q =k э It ,

D m – количество прореагировавшего вещества; k э – некоторый коэффициент пропорциональности; q – количество электричества, равное произведению силы тока I на время t . Еслиq = It = 1, то D m = k э, то есть коэффициент k э представляет собой количество вещества, прореагировавшего в результате протекания единицы количества электричества.

Коэффициент k э называется электрохимическим эквивалентом .

Второй закон Фарадея отражает связь, существующую между количеством прореагировавшего вещества и его природой: при постоянном количестве прошедшего электричества массы различных веществ, испытывающие превращение у электродов (выделение из раствора, изменение валентности), пропорциональны химическим эквивалентам этих веществ :

D m i /A i = const .

Можно объединить оба закона Фарадея в виде одного общего закона : для выделения или превращения с помощью тока 1 г-экв

любого вещества (1/z моля вещества) необходимо всегда одно и то же количество электричества, называемое числом Фарадея (или фарадеем ):

D m =It = It .

Точно измеренное значение числа Фарадея

F = 96484,52 ± 0,038Кл/г-экв.

Таков заряд, несомый одним грамм-эквивалентом ионов любого вида. Умножив это число на z (число элементарных зарядов иона), получим количество электричества, которое несёт 1 г-ион . Разделив число Фарадея на число Авогадро, получим заряд одного одновалентного иона, равный заряду электрона:

e = 96484,52 / (6,022035 × 10 23) = 1,6021913 × 10 –19 Кл.

Законы, открытые Фарадеем в 1833 г., строго выполняются для проводников второго рода. Наблюдаемые отклонения от законов Фарадея являются кажущимися . Они часто связаны с наличием неучтённых параллельных электрохимических реакций. Отклонения от закона Фарадея в промышленных установках связаны с утечками тока, потерями вещества при разбрызгивании раствора и т.д. В технических установках отношение количества продукта, полученного при электролизе, к количеству, вычисленному на основе закона Фарадея, меньше единицы и называется выходом по току :

В Т = = .

При тщательных лабораторных измерениях для однозначно протекающих электрохимических реакций выход по току равен единице (в пределах ошибок опыта). Закон Фарадея точно соблюдается, поэтому он лежит в основе самого точного метода измерения количества электричества, прошедшего через цепь, по количеству выделенного на электроде вещества.

Для таких измерений используюткулонометры . В качестве кулонометров используют электрохимические системы, в которых нет параллельных электрохимических и побочных химических реакций. По методам определения количества образующихся веществ кулонометры подразделяют на электрогравиметрические, газовые и титрационные . Примером электрогравиметрических кулонометров являются серебряный и медный кулонометры. Действие серебряного кулонометра Ричардсона, представляющего собой электролизер

(–) Ag ï AgNO 3 × aq ï Ag (+) ,

основано на взвешивании массы серебра, осевшей на катоде во время электролиза. При пропускании 96500 Кл (1 фарадея) электричества на катоде выделится 1 г-экв серебра (107 г). При пропускании n F электричества на катоде выделяется экспериментально определенная масса (D m к ). Число пропущенных фарадеев электричества определяется из соотношения

n = D m /107 .

Аналогичен принцип действия медного кулонометра.

В газовых кулонометрах продуктами электролиза являются газы, и количества выделяющихся на электродах веществ определяют измерением их объемов. Примером прибора такого типа является газовый кулонометр, основанный на реакции электролиза воды. При электролизе на катоде выделяется водород:

2Н 2 О+2е – =2ОН – +Н 2 ,

а на аноде – кислород:

Н 2 О=2Н + +½ О 2 +2е – V – суммарный объем выделенного газа, м 3 .

В титрационных кулонометрах количество вещества, образовавшегося в процессе электролиза, определяют титриметрически. К этому типу кулонометров относится титрационный кулонометр Кистяковского, представляющий собой электрохимическую систему

(–) Pt ï KNO 3 , HNO 3 ï Ag (+) .

В процессе электролиза серебряный анод растворяется, образуя ионы серебра, которые оттитровывают. Число фарадеев электричества определяют по формуле

n = mVc ,

где m – масса раствора, г;V – объем титранта, пошедший на титрование 1 г анодной жидкости;c –концентрация титранта, г-экв/см 3 .

Основы > Задачи и ответы

Электролиз. Законы Фарадея


1 Найти электрохимический эквивалент натрия. Молярная масса натрия m = 0,023 кг/моль, его валентность z=1. Постоянная Фарадея

Решение:

2 Цинковый анод массы m = 5 г поставлен в электролитическую ванну, через которую проходит ток I =2 А. Через какое время t анод полностью израсходуется на покрытие металлических изделий? Электрохимический эквивалент цинка

Решение:

3 Найти постоянную Фарадея, если при прохож-дении через электролитическую ванну заряда q = 7348 Кл на катоде выделилась масса золота m = 5 г. Химический эквивалент золота А = 0,066 кг/моль.

Решение:
Согласно объединенному закону Фарадея

отсюда

4 Найти элементарный электрический заряд е, если масса вещества, численно равная химическому эквиваленту, содержит N o =N A /z атомов или молекул.

Решение:
Ионы в растворе электролита несут на себе число элементарных зарядов, равное валентности z. При выделении массы вещества, численно равной его химическому эквиваленту, через раствор проходит заряд, численно равный постоянной Фарадея, т. е.

Следовательно, элементарный заряд

5 Молярная масса серебра m 1 =0,108 кг/моль, его валентность z 1 = 1 и электрохимический эквивалент . Найти электрохимический эквивалент золота к2, если молярная масса золота m 2 = 0,197 кг/моль, его валентность z 2 = 3.

Решение:
По второму закону Фарадея имеем

отсюда электрохимический эквивалент золота

6 Найти массы веществ, выделившихся за время t =10ч на катодах трех электролитических ванн, вклю-ченных последовательно в сеть постоянного тока. Аноды в ваннах — медный, никелевый и серебряный — опущены соответственно в растворы CuS O 4, NiS0 4 и AgN0 3 . Плотность тока при электролизе j =40 А/м2, площадь катода в каждой ванне S = 500 см. Электрохимические эквиваленты меди, никеля и серебра

Решение:
Ток в ваннах I=jS. По первому закону Фарадея массы выделившихся при электролизе веществ

7 При никелировании изделий в течение времени t = 2 ч отложился слой никеля толщины l =0,03 мм.


Найти плотность тока при электролизе. Электрохимический эквивалент никеля , его плотность

Решение:

8 Амперметр, включенный последовательно с электролитической ванной, показывает ток Io =1,5А. Какую поправку надо внести в показание амперметра, если за время t =10мин на катоде отложилась масса меди m = 0,316 г? Электрохимический эквивалент меди .

Решение:
По первому закону Фарадея m = kI t , где I-ток в цепи; отсюда I = m /k t =1,6 А, т.е. в показание амперметра надо внести поправку

9 Желая проверить правильность показаний вольтметра, его подключили параллельно резистору с известным сопротивлением R = 30 Ом. Последовательно в общую цепь включили электролитическую ванну, в которой ведется электролиз серебра. За время t =5 мин в этой ванне выделилась масса серебра m = 55,6 мг. Вольтметр показывал напряжение Vo = 6 В. Найти разность между показанием вольтметра и точным значением падения напряжения на резисторе. Электрохимический эквивалент серебра .

Решение:
По первому закону Фарадея m = kl t , где I-ток в цепи. Точное значение падения напряжения на сопротивлении V=IR = mR/k t = 4,91 В. Разность между показанием вольтметра и точным значением падения напряжения

10 Для серебрения ложек через раствор соли серебра в течение времени t =5 ч пропускается ток I =1,8 А. Катодом служат n =12 ложек, каждая из которых имеет площадь поверхности S =50 см2. Какой толщины слой серебра отложится на ложках? Молярная масса серебра m = 0,108 кг/моль, его валентность z= 1 и плотность .

Решение:
Толщина слоя

11 Две электролитические ванны включены последовательно. В первой ванне находится раствор хлористого железа (FeCl 2 ), во второй — раствор хлорного железа (FeCl 3 ). Найти массы выделившегося железа на катодах и хлора на анодах в каждой ванне при прохождении через ванну заряда . Молярные массы железа и хлора .

Решение:
В первой ванне железо двухвалентно (z1=2), во второй — трехвалентно (z2 = 3). Поэтому при прохождении через растворы одинаковых зарядов выделяются различные массы железа на катодах: в первой ванне

во второй ванне

Так как валентность атомов хлора z=1, то на аноде каждой ванны выделяется масса хлора

12 При электролизе раствора серной кислоты (CuS O 4 ) расходуется мощность N=37 Вт. Найти со-противление электролита, если за время t = 50 мин выделяется масса водорода m = 0,3 г. Молярная масса водорода m = 0,001 кг/моль, его валентность z= 1 .

Решение:

13 При электролитическом способе получения никеля на единицу массы расходуется W m = 10 кВт Ч ч/кг электроэнергии. Электрохимический эквивалент никеля . При каком напряжении производится электролиз?

Решение:

14 Найти массу выделившейся меди, если для ее получения электролитическим способом затрачено W= 5 кВт Ч ч электроэнергии. Электролиз проводится при напряжении V =10 В, к.п.д. установки h =75%. Электрохимический эквивалент меди .

Решение:
К. п.д. установки

где q-заряд, прошедший через ванну. Масса выделившейся меди m=kq; отсюда

15 Какой заряд проходит через раствор серной кислоты (CuS O 4 ) за время t =10с, если ток за это время равномерно возрастает от I 1 =0 до I 2 = 4А? Какая масса меди выделяется при этом на катоде? Электрохимический эквивалент меди .

Решение:
Средний ток

Заряд, протекший через раствор,

Нахождение заряда графическим путем показано на рис. 369. На графике зависимости тока от времени заштрихованная площадь численно равна заряду. Масса меди, выделившейся на катоде,

16 При рафинировании меди с помощью электролиза к последовательно включенным электролитическим ваннам, имеющим общее сопротивление R = 0,5 Ом, подведено напряжение V=10 В. Найти массу чистой меди, выделившейся на катодах ванны за время t =10ч. Э.д.с. поляризации e = 6 В. Электрохимический эквивалент меди .

Решение:

17 При электролизе воды через электролитическую ванну в течение времени t = 25 мин шел ток I =20 А. Какова температура t выделившегося кислорода, если он находится в объеме V= 1 л под давлением р = 0,2 МПа? Молярная масса воды m =0,018 кг/моль. Электрохимический эквивалент кислорода .

Решение:

где R= 8,31 Дж/(молъ К)-газовая постоянная.

18 При электролитическом способе получения алюминия на единицу массы расходуется W 1 m = 50 кВт Ч ч/кг электроэнергии. Электролиз проводится при напряжении V1 = 1 6,2 В. Каким будет расход электроэнергии W 2m на единицу массы при напряжении V2 = 8, 1 В?
Решение:

Окислительно-восстановительный процесс, принудительно протекающий под действием электрического тока, называется электролизом.

