Site Loader

Регенеративный кв приемник — Приемная техника

Регенеративный кв приемник на протяжении нескольких послевоенных десятилетий регенеративные приемники прямого усиления для многих радиолюбителей были первой конструкцией. Несмотря на известные недостатки (в частности, не очень стабильную работу), “регенератор” позволял при минимуме деталей создать аппарат, на котором можно было “охотиться” за дальними станциями.

Регенеративный кв приемник

Появление в конце шестидесятых годов приемников прямого преобразования, позволявших устойчиво принимать сигналы CW (телеграф) и SSB (однополосная модуляция) радиостанций, положило конец эпохе регенераторов. Триумф прямого преобразования был быстрым и, казалось, окончательным — радиолюбительскую литературу буквально заполонили описания самых разнообразных конструкций приемников и трансиверов. Причины этого триумфа понятны: простота конструкций (не сложней “регенератора”), хорошая повторяемость (если “не напахать”, то работает с первого включения), устойчивая работа.

Справедливости ради надо капнуть в эту бочку меда и ложку дегтя. Приемники прямого преобразования плохо работают вблизи от мощных станций (причина — прямое детектирование радиовещательных и телевизионных сигналов), есть проблемы с разного рода наводками (из-за очень высокой чувствительности усилителя звуковой частоты). Однако было бы, наверное, несправедливо требовать от простейших каких-то очень высоких характеристик.

Еще один недостаток приемников прямого преобразования — принципиальная невозможность устойчивого приема радиостанций с амплитудной модуляцией (AM). Вот почему они заинтересовали в первую очередь коротковолновиков, которые сегодня практически не применяют AM. Можно лишь предполагать, что возрождение интереса к “регенераторам” было обусловлено этой причиной. Но как бы там ни было, американская фирма MFJ выпустила регенеративный КВ приемник рисунок, а также набор для его самостоятельного изготовления., Использование современной компонентной базы позволило фирме MFJ создать простой аппарат с относительно стабильными характеристиками.

Этот регенеративный кв приемник (модель “MFJ-8100”) позволяет принимать сигналы AM, SSB и CW радиостанций в полосе частот от 3,5 до 22 МГц. Она разделена на пять диапазонов: 3,5…4,3, 5,9…7,4, 9,5…12, 13,2…16,4 и 17,5…22 МГц. Такой выбор рабочих участков позволил охватить большую часть радиовещательных и любительских диапазонов, не ухудшая плавность настройки. Он выполнен на трех полевых транзисторах с р-n переходом и на одной микросхеме.

На рисунке приведена принципиальная схема усилителя высокой частоты и регенеративного детектора.

принципиальная схема регенеративный кв приемник

Использование полевых транзисторов, имеющих высокое входное сопротивление, позволило найти весьма простое для многодиапазонной конструкции схемотехническое решение этих каскадов. Как известно, переключатель диапазонов порождает в многодиапазонном аппарате массу конструктивных проблем, повышает опасность возникновения паразитных обратных связей и, следовательно, самовозбуждения. Создателям регенеративный приемник “MFJ-8100” для выбора рабочего диапазона удалось обойтись переключателем только на одно направление, что напрочь сняло все эти проблемы.

Усилитель радиочастоты выполнен на транзисторе VT1 по схеме с общим затвором. Между антенной и цепью истока транзистора введен подстроечный резистор R2, позволяющий подобрать оптимальную связь с антенной. Этот резистор установлен “под шлиц” на задней панели приемника, так как потребность в его регулировке возникает только при смене антенны. Выбор рабочего диапазона осуществляется переключателем SA1, который коммутирует катушки L1-15 в цепи стока транзистора VT1. Колебательный контур, образованный этими катушками и конденсаторами С2—С4,— одновременно выходной для УРЧ и входной для регенеративного детектора на транзисторах VT2 и VT3. Катушка L1, имеющая высокую добротность, для стабилизации работы радиочастотного тракта зашунтирована резистором R1.

Комбинация каскадов с общим стоком (именно так включен по высокой частоте транзистор VT3) и с общим затвором (VT2) обеспечивает необходимые фазовые соотношения в детекторе. Регенеративный детектор можно было, конечно, собрать и на одном транзисторе, но это неизбежно повлекло бы к необходимости дополнительно коммутировать цепи обратной связи со всеми вытекающими из этого последствиями. Использование дополнительного транзистора позволило полностью обойти эти проблемы. Оптимальный режим работы (порог регенерации) устанавливают переменным резистором R8, а подстроечным резистором R10 выбирают при налаживании приемника рабочую зону детектора, обеспечивающую плавный подход к этому порогу.

Продетектированный сигнал звуковой частоты снимают с нагрузочного резистора R9 в цепи стока транзистора VT3. Через фильтр низших частот C12R11С14 он подается на усилитель звуковой частоты. Схема УЗЧ не приводится, так как он выполнен на микросхеме LM386, которая не имеет аналога отечественного производства. Но по сути, это самый обычный УЗЧ для транзисторных приемников, и его можно заменить каскадом на микросхеме К174УН7 в типовом включении или даже на более простой, если предполагается слушать только на головные телефоны. Транзисторы VT1—VT3 можно заменить на КПЗОЗЕ. Катушки индуктивности имеют следующие значения: L1 — 10 мкГн, L2 — 3,3 мкГн, L3 — 1 мкГн, L4 — 0,47 мкГн. Индуктивность катушки L5 в описании приемника не указана. Она бескаркасная, имеет восемь витков провода диаметром 0,7 мм. Внутренний диаметр катушки — 12 мм. Переменный конденсатор снабжен верньером с замедлением 1:6. Рекомендованная антенна — провод длиной 8…10 м.

Появление на рынке регенеративный кв приемник “MFJ-8100” активизировало и радиолюбителей. В ряде изданий появились описания простых любительских конструкций регенераторов. Самым популярным из них, по-видимому, стал однодиапазонный регенеративный кв приемник, схема которого приведена на рисунке.

популярный регенеративный кв приемник

Строго говоря, в этом регенеративный кв приемник детектор-то обычный (при приеме AM станций, при приеме CW и SSB он становится смесительным). Регенеративным является входной каскад на транзисторе VT1, представляющий собой популярный в шестидесятые годы “умножитель добротности”. Детектор выполнен на диоде VD1. Этот диод должен быть германиевым — это принципиальное ограничение (необходимы маленькая “ступенька” в прямом направлении и относительно небольшое обратное сопротивление). Напряжение питания высокочастотного каскада стабилизировано тремя кремниевыми диодами VD2— VD4, включенными в прямом направлении.