Электролиз проводят в электролизере, заполненном электролитом, в который погружены электроды, подсоединенные к внешнему источнику тока.

Электрод, подсоединенный к отрицательному полюсу внешнего источника тока, называется катодом . На катоде протекают процессы восстановления частиц электролита. Электрод, подсоединенный к положительному полюсу источника тока, называется анодом . На аноде протекают процессы окисления частиц электролита или материала электрода.

Анодные процессы зависят от природы электролита и материала анода. В связи с этим различают электролиз с инертным и растворимым анодом.

Инертным называется анод, материал которого не окисляется в ходе электролиза. К инертным электродам относятся, например, графитовый (угольный) и платиновый.

Растворимым называется анод, материал которого может окисляться в ходе электролиза. Большинство металлических электродов являются растворимыми.

В качестве электролита могут быть использованы растворы или расплавы. В растворе или расплаве электролита ионы находятся в хаотичном движении. Под действием электрического тока ионы приобретают направленное движение: катионы движутся к катоду, а анионы — к аноду и, соответственно, на электродах они могут разряжаться.

При электролизе расплавов с инертными электродами на катоде возможно восстановление только катионов металла, а на аноде − окисление анионов.

При электролизе водных растворов на катоде кроме катионов металла, могут восстанавливаться молекулы воды, а в кислых растворах — ионы водорода Н + . Таким образом, на катоде возможны следующие конкурирующие реакции:

(-) К: Ме n + + → Me

2H 2 O + 2 ē → H 2 + 2 OH —

2Н + + 2 ē → Н 2

На катоде в первую очередь протекает реакция с наибольшим значением электродного потенциала.

При электролизе водных растворов с растворимым анодом , кроме окисления анионов, возможны реакции окисления самого электрода, молекул воды и в щелочных растворах гидроксид-ионов (ОН -):

(+) А: Me — n ē → Ме n +

окисление аниона Е 0

2H 2 O – 4 ē O 2 + 4 H +

4OH – — 4 ē = O 2 +2H 2 O

На аноде в первую очередь протекает реакция с наименьшим значением электродного потенциала.

Для электродных реакций приведены равновесные потенциалы в отсутствии электрического тока.

Электролиз — процесс неравновесный, поэтому потенциалы электродных реакций под током отличаются от своих равновесных значений. Смещение потенциала электрода от его равновесного значения под влиянием внешнего тока называется электродной поляризацией. Величина поляризации называется перенапряжением. На величину перенапряжения влияют многие факторы: природа материала электрода, плотность тока, температура, рН-среды и др.

Перенапряжения катодного выделения металлов сравнительно невелики.

С высоким перенапряжением, как правило, протекает процесс образования газов, таких как водород и кислород. Минимальное перенапряжение водорода на катоде в кислых растворах наблюдается на Pt (h=0,1 В), а максимальное −на свинце, цинке, кадмии и ртути. Перенапряжение изменяется при замене кислых растворов на щелочные. Например, на платине в щелочной среде перенапряжение водорода h=0,31 В (см. приложение).

Анодное выделение кислорода также связано с перенапряжением. Минимальное перенапряжение выделения кислорода наблюдается на Pt-электродах (h=0,7 В), а максимальное − на цинке, ртути и свинце (см. приложение).

Из вышеизложенного следует, что при электролизе водных растворов:

1) на катоде восстанавливаются ионы металлов, электродные потенциалы которых больше потенциала восстановления воды (-0,82В). Ионы металлов, имеющие более отрицательные электродные потенциалы чем -0,82В, не восстанавливаются. К ним относятся ионы щелочных и щелочноземельных металлов и алюминия.

2) на инертном аноде с учетом перенапряжения кислорода протекает окисление тех анионов, потенциал которых меньше потенциала окисления воды (+1,23В). К таким анионам относятся, например, I — , Br — , Cl — , NO 2 — , ОН — . Анионы СO 3 2- , РO 4 3- , NO 3 — , F — — не окисляемы.

3) при электролизе с растворимым анодом, в нейтральных и кислых средах растворяются электроды из тех металлов, электродный потенциал которых меньше +1,23В, а в щелочных – меньше, чем +0,413В.

Суммарными продуктами процессов на катоде и аноде являются электронейтральные вещества.

Для осуществления процесса электролиза на электроды необходимо подать напряжение. Напряжение электролиза U эл-за – это разность потенциалов, необходимая для протекания реакций на катоде и аноде. Теоретическое напряжение электролиза (U эл-за, теор) без учета перенапряжения, омического падения напряжения в проводниках первого рода и в электролите

U эл-за, теор = E а – E к, (7)

где E а, E к — потенциалы анодных и катодных реакций.

Связь между количеством выделившегося при электролизе вещества и количеством прошедшего через электролит тока выражается двумя законами Фарадея.

I закон Фарадея. Количество вещества, образовавшегося на электроде при электролизе, прямо пропорционально количеству электричества, прошедшему через раствор (расплав) электролита:

где k – электрохимический эквивалент, г/Кл или г/А·ч; Q – количество электричества, Кулон, Q =It ; t -время, с; I -ток, А; F = 96500 Кл/моль (А·с/моль) = 26,8 А·ч/моль – постоянная Фарадея; Э- эквивалентная масса вещества, г/моль.

В электрохимических реакциях эквивалентная масса вещества определяется:

n –число электронов, участвующих в электродной реакции образования этого вещества.

II закон Фарадея. При прохождении через разные электролиты одного и того же количества электричества массы веществ, выделившихся на электродах, пропорциональны их эквивалентным массам:

где m 1 и m 2 – массы веществ 1 и 2, Э 1 и Э 2, г/моль – эквивалентные массы веществ 1 и 2.

На практике часто вследствие протекания конкурирующих окислительно-восстановительных процессов на электродах образуется меньше вещества, чем соответствует прошедшему через раствор электричеству.

Для характеристики потерь электричества при электролизе введено понятие «Выход по току». Выходом по току В т называется выраженное в процентах отношение количества фактически полученного продукта электролиза m факт. к теоретически рассчитанному m теор:

Пример 10 . Какие процессы будут протекать при электролизе водного раствора сульфата натрия с угольным анодом? Какие вещества будут выделяться на электродах, если угольный электрод заменить на медный?

Решение: В растворе сульфата натрия в электродных процессах могут участвовать ионы натрия Na + , SO 4 2- и молекулы воды. Угольные электроды относятся к инертным электродам.

На катоде возможны следующие процессы восстановления:

(-) К: Na + + ē → Na

2H 2 O + 2 ē → H 2 + 2 OH —

На катоде в первую очередь протекает реакция с наибольшим значением электродного потенциала. Поэтому на катоде будет происходить восстановление молекул воды, сопровождающееся выделением водорода и образованием в прикатодном пространстве гидроксид- ионов ОН — . Имеющиеся у катода ионы натрия Na + совместно с ионами ОН — будут образовывать раствор щелочи NaOH.

(+)А: 2 SO 4 2- — 2 ē → S 2 O 8 2-

2 H 2 O — 4 ē → 4H + + O 2 .

На аноде в первую очередь протекает реакция с наименьшим значением электродного потенциала. Поэтому на аноде будет протекать окисление молекул воды с выделением кислорода, а в прианодном пространстве накапливаются ионы Н + . Имеющиеся у анода ионы SO 4 2- с ионами Н + будут образовывать раствор серной кислоты H 2 SO 4 .

Суммарная реакция электролиза выражается уравнением:

2 Na 2 SO 4 + 6H 2 O = 2H 2 + 4 NaOH + O 2 + 2H 2 SO 4 .

катодные продукты анодные продукты

При замене угольного (инертного) анода на медный на аноде становится возможным протекание еще одной реакции окисления – растворение меди:

Cu – 2 ē → Cu 2+

Этот процесс характеризуется меньшим значением потенциала, чем остальные возможные анодные процессы. Поэтому при электролизе Na 2 SO 4 с медным анодом на аноде пройдет окисление меди, а в анодном пространстве будет накапливаться сульфат меди CuSO 4 . Cуммарная реакция электролиза выразится уравнением:

Na 2 SO 4 + 2H 2 O + Cu = H 2 + 2 NaOH + CuSO 4 .

катодные продукты анодный продукт

Пример 11 . Составьте уравнение процессов, протекающих при электролизе водного раствора хлорида никеля NiCl 2 с инертным анодом.

Решение: В растворе хлорида никеля в электродных процессах могут участвовать ионы никеля Ni 2+ , Cl — и молекулы воды. В качестве инертного анода можно использовать графитовый электрод.

На катоде возможны следующие реакции:

(-) К: Ni 2+ + 2 ē → Ni

2H 2 O + 2 ē → H 2 + 2 OH —

Потенциал первой реакции выше, поэтому на катоде протекает восстановление ионов никеля.

На аноде возможны следующие реакции:

(+) А: 2 Cl — — 2 ē → Cl 2

2H 2 O – 4 ē O 2 + 4 H + .

Согласно величинам стандартных электродных потенциалов на аноде

должен выделяться кислород. В действительности, из-за высокого перенапряжения кислорода на электроде выделяется хлор. Величина перенапряжения зависит от материала, из которого изготовлен электрод. Для графита перенапряжение кислорода составляет 1,17 В при плотности тока равной 1а/см 2 , что повышает потенциал окисления воды до 2,4 В.

Следовательно, электролиз раствора хлорида никеля протекает с образованием никеля и хлора:

Ni 2+ + 2Cl — = Ni + Cl 2 .

на катоде на аноде

Пример 12 . Вычислить массу вещества и объем газа, выделившихся на инертных электродах при электролизе водного раствора нитрата серебра AgNO 3 , если время электролиза составляет 25 мин, а сила тока 3 А.

Решение. При электролизе водного раствора AgNO 3 в случае с нерастворимым анодом (например, графитовый) на электродах протекают процессы:

(-) К: Ag + + ē → Ag ,

2H 2 O + 2 ē → H 2 + 2OH — .

Потенциал первой реакции выше, поэтому на катоде протекает восстановление ионов серебра.

(+) A: 2H 2 O – 4 ē O 2 + 4 H + ,

анион NO 3 — не окисляем.

Г или в литрах л.

Задания

5. Записать реакции электролиза на инертных электродах и вычислить массу вещества, полученного на катоде, и объем газа, выделившегося на аноде, при электролизе растворов электролитов, если время электролиза 20 минут, сила тока I =2А, если выход по току В т =100%. Какие вещества будут выделяться на электродах при замене инертного анода на металлический, указанный в задании?

№№ Электролит Металлический электрод
CuSO 4 Cu
MgCl 2 Ni
Zn(NO 3) 2 Zn
SnF 2 Sn
CdSO 4 Cd
FeCl 2 Fe
AgNO 3 Ag
HCl Co
CoSO 4 Co
NiCl 2 Ni

Окончание таблицы

Для описания процессов в физике и химии есть целый ряд законов и соотношений, полученных экспериментальным и расчетным путем. Ни единого исследования нельзя провести без предварительной оценки процессов по теоретическим соотношениям. Законы Фарадея применяются и в физике, и в химии, а в этой статье мы постараемся кратко и понятно рассказать о всех знаменитых открытиях этого великого ученого.

История открытия

Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше – в 1831 году.

В своих демонстрационных экспериментах в августе 1831 г. он использовал железный тор, на противоположные концы которого был намотан провод (по одному проводу на стороны). На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор. Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре.

Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины.

Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник – металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку.

Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея.

Ученные того периода не признали идеи Фарадея, но Максвелл взял исследования для основы своей магнитной теории. В 1836 г. Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея. Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества.

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр. ). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или , мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t , тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

B т = 100% * m расч /m теор

Законы Фарадея внесли существенный вклад в развитие современной науки, благодаря его работам мы имеем электродвигатели и генераторы электроэнергии (а также работам его последователей). Работа ЭДС и явления электромагнитной индукции подарили нам большую часть современного электрооборудования, в том числе и громкоговорители и микрофоны, без которых невозможно прослушивание записей и голосовая связь. Процессы электролиза применяются в гальваническом методе покрытия материалов, что несет как декоративную ценность, так и практическую.

Похожие материалы:

Нравится(0 ) Не нравится(0 )

Рекомендуем также

Фарадея законы — Справочник химика 21

    Наряду с системами, для которых законы Фарадея оправдываются количественно, существуют и такие, где возможны отклонения от этих законов. Так, например, расчеты по законам Фарадея окажутся ошибочными в случае электролитической ванны, состоящей из двух платиновых электродов, погруженных в растнор металлического калия в жидком аммиаке. Такой раствор, как проводник со смешанной электропроводностью, обладает заметной металлической проводимостью, и значительная доля электронов в процессе электролиза способна непосредственно переходить с электрода в раствор, не вызывая никакого химического превращения. Подобные же явления наблюдаются при прохождении тока через газы. Одиако такие системы уже не будут истинными электрохимическими системами, состоящими только из проводников первого и второго рода. В истинных электрохимических системах переход электронов с электрода в раствор и из раствора на электрод обязательно связан с химическим превращением и, следовательно, полностью подчиняется законам Фарадея. Законы Фарадея, являясь, таким образом, естественным и неизбежным результатом самой природы электрохимического превращения, должны в то же время рассматриваться как наиболее надежный критерий истинности электрохимических систем.[c.282]
    Открытие М. Фарадеем законов электролиза позволило организовать в конце девятнадцатого века в относительно малых объемах получение каустической соды, алюминия и другие электрохимические производства,в частности получение хлора. [c.13]

    ФАРАДЕЯ ЗАКОНЫ — основные законы электролиза, выражающие связь между количеством электричества, прошедшего через электролит, количеством образовавшегося или разложившегося на электродах вещества и природой этих веществ. В соответствии с Ф. з. количество вещества т, выделившееся при электролизе, прямо пропорционально его химическому эквиваленту Е и количеству электричества, прошедшего через электролит, q = т  [c.259]

    Из установленных Фарадеем законов электролиза вытекало, что электричество, подобно веществу, обусловлено существованием, движением и взаимодействием мельчайших частиц (см. гл. 5). Фарадей вел речь об ионах, которые можно рассматривать как частицы, переносящие элекфичество через раствор. Однако в течение следующего полустолетия ни он и никто другой не занимался серьезно изучением природы таких ионов, хотя работы в этом направлении вообще-то велись. В 1853 г. немецкий физик Иоганн Вильгельм Гитторф (1824—1914) установил, что одни ионы перемещаются быстрее других. Это наблюдение привело к появлению понятия число переноса — характеристики, зависящей от скорости, с которой отдельные ноны переносят электрический ток. Однако даже после того, как химики научились рассчитывать эту скорость, вопрос о природе ионов оставался открытым. [c.118]

    ФАРАДЕЯ ЗАКОНЫ, основные законы электролиза, отражающие общий закон сохранения в-ва в условиях протекания электрохим. р-ции. Установлены М. Фарадеем в 1833-34, Согласно 1-му закону, масса в-ва т, прореагировавшего в процессе электролиза, прямо пропорциональна силе тока I и времени электролиза г, т. е, кол-ву пропущенного электричества Q=lt (предполагается, что I не зависит от Р, в противном [c.57]

    Обычно на электродах имеют место одновременно несколько электрохимических реакций, поэтому лишь некоторые электрохимические системы можно иопользовать для измерения количества электричества с помощью /специальных приборов — кулонометров, принцип действия которых основан на пр(имене-нии закона Фарадея. Уже Гельмгольц высоко оценил значение открытия Фарадеем закона электролиза, поскольку благодаря этому открытию и используя атомно-молекулярные представления были сделаны выводы о корпускулярных свойствах электричества . [c.309]

    Законы Фарадея. Течение анодных и катодных реакций подчиняется определенным закономерностям, открытым Фарадеем (законы Фарадея)  [c.337]

    Зависимость между количеством прошедшего через раствор электричества и массой прореагировавшего на электроде вещества устанавливается законами Фарадея (законы электролиза). [c.28]

    ФАРАДЕЯ ЗАКОНЫ 1) количество в-ва, прореагировавшего на электроде при пропускании пост, электрич. тока, пропорционально силе тока и длительности электролиза 2) при пост, кол-ве пропущенного через электрод электричества массы прореагировавших в-в пропорциональны их хим. эквивалентам. Оба закона можно выразить ф-лой т = kq = (MIFn)q, где т — масса в-ва, выделившегося на электроде, k а М — соотв. электрохим. эквивалент и мол. масса этого в-ва, п — число электронов, участвующих в р-ции, q — электрич. заряд, пропущенный через электролит, F — число Фарадея, равное (96484,56 0,27) Кл/моль. [c.609]


    Открытый в 1834 г. Фарадеем закон, устанавливающий зависимость между количеством электричества, необходимым для электрохимического превращения вещества в процессе окисления или восстановления на электроде, и массой образовавшегося продукта, был положен в свое время в основу кулонометрии — метода электрохимического анализа, название которого связано с единицей измерения электрического заряда. [c.516]

    Кулонометрия включает группу методов, основанных на измерении количества электричества, необходимого для электрохимического превращения определяемого вещества [12]. В основе метода лежит открытый в 30-х годах прошлого века Фарадеем закон, устанавливающий связь между количеством вещества Р и количеством израсходованного электричества Q  [c. 304]

    КУЛОНОМЕТРИЯ, электрохимический метод исследования и анализа, основанный на измерении кол-ва электричества Q, прошедшего через. электролизер при электрохим. окислении или восстановлении в-ва. Согласно Фарадея закону, Q связано с кoл-вo f электрохимически превращаемого в-ва Р ур-нием Р = 0 /96500, где А — электрохим. эквивалент этого в-ва. Различают прямую К., когда в электродной р-ции участвует только определяемое в-во, к-рое электрохимически активно до конца электролиза, и косвенную К., или кулонометрич. титрование (К. т.), при к-рой, независимо от электрохим. активности определяемого в-ва, в электролизер вводят электрохимически активный вспомогат. реактив, продукт превращения к-рого (кулонометрич. титрант) химически взаимодействует с определяемым в-вом. При определении к-т и оснований вспомогат. реактив не вводят, т. к. соответствующие титранты (ОН иН + ) образуются при электролизе воды в присут. инертных электролитов, обеспечивающих электрич. проводимость р-ра.[c.292]

    ЭЛЕКТРОЛИЗ, химические р-ции, протекающие под действием электрич. тока на электродах, помещенных в р-р, расплав или тв. электролит. В электрич. поле положительно заряж. ионы (катионы) движутся к катоду, отрицательно заряженные (анионы) — к аноду. На катоде происходит восстановление, на аноде — окисление ионов или молекул, входящих в состав электролита. Кол-во образовавшихся на электродах в-в и кол-во пропущенного электричества связаны Фарадея законами. Если на каждом из электродов одновременно образуется ряд продуктов, доля тока (в %), идущая на образование одного из них, наз. выходом данного продукта по току. Обычно Э. осуществляют в электролитич. ячейках — электролизерах. Миним. напряжение, к-рое надо приложить к электродам электролизера, чтобы осуществить Э., наз. напряжением разложения. Напряжение разложения превышает разность термодинамич. потенциалов обоих электродов на величину электродной поляризации и омич, падения напряжения в электролизере. Для достилвысоких скоростей Э. к электродам прикладывают напряжение более высокое, чем напряжение разложения. При этом энергия, затраченная на компенсацгпо электродной поляризации и омич, потерь в различных участках электрической цепи, превращается в тепло. [c.699]

    Э. возникла на рубеже 18 и 19 вв. благодаря работам Л. Гальвани и А. Вольта, в результате к-рых был создан первый химический источник тока — вольтов столб . Используя хим. источники тока, Г. Дэви в нач. 19 в. осуществил электролиз многих в-в. Законы электролиза были установлены М. Фарадеем в ЗО-х гг. 19 в. (см. Фарадея законы). В 1887 С. Аррениус сформулировал основы теории электролитической диссоциации. В 20-х гг. 20 в. зта теория была дополнена П. Дебаем и Э. Хюккелем, к-рые учли электростатич. взаимод. между ионами. В дальнейшем на основе Дебая — Хюккеля теории были развиты представления о механизме электропроводности электролитов (Л. Онсагер, 1926). Во 2-й пол. 19 в. благодаря работам В. Нернста, Дж. Гиббса и Г. Гельмгольца были установлены осн. термодинамич. соотношения Э., к-рые позволили связать здс злектрохим. цепи с тепловым эффектом протекающей на электродах р-ции. Модельные представления о строении границы между электродом и р-ром, [c.705]

    КУКУРУЗНОЕ МАСЛО, см. Растительные масла. КУЛОНОМЁТРЙЯ, эле1строхим метод исследоваиия и анализа, основанный на измерени кол-ва электричества (Q), прошедшего через электролизер при электрохим, окислении илн восстановлении в-ва на рабочем электроде. Согласно объединенному Фарадея закону, масса электрохимически превращенного в-ва (Р) в г связана с 0 в Кл соотношением Р = QM/Fn, где М — молекулярная или атомная масса в-ва, п-число электронов, вовлеченных в электрохим. превращение одной молекулы (атома) в-ва (М/п — электрохим. эквивалент в-ва), f-постоянная Фарадея. К.-единственный физ.-хим. метод аиализа, в к-ром не требуются стандартные образцы. [c.553]