Усилитель звуковой частоты — самый обычный (транзисторы VT2 и VT3). Головные телефоны должны быть высокоомными. Здесь можно применить любые высокочастотные транзисторы (VT1) и низкочастотные (VT2 и VT3). Для рабочего диапазона 5… 15 МГц катушка L1 должна иметь 12 витков провода диаметром 0,8 мм на каркасе диаметром 25 мм. Отвод надо сделать от четвертого витка, считая от нижнего по схеме вывода катушки. Конечно, регенераторы и сверхрегенераторы — это не будущее радиолюбительства. Но и им пока еще есть место под Солнцем — в самодеятельном конструировании.

 

Простой транзисторный регенеративный приёмник — US5MSQ

Приобрёл я как-то по случаю добротно сделанную  экранированную катушку ГПД от Р-250 (много их появилось на наших блошиных рынках — это сколько же Р-250 «разбомбили» на цветмет!), индуктивностью 31 мкГн, добавил КПЕ с верньером 1/40 , пару транзисторов/резисторов/конденсаторов и через пару часов  на макете (см. фото) получился вполне приличный регенератор диапазона 2,8-3,8 МГц.Фото макета регенератора US5MSQ

Благодаря качественной катушке стабильность частоты настройки на высоте. Что любопытно, хотя и субъективно, — слушать на него АМ на «стометровке» намного комфортнее, чем на на большие и тяжелые  РПС, Р-326М, Р-309. При этом приемник по питанию очень экономный — ток потребления всего 3 мА!

Усиление и чувствительность получились (при с/шум=10дБ) при АМ порядка 150 тыс. и 3-5 мкВ, CW/SSB соответственно 1,5 млн и 1-2 мкВ (вероятно, она выше, но достоверно измерить трудно, т.к. очень высок принимаемый на измерительные провода уровень эфирных шумов и помех). Очень плавный подход к точке генерации (особенно если использовать многооборотный резистор R1, но и с обычным потенциометром получается неплохо) обеспечил прекрасную селективность — полоса пропускания может быть сужена примерно до 200-300 Гц, т.е. добротность достигает порядка 12-15 тыс!Транзисторный регенератор 2,9-3,8МГц US5MSQ

Рассмотрим подробнее принципиальную схему приёмника, которая приведена на рис.1. В нём функции регенерации (VT1) и детектирования (VT2) разделены между разными каскадами, что по сравнению с традиционно выполненным регенерирующим детектором позволило заметно ( в разы) повысить максимально достижимую стабильную добротность и, соответственно, чувствительность и избирательность. Эти цифры основаны на моем эксперименте, когда я на тех же компонентах испытал регенерирующий истоковый детектор, который в общем-то неплохо работает, но с ним я не смог получить стабильную полосу пропускания уже 800 Гц (т.е. максимальная добротность порядка 4-4,5 тыс.) — далее срывается в генерацию. Поэтому чувствительность и усиление получились примерно в 2 раза ниже от первоначального.

Сигнал с антенны через плавный аттенюатор на потенциометре R4 поступает на конденсатор С7 большой емкости (он должен быть керамическим или КСО), образующий совместно с другими контурными конденсаторами емкостной делитель с большим коэффициентом деления. Поэтому собственное излучение в эфир в автодинном режиме мизерное, а частота настройки приемника слабо зависит как от длины антенны (её коэффициент включения в контур очень мал — примерно примерно 1/110 по напряжению, или 1/12 тыс. по сопротивлению), так и от манипуляций с аттенюатором R4.  Больший плюс  в том, что при таком включении антенны для верхних частот контур представляет собой ФНЧ третьего порядка, который эффективно давит внедиапазонные помехи, в том числе от УКВ/FM диапазонов.

Собственно сам регенератор выполнен по схеме емкостной трехточки (вариант Клаппа) на транзисторе VT1. Контур состоит из катушки индуктивности L1 и конденсаторов С1,С2,С4,С5,С6,С7. Частоту гетеродина можно перестраивать в диапазоне 2900-3800 кГц(задаётся растягивающим конденсатором С2, с некоторым запасом по краям) конденсатором переменной емкости (КПЕ) С4. Уровень регенерации регулируется переменным резистором R1 путём изменения напряжения смещения на базе VT1.

По сравнению с полевыми транзисторами у биполярных при равных токах существенно (почти на порядок) выше крутизна, а, следовательно, за счёт меньшего включения в контур можно получить лучшие результаты как по стабильности режима регенерации, так и минимизировать влияние  регулировки уровня регенерации на частоту настройки. Последнее свойство очень важно для комфортного пользования регенератором, т.к.  у транзисторов (особенно у биполярных), в отличие от ламп, межэлектродные ёмкости существенно зависят от рабочих напряжений и токов. И обеспечивается оно в двух направлениях.

1.Обеспечивается высокая стабильность параметров транзистора VT1 введением глубокой ООС по постоянному току (так называемая базово-эмиттерная стабилизация) R2R3R5R6. VD1 обеспечивает термостабилизацию режима VT1 по постоянному току  и повышает плавность регулировки при малых значениях эмиттерного тока (так называемое «токовое зеркало»), т.е. фактически — плавность регулировки уровня регенерации.

2.Чем выше начальная добротность катушки и лучше усилительные свойства транзистора (выше соотношение Н21е/S на рабочей частоте), тем допустимо меньшее включение транзистора в контур, а, следовательно, будет меньше его вредное (дестабилизирующее и нелинейное) влияние на полученную (регенерируемую) добротность и стабильность частоты. В нашем случае транзистор включен в контур через два емкостных делителя

— делитель (разветвитель) контурных токов между двумя параллельно включенными цепочками С2С4 и С1С5С6, имеющий коэффициент деления контурного тока Кдт=С156/(С156+C24), где С24 и С156 – емкость цепочек последовательно включенных конденсаторов С2С4 и С1С5С6

— делитель контурного напряжения С1С5С6, имеющий имеющий коэффициент деления контурного напряжения Кдн=С1/(С1+С5)

И поэтому общий коэффциент включения транзистора в контур будет равен произведению этих величин Кд=Кдт*Кдн, а коэффициент трансформации входного сопротивления и собственной емкости транзистора в контур равен квадрату этого соотношения.