    В 1807 Г. Дэви электрохи1кШчески разложил гидроксиды натрия и калия и ввел в практику новый метод выделения простых в-в в 1834 М. Фарадей опубликовал осн. законы электрохимии (см. Фарадея законы). [c.211]

    ФАРАДЕЯ ПОСТОЯННАЯ, F, фувдам. физ. константа, равная произведению величины элементарного заряда на Авогад-ро постоянную F = eN. — 96484,56 Кл/моль. Ф. п. может быть найдена двумя способами 1) из приведенного выше соотношения 2) из ур-ния F= QMIzm, вытекающего из Фарадея законов. Здесь Q — кол-во электричества, пропущенного через кулонометр, т — масса выделившегося при электролизе в-ва, М — его мол. м., г — число элементарных зарядов, участвующих в образовании одной молекулы этого в-ва. В пределах достигнутой точности измерений ( 0,01 Кл/моль) оба способа дают совпадающие результаты. Б. б. Дамаскин. ФАРАДЕЯ ЭФФЕКТ, заключается во вращении плоскости поляризации линейно поляризованного света, распространяющегося в в-ве вдоль постоянного магн. поля, в к-ром находится в-во. [c.58]


    Другая проблема, возникшая с момента создания первого гальванич. элемента, заключается в выяснении того, какое действие оказывает прохождение электрич. тока через р-ры к-т и солей. Уже первые опыты в нач. 19 в. показали, что при пропускании электрич. тока через проводники П рода (носители заряда — ионы) происходят хим. превращения с выделением продуктов р-ции на электродах, получившие назв. э.пек-тролиза. Электролизом было осуществлено разложение воды на водород и кислород (А. Карлейль и У. Никольсон, 1800), а электролизом слегка смоченных водой твердых гидроксидов NaOH и КОН впервые получены металлич. Na и К (Г. Дэви, 1807). В 30-х гг. 19 в. благодаря работам М. Фарадея были установлены количеств, законы алектролиза (см. Фарадея законы). [c.465]

    Фарадея законы (1833 г.) — основные количественные законы электролиза, согласно которым количество вещества (т), выделившегося при электролизе, прямо пропорционально его химическому эквиваленту(Э) и количеству прошедшего элек-Э [c.141]

    Открытые Фарадеем законы находят практическое использовапие в устройствах, с помощью которых измеряется количество прошедшего через электрическую цепь электричества. Такие устройства назьшаются кулонометрами. В кулонометрах состав раствора, электроды и параметры процесса выбираются таким образом, чтобы на электродах протекала только одна какая-либо реакция, выделялось одно вещество. Тогда, определив массу образовавшегося на электроде вещества, мо жно рассчитать количество прошедшего электричества. [c.30]


Общая химия (1984) — [ c.300 ]

Теоретические основы аналитической химии 1987 (1987) — [ c.274 ]

Общая и неорганическая химия 1997 (1997) — [ c.184 ]

Пособие по химии для поступающих в вузы 1972 (1972) — [ c.130 ]

Электроосаждение металлических покрытий (1985) — [ c.11 ]

Химический энциклопедический словарь (1983) — [ c. 609 ]

Основы аналитической химии Часть 2 (1965) — [ c.314 , c.315 ]

Общая и неорганическая химия (2004) — [ c.184 ]

Большой энциклопедический словарь Химия изд.2 (1998) — [ c.609 ]

Каталитические, фотохимические и электролитические реакции (1960) — [ c.313 ]

Электрохимия растворов издание второе (1966) — [ c.13 , c.20 ]

Краткий курс физической химии Изд5 (1978) — [ c.439 , c.441 ]

Современная аналитическая химия (1977) — [ c.429 ]

Курс общей химии (1964) — [ c. 171 , c.172 ]

Теоретическая электрохимия (1965) — [ c.284 ]

Теоретическая электрохимия Издание 2 (1969) — [ c.279 ]

Теоретическая электрохимия Издание 3 (1975) — [ c.297 , c.303 ]

Введение в электрохимию (1951) — [ c.30 ]

Курс теоретической электрохимии (1951) — [ c.35 ]

Количественный анализ (1963) — [ c.509 ]

Техно-химические расчёты Издание 2 (1950) — [ c.343 ]

Техно-химические расчёты Издание 4 (1966) — [ c.242 ]

Аккумулятор знаний по химии (1977) — [ c. 96 ]

Основы аналитической химии Книга 2 (1961) — [ c.417 ]

Технология содопродуктов (1972) — [ c.196 ]

Курс технологии минеральных веществ Издание 2 (1950) — [ c.123 ]

Теоретическая электрохимия (1981) — [ c.15 , c.18 ]

Количественный анализ (0) — [ c.499 ]

Теоретические основы физико-химических методов анализа (1979) — [ c.137 ]

Основы общей химической технологии (1963) — [ c.119 ]

Общая химическая технология Том 1 (1953) — [ c.549 , c.552 ]

Руководство по аналитической химии (1975) — [ c. 147 ]

Основы аналитической химии Издание 3 (1971) — [ c.401 ]

Основы аналитической химии Кн 2 (1965) — [ c.314 , c.315 ]

Краткий справочник химика Издание 4 (1955) — [ c.389 ]

Краткий справочник химика Издание 7 (1964) — [ c.436 ]

Физическая химия Издание 2 1967 (1967) — [ c.423 ]


Законы электролиза Фарадея — ВикипедияРусский Wiki 2022

С современной точки зрения, установлению которой исторически открытие Фарадея и способствовало, смысл его законов электролиза сводится к тому, что вещество имеет атомную или молекулярную структуру, а атомы или молекулы определенного химического вещества одинаковы и имеют следовательно одинаковую массу, то же относится к ионам, играющим роль переносчиков тока в электролитах и разряжающимися (окисляющимися или восстанавливающимися) на электродах при электролизе. Кроме одинаковой массы ионы одинакового вида имеют и одинаковый заряд, который дискретен и всегда кратен заряду электрона (хотя для разных ионов может иметь разный знак).

Таким образом, при прохождении через электрод определенного количества электричества это означает прохождение и строго определенного количества электронов, и разрядку на нем строго определенного количество ионов определенного типа (равного количеству прошедших электронов, деленному на заряд данного типа иона). И, таким образом, зная массу данного типа атомов, молекул или ионов, и величину элементарного заряда (заряда электрона), прямо устанавливается пропорциональная зависимость между прошедшим через электрод количеством электричества и массой выделившегося на нем вещества.[4][5]

Говоря коротко, физический смысл законов Фарадея с современной точки зрения сводится к закону сохранения электрического заряда в сочетании с фактом дискретности («квантования») заряда и фактом физической одинаковости (в том числе всегда одинаковой массы). С учетом существования разных изотопов, это не совсем строгое утверждение; строгим оно является для каждого изотопа отдельно (или для моноизотопных элементов), а для «природной смеси изотопов» верно лишь в среднем, представляя собой скорее геологический факт, и в частных случаях за счет отличия изотопного состава по каким-то причинам от «обычного», атомные массы могут отклоняться от обычных средних (стандартных) значений; см. Атомная масса. То же, конечно, касается и молекулярных масс. Впрочем, за исключением самых легких элементов, колебания атомных масс при любых (в рамках ограничения изотопами с разумными временами жизни) колебаниях изотопного состава относительно невелики.

С точки зрения химии электролиз можно рассматривать как реакции (вблизи электродов), одним из участников которых является электрон (электроны), имеющий пренебрежимую (практически нулевую сравнительно с атомами) массу, в остальном же ведущий себя в реакциях почти так же, как остальные участники — атомы, молекулы, ионы. При этом количественно поступление электронов в одну область реакций через один электрод и уход их из второй области реакций через другой электрод можно измерить с помощью электроизмерительных приборов (зная заряд электрона). Это можно назвать основным смыслом (или, если угодно, способом вывода) законов Фарадея с точки зрения химии.

Законы Фарадея можно записать в виде следующей формулы:

m = (QF)(Mz),{\displaystyle m\ =\ \left({Q \over F}\right)\left({M \over z}\right),} 

где:

Заметим, что M/z{\displaystyle M/z}  — это эквивалентная масса осаждённого вещества.

Для первого закона Фарадея M,F{\displaystyle M,\,F}  и z{\displaystyle z}  являются константами, так что, чем больше величина Q{\displaystyle Q} , тем больше будет величина m{\displaystyle m} .

Для второго закона Фарадея Q,F{\displaystyle Q,\,F}  и z{\displaystyle z}  являются константами, так что чем больше величина M/z{\displaystyle M/z}  (эквивалентная масса), тем больше будет величина m{\displaystyle m} .

В простейшем случае используется постоянный ток и полный электрический заряд (прошедший через систему) за время электролиза равен: Q=It{\displaystyle Q=It}  , что приводит к выражению для массы:

m = (ItF)(Mz),{\displaystyle m\ =\ \left({It \over F}\right)\left({M \over z}\right),}  где при вычислениях в СИ размерность тока I{\displaystyle I}  амперы, а размерность заряда Q{\displaystyle Q}  — кулоны (иначе говоря ампер-секунды). В практических целях можно применять другие единицы заряда, например, ампер-час (равный 3600 Кл), но в этом случае нужно быть аккуратным, вводя соответствующий множитель (как и вообще при применении других систем физических единиц, например СГС, где численное значение постоянной Фарадея будет, конечно же, другим).

или для количества вещества:

n = (ItF)(1z),{\displaystyle n\ =\ \left({It \over F}\right)\left({1 \over z}\right),} 

где:

В более сложном случае переменного электрического тока полный заряд Q{\displaystyle Q}  тока I(τ){\displaystyle I(\tau )}  суммируется за время t{\displaystyle t} :

Q=∫0tI(τ) dτ. {t}I(\tau )\ d\tau .} 

Здесь t{\displaystyle t}  — полное время электролиза, τ{\displaystyle \tau }  переменная времени, текущее время, ток I{\displaystyle I}  является функцией от времени τ{\displaystyle \tau } .[8]Нетрудно видеть, что формула для переменного тока представляет собой просто сумму величин, полученных по формуле для постоянного тока для маленьких промежутков времени dτ{\displaystyle d\tau }  (что интуитивно достаточно очевидно разумно, поскольку за маленькое время dτ{\displaystyle d\tau }  ток «почти» не успевает измениться).

  • Здесь сразу же следует заметить, что формулировка выше и интерпретация входящих в нее величин сделаны для случая выделения на электроде одноатомного простого вещества (в частности, она хорошо и прямо подходит для случая осаждения на катоде восстанавливающегося при электролизе — из раствора или расплава его соли, основания или оксида — металла). Выделение других простых веществ (скажем, кислорода или хлора) может быть, по крайней мере, условно (независимо от того, каков реальный механизм такой реакции), интерпретироваться как первоначальное выделение атомарного вещества (атомарного кислорода или хлора), и лишь затем образования многоатомной (двухатомной) молекулы — но уже в этом случае нужно быть аккуратным при пересчете, если мы хотим знать количество получившегося конечного молекулярного вещества (так, скажем, эквивалент молекулярного кислорода будет равен его молярной массе, деленной на 4, а хлора — молярной массе, деленной на два). Еще более сложными являются реакции при электролизе в случае нахождения в растворе (или расплаве) некоторых сложных (многоатомных) ионов, когда выделяющееся вещество отличается от иона не только зарядом, но и атомным составом; кроме того, могут выделяться смеси веществ (как, скажем, при электролизе расплавов сульфатов), а при электролизе растворов часто происходит еще и реакция с участием растворителя, и конечные вещества могут заметно отличаться по составу еще и из-за этого. В любом случае, если нас интересует масса (или количество вещества) конечного продукта, мы должны использовать в формуле именно его молекулярную массу и суммарный заряд тех ионов, которые, разрядившись, были его предшественниками; тем не менее, понятие эквивалента и эквивалентной массы можно последовательно и достаточно строго определить и для этих случаев. Случай выделения нескольких веществ мы рассмотрим подробнее ниже.
  • Сами по себе законы Фарадея и их формульная запись — строги и фундаментальны. Что не означает всегда легкости их практического применения. Это означает, что на практике они могут выглядеть, как работающие неточно. Например, при недостаточно хорошем разделении пространств катода и анода продукты электролиза могут (вследствие диффузии через раствор или смешивания в газовой фазе) входить в соприкосновение и могут при определенных условиях реагировать друг с другом, в том числе и с образованием первоначального вещества, при этом практический выход реакции будет меньше, чем вычисленный по законам Фарадея, что, конечно же, не означает нестрогости самих законов, а лишь несовершенство разделения продуктов электролиза и допущение других, в том числе обратных, реакций.
  • Тем не менее, точность законов Фарадея ограничивается, как говорилось уже выше или случаем чистых изотопов, или «в среднем», для обычной природной смеси изотопов, то есть, из-за колебаний изотопного состава могут наблюдаться небольшие видимые отклонения от законов Фарадея (впрочем, формально, при нестандартном изотопном составе надо просто использовать соответственно исправленную атомную (или, ниже, молекулярную массу; кроме того, на практике чаще всего — хотя и не всегда(!) — колебания атомной массы из-за отличий изотопного состава невелики — см. вообще Атомная масса.
  • Кроме того, строго говоря, следовало бы говорить не об атомной массе иона, а об атомной массе уже восстановленного на катоде металла (или выделившегося окисленного на аноде атомарного газа). Но отличие масс в этом случае — всего лишь на массу одного или нескольких электронов, что практически пренебрежимо мало (порядка 1/1000 и менее) по сравнению с массой атома или иона. Правда, в случае разряда на электроде сложного (многоатомного) иона (см. ниже), конечный продукт, как правило, отличается и по химическому составу, а значит отличие по массе уже достаточно значительное, и тогда следует использовать в расчете молекулярную массу уже конечного продукта, если нас интересует именно его масса (а, скажем, не трудно наблюдаемая и не накапливающаяся — то есть не существующая реально одновременно ни в один конкретный момент — масса неустойчивых промежуточных продуктов; которую можно по сути лишь просуммировать формально, как некий прошедший поток массы, тем более что конкретный механизм реакции и конкретные реальные промежуточные продукты бывают достаточно трудно исследуемыми и даже неизвестны).

Случай выделения нескольких веществ

При электролизе на одном электроде может выделяться как одно, так и несколько разных веществ. Последнее иногда случается необходимо (когда реакция вообще не может идти иным путем, как только с выделением одновременно нескольких различных продуктов на одном электроде — что характерно, например, для электролиза расплавов солей кислородсодержащих кислот, или самих этих кислот), а нередко и в зависимости от конкретных условий протекания реакции (в том числе от состава смесей, если речь идет об их электролизе, в частном случае от растворителя и его количества, если речь идет об электролизе раствора). Кроме того, различные вещества могут выделяться в разной пропорции последовательно по времени, скажем, сначала может восстанавливаться (преимущественно) менее активный металл, а по его исчерпании в растворе — более активный металл; с формальной точки зрения — по отношению к законам Фарадея — этот случай не отличается по итоговому результату от случая одновременного выделения (отличаясь по скорости выделения в разные моменты времени, однако и в каждый момент времени законы Фарадея в формулировке, указанной здесь ниже, будут соблюдаться).

m1/(M1z1)+m2/(M2z2)+m3/(M3z3)+… = QF,{\displaystyle m_{1}/\left({M_{1} \over z_{1}}\right)+m_{2}/\left({M_{2} \over z_{2}}\right)+m_{3}/\left({M_{3} \over z_{3}}\right)+\dots \ =\ {Q \over F},} 

где, как нетрудно видеть, в левой части стоит просто сумма количества эквивалентов всех выделившихся веществ;M1, M2 итд — молярные (молекулярные или атомные, в зависимости от конкретных продуктов) массы всех выделившихся веществ, сколько бы их не выделялось, одновременно или последовательно, а z1, z2 итд — суммарные заряды (в элементарных единицах заряда) ионов, которые должны разрядиться для образования каждого данного продукта (в частном случае выделения металлов, это просто атомные массы каждого металла и заряды иона данного металла в растворе; в случае наличия различных ионов одного и того же элемента каждый должен учитываться отдельно, в отдельном слагаемом).Q, конечно же, вычисляется так же, как описано выше, для случая выделения на электроде одного вещества.

Случай переменного тока

Случай переменного тока, рассмотренный выше, практически более или менее хорошо относится к току переменной силы, но постоянного направления (хотя и тут могут быть определенные усложнения, не затрагивающие однако законов Фарадея как таковых, в особенности учитывая их формулировку для случая нескольких продуктов электролиза; дело в том, что одним из основных факторов изменения силы тока может быть изменение приложенной разности потенциалов, а ее изменения могут сильно влиять на доли выделяющихся продуктов вплоть до прекращения выделения некоторых из них при малых потенциалов и наоборот; однако суммарно для всех продуктов законы Фарадея всё равно будут выполняться).

В случае же тока, меняющего направление, дело может осложняться более сильно и принципиально. Хотя в некоторых случаях всё работает достаточно хорошо впрямую (просто в интеграле Q=∫I(t)dt{\displaystyle Q=\int I(t)dt}  отрицательные значения I дают уменьшение итогового Q). Однако в ряде случаев при изменении направления тока может вступать в реакцию (растворяться) материал электрода, который бы никогда не растворялся при постоянном направлении тока; и даже при инертных электродах могут (особенно при достаточно быстром изменении направления тока) начинать идти реакции промежуточных продуктов, которые не шли бы при постоянном направлении тока. В формальном (также и в фундаментальном) смысле законы Фарадея продолжают быть справедливыми, однако тут мы имеем уже почти всегда случай участия многих разных веществ (учитывая промежуточные продукты, которые не всегда даже легко априори предугадать), и вид законов Фарадея почти никогда не будет уже иметь самый простой вид своего простейшего случая (даже если об этом заботиться специально, этого часто будет трудно достичь).

При достаточно быстро меняющемся переменном токе, к тому же, ток через один и другой электрод вообще говоря не совпадают друг с другом. Но тогда можно считать заряд прошедший через каждый электрод отдельно (а в итоге за большое время прошедшие через электроды заряды станут практически точно равными). Важными при достаточно быстро переменном токе являются и скорости протекания реакций, также и скорость отведения продуктов (это позволяет регулировать соотношение выхода разных реакций с помощью частоты переменного тока). Тем не менее, законы Фарадея в целом выполняются (хотя изотопный состав продуктов при этом может меняться, впрочем, как и при электролизе постоянного тока).

13.1 Закон Фарадея. Университетская физика, том 2

Цели обучения

К концу этого раздела вы сможете:

  • Определить магнитный поток через поверхность, зная напряженность магнитного поля, площадь поверхности и угол между нормалью к поверхности и магнитным полем
  • Используйте закон Фарадея для определения величины ЭДС индукции в замкнутом контуре из-за изменения магнитного потока через контур

Первые плодотворные эксперименты, касающиеся воздействия изменяющихся во времени магнитных полей, были выполнены Майклом Фарадеем в 1831 году. Один из его ранних экспериментов представлен на рис. 13.2. ЭДС индуцируется, когда магнитное поле в катушке изменяется путем вталкивания стержневого магнита в катушку или из нее. ЭДС противоположных знаков создаются движением в противоположных направлениях, а направления ЭДС также меняются на противоположные при смене полюсов. Те же результаты получаются, если перемещать катушку, а не магнит — важно относительное движение. Чем быстрее движение, тем больше ЭДС, а когда магнит неподвижен относительно катушки, ЭДС отсутствует.

Фигура 13.2 Движение магнита относительно катушки создает ЭДС, как показано (а – г). Такие же ЭДС возникают, если катушку перемещать относительно магнита. Эта кратковременная ЭДС присутствует только во время движения. Чем больше скорость, тем больше величина ЭДС, а ЭДС равна нулю, когда нет движения, как показано на (е).

Фарадей также обнаружил, что аналогичный эффект можно получить, используя две цепи: изменение тока в одной цепи индуцирует ток во второй, соседней цепи. Например, когда переключатель замыкается в цепи 1 на рис. 13.3(а), стрелка амперметра в цепи 2 на мгновение отклоняется, указывая на то, что в этой цепи возник кратковременный скачок тока. Стрелка амперметра быстро возвращается в исходное положение, где и остается. Однако если теперь внезапно разомкнуть выключатель цепи 1, то в цепи 2 наблюдается еще один кратковременный выброс тока в направлении, противоположном предыдущему.

Фигура 13.3 (a) Замыкание ключа цепи 1 вызывает кратковременный скачок тока в цепи 2.(b) Если переключатель остается замкнутым, в цепи 2 не наблюдается тока. (c) Повторное размыкание ключа вызывает кратковременный ток в цепи 2, но в направлении, противоположном предыдущему.

Фарадей понял, что в обоих экспериментах ток протекал в цепи, содержащей амперметр, только тогда, когда магнитное поле в области, занятой этой цепью, изменялось . При перемещении магнита фигуры сила ее магнитного поля в петле менялась; а при включении или выключении тока в цепи 1 изменялась напряженность его магнитного поля в цепи 2.В конце концов Фарадей смог интерпретировать эти и все другие эксперименты с магнитными полями, меняющимися во времени, в соответствии со следующим законом:

Закон Фарадея

Индуцированная ЭДС εε представляет собой отрицательное изменение магнитного потока ΦmΦm в единицу времени. Любое изменение магнитного поля или изменение ориентации области катушки по отношению к магнитному полю индуцирует напряжение (ЭДС).