К примеру, при приеме в автодинном режиме после слабых станций включились мощные и мы для улучшения качества приема (повышения помехоустойчивости) увеличили ручкой Regen  ток VT1, тем самым подняли уровень своего гетеродина в несколько раз. При этом межэлетродные емкости транзистора VT1 изменятся примерно на 2-3 пФ (типичное значение для BC547, 2N3904 и т.п.). Давайте оценим насколько при этом изменится частота приёма у нашего приёмника.

Для простоты расчёта  рассмотрим случай, когда емкости контурных ветвей равны, например на частоте приёма 3,52 МГц, т.е. С24=С156=33 пФ, при этом Кдт=1/2.

Кдн=36/(1000+36)=0,035, а  коэффициент трансформации изменений собственной емкости транзистора в контур равен К=(Кдт*Кдн)^2=0,0003, т.о. изменение контурной емкости, вызванное изменением режима работы транзистора VT1  dСк=3 пФ*0,0003=0,001 пф.

При этом относительное изменение контурной емкости составит

dСк/Ск=0,001 пФ/66 пФ=15*10^(-6) или 15 ppm. При этом изменение резонансной частоты контура будет в 2 раза меньше, т.е. 7,5 ppm или в абсолютных величинах

dF=3,52 МГц*7,5*10^(-6)= 26,4 Гц!!!

Как видим, даже большие изменения режима работы транзистора не приведут к существенным изменениям частоты приёма.

На практике величину С1 выбираем минимально возможной – такой, чтобы устойчивая генерация на наивысшей рабочей частоте начиналась при напряжении на движке R1 примерно +6…+7 вольт. Диапазон(ы) рабочих частот можно пересчитать под свои потребности при помощи программки KONTUR3C, подставляя в ячейку собственной емкости генератора величину 38-40 пФ.

Детектирование сигнала осуществляется полевым транзистором (ПТ) VT2, включенным по схеме истокового детектора(ИД),  к преимуществам которого можно отнести

— высокое входное сопротивление, хорошую линейность детектирования (за счёт 100% ООС по огибающей) в режиме АМ

— достаточно высокую линейность смесителя и чистоту спектра преобразования (за счет квадратичной ВАХ) в автодинном режиме.

Малый ток стока VT2 ( порядка десятков мкА — определяется высокоомным резистором R7)

повышает уровень эффективного (линейного, пратически без потерь) детектирования АМ сигнала до 50-70 мВэфф. При меньших уровнях входного АМ сигнала детектирование будет проходить уже на квадратичном участке ВАХ, качество выходного сигнала остаётся ещё вполне приличным, а вот выходной уровень пропорционально квадрату уменьшения уровня входного сигнала. К примеру, при входном сигнале порядка 3 мВ, на выходе ИД будет примерно 50 мкВ.

Поэтому для повышения чувствительности приемника можно применить УНЧ с большим усилением. Это тем более актуально для работы в автодинном режиме, когда  (аналогично ППП) основное усиление обеспечивает именно УНЧ. В истоковом детекторе можно применять практически любые ПТ, но тогда, вероятно, потребуется подобрать истоковый резистор R7 до получения тока стока в пределах 50-100мкА

С выхода детектора сигнал через однозвенный ФНЧ R9C14 с полосой среза порядка 3 кГц поступает на двухкаскадный УНЧ. Он собран по типовой схеме  на современных малошумящих транзисторах VT3, VT4 с высоким коэффициентом передачи тока, включенных по схеме с ОЭ и с непосредственной связью между каскадами.  Благодаря стопроцентной отрицательной обратной связи по постоянному току  режимы транзисторов по постоянному току устанавливаются автоматически и мало зависят от колебаний температуры и напряжения питания. Нагрузкой УЗЧ служат высокоомные телефоны ТОН-2 с сопротивлением по постоянному току 4,4 кОм, которые включаются непосредственно в коллекторную цепь транзистора VT4 (через разъем Х3), при этом через их катушки протекает и переменный ток сигнала и постоянный ток транзистора, что дополнительно подмагничивает телефоны и улучшает их работу. Конденсатор С27 совместно с индуктивностью последовательно включенных наушников образует резонасный контур с частотой примерно 1,2 кГц, но из-за большого активного сопротивления обмоток  добротность последнего невысока — полоса пропускания по уровню -6 дБ примерно 400-2800 Гц, поэтому  его влияние на общую АЧХ не очень существенно и носит характер вспомогательной фильтрации и небольшой коррекции АЧХ.

Усиление УНЧ ограничено R12 на уровне 10 тыс., больше не надо. Регулировка громкости выполнена на потенциометре R13 и осуществляется путём увеличения глубины ООС примерно 50-70 раз, что в сочетании с плавным аттенюатором на входе вполне достаточно для комфортного приёма любых уровней входного сигнала, но и (это важно с учётом вероятных больших перепадов уровней продетектированного сигнала в режимах SSB и АМ) в те же 50-70 раз повышается перегрузочная способность УНЧ.

В качестве VT3,VT4 применимы любые кремниевые с коэффициентом передачи тока на менее 150, желательно малошумящие, например отечественные КТ3102Д,Е или широко распространенные недорогие импортные 2N3904, BC547-549, 2SC1815 и т.п.  Головные телефоны электромагнитные, обязательно высокоомные (с катушками электромагнитов индуктивностью примерно 0,5Гн и сопротивлением по­стоянному току 1500…2200 Ом), например, типа ТОН-1, ТОН-2, ТОН-2м, ТА-4, ТА-56м. При согласно-последовательном включении , т.е «+»одного соединен с»- «другого,  имеют общее сопротивление по постоянному току 3,2-4,4 кОм, по переменному примерно 10-12 кОм на частоте 1 кГц. Вилка включения телефонов заменяется стандартным трех- или пятиштырьковым разъемом от звукозаписывающей бытовой аппаратуры (СГ-3, СГ-5 или аналогичные импортные) –  на схеме XS3. Между выводами 2 и 3 штыревой части разъема устанавливают перемычку, которая служит для подключения батареи питания GB1. При отсоединении телефонов питание приемника будет отключаться автоматически. Плюсовый провод телефонов соединяется с выводом 2 разъёма, что обеспечит сложение магнитных потоков, создаваемых током подмагничивания и постоянными магнитами телефонов.