Магнитный поток — это измерение количества силовых линий магнитного поля, проходящих через заданную площадь поверхности, как показано на рисунке 13.и вектор магнитного поля B→B→ параллельны или антипараллельны, как показано на диаграмме, магнитный поток является максимально возможным значением при заданных значениях площади и магнитного поля.

В части (a) рис. 13.5 изображена цепь и произвольная поверхность S , которую она ограничивает. Обратите внимание, что S является открытой поверхностью . Можно показать, что любая открытая поверхность, ограниченная рассматриваемой цепью, может быть использована для вычисления Φm.Φm. Например, ΦmΦm одинаково для различных поверхностей S1,S2,…S1,S2,… части (b) рисунка.

Фигура 13,5 (a) Схема, ограничивающая произвольную открытую поверхность S . Плоская область, ограниченная контуром, не является частью S . (b) Три произвольные открытые поверхности, ограниченные одним и тем же контуром. Значение ΦmΦm одинаково для всех этих поверхностей.

Единицей измерения магнитного потока в СИ является вебер (Вб),

Иногда единица измерения магнитного поля выражается в веберах на квадратный метр (Вб/м2Вб/м2) вместо тесла, исходя из этого определения.Во многих практических приложениях представляющая интерес схема состоит из числа N плотно намотанных витков (см. рис. 13.6). На каждый виток действует один и тот же магнитный поток. Следовательно, чистый магнитный поток через цепи равен Н, умноженному на потока через один виток, и закон Фарадея записывается как

ε=−ddt(NΦm)=−NdΦmdt.ε=−ddt(NΦm)=−NdΦmdt.

13.3

Пример 13.1

Квадратная катушка в изменяющемся магнитном поле
Квадратная катушка на рисунке 13.6 имеет длину стороны l=0,25мл=0,25м и плотно намотан N=200N=200 витков провода. Сопротивление катушки R=5.0Ω.R=5.0Ω. Катушка помещена в пространственно однородное магнитное поле, которое направлено перпендикулярно лицевой стороне катушки и величина которого уменьшается со скоростью дБ/dt=-0,040 Тл/с.дБ/dt=-0,040 Тл/с. а) Чему равна ЭДС индукции в катушке? б) Какова величина тока, циркулирующего по катушке? Фигура 13,6 Квадратная катушка с N витками провода с однородным магнитным полем B→B→, направленным вниз, перпендикулярно катушке.и что поток превращается в произведение магнитного поля на площадь. Площадь петли не меняется во времени, поэтому ее можно вычесть из производной по времени, оставив магнитное поле единственной величиной, изменяющейся во времени. Наконец, мы можем применить закон Ома, если мы знаем ЭДС индукции, чтобы найти ток в петле.
Решение
  1. Поток через один виток поэтому мы можем рассчитать величину ЭДС по закону Фарадея. Знак ЭДС будет обсуждаться в следующем разделе, посвященном закону Ленца: |ε|=|−NdΦmdt|=Nl2dBdt=(200)(0.25м)2(0,040Тл/с)=0,50В.|ε|=|-NdΦmdt|=Nl2dBdt=(200)(0,25м)2(0,040Тл/с)=0,50В.
  2. Величина тока, индуцируемого в катушке, равна I=εR=0.50V5.0Ω=0.10A.I=εR=0.50V5.0Ω=0.10A.
Значение
Если бы площадь петли изменялась во времени, мы бы не смогли вытащить ее из производной по времени. Поскольку петля представляет собой замкнутый путь, результатом этого тока будет небольшой нагрев проводов до тех пор, пока магнитное поле не перестанет изменяться. Это может немного увеличить площадь петли по мере нагрева проводов.

Проверьте свое понимание 13.1

Проверьте свое понимание Плотно намотанная катушка имеет радиус 4,0 см, 50 витков и общее сопротивление 40 Ом 40 Ом. С какой скоростью должно изменяться магнитное поле, перпендикулярное лицевой стороне катушки, чтобы в катушке возникал нагрев мощностью 2,0 мВт?

Закон Фарадея

Закон Фарадея
Следующая: Закон Ленца Вверх: Магнитная индукция Предыдущий: Магнитная индукция Явление магнитной индукции играет решающую роль в три очень полезных электрических устройства: электрический генератор , электрический генератор двигатель и трансформатор .Без этих устройств современная жизнь была бы невозможным в его нынешнем виде. Магнитная индукция была открыта в 1830 г. английский физик Майкл Фарадей. Американский физик Джозеф Генри независимо сделал то же самое открытие примерно в одно и то же время. Обе физиков заинтриговал тот факт, что электрический ток, протекающий вокруг цепь может генерировать магнитное поле. Конечно, рассуждали они, если электрический ток может генерировать магнитное поле, тогда магнитное поле должно каким-то образом быть в состоянии генерировать электрический ток.Однако потребовались годы бесплодных экспериментов. прежде чем они смогли найти основной ингредиент, который позволяет магнитное поле для создания электрического тока. Этот ингредиент изменение времени .

Рассмотрим плоскую петлю из проводника площадью поперечного сечения . Поместим эту петлю в магнитное поле, напряженность которого приблизительно равна равномерный по всей длине петли. Предположим, что направление магнитное поле образует угол с направлением нормали к петля.Магнитный поток через контур равен определяется как произведение площади петли на составляющую магнитное поле перпендикулярно контуру. Таким образом,

(191)

Если цикл обернут вокруг себя раз ( т.е. , если цикл имеет витков ), тогда магнитный поток через петлю просто умножить на магнитный поток через один виток:
(192)

Наконец, если магнитное поле неоднородно по петле или петля не лежат в одной плоскости, то мы должны оценить магнитный поток как поверхностный интеграл
(193)

Здесь — некоторая поверхность, присоединенная к .Если петля имеет витки, то поток умножается на указанное выше значение. Единицей магнитного потока в системе СИ является вебер (Вб). Один тесла эквивалентен один вебер на квадратный метр:
(194)

Фарадей обнаружил, что если магнитное поле через проволочную петлю меняется во времени тогда вокруг контура индуцируется ЭДС. Фарадей смог наблюдать этот эффект, потому что ЭДС вызывает ток, циркулирующий в контуре.Фарадей обнаружил, что величина ЭДС прямо пропорциональна скорости изменения магнитного поля во времени. Он также обнаружил, что ЭДС генерируется, когда петля провода перемещается . из области с низкой напряженностью магнитного поля в область с высокой напряженностью магнитного поля, и наоборот . ЭДС прямо пропорциональна скорость, с которой петля перемещается между двумя областями. Ну наконец то, Фарадей обнаружил, что ЭДС генерируется вокруг петли, которая вращается на в однородном магнитном поле постоянной напряженности.В этом случае ЭДС прямо пропорциональна скорости вращения петли. В конце концов Фарадей в состоянии предложить один закон, который мог объяснить все его многочисленные и разнообразные наблюдения. Этот закон, известный как Закон Фарадея о магнитной индукции выглядит следующим образом:

ЭДС, индуцированная в цепи, пропорциональна скорости изменения во времени магнитный поток, связывающий эту цепь.
Единицы СИ были зафиксированы таким образом, чтобы константа пропорциональности в этом закон единство .Таким образом, если магнитный поток через цепь изменяется на сумму во временном интервале тогда ЭДС, возникающая в цепи, равна
(195)

Существует много разных способов, которыми магнитный поток, связывающий электрическая цепь может изменять. Может измениться либо напряженность магнитного поля, либо направление магнитного поля. поле может измениться, или положение цепи может измениться, или форма схема может измениться, или ориентация схемы может измениться.Закон Фарадея гласит, что все эти пути полностью эквивалентно по мере генерации ЭДС вокруг цепь касается.



Следующая: Закон Ленца Вверх: Магнитная индукция Предыдущий: Магнитная индукция
Ричард Фицпатрик 2007-07-14

Закон Ленца – College Physics

Закон индукции Фарадея имеет множество применений, которые мы рассмотрим в этой и других главах.На этом этапе давайте упомянем несколько, которые связаны с хранением данных и магнитными полями. Очень важное применение связано с аудио- и видеозаписями на лентах . Пластиковая лента, покрытая оксидом железа, проходит мимо записывающей головки. Эта записывающая головка представляет собой круглое железное кольцо, на которое намотана катушка проволоки — электромагнит (рис. 2). Сигнал в виде переменного входного тока от микрофона или камеры поступает на записывающую головку. Эти сигналы (которые зависят от амплитуды и частоты сигнала) создают переменные магнитные поля на записывающей головке.Когда лента движется мимо записывающей головки, ориентация магнитного поля молекул оксида железа на ленте изменяется, что приводит к записи сигнала. В режиме воспроизведения намагниченная лента проходит мимо другой головки, аналогичной по устройству записывающей головке. Различная ориентация магнитного поля молекул оксида железа на ленте индуцирует ЭДС в катушке провода в головке воспроизведения. Затем этот сигнал отправляется на громкоговоритель или видеоплеер.

Аналогичные принципы применимы и к жестким дискам компьютеров, но с гораздо большей скоростью.Здесь записи на вращающемся диске с покрытием. Считывающие головки исторически заставляли работать по принципу индукции. Однако входная информация передается в цифровой, а не в аналоговой форме — на вращающемся жестком диске записывается последовательность нулей или единиц. Сегодня большинство устройств считывания с жестких дисков не работают по принципу индукции, а используют технику, известную как гигантское магнитосопротивление . (Открытие того, что слабые изменения магнитного поля в тонкой пленке железа и хрома могут вызвать гораздо большие изменения электрического сопротивления, было одним из первых крупных успехов нанотехнологии.) Еще одно применение индукции можно найти на магнитной полосе на обратной стороне вашей личной кредитной карты, используемой в продуктовом магазине или банкомате. Это работает по тому же принципу, что и упомянутая в последнем абзаце аудио- или видеокассета, в которой голова считывает личную информацию с вашей карты.

Еще одним применением электромагнитной индукции является передача электрических сигналов через барьер. Рассмотрим кохлеарный имплант , показанный ниже. Звук улавливается микрофоном снаружи черепа и используется для создания переменного магнитного поля.Ток индуцируется в приемнике, закрепленном в кости под кожей, и передается на электроды во внутреннем ухе. Электромагнитная индукция может использоваться и в других случаях, когда электрические сигналы необходимо передавать через различные среды.

Еще одной современной областью исследований, в которой электромагнитная индукция успешно реализуется (и имеет значительный потенциал), является транскраниальное магнитное моделирование. Множество расстройств, включая депрессию и галлюцинации, можно отнести к нерегулярной локальной электрической активности в головном мозге.В транскраниальной магнитной стимуляции быстро меняющееся и очень локализованное магнитное поле помещается рядом с определенными участками, идентифицированными в мозге. В выявленных местах индуцируются слабые электрические токи, что может привести к восстановлению электрических функций в тканях головного мозга.