Чертёж печатной платы мной не разрабатывался, но есть вариант в формате lay, разработанный нашим болгарским коллегой LZ2XL(см. фото),  который один из первых повторилПриемник LZ2XL

приемник и прислал свой отзыв (оставлен авторский стиль, только подправлена грамматика):

«Привет Сергей, а приёмник ваш интересный оказался. После ужина сделал плату и весь вечер было одно удовольствие. Правда у меня подходящей катушки с вожженой медью не оказалось и приемник работал чуть выше — в пределах 5.8-8.2 МГц. На сороковке не плохо работает, правда без аттенюатора вещалки перекрывают всё.

Аттенюатор обязателен, особенно на участке сороковки. Если антенна включена без атенюатора вещалки перекривают весь диапазон. Здесь сама антенна включена немного необычно и оригинально. В этом включение аттенюатор не влияет на точку регенераций, а это хорошо, сам подход к регенераций особенно мягкий. На SSB нет искажений из-за синхронизаций регенератора. После точки генерации сам приемник ведет себя хорошо, соседние сильные сигналы не мешают.»

Ещё один наш коллега Александр (ник staradio) повторил приёмник, применив самодельную катушку большого диаметра (см. фото монтажа и внешнего вида)Александр Радио_вид на монтаж

Александр Радио_внешний вид

Результатом испытаний он доволен.

Испытания приемника, проведённый мной в последствии (опробовал и на провод 10 м на высоте примерно 10 м с балкона 4-го этажа на дерево, и на наклонный WINDOM 41 м ( с крыши девятиэтажки на фонарный столб) с экранированным снижением) показали, при размещении большой антенны около уличного освещения в вечернее время появляются  довольно заметные НЧ наводки (фон), поэтому антенна подключалась через емкость 510 пФ, но можно поставить и двухзвенный ФВЧ (две емкости по 510 пФ и дроссель 50-100 мкГн).

Позже для устранения описанного выше явления схема была немного доработана (изменена входная цепь) в расчёте на применение   самодельных катушек (на рис.2 в качестве каркаса высокодобротной катушки — кольцо AMIDON).рис.2 Транзисторный регенератор 2,8-7,8Мгц

И ещё просьбе коллег была разработана схема громкоговорящего варианта с электронной настройкой на варикапе (рис.3), но она мной не макетировалась.Транзисторный регенератор US5MSQ 2,85-7,45Мгц на варикапе

 

С.Беленецкий, US5MSQ                                                           г.Киев, Украина

Обсудить конструкцию приемника, высказать свое мнение и предложения можно на форуме.

Видео работы приемника, изготовленного Александром (staradio)

 

Обсудить конструкцию приемника, высказать свое мнение и предложения можно на форуме.

Регенеративный радиоприёмник — Википедия

Материал из Википедии — свободной энциклопедии

Схема регенеративного радиоприёмника на радиолампе. В данной схеме ПОС регулируется путем изменения индуктивной связи между контурной катушкой L2 и катушкой связи L3. Существуют и другие варианты. Самодельный одноламповый регенератор. Катушка связи поворачивается внутри контурной (в правом дальнем углу панели), таким образом регулируется ПОС.
Э. Армстронг в 1922 году

Регенеративный радиоприёмник (регенератор) — радиоприёмник с положительной обратной связью в одном из каскадов усиления радиочастоты. Обычно прямого усиления, но известны и супергетеродины с регенерацией как в УРЧ, так и в УПЧ.

Отличается от приёмников прямого усиления более высокой чувствительностью (ограничена шумами) и избирательностью (ограничена устойчивостью параметров), но меньшей устойчивостью работы и наличием паразитного излучения.

Регенератор изобретён Э. Армстронгом во время учёбы в колледже, запатентован в 1914 году, после этого также запатентован Ли де Форестом в 1916 году. Это привело к судебной тяжбе продолжительностью в 12 лет, завершившейся в Верховном суде США в пользу Ли де Фореста.

Регенератор позволяет получить наибольшую отдачу от одного усилительного элемента. Поэтому в ранние годы развития радиотехники, когда лампы, пассивные детали и источники питания были дороги, он широко применялся в профессиональных, любительских и бытовых приёмниках, успешно конкурируя с изобретённым в 1918 году тем же Армстронгом супергетеродином.

Регенератор легко переводится в режим автогенерации для приёма телеграфии незатухающими колебаниями путём прямого преобразования. Абсолютный рекорд дальности радиосвязи до космической эры был установлен 12 января 1930 года советским радистом Э. Т. Кренкелем с антарктической экспедицией Р. Э. Бёрда именно на подобном приёмнике.

С широким распространением в конце 1930-х годов смесительной лампы-гептода и кварцевых фильтров промежуточной частоты преимущество супергетеродина в стабильности и избирательности стало решающим, и концу 1940-х годов регенератор был в основном вытеснен из серьёзных применений, оставшись в радиолюбительских конструкциях для начинающих (например, в радиоконструкторах «Юность»).[1] До этого времени известны случаи, когда даже в супергетеродинах применяли регенеративный детектор с регулируемой ПОС (например, советская радиостанция А-7 1941 года).

Достоинства:

  • Высокие чувствительность и избирательность по сравнению с приёмниками прямого усиления и простыми супергетеродинами.
  • Простота и дешевизна.
  • Низкое потребление энергии.
  • Отсутствие побочных каналов приёма и самопоражённых частот.

Недостатки:

  • Излучение помех при работе в режиме генерации (и, как следствие, отсутствие скрытности).
  • Высокая чувствительность и избирательность достигаются ценой стабильности.
  • Требует от оператора знания принципа работы и навыка в управлении.

Эффективность регенеративного радиоприёмника основана на увеличении добротности колебательного контура, осуществляющего основную частотную селекцию и настроенного на несущую частоту в спектре АМ сигнала. Относительное повышение уровня несущей вызывает эффект подавления слабых сигналов, расстроенных по частоте[2] (аналогично синхронному детектированию), что улучшает реальную избирательность.

Добротность (Q{\displaystyle Q}) колебательного контура повышается путём компенсации части потерь за счёт энергии усилителя, то есть введения положительной обратной связи.

Добротность = резонансное сопротивление / сопротивление потерь, то есть Q=Z/R{\displaystyle Q=Z/R}.

Положительная обратная связь, компенсируя часть потерь, вносит некоторое отрицательное сопротивление: Qreg=Z/(R−Rneg){\displaystyle Q_{\text{reg}}=Z/(R-R_{\text{neg}})}.