Апноэ во сне («остановка дыхания») поражает как взрослых, так и младенцев (особенно недоношенных детей и может быть причиной внезапной младенческой смерти [SID]). У таких людей дыхание может неоднократно останавливаться во время сна.Прекращение более чем на 20 секунд может быть очень опасным. Инсульт, сердечная недостаточность и усталость — вот лишь некоторые из возможных последствий для человека, страдающего апноэ во сне. Беспокойство у младенцев вызывает остановка дыхания на эти более длительные периоды времени. Один из типов мониторов для оповещения родителей о том, что ребенок не дышит, использует электромагнитную индукцию. Через провод, обернутый вокруг грудной клетки младенца, проходит переменный ток. Расширение и сжатие грудной клетки младенца, когда он дышит, изменяет площадь, проходящую через спираль.В расположенной рядом съемной катушке индуцируется переменный ток, обусловленный изменяющимся магнитным полем исходного провода. Если ребенок перестанет дышать, индуцированный ток изменится, и родитель может быть предупрежден.

Установление связей: сохранение энергии

Закон Ленца является проявлением закона сохранения энергии. ЭДС индукции создает ток, противодействующий изменению потока, потому что изменение потока означает изменение энергии. Энергия может войти или уйти, но не мгновенно.Закон Ленца является следствием. Когда изменение начинается, закон говорит, что индукция противодействует и, таким образом, замедляет изменение. На самом деле, если бы ЭДС индукции была направлена ​​в том же направлении, что и изменение потока, существовала бы положительная обратная связь, которая давала бы нам свободную энергию без видимого источника — закон сохранения энергии был бы нарушен.

Пример 1. Расчет ЭДС: насколько велика ЭДС индукции?

Рассчитайте величину ЭДС индукции, когда магнит на рисунке 1(а) вталкивается в катушку, учитывая следующую информацию: катушка с одним контуром имеет радиус 6.00 см, а среднее значение $latex \boldsymbol{B \;\textbf{cos} \;\theta} $ (данное, поскольку поле стержневого магнита комплексное) увеличивается с 0,0500 Тл до 0,250 Тл за 0,100 с.

Стратегия

Чтобы найти величину ЭДС, мы используем закон индукции Фарадея, сформулированный как $latex \boldsymbol{\textbf{ЭДС} = -N \frac{\Delta \phi}{\Delta t}} $, но без знака минус, указывающего направление:

$латекс \boldsymbol{\textbf{ЭДС} = N} $

Раствор

Нам дано, что $latex \boldsymbol{N = 1} $ и $latex \boldsymbol{\Delta t=0.100 \;\textbf{s}} $, но мы должны определить изменение потока $latex \boldsymbol{\Delta \phi} $, прежде чем сможем найти ЭДС. Поскольку площадь петли фиксирована, мы видим, что

$latex \boldsymbol{\Delta \phi = \Delta (BA \;\textbf{cos} \theta) = A \Delta(B \;\textbf{cos} \;\theta)} $

Теперь $latex \boldsymbol{\Delta (B \;\textbf{cos} \;\theta) = 0,200 \;\textbf{T}} $, поскольку было дано, что $latex \boldsymbol{B \;\textbf {cos} \;\theta} $ изменяется от 0,0500 до 0,250 Тл.2 = (3.2)(0,200 \;\textbf{T})}. $

Ввод найденных значений в выражение для ЭДС дает

$latex \boldsymbol{\textbf{Emf} =N} $ $latex \boldsymbol{=} $ $latex \boldsymbol{= 22,6 \; \textbf{мВ}} $

Обсуждение

Хотя это легко измеряемое напряжение, оно явно недостаточно велико для большинства практических применений. Больше петель в катушке, более сильный магнит и более быстрое движение делают индукцию практическим источником напряжения, которым она и является.

Закон Фарадея | Harvard Natural Sciences Lecture Demonstrations

Стержневой магнит или другой источник магнитного поля индуцирует ток в катушке с проводом, когда магнитный поток через катушку изменяется.

Что показывает

Электрический ток в одном проводнике может индуцировать ток в другом проводнике. Индукционный ток должен изменяться во времени или пространстве — или и то, и другое — относительно другого проводника. Например, скачок тока в стационарной катушке с проводом может индуцировать ток в отдельной неподвижной катушке, или катушка с постоянным током может индуцировать ток в другой катушке, если они движутся друг относительно друга. Это были некоторые из наблюдений, сделанных Майклом Фарадеем, когда он пытался понять индукцию. 1

Поскольку электрический ток порождает магнитное поле, наблюдаемая нами индукция должна быть взаимодействием между проводником и изменяющимся магнитным полем.

Когда поток внешнего магнитного поля через замкнутую поверхность изменяется во времени, по периметру этой поверхности индуцируется электродвижущая сила (ЭДС). С практической точки зрения, если магнитный поток через отверстие петли провода изменяется со временем, ЭДС индукции будет проталкивать электрический ток через провод.Изменяющееся магнитное поле порождает электрическое поле, которое, в свою очередь, может проталкивать электрический ток по цепи; это контрастирует с экспериментом Эрстеда, где мы видим, как электрический ток порождает магнитное поле.

Как это работает

Катушка провода подключена к гальванометру или другому токоизмерительному устройству. Цилиндрический постоянный магнит достаточной силы направлен в центр катушки. Когда магнит перемещается ближе или дальше от катушки, измеритель регистрирует ток, величина и направление которого зависят от скорости и полярной ориентации движущегося магнита.

Аналогичная катушка, подключенная к батарее, может заменить постоянный магнит. Если мы поместим обе катушки рядом друг с другом, мы можем наблюдать индуцированный ток при подключении и отключении батареи. Железный стержень, проходящий через центр обеих катушек, усилит взаимодействие.

Комментарии

Мы обычно используем одну (или обе) из наших двух катушек 48,5 мГн, диаметром примерно 10 см, намотанных проволокой с тканевым покрытием (внутреннее сопротивление около 4 Ом). Их можно легко подключить к одному из двух наших больших гальванометров Cenco Scientific (внутреннее сопротивление около 300 Ом), которые имеют большие дисплеи, которые легко читаются из аудитории. Пожалуйста, будьте осторожны при обращении с гальванометрами и убедитесь, что входы закорочены, прежде чем перемещать их. Катушки могут лежать на лекционной скамье или подпираться деревянными брусками. Гелевая батарея на 12 В работает хорошо.

1 Перселл, Эдвард М. «Электричество и магнетизм», 2-е изд., стр. 257-8

Использование закона Фарадея — AP Physics B

Если вы считаете, что контент, доступный с помощью Веб-сайта (как это определено в наших Условиях обслуживания), нарушает одно или более ваших авторских прав, пожалуйста, сообщите нам, предоставив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному агенту, указанному ниже.Если университетские наставники примут меры в ответ на ан Уведомление о нарушении, он предпримет добросовестную попытку связаться со стороной, предоставившей такой контент средства самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении может быть направлено стороне, предоставившей контент, или третьим лицам, таким как так как ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатов), если вы существенно искажать информацию о том, что продукт или деятельность нарушают ваши авторские права.Таким образом, если вы не уверены, что содержимое находится на Веб-сайте или на который ссылается Веб-сайт, нарушает ваши авторские права, вам следует сначала обратиться к адвокату.

Чтобы подать уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись владельца авторских прав или лица, уполномоченного действовать от его имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, как вы утверждаете, нарушает ваши авторские права, в \ достаточно подробно, чтобы преподаватели университета могли найти и точно идентифицировать этот контент; например, мы требуем а ссылку на конкретный вопрос (а не только название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Заявление от вас: (а) что вы добросовестно полагаете, что использование контента, который, как вы утверждаете, нарушает ваши авторские права не разрешены законом или владельцем авторских прав или его агентом; б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство вы либо владельцем авторских прав, либо лицом, уполномоченным действовать от их имени.

Отправьте жалобу нашему назначенному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

 

Закон Ленца – Колледж физики главы 1-17

Опыты Фарадея показали, что ЭДС , индуцируемая изменением магнитного потока, зависит лишь от нескольких факторов.Во-первых, ЭДС прямо пропорциональна изменению потока ΔΦΔΦ величиной 12{ΔΦ}{}. Во-вторых, ЭДС максимальна, когда изменение во времени ΔtΔt size 12{Δt} {} наименьшее, то есть ЭДС обратно пропорциональна ΔtΔt size 12{Δt} {}. Наконец, если катушка имеет NN витков, будет создаваться ЭДС размера NN в 12{N} {} раз больше, чем для одиночной катушки, так что ЭДС прямо пропорциональна размеру NN 12{N} {}. Уравнение для ЭДС, вызванной изменением магнитного потока:

ЭДС=-NΔΦΔt.ЭДС=-NΔΦΔt. размер 12{«ЭДС»= – N {{ΔΦ} над {Δt} } } {}

Это соотношение известно как закон индукции Фарадея. Единицами ЭДС, как обычно, являются вольты.

Знак минус в законе индукции Фарадея очень важен. Минус означает, что ЭДС создает ток I и магнитное поле B, которые противодействуют изменению потока ΔΦΔΦ величиной 12{ΔΦ} {} — это известно как закон Ленца . Направление (заданное знаком минус) ЭДС настолько важно, что его называют законом Ленца по имени русского Генриха Ленца (1804–1865), который, подобно Фарадею и Генри, , независимо исследовал аспекты индукции.Фарадей знал об этом направлении, но Ленц сформулировал его так ясно, что ему приписывают его открытие. (См. [ссылка].)

(а) Когда этот стержневой магнит вталкивается в катушку, напряженность магнитного поля в катушке увеличивается. Ток, наведенный в катушке, создает другое поле в направлении, противоположном направлению стержневого магнита, чтобы противостоять увеличению. Это один из аспектов закона Ленца — индукция препятствует любому изменению потока . (b) и (c) — две другие ситуации. Убедитесь сами, что указанное направление индуцированного BcoilBcoil size 12{B rSub { size 8{«coil»} } } {} действительно противостоит изменению потока и что показанное направление тока соответствует RHR-2.

Стратегия решения проблем для закона Ленца

Чтобы использовать закон Ленца для определения направлений индуцированных магнитных полей, токов и ЭДС:

  1. Сделайте набросок ситуации для визуализации и записи направлений.
  2. Определить направление магнитного поля B.
  3. Определите, увеличивается или уменьшается поток.
  4. Теперь определите направление индуцированного магнитного поля B. Оно противодействует изменению потока путем добавления или вычитания исходного поля.
  5. Используйте RHR-2 для определения направления индуцированного тока I, который отвечает за индуцированное магнитное поле B.
  6. Направление (или полярность) ЭДС индукции теперь будет управлять током в этом направлении и может быть представлено как ток, выходящий из положительной клеммы ЭДС и возвращающийся к ее отрицательной клемме.