Коэффициент регенерации: M=Qreg/Q=R/(R−Rneg).{\displaystyle M=Q_{\text{reg}}/Q=R/(R-R_{\text{neg}}).}

Отсюда видно, что при увеличении обратной связи коэффициент регенерации M{\displaystyle M} и добротность могут стремиться к бесконечности, но их практический рост ограничен стабильностью параметров схемы — если изменение коэффициента усиления будет больше 1/M{\displaystyle 1/M}, то регенератор либо сорвётся в генерацию (если усиление выросло), либо потеряет половину чувствительности и избирательности (если усиление упало).

Для улучшения стабильности и достижения плавности управления вблизи порога генерации регенератор должен иметь отрицательную обратную связь (ООС) по уровню сигнала или автоматическую регулировку усиления (АРУ). В приведённой схеме такая ООС обеспечивается цепью R1C2 (гридлик, от англ. grid leak — утечка сетки) — сигнал детектируется диодом, состоящим из сетки и катода лампы, и выделяется на резисторе R1. Переменная составляющая усиливается и звучит в наушниках, а постоянная подзапирает лампу и снижает её усиление.

Без такой АРУ управление обратной связью будет очень «острым», и если регенератор сорвётся в генерацию, то размах колебаний будет ограничен только источником питания, а остановить его можно будет только намного уменьшив обратную связь (явление гистерезиса). Такой усилитель не годится для использования как регенератор.

Регенеративный приемник на диапазон 7 МГц — Приемники

Давненько не выкладывал конструкции простых регенеративных радиоприемников. Восполняем, так сказать, пробел-вашему вниманию предлагается простой регенеративный приемник на любительский диапазон 7 МГц, или радиовещательный 41 м.

Схема этого приемника-регенератора попалась на глаза на соответствующей ветке форума cqham.ru.

Автором схемы является UR5ZQV, поэтому и описываемый регенеративный приемник получил имя ZQV. Думаю, автор не будет в обиде)). Предполагаю, что кроме автора схемы, этот приемник никто больше не повторил, поэтому выступлю в качестве бета-тестера, и попробую изготовить этот регенератор.

Схема прототипа-оригинала представлена ниже:

Приемник очень простой-собран всего на двух транзисторах, к тому же, питается от одной батарейки. Привлек внимание тем, что антенна и база транзистора регенеративного каскада VT1 подключаются к колебательному контуру через емкостные отводы. Интересно было попробовать, как всё это будет работать. Понятно было,что чувствительность у этого приемника будет не очень высокая-ведь усилитель НЧ отсутствует как таковой.

Регенеративный приемник ZQV. Схема. Описание работы.


Оригинальная схема претерпела незначительные изменения, добавлен каскад усиления НЧ, германиевые транзисторы заменены на кремний. Хотя и с германиевыми всё работает нормально.

Схема финального варианта приведена ниже:

Здесь, собственно, и описывать нечего…

На транзисторе VT1 собран регенеративный каскад. Диапазон рабочих частот приемника определяется контурной системой L1C1C2C3C4C5. По диапазону приемник перестраивается переменным конденсатором С1, в качестве которого использован двухсекционный КПЕ от УКВ блоков. Используется одна секция.

Резистор R1 служит регулятором уровня регенерации. Продетектированный сигнал выделяется на коллекторной нагрузке транзистора VT1 катушке L2 и через конденсатор С9 подается на усилитель НЧ, собранный транзисторах VT2 и VT3. К выходу усилителя НЧ можно подключить обычные мультимедийные наушники или активную компьютерную акустическую систему.

Регенератор ZQV собран на самых распространенных деталях.

Катушка L1 намотана на серийном четырехсекционном каркасе с подстроечным сердечником, и содержит 45 витков провода ПЭВ-1 диаметром 0,12 мм. Отвод сделан от 10-го витка, считая снизу.

Дроссель L2 имеет индуктивность 1 Гн. Я в этой позиции применил трансформатор ТОТ-12. Точнее, применил его первичную обмотку, которая как раз имеет близкую индуктивность.

Регенеративный приемник ZQV собран на небольшой печатной плате. Выглядит он так:

Расположение основных элементов:

Налаживание этого регенератора несложное.

После подачи питания убеждаются в работоспособности усилителя НЧ. Он работает сразу при исправных деталях. Далее, убеждаются в наличии постоянного напряжения на коллекторе транзистора VT1 в пределах 3 В.

Следующий этап-проверка наличия генерации, формы колебаний ( она должна быть синусоидальной) и возможность регулирования амплитуды колебаний переменным резистором R1. Колебания должны возникать плавно и без скачков, и так же плавно регулироваться от максимального значения до нуля.

Подстроечником катушки L1 устанавливают требуемый диапазон рабочих частот, а растягивающим конденсатором С2 необходимое перекрытие.

Вот и вся настройка.

Нужно сразу отметить, что этому регенератору нужно заземление, хотя бы примитивное. В противном случае, подключение антенны сопровождается появлением мощного фона переменного тока. Приемник был испытан на радиолюбительском диапазоне 7 МГц в режимах CW и SSB, а также в радиовещательном диапазоне 41 м при приеме АМ радиостанций. Использовалась антенна Sloper диапазона 7 МГц.

Впечатления: этот регенеративный приемник ZQV вполне работоспособный. Принимает довольно чистенько, особенно АМ станции. Но требует наличия аттенюатора. В противном случае, при подключении полноразмерной антенны наблюдается некоторое «подплакивание» сигнала мощных станций. Это, впрочем, характерно для всех простых регенеративных приемников. В АМ режиме этого эффекта, естественно, нет и в помине.

Отмечу, что не удалось добиться сужения полосы пропускания до приемлемых значений. Думаю, виной всему катушка L1, точнее, её невысокая добротность.

Отсюда вывод-катушку L1 нужно мотать или на кольце Amidon, или на каркасе диаметром 2…3 см.

Понравилось, что можно уверенно слушать станции на наушники, причем, частенько даже возникает необходимость в регулировке (уменьшении) громкости.

В общем, как конструкция выходного дня этот регенератор очень даже может быть.

Короткое видео о работе приемника. На диапазоне 7 МГц работает в режимах CW и SSB. На радиовещательном диапазоне 41 м принимает станции с АМ.

info — myhomehobby.net


Поделитесь записью в своих социальных сетях!