Для практики примените эти шаги к ситуациям, показанным в [ссылка], и к другим, которые являются частью следующего текстового материала.

Закон индукции Фарадея имеет множество применений, которые мы рассмотрим в этой и других главах. На этом этапе давайте упомянем несколько, которые связаны с хранением данных и магнитными полями. Очень важное применение связано с аудио- и видеозаписями на лентах . Пластиковая лента, покрытая оксидом железа, проходит мимо записывающей головки. Эта записывающая головка представляет собой круглое железное кольцо, на которое намотана проволочная катушка — электромагнит ([ссылка]). Сигнал в виде переменного входного тока от микрофона или камеры поступает на записывающую головку.Эти сигналы (которые зависят от амплитуды и частоты сигнала) создают переменные магнитные поля на записывающей головке. Когда лента движется мимо записывающей головки, ориентация магнитного поля молекул оксида железа на ленте изменяется, что приводит к записи сигнала. В режиме воспроизведения намагниченная лента проходит мимо другой головки, аналогичной по устройству записывающей головке. Различная ориентация магнитного поля молекул оксида железа на ленте индуцирует ЭДС в катушке провода в головке воспроизведения.Затем этот сигнал отправляется на громкоговоритель или видеоплеер.

Головки записи и воспроизведения, используемые с аудио- и видеомагнитофонами. (кредит: Стив Юрветсон)

Аналогичные принципы применимы и к жестким дискам компьютеров, но с гораздо большей скоростью. Здесь записи на вращающемся диске с покрытием. Считывающие головки исторически заставляли работать по принципу индукции. Однако входная информация передается в цифровой, а не в аналоговой форме — на вращающемся жестком диске записывается последовательность нулей или единиц.Сегодня большинство устройств считывания с жестких дисков не работают по принципу индукции, а используют технику, известную как гигантское магнитосопротивление . (Открытие того, что слабые изменения магнитного поля в тонкой пленке железа и хрома могут вызвать гораздо большие изменения электрического сопротивления, было одним из первых крупных успехов нанотехнологии.) Еще одно применение индукции можно найти в магнитной полосе на магнитной полосе. оборотная сторона вашей личной кредитной карты, используемой в продуктовом магазине или банкомате.Это работает по тому же принципу, что и упомянутая в последнем абзаце аудио- или видеокассета, в которой голова считывает личную информацию с вашей карты.

Еще одним применением электромагнитной индукции является передача электрических сигналов через барьер. Рассмотрим кохлеарный имплант , показанный ниже. Звук улавливается микрофоном снаружи черепа и используется для создания переменного магнитного поля. Ток индуцируется в приемнике, закрепленном в кости под кожей, и передается на электроды во внутреннем ухе.Электромагнитная индукция может использоваться и в других случаях, когда электрические сигналы необходимо передавать через различные среды.

Электромагнитная индукция используется для передачи электрических токов через среды. Устройство на голове ребенка индуцирует электрический ток в приемнике, закрепленном в кости под кожей. (кредит: Бьорн Кнетч)

Еще одной современной областью исследований, в которой электромагнитная индукция успешно реализуется (и имеет значительный потенциал), является транскраниальное магнитное моделирование.Множество расстройств, включая депрессию и галлюцинации, можно отнести к нерегулярной локальной электрической активности в головном мозге. В транскраниальной магнитной стимуляции быстро меняющееся и очень локализованное магнитное поле помещается рядом с определенными участками, идентифицированными в мозге. В выявленных местах индуцируются слабые электрические токи, что может привести к восстановлению электрических функций в тканях головного мозга.

Апноэ во сне («остановка дыхания») поражает как взрослых, так и младенцев (особенно недоношенных детей и может быть причиной внезапной детской смерти [SID]).У таких людей дыхание может неоднократно останавливаться во время сна. Прекращение более чем на 20 секунд может быть очень опасным. Инсульт, сердечная недостаточность и усталость — вот лишь некоторые из возможных последствий для человека, страдающего апноэ во сне. Беспокойство у младенцев вызывает остановка дыхания на эти более длительные периоды времени. Один из типов мониторов для оповещения родителей о том, что ребенок не дышит, использует электромагнитную индукцию. Через провод, обернутый вокруг грудной клетки младенца, проходит переменный ток. Расширение и сжатие грудной клетки младенца, когда он дышит, изменяет площадь, проходящую через спираль.В расположенной рядом съемной катушке индуцируется переменный ток, обусловленный изменяющимся магнитным полем исходного провода. Если ребенок перестанет дышать, индуцированный ток изменится, и родитель может быть предупрежден.

Установление связей: сохранение энергии

Закон Ленца является проявлением закона сохранения энергии. ЭДС индукции создает ток, противодействующий изменению потока, потому что изменение потока означает изменение энергии. Энергия может войти или уйти, но не мгновенно.Закон Ленца является следствием. Когда изменение начинается, закон говорит, что индукция противодействует и, таким образом, замедляет изменение. На самом деле, если бы ЭДС индукции была направлена ​​в том же направлении, что и изменение потока, существовала бы положительная обратная связь, которая давала бы нам свободную энергию без видимого источника — закон сохранения энергии был бы нарушен.

Расчет ЭДС: насколько велика ЭДС индукции?

Рассчитайте величину ЭДС индукции, когда магнит в [link](a) вталкивается в катушку, учитывая следующую информацию: катушка с одним контуром имеет радиус 6.00 см, а среднее значение BcosθBcosθ размера 12{B”cos”θ} {} (данное, поскольку поле стержневого магнита комплексное) увеличивается с 0,0500 Тл до 0,250 Тл за 0,100 с.

Стратегия

Чтобы найти величину ЭДС, мы используем закон индукции Фарадея, сформулированный как ЭДС=-NΔΦΔtemf=-NΔΦΔt, но без знака минус, указывающего направление:

ЭДС=NΔΦΔt. ЭДС=NΔΦΔt.

Раствор

Нам дано, что N=1N=1 размер 12{N=1} {} и Δt=0.100sΔt=0.100s, но мы должны определить изменение потока ΔΦΔΦ размером 12{ΔΦ} {}, прежде чем мы сможем найти ЭДС. Поскольку площадь петли фиксирована, мы видим, что

ΔΦ=Δ(BAcosθ)=AΔ(Bcosθ).ΔΦ=Δ(BAcosθ)=AΔ(Bcosθ). размер 12{ΔΦ=Δ (BA”cos”θ) =AΔ (B”cos”θ)} {}

Теперь Δ(Bcosθ)=0,200 TΔ(Bcosθ)=0,200 Размер T 12{Δ ( B”cos”θ ) =0 “.” «200»`T} {}, так как было задано, что BcosθBcosθ размер 12{B”cos”θ} {} изменяется от 0,0500 до 0,250 Тл. Площадь петли A=πr2=(3,14…)(0,060 м )2=1,13×10−2м2А=πr2=(3.14…)(0,060 м)2=1,13×10−2 м2 размер 12{A=πr rSup { размер 8{2} } = ( 3 «.» «14» «.» «.» «.» ) ( 0 » .” “060”`м ) rSup {размер 8{2} } =1 “.” «13» умножить на «10» rSup {размер 8{ – 2} } `m rSup {размер 8{2} } } {}. Таким образом,

ΔΦ=(1,13×10–2 м2)(0,200 Тл).ΔΦ=(1,13×10–2 м2)(0,200 Тл). размер 12{ΔΦ= (1 «.» «13» умножить на «10» rSup { размер 8{ — 2} } «m» rSup {размер 8{2} } ) (0 «.» «200» «T») } {}

Ввод найденных значений в выражение для ЭДС дает

ЭДС=NΔΦΔt=(1,13×10−2 м2)(0.200Тл)0,100с=22,6мВ. ЭДС=NΔΦΔt=(1,13×10-2 м2)(0,200Тл)0,100с=22,6мВ. размер 12{E=N {{ΔΦ} над {Δt} } = { { ( 1 «.» «13» умножить на «10» rSup {размер 8{- 2} } «m» rSup {размер 8{2} } ) ( 0 “.” “200”” T” ) } более {0 “.” «100» «s»} } = «22» «.» 6″ мВ”} {}

Обсуждение

Хотя это легко измеряемое напряжение, оно явно недостаточно велико для большинства практических применений. Больше петель в катушке, более сильный магнит и более быстрое движение делают индукцию практическим источником напряжения, которым она и является.

Закон Фарадея | StudyPug

В этом уроке мы узнаем:

  • Закон Фарадея
  • Закон индукции Фарадея
  • Различные способы наведения ЭДС.

Примечания:

Закон Фарадея

  • По Фарадею ЭДС индукции пропорциональна следующим факторам:
      • Скорость изменения магнитного потока через контур, ϕB\phi BϕB.
      • Площадь петли (AAA) и угол (θ\theta θ).

ϕB=B⊥A=BAcos⁡θ \phi_{B} = B_{\bot}A = BA \cos \theta
Ед.

B⊥B_{\bot}B⊥​: составляющая магнитного поля B→\overrightarrow{B}B, перпендикулярная поверхности петли.
θ\theta θ: угол между магнитным полем B→\overrightarrow{B}B и линией, перпендикулярной поверхности петли.

Примечания:
\qquad а. Когда петля параллельна B→\overrightarrow{B}B, θ \theta θ =90° и ϕB= \phi_{B} = ϕB​= 0

\qquad б. Когда петля перпендикулярна B→\overrightarrow{B}B, θ \theta θ =0 и ϕB=BA \phi_{B} = BA ϕB​=BA


  • Количество линий на единицу площади пропорционально силе поля, следовательно, ϕB \phi_{B} ϕB​ пропорционально общему количеству линий, проходящих через площадь петли
    • Когда петля параллельна B→\overrightarrow{B}B, никакая линия не проходит через петлю, ϕB \phi_{B} ϕB​=0
    • Когда петля перпендикулярна B→\overrightarrow{B}B, максимальное количество линий пройдет через петлю, ϕB \phi_{B} ϕB​ максимально.

    Закон индукции Фарадея
  • Поток через контур изменяется на величину Δϕ \Delta \phi Δϕ за Δt \Delta t Δt интервал времени, поэтому ЭДС индукции рассчитывается следующим образом;

  • ϵ=− \epsilon = -ϵ=− ΔϕΔt \large \frac{\Delta \phi} {\Delta t} ΔtΔϕ​

    , если петля содержит N витков, ЭДС индукции в каждом витке суммируется;

    ϵ=−N \epsilon = -Nϵ=−N ΔϕΔt \large \frac{\Delta \phi} {\Delta t} ΔtΔϕ​
Различные методы наведения ЭДС.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.