При копировании материала обратная ссылка на наш сайт обязательна!


Простой регенеративный радиоприемник на радиолампе

Простой регенеративный радиоприемник на радиолампе
Предлагаемая схема весьма проста, содержит всего одну электронную лампу. Простой регенеративный радиоприемник на радиолампе

Правда, радиоприемник не содержит усилителя низкой частоты и громкоговорителя. Все это предполагается внешнее. Так же придется позаботиться и о источнике питания – анодное напряжение и накал. Для получения высоких характеристик радиоприемника, лучше эти напряжения стабилизировать. Это вовсе не сложно. Трансформаторы с повышающей вторичной обмоткой сейчас редкость, мотать катушки мало кто любит, поэтому можно поступить следующим образом. Два однотипных трансформатора с соединенными вторичными обмотками решат это небольшое затруднение. На выходе второго трансформатора получим те же 220В, с гальванической развязкой от сети.

Простой регенеративный радиоприемник на радиолампе

Применив трансформаторы с разными вторичными обмотками можно получить на выходе нужное напряжение.

В качестве УНЧ можно применить активную акустическую систему от компьютера.

В авторском варианте был применен самодельный ламповый усилитель. От него же брались напряжения накала и анодное. Радиоприемник подключался к усилителю двумя разъемами – сигнальным, стандартным штырьком диаметром 3.5мм. и высокое напряжение с накалом, разъемом DB-9, на источнике (усилителе) «мама», чтоб было меньше шансов влезть пальцами.

Простой регенеративный радиоприемник на радиолампе

Радиоприемник был собран на ретро-шасси, с подвалом, навесным монтажом. Такая конструкция была широко распространена в эпоху ламповых схем и была весьма удобна – много крупногабаритных установочных элементов, между их жесткими выводами в подвале распаиваются проволочные выводы резисторов и конденсаторов. Кому не хватает места, устанавливаются контактные планки. Преимущества монтажа такого рода – меньше (по крайней мере, по сравнению с печатным монтажом) паразитных емкостей и наводок, зато с ремонтопригодностью не блестяще.

Итак, что потребовалось.

Прежде всего, радиоэлементы. Из не самых распространенных, еще понадобится конденсатор переменной емкости с воздушным диэлектриком, для колебательного контура радиоприемника. Применять распространенные миниатюрные конденсаторы с твердым диэлектриком из импортных радиоприемников и магнитол не следует – стабильность частоты будет низкой и настройка нашего радио будет «плавать». Искать в старых ламповых радиолах, благо, их еще куча по чердакам и гаражам.

Едва ли под рукой окажется конденсатор переменной емкости именно такой как на схеме. Выйти из положения, можно перещитав колебательный контур. Удобно это делать при помощи специальных программ, например Coil 32. Кроме прочего, это даст некоторую степень свободы при изготовлении катушки индуктивности – под рукой может оказаться хорошая готовая катушка от связной техники отличной от указанной в схеме индуктивности или просто потребуется перестроить радио на другой диапазон. Программа, так же позволит рассчитать катушку для нужной индуктивности.

При расчете, следует стремиться к большим значениям диаметра провода, и шага намотки, это позволит добиться большей добротности контура. К слову, от конструкции катушки (начальной добротности контура) в регенераторах зависит многое. Это плата за простоту общей конструкции.

Инструменты.
Именно этот радиоприемник делался буквально «на коленке», минимумом инструментов — обыкновенный набор слесарных инструментов, преимущественно для мелкой работы, ножницы по металлу. Что-то для сверления отверстий, пригодится лобзик по дереву и ювелирный лобзик с пилками. Отдельные элементы были закреплены термоклеем.

Паяльник около 40Вт с принадлежностями, набор инструментов для монтажа.

Материалы.
Кроме радиоэлементов, были использованы кусочек ДВП для верхней панели шасси, небольшие кусочки кровельной оцинкованной стали для уголков, кронштейнов и вспомогательных элементов, кусочек побольше для передней панели. Кусочки деревянных реечек и планок, немного крепежа. Нечто подходящее для корпуса контурной катушки, предпочтение следует отдавать керамике и полистиролу, здесь применен пустой «шприц» от силиконового герметика. Обмоточный провод в лаковой изоляции для катушки.

Кроме перечисленного, еще понадобятся антенна и заземление.

В авторском исполнении, Г-образная антенна была выполнена из жгута обмоточного провода – около 10 жил ~0.25мм. Растянута между четырех изоляторов из фарфоровых «катушечек» (на которых во времена лампочки Ильича и электрификации все страны, монтировали электропроводку), на чердаке, под коньком шиферной крыши, снижение заведено в бревенчатый дом. Изоляторов (здесь, по два на каждую сторону), можно применить и больше — чем их больше, тем более слабый сигнал сможет принять антенна. Высота подвеса горизонтальной части, чуть более 7м, ее длина 9м.

На сухом чердаке, фарфоровые ролики или орешки, можно пожалуй, заменить нейлоновым шнуром. Хотя в остальном, расположение антенны под кровлей, пусть и не металлической – вариант не самый удачный.

Заземление было сделано из метровой стальной полосы, заостренной с одного конца и забитой в землю около дома. На другом конце был приварен болтик М6. Между двух увеличенных шайб был зажат луженый конец медной плетенки. Последняя, заведена в дом.

Простой регенеративный радиоприемник на радиолампе

Конструкция радиоприемника видна на фото. Верхняя панель сделана из ДВП, впереди и сзади, установлены две ножки-подставочки из сосновой рейки, закреплены маленькими гвоздиками с клеем. Из оцинкованной стали вырезана и закреплена при помощи уголков и саморезов, передняя панель.

На верхней панели установлены крупные элементы. Конденсатор переменной емкости нашелся со своим специальным шкивом (с пазом для веревочки и пружинки для ее натяжения), веревочка была взята от него же. Конденсатор был установлен на небольшую деревянную подставочку — иначе шкив не помещался, но можно было и пропилить лобзиком щель в подвал.

Для удобной настройки, применен вереньер с изрядным замедлением. Вал вереньера сделан из круглой деревянной палочки, импровизированные подшипники из тонкого пластика от бутылки. К сожалению, конструкция вереньера оказалась не слишком удачной, вал настройки приходилось вращать пусть с небольшим, но все же усилием – трение деревянного вала прижимаемого натянутым тросиком к деревянной прокладке изнутри передней панели оказалось велико. Возможно, стоило разобрав вереньер, трущиеся части натереть стеарином свечки или, что лучше, заменить вал на металлический, отполировав его в месте соприкосновения. А втулку сделать из фторопласта. Однако, повторюсь – конструкция была «наколенная».

Катушка намотана на корпусе пустого «шприца» от силиконового герметика. Трубка обрезана до необходимой длинны, пробка-поршень вытянута длинным саморезом. Ее, перевернув вставляем сверху, заподлицо с краем – довольно тонкая пластиковая трубка при этом приобретает несколько большую жесткость и выглядит эстетичнее.

Простой регенеративный радиоприемник на радиолампе

Пластиковый носик прилагающийся к тубе герметика, отрезаем до резьбы и используем как импровизированную гайку. Кроме того, корпус катушки приклеиваем к верхней панели термоклеем.

Отвод от части витков катушки, при выполнении обмотки достаточно толстым проводом, удобнее сделать пайкой, процарапав острым лезвием небольшой участок лака на проводе. Количество витков «до» отвода подбирается экспериментально. Это должно быть место, при котором подход к генерации наиболее плавный (начинать с полвитка от низа). Генерация («свист») должна начинаться примерно на 90% движка потенциометра к верхнему по схеме резистору 150К. Если она начинается раньше, подход слишком резкий и как следствие не получается вытянуть максимальную чувствительность и избирательность.

Очень близкий аналог «индустриально-военной» 6136 – 6Ж4П-ДР, но обычная, без индексов тоже работает как миленькая. Применение экрана для лампы – свернутая из латунной фольги гильза, соединенная с «корпусом» схемы, несколько снижает наводки.

Простой регенеративный радиоприемник на радиолампе

Простой регенеративный радиоприемник на радиолампе

Монтаж велся преимущественно собственными выводами радиоэлементов. Остальные несколько соединений выполнены тем же толстым обмоточным проводом, который применялся при намотке катушки. Здесь же в подвале, на специальном кронштейне расположен маленький конденсатор переменной емкости регулирующий связь с антенной. У меня нашелся с воздушным диэлектриком, думаю, вполне будет работать и обычный подстроечный из керамики. Конденсатор расположен в месте, где обеспечиваются минимальные длины соединений. Возможность управления с передней панели – удлиненным валом.

Простой регенеративный радиоприемник на радиолампе

Надписи и шкалы на передней панели, для простоты выполнены спиртовым фломастером.

Простой регенеративный радиоприемник на радиолампе Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Регенеративный радиоприемник «Ручеек». — Радио-как хобби

Делаем своими руками коротковолновый регенеративный радиоприемник «Ручеек».

Регенеративный приемник от US5MSQ , об изготовлении которого рассказано в этой статье , порадовал своей достаточно качественной работой, поэтому захотелось в качестве эксперимента, повторить еще какой-либо регенеративный радиоприемник на транзисторах. Выбор пал на так называемый «Ручеек».

Приниципиальная схема этого транзисторного регенератора    находится на этом ресурсе :  cqham.ru.  Автор приемника-пользователь MatrixBuilder.

Вот, собственно,  базовая схема регенеративного радиоприемника, который впоследствии получил название «Ручеек»:

Как видно из схемы, это четырехтранзисторный регенеративный радиоприемник, предназначенный для  работы на наушники.

На транзисторе VT13 ( см. схему выше) собран входной регенеративный каскад. Это обычный генератор по схеме индуктивной трехточки. На транзисторе VT14 собран детектор. Простенький УНЧ собран на транзисторах VT11 и VT12, нагрузкой которого служат головные телефоны.

Конденсатор С78 служит органом настройки на радиостанции.  Автор приемника в качестве каркаса для катушки индуктивности использовал медицинский шприц. В качестве детектора применен каскад на транзисторе ГТ311.

Эта схема подкупила своей простотой, поэтому и была выбрана для повторения.

 

Мною в схему внесено минимум изменений:

-катушка гетеродина вместо шприца намотана на кольце Amidon T50-2;

-в качестве оконечного УНЧ была выбрана микросхема TDA2822M, которая очень хорошо зарекомендовала себя в модернизированном AM/FM тюнере SONY ST-JX22L.

 

В качестве предварительного каскада усиления низкой частоты  изначально собрал двухтранзисторный усилитель на транзисторах КТ312 по схеме:

Как оказалось, суммарный коэффициент усиления для этого приемника получился избыточным, станции принимаются и так очень громко. Кроме того, данный УНЧ (2 х КТ312 + TDA2822M) очень склонен к самовозбуждению.

Поэтому каскад предварительного усиления НЧ был упрощен-оставлен только один транзистор:

 

Финальная схема регенеративного радиоприемника «Ручеек» представлена ниже:

Каскад на транзисторе VT1- регенеративный, собран по схеме индуктивной трехточки.

Катушка L2 намотана на кольце Amidon T50-2,  имеет 34 витка провода диаметром 0,4 мм, отвод от 1-го витка , считая от заземленного конца и имеет индуктивность 6,7 мкГн. Катушка связи L1 выполнена в виде одного витка связи  ( подробности смотрите ниже).

Каскад на транзисторе VT2( ГТ311)-детектор  . Это модернизированный детектор от В. Т. Полякова, который характеризуется болем высокой чувствительностью чем другие. Усилитель НЧ собран на КТ312 (VT4) и TDA2822M.

Для проверки работы приемника были выбраны диапазоны: радиовещательный 31м ( 9400-9900 кГц) и радиолюбительский 40м (7000-7200 кГц).

Для перекрытия этих диапазонов был выполнен расчет растягивающих конденсаторов С1 и С3, данные сведены в таблицу:

Расчет конденсаторов произведен при помощи маленькой программы- «полезняшки» KONTUR3C, которую нашел здесь.

 Катушка связи с антенной L1  имеет один виток и выполнена в виде обьемной петли продетой через кольцо:

Первоначально,  катушка L1 имела один виток и была размещена непосредственно на кольце рядом с катушкой L2. Как оказалось, в этом случае была слишком сильная связь с антенной, приемник буквально затыкался. Недолго думая, решил проверить вот такой вариант-с петлей связи. Получилось очень неплохо.

 

Плата приемника с указанием основных узлов:

 

А так выглядит приемник в  сборе, смонтированный на импровизированном шасси:

 

Некоторые трудности возникшие при изготовлении этого радиоприемника.

Как уже указывалось, пришлось переделывать УНЧ из-за избыточного усиления.

Гетеродин тоже заставил потрудиться над ним… Не хотел запускаться, пришлось ставить транзистор КТ312 с коэффициентом h31e= 85.  Изначально стоял КТ312 с коэффициентом h31e= 63.

Вот и все трудности.

 

Размах высокочастотного напряжения на эмиттере транзистора VT1 в режиме генерации составляет около 60 мВ.

Пробная эксплуатация показала, что регенеративный радиоприемник «Ручеек»  имеет более высокую чувствительность чем собранный мною ранее регенеративный приемник от US5MSQ.

Видимо, это результат применения в «Ручейке» высокочувствительного детектора от В. Т. Полякова.

В  целом, регенеративный радиоприемник «Ручеек» мне понравился  больше при приеме радиовещательных станций. Регенератор от US5MSQ, наоборот, куда лучше принимает SSB радиолюбительские станции.

 

Видео о работе этого регенеративного радиоприемника на радиовещательном диапазоне 31м:

 

Update от 28.08.17

Добавляю рисунок печатной платы этого приемника.

Плата имеет размер 60 х 97 мм. Вид со стороны печатных проводников.

Не все компоненты указаны, так как делалась платка для себя. Обращаю внимание, что на плате разведены два транзистора предварительного УНЧ. Как указано выше в тексте статьи -в финальном варианте использован только один транзистор в предварительном УНЧ. На печатной плате он указан как VT4.

Современный коротковолновый регенеративный приёмник. Каким должен быть хороший всеволновый КВ регенератор?

«Что лишнее — топор, дрель, молоток, паяльник, гвоздь?» — с лукавым прищуром любопытствуют учителя-словесники.
«Ничто не лишне в жизни этой…» — отвечает им английский писатель. «Особенно в деле регенераторостроения» — вставляю я свои пять копеек, — «А как начнём строгать корпус, так ещё и шпунтубель понадобится!».

Было время золотое, когда ни смесительных гептодов, ни кварцевых фильтров, ни доступных китайских комплектующих на горизонте не светило, лампы были весьма не дёшевы — единственными приёмниками, доступными для радиолюбителей, стали простые ламповые регенераторы, способные получить наибольшую отдачу от одного усилительного пентода.
К преимуществам регенеративных приёмников, помимо простоты схемотехнических решений, относятся замечательная чувствительность, отсутствие побочных каналов, способность приёма сигналов любого типа модуляции.
Однако ожидать от таких простейших аппаратов высоких характеристик — дело неблагодарное и несправедливое. Посредственная избирательность по соседнему каналу, прямое детектирование мощных внеполосных станций, излучение помех в антенну, сложность настройки — плечом к плечу подвалили ложку дёгтя в бочку мёда.
Именно поэтому, начиная с 40-ых годов прошлого века, эпоха регенераторов канула в лету, уступив место супергетеродинам, превосходящих конкурентов по таким решающим показателям, как удобство пользования, стабильность и избирательность.

И помнили бы об этом раритете только апологеты регенераторостроения, если бы не неожиданное появление в 90-ые годы на американском рынке регенеративного приёмника «MFJ-8100» заводского изготовления.
Вот тут-то любителям старины карта и попёрла.
Оказалось, что регенератор, с несколько усложнённой по сравнению с классической схемотехникой, в состоянии устойчиво работать и принимать радиовещательные станции не хуже простеньких супергетеродинов, а бонусом является возможность словить и мощных радиолюбителей, работающих с однополосной SSB модуляцией.

Весёлая радиолюбительская братва бросилась паять заморскую схему, обсуждать в сети, вносить изменения, выдумывать своё видение, но так и не смогла существенно улучшить простое, но продуманное устройство, собранное на китайских дроссельках.

Так вот, а почему бы нам не попытать удачу на поприще регенераторостроительной деятельности? Лично я не вижу никаких препятствий к этому.
А потому, давайте выпьем за успех нашего серьёзного мероприятия и, наконец, приступим к делу.

Что нам нужно для достижения цели?

1. Хороший регенератор — это в первую очередь хороший генератор с возможностью регулировки глубины положительной обратной связи.
Хороший — значит высокостабильный, способный устойчиво работать в нужном нам диапазоне частот. Образцом стабильности частоты среди генераторов справедливо считается индуктивная трёхточка. Но у трёхточки есть существенный недостаток — её обвес, состоящий из конденсаторов, необходимых для формирования «правильного» сигнала положительной обратной связи, не позволяет генератору устойчиво работать в широком диапазоне частот без изменения их номиналов.
Тут нам в помощь, как нельзя лучше, придётся генератор на транзисторах в барьерном включении, работающих в режиме микротоков. Подобные генераторы, обладая частотной стабильностью, не уступающей индуктивной трёхточке, способны выдавать сигнал от единиц герц до сотни мегагерц, в зависимости от резонансной частоты колебательного контура.

2. Колебательный контур регенеративного приёмника должен иметь максимально возможную добротность. Именно от его параметров будет зависеть стабильность и избирательность приёмника. Китайские дроссельки в «MFJ-8100» оставим на совести производителя, но понимать надо явственно — из какашки торт не сделаешь, как не сдабривай её тростниковым сахаром.

3. Колебательный контур не должен «видеть» ни антенну, ни источник, вырабатывающий сигнал положительной связи. В идеале, он должен болтаться где-то в воздухе и получать все необходимые сигналы из далёкого эфира, но это — высшая цель из области утопий. Однако все трансформаторные, либо емкостные связи с контуром следует исключить.

4. Регулировка положительной обратной связи должна осуществляться электронно (путём изменения режима работы транзистора) — это позволит нам не задумываться о месте размещения переменного резистора, а в дальнейшем придумать автоматическую систему поддержания уровня регенерации и вообще отказаться от слежения за этим параметром в процессе перестройки приёмника по частоте.

ВАЖНО!!! Элемент (транзистор), с изменяемым режимом, во избежание уплывания частоты в процессе регулировки уровня регенерации, не должен никаким боком, а также никаким пассивным обвесом соприкасаться с колебательным контуром.

Да и хватит для начала. Рисуем схему электрическую принципиальную.

Рис. 1

Разговор наш будет долгим, поэтому перейду-ка я на следующую страницу.

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *