Site Loader

Распространение радиоволн — Большая советская энциклопедия

Распростране́ние радиоволн

Процессы распространения электромагнитных волн радиодиапазона в атмосфере, космическом пространстве и толще Земли. Радиоволны, излучаемые передатчиком, прежде чем попасть в приёмник, проходят путь, который может быть сложным. Радиоволны могут достигать пункта приёма, распространяясь по прямолинейным траекториям, огибая выпуклую поверхность Земли, отражаясь от ионосферы, и т.д. Способы Р. р. существенно зависят от длины волны λ, от освещённости земной атмосферы Солнцем и от ряда др. факторов (см. ниже).

Прямые волны. В однородных средах радиоволны распространяются прямолинейно с постоянной скоростью, подобно световым лучам (радиолучи). Такое Р. р. называется свободным. Условия Р. р. в космическом пространстве при радиосвязи между наземной станцией и космическим объектом, между двумя космическими объектами, при радиоастрономических наблюдениях, при радиосвязи наземной станции с самолётом или между самолётами близки к свободному.

Волну, излученную антенной, на больших расстояниях от неё можно считать плоской (см. Излучение и приём радиоволн). Плотность потока электромагнитной энергии, пропорциональная квадрату напряжённости поля волны, убывает с увеличением расстояния r от источника обратно пропорционально r 2, что приводит к ограничению расстояния, на котором может быть принят сигнал передающей станции. Дальность действия радиостанции (при отсутствии поглощения) равна: Распространение радиоволн , где Pc — мощность сигнала на входе приёмника, Р

ш — мощность шумов, G1, G2 — коэффициенты направленного действия передающей и приёмной антенн. Скорость Р. р. в свободном пространстве равна скорости света в вакууме: с = 300 000 км/сек.

При распространении волны в материальной среде (например, в земной атмосфере, в толще Земли, в морской воде и т.п.) происходят изменение её фазовой скорости и поглощение энергии. Это объясняется возбуждением колебаний электронов и ионов в атомах и молекулах среды под действием электрического поля волны и переизлучением ими вторичных волн. Если напряжённость поля волны мала по сравнению с напряжённостью поля, действующего на электрон в атоме, то колебания электрона под действием поля волны происходят по гармоническому закону с частотой пришедшей волны. Поэтому электроны излучают радиоволны той же частоты, но с разными амплитудами и фазами. Сдвиг фаз между первичной и переизлучённой волнами приводит к изменению фазовой скорости. Потери энергии при взаимодействии волны с атомами являются причиной поглощения радиоволн. Поглощение и изменение фазовой скорости в среде характеризуются показателем поглощения χ и показателем преломления

n, которые, в свою очередь, зависят от диэлектрической проницаемости ε и проводимости σ среды, а также от длины волны λ:

Распространение радиоволн. Рис. 2

(1)

Распространение радиоволн. Рис. 3

Коэффициент поглощения β = 2πχ/λ, фазовая скорость υ = c/n. В этом случае rд определяется не только характеристиками передатчика, приёмника и длиной волны, но и свойствами среды (ε, σ). В земных условиях Р. р. обычно отличается от свободного. На Р. р. оказывают влияние поверхность Земли, земная атмосфера, структура ионосферы и т.д. Влияние тех или иных факторов зависит от длины волны.

Влияние поверхности Земли на распространение радиоволн

зависит от расположения радиотрассы относительно её поверхности.

Р. р. — пространственный процесс, захватывающий большую область. Но наиболее существенную роль в этом процессе играет часть пространства, ограниченная поверхностью, имеющей форму эллипсоида вращения, в фокусах которого А и В расположены передатчик и приёмник (рис. 1). Большая ось эллипсоида практически равна расстоянию R между передатчиком и приёмником, а малая ось ~ Распространение радиоволн. Рис. 4 . Чем меньше λ, тем уже эллипсоид, в оптическом диапазоне он вырождается в прямую линию (световой луч). Если высоты

Z1 и Z2, на которых расположены антенны передатчика и приёмника относительно поверхности Земли, велики по сравнению с λ, то эллипсоид не касается поверхности Земли (рис. 1, а). Поверхность Земли не оказывает в этом случае влияния на Р. р. (свободное распространение). При понижении обеих или одной из конечных точек радиотрассы эллипсоид коснётся поверхности Земли (рис. 1, б) и на прямую волну, идущую от передатчика к приёмнику, належится поле отражённой волны. Если при Z1 >> λ и Z2 >> λ, то это поле можно рассматривать как луч, отражённый земной поверхностью по законам геометрической оптики. Поле в точке приёма определяется интерференцией прямого и отражённого лучей. Интерференционные максимумы и минимумы обусловливают лепестковую структуру поля (
рис. 2
). Условие Z1 и Z2 >> λ практически может выполняться только для метровых и более коротких волн, поэтому лепестковая структура поля характерна для ультракоротких волн (УКВ).

При увеличении λ существенная область расширяется и пересекает поверхность Земли. В этом случае уже нельзя представлять волновое поле как результат интерференции прямой и отражённой волн. Влияние Земли на Р. р. в этом случае обусловлено несколькими факторами: земля обладает значительной электропроводностью, поэтому Р. р. вдоль поверхности Земли приводит к тепловым потерям и ослаблению волны. Потери энергии в земле увеличиваются с уменьшением λ.

Помимо ослабления, происходит также изменение структуры поля волны. Если антенна у поверхности Земли излучает поперечную линейно-поляризованную волну (см. Поляризация волн), у которой напряжённость электрического поля Е перпендикулярна поверхности Земли, то на больших расстояниях от излучателя волна становится эллиптически поляризованной (рис. 3). Величина горизонтальной компоненты Ex значительно меньше вертикальной E

z и убывает с увеличением проводимости σ земной поверхности. Возникновение горизонтальной компоненты позволяет вести приём земных волн на т. н. земные антенны (2 проводника, расположенные на поверхности Земли или на небольшой высоте). Если антенна излучает горизонтально-поляризованную волну (Е параллельно поверхности Земли), то поверхность Земли ослабляет поле тем больше, чем больше σ, и создаёт вертикальную составляющую. Уже на небольших расстояниях от горизонтального излучателя вертикальная компонента поля становится больше горизонтальной. При распространении вдоль Земли фазовая скорость земных волн меняется с расстоянием, однако уже на расстоянии ~ нескольких λ от излучателя она становится равной скорости света, независимо от электрических свойств почвы.

Выпуклость Земли является своеобразным «препятствием» на пути радиоволн, которые, дифрагируя, огибают Землю и проникают в «область тени». Т. к. дифракция волн заметно проявляется тогда, когда размеры препятствия соизмеримы или меньше λ, а размер выпуклости Земли можно охарактеризовать высотой шарового сегмента h (рис. 4), отсекаемого плоскостью, которая проходит через хорду, соединяющую точки расположения приёмника и передатчика (см. табл.), то условие h << λ выполняется для метровых и более длинных волн. Если учесть, что с уменьшением λ увеличиваются потери энергии в Земле, то практически только километровые и более длинные волны могут проникать глубоко в область тени (

рис. 5).

Высота шарового сегмента h для различных расстояний между передатчиком и приёмником

Расстояние, км15105010050010005000
 h, м            0,03         0,78      3,1       78           310     7800       3,1×104  3,75×104

Земная поверхность неоднородна, наиболее существенное влияние на Р. р. оказывают электрические свойства участков трассы, примыкающих к передатчику и приёмнику. Если радиотрасса пересекает линию берега, т. е. проходит над сушей, а затем над морем (σ → ∞) , то при пересечении береговой линии резко изменится напряжённость поля (

рис. 6), т. е. амплитуда и направление распространения волны (береговая рефракция). Однако береговая рефракция является местным возмущением поля радиоволны, уменьшающимся по мере удаления от береговой линии.

Рельеф земной поверхности также влияет на Р. р. Это влияние зависит от соотношения между высотой неровностей поверхности h, горизонтальной протяжённостью l, λ и углом падения θ волны на поверхность (рис. 7). Если выполняются условия:

2l 2 sin2θ/λ2 ≤ 1; 2π Распространение радиоволн. Рис. 5 sin θ << 1, (2)

то неровности считаются малыми и пологими. В этом случае они мало влияют на Р. р. При увеличении θ условия (2) могут нарушаться. При этом энергия волны рассеивается, и напряжённость поля в направлении отражённого луча уменьшается (возникают диффузные отражения).

Высокие холмы, горы и т.п., кроме того, сильно «возмущают» поле, образуя затенённые области. Дифракция радиоволн на горных хребтах иногда приводит к усилению волны из-за интерференции прямых и отражённых от поверхности Земли волн (рис. 8).

Распространение радиоволн в тропосфере. Рефракция радиоволн. Земные радиоволны распространяются вдоль поверхности Земли в тропосфере (См. Тропосфера). Проводимость тропосферы σ для частот, соответствующих радиоволнам (за исключением миллиметровых волн), практически равна 0; диэлектрическая проницаемость ε и, следовательно, показатель преломления n являются функциями давления и температуры воздуха, а также давления водяного пара. У поверхности Земли n — 1,0003. Изменение ε и n с высотой зависит от метеорологических условий. Обычно ε и n уменьшаются, а фазовая скорость υ растет с высотой. Это приводит к искривлению радиолучей (рефракция радиоволн, рис. 9). Если в тропосфере под углом к горизонту распространяется волна, фронт которой совпадает с прямой ав (рис. 9), то вследствие того, что в верхних слоях тропосферы волна распространяется с большей скоростью, чем в нижних, верхняя часть фронта волны обгоняет нижнюю и фронт волны поворачивается (луч искривляется). Т. к. n с высотой убывает, то радиолучи отклоняются к Земле. Это явление, называется нормальной тропосферной рефракцией, способствует Р. р. за пределы прямой видимости, т.к. за счёт рефракции волны могут огибать выпуклость Земли. Однако практически этот эффект может играть роль только для УКВ, поскольку для более длинных волн преобладает огибание в результате дифракции. Метеорологические условия могут ослаблять или усиливать рефракцию по сравнению с нормальной.

Тропосферный волновод. При некоторых условиях (например, при движении нагретого воздуха с суши над поверхностью моря) температура воздуха с высотой не уменьшается, а увеличивается (инверсии температуры). При этом преломление в тропосфере может стать столь сильным, что вышедшая под небольшим углом к горизонту волна на некоторой высоте изменит направление на обратное и вернётся к Земле. В пространстве, ограниченном снизу Землёй, а сверху как бы отражающим слоем тропосферы, волна может распространяться на очень большие расстояния (волноводное распространение радиоволн). Так же как в металлических Радиоволноводах, в тропосферных волноводах могут распространяться волны, длина которых меньше критической (λкр — 0,085 d3/2 , d —высота волновода в м, λкр в см). Толщина слоев инверсии в тропосфере обычно не превышает ~ 50—100 м, поэтому волноводным способом могут распространяться только дециметровые, сантиметровые и более короткие волны.

Рассеяние на флуктуациях ε. Помимо регулярных изменений ε с высотой, в тропосфере существуют нерегулярные неоднородности (флуктуации) ε, возникающие в результате беспорядочного движения воздуха. На них происходит рассеяние радиоволн УКВ диапазона. Т. о., область пространства, ограниченная диаграммами направленности приёмной и передающей антенн и содержащая большое число неоднородностей ε, является рассеивающим объёмом. Рассеяние приводит к флуктуациям амплитуды и фазы радиоволны, а также к распространению УКВ на расстояния, значительно превышающие прямую видимость (рис. 10). При этом поле в точке приёма В образуется в результате интерференции рассеянных волн. Вследствие интерференции большого числа рассеянных волн возникают беспорядочные изменения амплитуды и фазы сигнала. Однако среднее значение амплитуды сигнала значительно превышает амплитуду, которая могла бы быть обусловлена нормальной тропосферной рефракцией.

Поглощение радиоволн. Тропосфера прозрачна для всех радиоволн вплоть до сантиметровых. Более короткие волны испытывают заметное ослабление в капельных образованиях (дождь, град, снег, туман), в парах воды и газах атмосферы. Ослабление обусловлено процессами поглощения и рассеяния. Каждая капля воды обладает значительной проводимостью и волна возбуждает в ней высокочастотные токи. Плотность токов пропорциональна частоте, поэтому значительные токи, а следовательно, и тепловые потери, возникают только при распространении сантиметровых и более коротких волн. Эти токи вызывают не только тепловые потери, но являются источниками вторичного рассеянного излучения, ослабляющего прямой сигнал. Плотность потока рассеянной энергии обратно пропорциональна λ4, если размер рассеивающей частицы d < λ, и не зависит от λ, если d >> λ (см. Рассеяние света). Практически через область сильного дождя или тумана волны с λ < 3 см распространяться не могут. Волны короче 1,5 см, помимо этого, испытывают резонансное поглощение в водяных парах (λ = 1,5 см; 1,35 см; 0,75 см; 0,5 см; 0,25 см) и кислороде (λ = 0,5 см и 0,25 см). Энергия распространяющейся волны расходуется в этом случае на ионизацию или возбуждение атомов и молекул. Между резонансными линиями имеются области малого поглощения.

Распространение радиоволн в ионосфере. В ионосфере (См. Ионосфера) многокомпонентной плазме (См. Плазма), находящейся в магнитном поле Земли, механизм Р. р. сложнее, чем в тропосфере. Под действием радиоволны в ионосфере могут возникать как вынужденные колебания электронов и ионов, так и различные виды коллективных собственных колебаний (плазменные колебания). В зависимости от частоты радиоволны ω основную роль играют те или другие из них и поэтому электрические свойства ионосферы различны для различных диапазонов радиоволн. При высокой частоте ω в Р. р. принимают участие только электроны, собственная частота колебаний которых (Ленгмюровская частота) равна:

Распространение радиоволн. Рис. 6 (3)

где е — заряд, m — масса, N — концентрация электронов. Вынужденные колебания свободных электронов ионосферы, в отличие от электронов тропосферы, тесно связанных с атомами, отстают от электрического поля высокочастотной волны по фазе почти на 2π. Такое смещение электронов усиливает поле Е волны в ионосфере (рис. 11). Поэтому диэлектрическая проницаемость ε, равная отношению напряжённости внешнего поля к напряжённости поля внутри среды, оказывается для ионосферы < 1 : ε = 1 — ω202. Учёт столкновений электронов с атомами и ионами даёт более точные формулы для ε и σ ионосферы:

Распространение радиоволн. Рис. 7 , Распространение радиоволн. Рис. 8 (4)

где ν — число столкновений в секунду.

Для высоких частот, начиная с коротких волн, в большей части ионосферы справедливо соотношение: ω2 >> ν2 и показатели преломления n и поглощения χ равны:

Распространение радиоволн. Рис. 9 ; Распространение радиоволн. Рис. 10 (5)

С увеличением частоты χ уменьшается, а n растет, приближаясь к 1. Т. к. n < 1, фазовая скорость распространения волны Распространение радиоволн. Рис. 11. Скорость распространения энергии (групповая скорость волны) в ионосфере равна сn и в соответствии с относительности теорией (См. Относительности теория) меньше с.

Отражение радиоволн. Для волны, у которой ω < ω0n и υ становятся мнимыми величинами, это означает, что такая волна не может распространяться в ионосфере. Поскольку концентрация электронов N и плазменная частота ω0 в ионосфере увеличиваются с высотой (рис. 12), то падающая волна, проникая в ионосферу, распространяется до такого уровня, при котором показатель преломления обращается в нуль. На этой высоте происходит полное отражение волны от слоя ионосферы. С увеличением частоты падающая волна всё глубже проникает в слой ионосферы. Максимальная частота волны, которая отражается от слоя ионосферы при вертикальном падении, называется критической частотой слоя:

Распространение радиоволн. Рис. 12 (6)

Критическая частота слоя F2 (главный максимум, рис. 12) изменяется в течение суток и от года к году приблизительно от 5 до 10 Мгц. Для волн с частотой ω > ωкрn всюду > 0, т. е. волна проходит через слой, не отражаясь.

При наклонном падении волны на ионосферу максимальная частота волны, возвращающейся на Землю, оказывается выше ωкр. Радиоволна, падающая на ионосферу под углом φ0, испытывая рефракцию, поворачивается к Земле на той высоте, где φ(z) = π/2. Условие отражения при наклонном падении имеет вид: n (z) = sinφ0. Частоты волн, отражающихся от данной высоты при наклонном и вертикальном падении, связаны соотношением: ωнакл = ωверт secφ0. Максимальная частота волны, отражающейся от ионосферы при данном угле падения, т. е. для данной длины трассы, называется максимальной применимой частотой (МПЧ).

Двойное лучепреломление. Существенное влияние на Р. р. оказывает магнитное поле Земли H0 = 0,5 э, пронизывающее ионосферу. В постоянном магнитном поле ионизированный газ становится анизотропной средой. Попадающая в ионосферу волна испытывает Двойное лучепреломление, т. е. расщепляется на 2 волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. В магнитном поле H0 на электрон, движущийся со скоростью υ, действует Лоренца сила Распространение радиоволн. Рис. 13 , под действием которой электрон вращается с частотой Распространение радиоволн. Рис. 14 (гироскопическая частота) вокруг силовых линий магнитного поля. Вследствие этого изменяется характер вынужденных колебаний электронов ионосферы под действием электрического поля волны.

В простейшем случае, когда направление Р. р. перпендикулярно H0 (Е лежит в одной плоскости с H0), волну можно представить в виде суммы 2 волн с ЕН0 и Е || Н0. Для первой волны (необыкновенной) характер движения электронов и, следовательно, n изменяются, для второй (обыкновенной) они остаются такими же, как и в отсутствии магнитного поля:

Распространение радиоволн. Рис. 15 ; Распространение радиоволн. Рис. 16 (7)

В случае произвольного направления Р. р. относительно магнитного поля Земли формулы более сложные: как n1, так и n2 зависят от ωH. Поскольку отражение радиоволны происходит от слоя, где n = 0, то обыкновенная и необыкновенная волны отражаются на разной высоте. Критические частоты для них также различны.

По мере Р. р. в ионосфере из-за различия в скорости накапливается сдвиг фаз между волнами, вследствие чего поляризация результирующей волны непрерывно изменяется. Линейная поляризация падающей волны в определённых условиях сохраняется, но плоскость поляризации при распространении поворачивается (см. Вращение плоскости поляризации). В общем случае поляризация обеих волн эллиптическая.

Рассеяние радиоволн. Помимо регулярной зависимости электронной концентрации N от высоты (рис. 12), в ионосфере постоянно происходят случайные изменения концентрации. Ионосферный слой содержит большое число неоднородных образований различного размера, которые находятся в постоянном движении и изменении, рассасываясь и возникая вновь. Вследствие этого в точку приёма, кроме основного отражённого сигнала, приходит множество рассеянных волн (рис. 13), сложение которых приводит к замираниям — хаотическим изменениям сигнала.

Существование неоднородных образований приводит к возможности рассеянного отражения радиоволн при частотах, значительно превышающих максимальные частоты отражения от регулярной ионосферы. Аналогично рассеянию на неоднородностях тропосферы это явление обусловливает дальнее Р. р. (метрового диапазона).

Характерные неоднородные образования возникают в ионосфере при вторжении в неё метеоритов (См. Метеориты). Испускаемые раскалённым метеоритом электроны ионизируют окружающую среду, образуя за летящим метеоритом след, диаметр которого вследствие молекулярной диффузии быстро возрастает. Ионизированные следы создаются в интервале высот 80—120 км, длительность их существования колеблется от 0,1 до 100 сек. Радиоволны зеркально отражаются от метеорного следа. Эффективность этого процесса зависит от массы метеорита.

Нелинейные эффекты. Для сигналов не очень большой мощности две радиоволны распространяются через одну и ту же область ионосферы независимо друг от друга (см. Суперпозиции принцип), ионосфера является линейной средой. Для мощных радиоволн, когда поле Е волны сравнимо с характерным «плазменным полем» Ep ионосферы, ε и σ начинают зависеть от напряжённости поля распространяющейся волны. Нарушается линейная связь между электрическим током и полем Е.

Нелинейность ионосферы может проявляться в виде перекрёстной модуляции 2 сигналов (Люксембург — Горьковский эффект (См. Люксембург-Горьковский эффект)) и в «самовоздействии» мощной волны, например в изменении глубины модуляции сигнала, отражённого от ионосферы.

Особенности распространения радиоволн различного диапазона в ионосфере. Начиная с УКВ волны, частота которых выше максимально применимой частоты (МПЧ), проходят через ионосферу. Волны, частота которых ниже МПЧ, отражаясь от ионосферы, возвращаются на Землю. Такие радиоволны называются ионосферными, используются для дальней радиосвязи на Земле. Диапазон ионосферных волн снизу по частоте ограничен поглощением. Поэтому связь при помощи ионосферных волн осуществляется в диапазоне коротких волн и в ночные часы (уменьшается поглощение) в диапазоне средних волн. Дальность Р. р. при одном отражении от ионосферы ~ 3500—4000 км, т.к. угол падения φ на ионосферу из-за выпуклости Земли ограничен: наиболее пологий луч касается поверхности Земли (рис. 14). Связь на большие расстояния осуществляется за счёт нескольких отражений от ионосферы (рис. 15).

Длинные и сверхдлинные волны практически не проникают в ионосферу, отражаясь от её нижней границы, которая является как бы стенкой сферического радиоволновода (второй стенкой волновода служит Земля). Волны, излучаемые антенной в некоторой точке Земли, огибают её по всем направлениям, сходятся на противоположной стороне. Сложение волн вызывает некоторое увеличение напряжённости поля в противолежащей точке (эффект антипода, рис. 16).

Радиоволны звуковых частот могут просачиваться через ионосферу вдоль силовых линий магнитного поля Земли. Распространяясь вдоль магнитной силовой линии, волна уходит на расстояние, равное нескольким земным радиусам, и затем возвращается в сопряжённую точку, расположенную в др. полушарии (рис. 17). Разряды молний в тропосфере являются источником таких волн. Распространяясь описанным способом, они создают на входе приёмника сигнал с характерным свистом (свистящие Атмосферики).

Для радиоволн инфразвуковых частот, частота которых меньше гироскопической частоты ионов, ионосфера ведёт себя как проводящая нейтральная жидкость, движение которой описывается уравнениями гидродинамики (См. Гидродинамика). Благодаря наличию магнитного поля Земли любое смещение проводящего вещества, создающее электрический ток, сопровождается возникновением сил Лоренца, изменяющих состояние движения. Взаимодействие между механическими и электромагнитными силами приводит к перемещению случайно возникшего движения в ионизированном газе вдоль магнитных силовых линий, т. е. к появлению магнито-гидродинамических (альфвеновских) волн, которые распространяются вдоль магнитных силовых линий со скоростью Распространение радиоволн. Рис. 17 4,5․104м/сек (ρ — плотность ионизированного газа).

Космическая радиосвязь. Когда один из корреспондентов находится на Земле, диапазон длин волн, пригодных для связи с космическим объектом, определяется условиями прохождения через атмосферу Земли. Т. к. радиоволны, частота которых < МПЧ (5—30 Мгц), не проходят через ионосферу, а волны с частотой > 6—10 Ггц поглощаются в тропосфере, то волны от космического объекта могут приниматься на Земле при частотах от ~ 30 Мгц до 10 Ггц. Однако и в этом диапазоне атмосфера Земли не полностью прозрачна для радиоволн. Вращение плоскости поляризации при прохождении через ионосферу при приёме на обычную антенну приводит к потерям, которые уменьшаются с ростом частоты. Только при частотах > 3 Ггц ими можно пренебречь (рис. 18). Эти условия определяют диапазон радиоволн для дальней связи на УКВ при использовании спутников.

Для связи с объектами, находящимися на др. планетах, необходимо учитывать поглощение и в атмосфере этих планет. При осуществлении связи между 2 космическими кораблями, находящимися вне атмосферы планет, особенное значение приобретают миллиметровые и световые волны, обеспечивающие наибольшую ёмкость каналов связи (см. Оптическая связь). Сведения о процессах Р. р. в космическом пространстве даёт Радиоастрономия.

Подземная и подводная радиосвязь. Земная кора, а также воды морей и океанов обладают проводимостью и сильно поглощают радиоволны. Для осадочных пород в поверхностном слое земной коры σ — 10—3—10—2ом—1м—1. В этих средах волна практически затухает на расстоянии ≤ λ. Кроме того, для сред с большой σ коэффициент поглощения увеличивается с ростом частоты. Поэтому для подземной радиосвязи используются в основном длинные и сверхдлинные волны. В подводной связи наряду со сверхдлинными волнами используют волны оптического диапазона.

В системах связи между подземными или подводными пунктами может быть использовано частичное распространение вдоль поверхности Земли или моря. Вертикально поляризованная волна, возбуждаемая подземной передающей антенной, распространяется до поверхности Земли, преломляется на границе раздела между Землёй и атмосферой, распространяется вдоль земной поверхности и затем принимается подземной приёмной антенной (рис. 19). Глубина погружения антенн достигает десятков м. Системы этого типа обеспечивают дальность до нескольких сотен км и применяются, например, для связи между подземными пунктами управления при запуске ракет. Системы др. типа используют подземные волноводы — слои земной коры, обладающие малой проводимостью и, следовательно, малыми потерями. К таким породам относятся Каменная соль, поташ и др. Эти породы залегают на глубинах до сотен м и обеспечивают дальность Р. р. до нескольких десятков км. Дальнейшим развитием этого направления является использование твёрдых горных пород (гранитов, гнейсов, базальтов и др.), расположенных на больших глубинах и имеющих малую проводимость (рис. 20). На глубине 3—7 км σ может уменьшиться до 10—11ом—1м—1. При дальнейшем увеличении глубины благодаря возрастанию температуры создаётся ионизация (обращенная ионосфера) и проводимость увеличивается. Образуется подземный волновод толщиной в несколько км, в котором возможно Р. р. на расстоянии до нескольких тыс. км. Одна из основных проблем подземной и подводной связи — расчёт излучения и передачи энергии от антенн (См. Антенна), расположенных в проводящей среде.

Преимущество систем подземной связи состоит в их независимости от бурь, ураганов и искусственных разрушений на поверхности Земли. Кроме того, благодаря экранирующему действию верхних проводящих осадочных пород системы подземной связи обладают высокой помехозащищенностью от промышленных и атмосферных шумов.

Лит.: Фейнберг Е. Л., Распространение радиоволн вдоль земной поверхности, М., 1961; Альперт Я. Л., Распространение электромагнитных волн и ионосфера, М., 1972; Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973; Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967; Чернов Л. А., Распространение волн в среде со случайными неоднородностями, М., 1958; Гинзбург В. Л., Распространение электромагнитных волн в плазме, М., 1967; Макаров Г. И., Павлов В. А., Обзор работ, связанных с подземным распространением радиоволн. Проблемы дифракции и распространения радиоволн, Сб. 5, Л., 1966; Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972; Гавелей Н. П., Никитин Л. М., Системы подземной радиосвязи, «Зарубежная радиоэлектроника», 1963, № 10; Габиллард [Р.], Дегок [П.], Уэйт [Дж.], Радиосвязь между подземными и подводными пунктами, там же, 1972, № 12; Ратклифф Дж. А., Магнито-ионная теория и ее приложения к ионосфере, пер. с англ., М., 1962.

М. Б. Виноградова, Т. А. Гайлит.

Распространение радиоволн. Рис. 18

Рис. 1. Область, существенная при распространении радиоволн: А — передающая антенна; В — приёмная; Z1 и Z2 — их высоты над поверхностью Земли.

Распространение радиоволн. Рис. 19

Рис. 2. Лепестковая структура поля в точке приёма.

Распространение радиоволн. Рис. 20

Рис. 3. к ст. Распространение радиоволн.

Распространение радиоволн. Рис. 21

Рис. 4. Высота шарового сегмента h, характеризующая выпуклость Земли.

Распространение радиоволн. Рис. 22

Рис. 5. График изменения напряжённости поля с расстоянием r ( в км ). По вертикальной оси отложена величина множителя ослабления, который определяется отношением напряжённости поля в реальных условиях распространения к величине напряжённости поля при распространении в свободном пространстве.

Распространение радиоволн. Рис. 23

Рис. 6. Изменение напряженности Е поля волны при пересечении береговой линии.

Распространение радиоволн. Рис. 24

Рис. 7. к ст. Распространение радиоволн.

Распространение радиоволн. Рис. 25

Рис. 8. Усиление радиоволн при дифракции на непологих неровностях.

Распространение радиоволн. Рис. 26

Рис. 9. Искривление радиолучей в тропосфере в результате ее неоднородности.

Распространение радиоволн. Рис. 27

Рис. 10. Схематическое изображение линии радиосвязи, использующей рассеяние радиоволн на неоднородностях тропосферы.

Распространение радиоволн. Рис. 28

Рис. 11. Смещение электронов ионосферы под действием поля волны Е приводит к появлению дополнительного поля ΔE.

Распространение радиоволн. Рис. 29

Рис. 12. Изменение концентрации N электронов в ионосфере с высотой; Е, F1, F2 — слои ионосферы.

Распространение радиоволн. Рис. 30

Рис. 13. Рассеяние радиоволн на неоднородностях ионосферы.

Распространение радиоволн. Рис. 31

Рис. 14. к ст. Распространение радиоволн.

Распространение радиоволн. Рис. 32

Рис. 15. к ст. Распространение радиоволн.

Распространение радиоволн. Рис. 33

Рис. 16. Зависимость напряженности Е поля волны от расстояния до передатчика r в отсутствии поглощения (пунктир) и при учете поглощения.

Распространение радиоволн. Рис. 34

Рис. 17. к ст. Распространение радиоволн.

Распространение радиоволн. Рис. 35

Рис. 18. Зависимость потерь энергии за счет вращения плоскости поляризации волны от частоты для трех значений угла возвышения β.

Распространение радиоволн. Рис. 36

Рис. 19. Система подземной связи с частичным распространением радиоволн вдоль земной поверхности. Вторичные волны изображены условно.

Распространение радиоволн. Рис. 37

Рис. 20. Изменение проводимости Земли σ с глубиной.

Источник: Большая советская энциклопедия на Gufo.me


Значения в других словарях

  1. РАСПРОСТРАНЕНИЕ РАДИОВОЛН — Процесс передачи эл.-магн. колебаний радиодиапазона (см. РАДИОВОЛНЫ) в пространстве от одного места к другому, в частности от передатчика к приёмнику. В естеств. условиях Р. р. происходит в разл. средах, напр. Физический энциклопедический словарь
Распространение радиоволн. Рис. 37

3.3 ВЛИЯНИЕ ТРОПОСФЕРЫ НА РАСПРОСТРАНЕНИЕ РАДИОВОЛН

В заключение данного раздела отметим, что в анизотропной ионосфере коэффициенты преломления и поглощения зависят от величины ω ± ωг . Если ω >> ωг значения коэффициентов преломления и поглощения обыкновенной и необыкновенной волн совпадают с соответствующими значениями для изотропной ионосферы, т. е. влиянием магнитного поля Земли можно пренебречь. Практически это приближение используется на частотах выше

100 МГц.

Следует иметь в виду, что при изучении влияния тропосферы на распространение радиоволн основное внимание уделяется волнам УКВ диапазона, поскольку влиянием тропосферы на распространение более длинных радиоволн обычно пренебрегают.

Как было показано выше, тропосфера является неоднородной средой, электрические параметры которой изменяются в пространстве и во времени. При рассмотрении особенностей распространения радиоволн в подобных средах основное внимание уделяется двум наиболее важным ситуациям: распространению в плавно неоднородных средах и распространению в неоднородных средах, где величина отклонения диэлектрической проницаемости (коэффициента преломления, индекса рефракции) мала по сравнению со средним значением соответствующей величины.

В первом случае влияние среды заключается в плавном изменении направления распространения волны – рефракции. Наиболее адекватным методом изучения процессов распространения радиоволн при этом является метод геометрической оптики.

Во втором случае влияние среды приводит к рассеянию радиоволн. Наиболее адекватными методами здесь являются методы теории возмущения.

3.3.1 РЕФРАКЦИЯ РАДИОВОЛН В ТРОПОСФЕРЕ

Рассмотрим механизм возникновения рефракции и определим радиус траектории радиоволны, полагая, что изменение электрических параметров тропосферы соответствует нормальной тропосфере (индекс рефракции уменьшается с высотой). Для этого разобьем условно всю толщу тропосферы по высоте на бесконечно большое число сферических, концентричных земной поверхности слоев (см. рис. 3.4), таких, чтобы в пределах каждого диэлектрическая проницаемость могла рассматриваться как постоянная величина. Тогда в каждом слое траектория волны будет прямолинейной, а при переходе от слоя к слою происходит ее преломление. Причем поскольку волна (при распространении от поверхности Земли) переходит из оптически более плотной в оптически менее плотную среду (т. к. диэлектрическая проницаемость убывает с высотой), то отклонение траектории происходит в направлении границы раздела слоев. Если число слоев разбиения устремить к бесконечности, то траектория волны превращается в плавную кривую.

51

Уравнение траектории волны в

сферически

неоднородной среде

в

приближении геометрической оптики имеет вид:

 

 

(a + h)n(h)sinφ(h) = (a

+ h0 )n(0)sinφ0 ,

(3.30)

 

где n(h) = ε(h) – коэффициент преломления на высоте h; остальные обозначения показаны на рис. 3.4.

Рис. 3.4. Рефракция в сферически слоистой среде

Если считать, что профиль индекса рефракции для приземного слоя тропосферы, как отмечалось выше, описывается линейной зависимостью, то траектория волны является примерно дугой окружности, радиус которой ρ определяется вертикальным градиентом индекса рефракции (диэлектрической проницаемости, коэффициента преломления):

ρ= 106 . (3.31)

−∂∂Nh

Вчастном случае нормальной тропосферы радиус кривизны является величиной положительной, так как градиент индекса рефракции отрицателен и траектория распространения волны направлена выпуклостью вверх.

Поскольку градиент N в нормальной тропосфере равен – 0.04 Nед/м,

то ρ = 25×106 м (25000 км).

Для учета влияния атмосферной рефракции на величину напряженности поля при распространении радиоволн вблизи поверхности Земли оказывается удобным ввести понятие эквивалентного радиуса Земли. Он вводится исходя из предположения, что распространение радиоволн происходит в однородной тропосфере по прямолинейным траекториям с постоянной скоростью, но над сферической поверхностью большего радиуса, так, чтобы относительная высота траектории над поверхностью оставалась неизменной. Графически подобный подход представлен на рис. 3.5.

52

Рис.3.5. Введение эквивалентного радиуса Земли а — истинная траектория, б – спрямленная траектория

Выражение для эквивалентного радиуса Земли, полученное с использованием рассмотренного подхода, имеет вид:

aэ =

 

a

 

,

 

(3.32)

 

∂N

 

 

 

1 + a

×10−6

 

 

 

∂h

 

 

 

 

 

 

 

 

 

 

где аэ – эквивалентный радиус Земли;

 

 

 

а = 6370 км – истинный радиус Земли.

 

 

 

Замена истинного

радиуса Земли

на

эквивалентный

позволяет

использовать в реальных

условиях

все

соотношения

для расчета

напряженности поля либо множителя ослабления, полученные ранее в предположении однородной тропосферы. В частности, выражение для определения расстояния прямой видимости (2.11), которое является базовым для многих расчетных формул, принимает вид:

Rв = 2аэ (

hп + hпр ) .

(3.33)

При использовании

внесистемных единиц

для условий нормальной

тропосферной рефракции, при которой эквивалентный радиус Земли равен

8500 км,

Rв(км) = 4.12( hп (м) + hпр (м)) .

(3.34)

Если сравнить выражения (2.12) и (3.34), то окажется, что нормальная тропосферная рефракция увеличивает дальность прямой видимости на 15 %.

Под влиянием различных метеорологических условий в реальной тропосфере профиль индекса рефракции может значительно отличаться от стандартного профиля. В связи с этим принято рассматривать несколько типичных видов тропосферной рефракции, которые классифицируются по величине и знаку градиента индекса рефракции (диэлектрической проницаемости, коэффициента преломления):

53

— при ∂∂Nh > 0 рефракция называется отрицательной, или субрефракцией,

радиус кривизны траектории волны ρ отрицателен, траектория направлена выпуклостью вниз, эквивалентный радиус Земли меньше истинного радиуса;

— при

∂N

= 0 рефракция отсутствует, ρ стремится к бесконечности,

∂h

 

 

траектория волны – прямолинейна, эквивалентный радиус равен истинному радиусу;

— при ∂∂Nh < 0 рефракция называется положительной, радиус кривизны

траектории волны ρ положителен, траектория направлена выпуклостью вверх. Положительная рефракция, в свою очередь, подразделяется на:

— пониженную, когда — 0.04 N ед/м < ∂∂Nh < 0, эквивалентный радиус больше истинного, но меньше 8500 км;

— нормальную, когда

∂N

= — 0.04 N ед/м, эквивалентный радиус Земли

∂h

 

 

аэ≈ 8500 км;

-повышенную, когда — 0.157 N ед/м < ∂∂Nh < — 0/04 N ед/м, эквивалентный

радиус больше 8500 км;

∂N

 

 

 

 

 

— критическую, когда

= — 0.157 N ед/м, при этом радиус траектории

∂h

 

 

 

 

 

 

 

волны

равен истинному

радиусу

Земли, эквивалентный

радиус

равен

бесконечности;

 

 

∂N

 

 

 

сверхрефракцию, когда

 

< — 0.157 N ед/м, при

этом

радиус

 

∂h

 

 

 

 

 

 

 

траектории волны меньше радиуса Земли, эквивалентный радиус отрицателен. При отрицательной рефракции (субрефракции) радиоволна удаляется от поверхности Земли, при этом дальность действия наземных радиотехнических систем уменьшается. Возникновение отрицательной рефракции чаще всего

связано с появлением туманов на трассе распространения радиоволн.

При положительной (пониженной, нормальной и повышенной) рефракции траектория волны приближается к поверхности Земли, дальность действия радиотехнических систем увеличивается. Подобные виды рефракции чаще всего присутствуют в тропосфере.

Критическая рефракция характеризуется тем, что радиоволны распространяются параллельно поверхности Земли на сколь угодно большие расстояния (если не рассматривать влияние других факторов). Условия возникновения критической рефракции и тем более их существование на всей трассе встречаются крайне редко, и данный вид рефракции практического значения не имеет.

Сверхрефракция характеризуется тем, что практически вся энергия электромагнитной волны сосредоточивается в слое тропосферы, концентричном относительно земной поверхности, поэтому распространение

54

радиоволн при сверхрефракции принято называть волноводным распространением. Волноводное распространение радиоволн возникает чаще всего над обширными акваториями морей и океанов из-за резкого изменения

влажности

по мере увеличения

высоты либо из-за переноса теплых

воздушных

масс с суши на море,

а также над сушей при температурных

инверсиях, которые появляются после захода солнца за счет резкого охлаждения земной поверхности. Физика этого явления заключается в том, что при быстром падении индекса рефракции на некоторой высоте над земной поверхностью создаются условия, при которых происходит полное внутреннее отражение электромагнитной энергии и радиоволна возвращается обратно к поверхности с последующим отражением от нее. Многократное повторение этих процессов приводит к сверхдальнему распространению радиоволн, что может иметь как положительное (увеличение дальности действия радиотехнических систем), так и отрицательное (взаимные помехи в радиосистемах, работающих на одинаковых или близких радиочастотах) значение. При определенном характере изменения индекса рефракции с высотой (наличие двух областей, где градиент меньше – 0.157 N ед/м) в тропосфере могут образовываться также приподнятые волноводы. В отличие от металлического волновода, стенки тропосферного являются полупрозрачными и электромагнитное поле проникает за пределы волновода. Однако, по аналогии с металлическим волноводом, для тропосферного волновода можно ввести понятие критической длины волны, связанной с его высотой соотношением [7]

λкр ≈ 8×10-4 hв3/2.

(3.35)

Поскольку высота тропосферных

волноводов лежит в пределах

нескольких десятков метров, то волноводное распространение возможно только в сверхвысокочастотном (миллиметровые, сантиметровые, дециметровые волны) диапазоне волн. Рисунок 3.6 иллюстрирует процесс распространения радиоволн в тропосферном волноводе. Слева на этом же рисунке показан соответствующий профиль коэффициента преломления.

Рис. З.6. Волноводное распространение радиоволн

55

3.3.2 ДАЛЬНЕЕ ТРОПОСФЕРНОЕ РАСПРОСТРАНЕНИЕ (ДТР)

Многочисленные экспериментальные данные показывают, что уровень поля в диапазоне УКВ за горизонтом значительно превышает уровни, предсказанные дифракционной теорией, даже с учетом нормальной атмосферной рефракции. Отличительной особенностью таких полей является наличие замираний сигнала. Это свидетельствует о том, что поле за горизонтом создается не волнами, распространяющимися вдоль поверхности Земли, а волнами, на распространение которых оказывает влияние турбулентность тропосферы.

Механизм дальнего тропосферного распространения состоит в том, что электромагнитная волна вызывает появление токов поляризации в элементарных объемах турбулентных неоднородностей, каждый из которых можно рассматривать в качестве элементарного диполя, излучающего электромагнитную энергию. Результирующее поле в заданном направлении представляет собой суперпозицию полей элементарных диполей. Теория механизма ДТР достаточно хорошо развита в работах Буккера и Гордона [3], получивших в приближении Борна выражение для коэффициента рассеяния ар, с помощью которого можно найти величину плотности потока энергии Sр, рассеянной некоторым объемом тропосферы V

 

 

 

 

 

 

2πL

)2 sin 2 γ

 

 

 

 

 

 

ε 2 (

 

 

 

 

 

 

 

 

 

 

 

αр

=

 

 

 

 

 

 

λ

 

 

 

 

 

. ;

(3.36)

 

 

 

 

 

 

4πL

 

 

θ

 

2

 

 

 

 

+ (

 

 

 

 

 

 

 

λ 1

 

 

sin

 

)

 

 

 

 

λ

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S р

= ∫

αрSпервdV

. .

 

 

 

 

(3.37)

 

 

 

r

 

2

 

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

В этих выражениях ε 2 – средний квадрат разности случайной функции, описывающей поведение диэлектрической проницаемости тропосферы в двух различных точках пространства – структурная функция;

L – внешний масштаб турбулентности; λ – длина радиоволны;

γ,θ ,r – углы и расстояние, смысл которых понятен из рис. 3.7;

Sперв – плотность потока энергии волны, падающей на каждый элемент рассеивающего объема ∆V.

Обычно плотность потока энергии рассеяния тропосферы относят к плотности потока энергии в свободном пространстве, созданного в той же точке при тех же параметрах радиосистемы:

S р

= S 2 ∫

a

р

 

∂V.

(3.38)

S0

2

r

2

V

r

 

 

 

 

0

 

 

 

 

Здесь S – расстояние между корреспондентами в свободном пространстве вдоль поверхности Земли.

56

Рис. 3.7. К определению рассеивающего объема

При проведении расчетов уровня поля ДТР в практических случаях необходимо учитывать некоторые характерные особенности распространения

иприема рассеянного излучения. К этим особенностям относятся:

-зависимость механизма рассеяния энергии радиоволн от ширины диаграммы направленности антенных систем;

-зависимость поля рассеяния от расстояния между корреспондентами;

-потери усиления антенных систем;

-зависимость принимаемой мощности от длины волны;

-наличие многолучевого распространения.

Зависимость поля рассеяния ДТР от ширины диаграммы направленности антенн связана с определением размеров области интегрирования V в (3.38). В предположении, что антенны расположены вблизи поверхности Земли и их диаграммы направленности касаются поверхности, эффективно рассеивающий объем тропосферы находится на середине трассы. Если размеры этого объема малы по сравнению с расстоянием между корреспондентами, то можно положить r = r0 = S/2 и тогда (3.38) преобразуется к виду:

S р

16

∫a р∂V.

(3.39)

S0

S

2

 

 

V

 

При узких диаграммах направленности антенн размер области интегрирования (рассеивающего объема) определяется общим объемом пространства, который образуется при пересечении главных лепестков диаграмм (см. рис. 3.8, б). При этом коэффициент рассеяния ар полагается неизменным в пределах всего объема.

В случае широких диаграмм направленности (см. рис. 3.8, а) размер области интегрирования определяется таким образом, чтобы на ее границах значение коэффициента рассеяния равнялось половине его максимального значения.

57

Рис. 3.8. Определение рассеивающего объема в зависимости от ширины диаграммы направленности антенн

а — широкие диаграммы, б – узкие диаграммы

Зависимость поля рассеяния от расстояния связана с изменением угла рассеяния θ , который определяется выражением (см. рис. 3.8):

θ = S / a .

 

 

 

(3.40)

Здесь, как и раньше, а – радиус Земли.

 

Коэффициент рассеяния пропорционален

θ −11/ 3 = (a / S)11/ 3 , и тогда при

широких диаграммах направленности

 

S р = S0

×

a5 / 3

,

(3.41)

 

при узких диаграммах

 

S11

/ 3

 

 

 

 

a11

/ 3

 

 

S р = S0

×

.

(3.42)

 

 

 

 

S 20 / 3

 

Из приведенных выражений следует, что поле рассеяния убывает с увеличением расстояния по некоторому степенному закону, зависящему от ширины диаграммы направленности антенн.

Потери усиления антенн связаны с тем обстоятельством, что, в отличие от свободного пространства, при ДТР диаграмма направленности формируется в случайно неоднородной среде, которая вызывает флюктуации амплитуд и фаз электромагнитных колебаний. Причем на характеристики антенн, работающих в режиме передачи (облучающих рассеивающий объем), эти флюктуации оказывают меньшее влияние, поскольку угол рассеяния θ в этом направлении мал. Потери усиления и изменения диаграммы направленности при этом незначительны.

В случае приемных антенн ситуация иная, так как на раскрыв приемной антенны, расположенной за горизонтом, приходит излучение, рассеянное под большими углами θ , и флюктуации амплитуд и фаз поля могут быть заметными. Поэтому потери усиления приемных антенн и расширение диаграммы направленности оказываются большими. На практике обычно учитывают только потери усиления приемных антенн.

При дальнем тропосферном распространении радиоволн отношение мощности принятого рассеянного излучения к мощности в свободном пространстве, при прочих равных условиях связано с длиной волны. Это

58

объясняется тем, что при одинаковой зависимости коэффициента рассеяния от длины волны – ар ≈ λ-1/3 отношение мощностей определяется объемом рассеяния. Поскольку при широких диаграммах направленности антенн рассеивающий объем не зависит от длины волны, то

Рр

≈ λ−1/ 3 .

(3.43)

Р0

В случае узких диаграмм, когда рассеивающий объем пропорционален λ3 ,

 

Рр

≈ λ8 / 3 .

(3.44)

 

Р0

Таким образом, в

диапазоне

метровых и дециметровых волн, где

диаграммы направленности достаточно широки, рассмотренное отношение убывает с увеличением длины волны, а в диапазоне сантиметровых и более коротких волн при узких диаграммах направленности это отношение убывает с уменьшением длины волны.

При дальнем тропосферном распространении проявляется эффект многолучевости, обусловленный тем, что длины лучей, проходящих через различные участки рассеивающего объема, различны. Это приводит к искажениям формы передаваемых сигналов, и рассеивающий объем может рассматриваться как четырехполюсник, обладающий ограниченной полосой пропускания. На практике ширина полосы пропускания систем дальнего тропосферного распространения составляет несколько мегагерц.

В заключение данного раздела отметим, что эффекты дальнего тропосферного распространения радиоволн за счет переизлучения электромагнитной энергии слоистыми неоднородностями тропосферы носят случайный характер и использование их в практических целях достаточно проблематично. При этом количественные оценки уровня рассеянного поля зависят от формы и размеров неоднородности, ее расположения относительно корреспондентов, длины волны, распределения диэлектрической проницаемости. В реальных условиях в атмосфере присутствует одновременно большое количество подобных неоднородностей, что еще более усложняет процессы рассеяния.

3.3.3. ОСЛАБЛЕНИЕ РАДИОВОЛН В ТРОПОСФЕРЕ

Наличие в тропосфере Земли молекул воздуха, паров воды, гидрометеоров (туман, дождь, град, снег), а также частиц пыли, поднятой с поверхности, вызывает ослабление уровня сигнала в процессе распространения радиоволн. Принято рассматривать два механизма ослабления – поглощение и рассеяние. При поглощении энергия электромагнитной волны преобразуется в тепловую энергию, при рассеянии – перераспределяется в пространстве в направлениях, отличных от заданного Ослабление в тропосфере имеет заметную величину лишь в диапазонах сантиметровых, миллиметровых и оптических радиоволн.

59

Наибольшее затухание радиоволны испытывают в дождях и туманах. Это связано с тем, что поле радиоволны вызывает в каждой капле появление тока поляризации, который, во-первых, приводит к тепловым потерям энергии и, во-вторых, является источником вторичного рассеянного излучения. Затухание зависит от длины волны электромагнитного излучения и интенсивности осадков. Так, укорочение длины волны и увеличение интенсивности дождя приводит к увеличению затухания.

В диапазонах миллиметровых и оптических радиоволн появляется дополнительное поглощение, связанное с механизмом резонансного взаимодействия радиоволн с молекулами воды и кислорода на частотах, близких к частотам их собственных колебаний. При данном механизме поглощения энергия волны вызывает изменение энергетического состояния молекул и атомов. Этот эффект носит селективный (избирательный) характер. Строго говоря, поглощение в газах может носить и нерезонансный характер, связанный с преодолением сил «трения» молекул, обладающих электрическим и магнитным моментами и совершающих вынужденные колебательные движения под действием поля волны.

Величину множителя ослабления радиоволн в тропосфере можно представить в виде:

 

 

 

 

 

 

 

E

 

 

r

 

 

 

 

 

 

 

V

 

=

 

 

 

 

= e−∫0

α(r )∂r ,

 

 

(3.45)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где Е –

 

E0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

напряженность поля в реальных условиях;

 

Е0

– напряженность поля в свободном пространстве;

 

а(r) – множитель ослабления на единицу длины в каждой точке

траектории волны;

 

 

 

 

 

r –

путь, пройденный волной в тропосфере.

 

Множитель ослабления а(r) представляет собой суперпозицию двух

величин: множителя ослабления в газах –

аг(r) и множителя ослабления в

гидрометеорах – агм(r)

 

 

 

 

 

 

a(r)= aг(r)+ aгм(r).

 

 

(3.46)

Выражение (3.45) с учетом (3.46) может быть представлено в децибелах:

 

 

V

 

[дБ] = −8.68∫r

aг (r)∂r −8.68∫r

aгм (r)∂r.

(3.47)

 

 

 

 

 

 

 

 

0

 

 

0

 

 

Таким образом, суммарное ослабление, выраженное в децибелах, равно сумме парциальных ослаблений.

При проведении количественных оценок величины ослабления обычно используют понятия погонного ослабления, имеющего размерность дБ/км. Так, для паров воды и кислорода множитель ослабления может быть представлен в виде:

 

 

[дБ] = γв ×rв +γк ×rк ,

(3.48)

 

 

 

 

 

где γв, γк – погонное ослабление в парах воды и кислороде соответственно; rв, rк – эффективные длины пути радиоволны в парах воды и кислороде

соответственно.

60

Влияние ионосферы на распространение радиоволн

Всякая система передачи сигналов состоит из трех основных частей:
передающего устройства,
приемного устройства
и промежуточного звена — соединяющей линии.
Для радиосистем промежуточным звеном является среда — пространство, в котором распространяются радиоволны. При распространении радиоволн по естественным трассам, т. е. в условиях, когда средой служит земная поверхность, атмосфера, космическое пространство, среда является тем звеном радиосистемы, которое практически не поддается управлению.
При распространении радиоволн в среде происходят изменение амплитуды поля волны (обычно уменьшение), изменение скорости и направления распространения, поворот плоскости поляризации и искажение передаваемых сигналов.
Земная поверхность оказывает существенное влияние на распространение радиоволн: в полупроводящей поверхности Земли радиоволны поглощаются; при падении на земную поверхность они отражаются; сферическая форма земной поверхности препятствует прямолинейному распространению радиоволн. Радиоволны, распространяющиеся в непосредственной близости от поверхности Земли (в масштабе длины волны) называют земными радиоволнами {1 на рис. 1). Рассматривая распространение земных волн, атмосферу считают средой без потерь с относительной диэлектрической проницаемостью е. равной единице.

Пути распространения радиоволн

Рис. 1. Пути распространения радиоволн

Влияние атмосферы учитывают отдельно, внося необходимые поправки.В окружающей Землю атмосфере различают три области, оказывающие влияние на распространение радиоволн: тропосферу, стратосферу и ионосферу. Границы между этими областями выражены не резко и зависят от времени и географического места.
Ионосферой называется область атмосферы на высоте 60—10 000 км над земной поверхностью. На этих высотах плотность воздуха весьма мала и воздух ионизирован, т. е. имеется большое число свободных электронов (примерно 103—106 электронов в 1 см3 воздуха). Присутствие свободных электронов существенно влияет на электрические свойства ионосферы и обусловливает возможность отражения от ионосферы радиоволн длиннее 10 м. При однократном отражении радиоволны могут перекрывать расстояние по поверхности Земли до 4000 км. В результате многократного отражения от ионосферы и поверхности Земли радиоволны могут распространяться на любые расстояния по земной поверхности. Радиоволны, распространяющиеся путем отражения от ионосферы или рассеяния в ней, называют ионосферными волнами 3.
На условия распространения ионосферных волн свойства земной поверхности и тропосферы влияют мало.

Наличие в верхних слоях атмосферы свободных электронов определяет электрические параметры ионизированного газа — его диэлектрическую проницаемость ε и проводимость γ
Число электронов, содержащихся в единице объема воздуха, называется электронной плотностью Na (см-3)
Электронная и ионная плотности ионосферы непостоянны по высоте, что приводит к преломлению и отражению радиоволн в ионосфере.

Распределение плотности электронов по высоте атмосферы.

Рис. 2 Распределение плотности электронов по высоте атмосферы.

Объемные неоднородности ионизированного газа вызывают рассеяние радиоволн Указанные явления определяют условия распространения радиоволн в ионосфере и в одних случаях могут быть использованы, а в других должны быть учтены при работе радиолиний.
Ионосфера в целом является квазинейтральной, т.е. количества имеющихся в ней положительных и отрицательных зарядов равны.
Температура газа, начиная с высоты h = 80 км, плавно возрастает, достигая 2000—3000 К при h=500—600 км Возрастание температуры с высотой в области ионосферы объясняется тем, что воздух здесь нагревается непосредственно излучением Солнца.
Основным источником ионизации земной атмосферы являются электромагнитные волны солнечного излучения длиной короче 0,1 мкм — нижний участок ультрафиолетового диапазона и мягкие рентгеновские лучи, а также испускаемые Солнцем потоки заряженных частиц Ультрафиолетовые и рентгеновские лучи производят ионизацию только на освещенной части земного шара и более интенсивно в приэкваториальных областях Заряженные частицы движутся по спиральным линиям в направлении магнитных силовых линии к магнитным полюсам земного шара и производят ионизацию главным образом в полярных областях Считают, что ионизирующее действие потока частиц составляет не более 50% ионизирующего действия ультрафиолетового излучения Солнца.
Ионизацию создают также метеоры, вторгающиеся в земную атмосферу со скоростями 11—73 км/с Кроме повышения среднего уровня ионизации метеоры создают местную ионизацию за метеором образуется столб ионизированного газа, который быстро расширяемся и рассеивается, существуя в атмосфере от одной до нескольких секунд Такие ионизированные следы метеоров образуются на высоте 80—120 км над земной поверхностью Характеристика метеорных частиц, попадающих в земную атмосферу, и плотность ионизированного следа, оставляемого ими, приведены в табл 1.

Масса частиц
т, г Радиус частиц,
см Число частиц падающих ежедневно на Землю Электронная плотность, Nэ см-3
1 0,4 105 2 1015
10-3 0.04 108 2 1014
10-5 0,008 1010 5 1013

После прекращения действия источника ионизации электронная плотность спадает по гиперболическому закону Поэтому с за ходом Солнца ионизация в нижних слоях ионосферы исчезает не мгновенно, а в верхних слоях — сохраняется в течение всей ночи.
Заметная электронная плотность появляется в атмосфере начиная с высоты примерно 60 км. Далее электронная плотность ионосферы меняется с высотой над земной поверхностью, а следовательно, и электрические свойства ионосферы неоднородны по высоте.
При распространении радиоволны в неоднородной среде ее траектория искривляется. При достаточно большой электронной плотности искривление траектории волны может оказаться настолько сильным, что волна возвратится на поверхность Земли на некотором расстоянии от места излучения, т. е. произойдет отражение радиоволны в ионосфере.
Отражение радиоволн, посланных с поверхности Земли на ионосферу, происходит не на границе воздух — ионизированный газ, а в толще ионизированного газа. Отражение может произойти только в той области ионосферы, где диэлектрическая проницаемость убывает с высотой а, следовательно, электронная плотность возрастает с высотой, т. е. ниже максимума электронной плотности ионосферного слоя.

Схема отражения радиоволн от ионосферы

Рис. 3. Схема отражения радиоволн от ионосферы.
Условие отражения связывает угол падения волны на нижнюю границу ионосферы φ с диэлектрической проницаемостью в толще самой ионосферы на той высоте, где происходит отражение волн (рис. 3):
sinφ0 = εn1/2 = (1 — 80,8Ne/f2)1/2
Здесь и далее Nэ — плотность электронов, см3, а частота f в кГц.

Чем больше значение Nэ, тем при меньших углах φо возможно отражение. Угол φо, при котором в данных условиях еще возможно отражение, называют критическим углом.

Отсюда можно определить рабочую частоту fφ при которой волны отразятся от ионосферы в случае заданных электронной плотности и угле падения:
fφ= (80,8Ne/cosφ0)1/2
Если волна нормально падает на ионосферу, то
fφ= (80,8 Ne)1/2 = f0
При нормальном падении волны отражение происходит на тон высоте, где рабочая частота равна собственной частоте ионизированного газа и, следовательно, ε=0. При наклонном падении на этой высоте могут отразиться радиоволны с более высокой частотой. Выполняется так называемый закон секанса, заключающийся в том, что при наклонном падении отражается волна частотой, в secφо раз превышающей частоту волны, отражающейся при вертикальном падении волны на слой заданной электронной плотности:
fφ = f0 secφ0
Чем больше электронная плотность, тем для более высоких частот выполняется условие отражения.
Максимальная частота, при которой волна отражается в случае вертикального падения на ионосферный слой, называется критической частотой fкр, отражение происходит вблизи максимума ионизации слоя:
fкр = (80,8 Neмакс)1/2
Сферичность Земли ограничивает максимальный угол φо :
sinφмакс = R0/(R0 + h0)
а следовательно, и максимальные частоты радиоволн, которые могут отразиться от ионосферы при данной электронной плотности.
К диапазону сверхдлинных волн (СДВ) относят волны длиной от 10 000 до 100 000 м (f = 30—3 кГц), а к длинным волнам (ДВ)—волны от 1000 до 10000 м (f = 300-30 кГц).
Токи проводимости для диапазонов СДВ и ДВ существенно преобладают над токами смещения для всех видов земной поверхности. Поэтому при распространении поверхностной волны происходит лишь незначительное проникновение ее энергии в глубь Земли. Сферичность Земли, служащая препятствием для прямолинейного распространения радиоволн, до расстояний 1000—2000 км остается соизмеримой с длиной волны, что способствует хорошему огибанию длинными волнами земного шара благодаря дифракции. Незначительные потери и oгибание земной поверхности обусловили возможность ДВ и СДВ распространяться земной волной на расстояние до 3000 км.
Начиная с расстояния 300—400 км помимо земной волны присутствует волна, отраженная от ионосферы. С увеличением расстояния напряженность электрического поля отраженной от ионосферы волны увеличивается, и на расстояниях 700—1000км поля земной и ионосферной волн становятся примерно равными. Суперпозиция этих двух волн дает интерференционную картину поля.
На расстоянии свыше 3000 км ДВ и СДВ распространяются только ионосферной волной. Для отражения длинных волн достаточно небольшой электронной плотности, так что днем отражение этих волн может происходить на нижней границе слоя D, а ночью—на нижней границе слоя Е. Проводимость в этой области ионосферы для ДВ довольно значительна (но в тысячи раз меньше, чем проводимость сухой земной поверхности) и токи проводимости оказываются того же порядка, что и токи смещения Следовательно, нижняя область ионосферы для ДВ обладает свойствами полупроводника.
На ДВ и особенно на СДВ электронная плотность слоев D и Е меняется резко на протяжении длины волны. Поэтому и отражение здесь происходит как на границе раздела воздух — полупроводник, без проникновения радиоволны в толщу ионизированного газа. Этим обусловлено слабое поглощение ДВ и СДВ в ионосфере.
Расстояние от земной поверхности до нижней границы ионосферы составляет 60—100 км, т. е. того же порядка, что и длина волн (ДВ и СДВ), так что волны распространяются между двумя близко расположенными полупроводящими концентрическими сферами, одной из которых является Земля, а другой — ионосфера. Условия распространения при этом примерно такие же, как и в диэлектрическом волноводе.
Как и во всяком волноводе, можно отметить оптимальные волны — волны, распространяющиеся с наименьшим затуханием, и критическую волну. Для волновода, образованного Землей и ионосферой, оптимальными являются волны длиной 25 — 35 км, а критической — волна длиной 100 км. Подобно законам распространения радиоволн в обычных волноводах, в сферическом ионосферном волноводе фазовая скорость радиоволн превышает скорость света в свободном пространстве.
К диапазону средних волн (СВ) относят радиоволны λ= 100 — 1000 м (f = 0,3 — 3 МГц). Диапазон СВ используется для радиовещания, радионавигации, радиотелеграфной и радиотелефонной связи; СВ могут распространяться как земными, так и ионосферными волнами.
Напряженность электрического поля земных волн определяется для малых расстояний, а для больших расстояний — по законам дифракции. СВ испытывают значительное поглощение в полупроводящей поверхности Земли, поэтому дальность распространения земной волны ограничена расстоянием 1000 км. Следует также учитывать, что неровности земной поверхности снижают эффективную проводимость почвы. Приближенно для равнинной местности γэфф = (0,5—0,7)γ, для, холмистой γэфф= (0,15—0,2)γ, для районов вечной мерзлоты γэфф = γ.

Ближние и дальние замирания на средних волнах

Рис. 4. Ближние и дальние замирания на средних волнах.

1 — земная волна;
2 — волна, отразившаяся от ионосферы один раз;
3 — волна, отразившаяся от ионосферы дважды.
На большие расстояния СВ, распространяются только в ночное время путем отражения от слоя Е ионосферы, электронная плотность которого оказывается достаточной для этого. В дневные часы на пути распространения СВ расположен слой D, который чрезвычайно сильно поглощает энергию этих волн. Поэтому при обычно применяемых мощностях передатчиков напряженность электрического поля на больших расстояниях оказывается недостаточной для приема и в дневные часы распространение СВ происходит практически только земной волной. Ионосферные возмущения не влияют на распространение СВ, так как слой Е мало нарушается во время ионосферно-магнитных бурь.
Замирания на средних волнах наблюдаются только в ночные часы, когда на некотором расстоянии от передатчика возможен приход одновременно пространственной и поверхностной волн в точку В, причем длина пути пространственной волны меняется с изменением электронной плотности ионосферы. Изменение разности фаз этих волн приводит к колебанию напряженности электрического поля во времени, называемому ближним замиранием. На значительное расстояние от передатчика (точка С) могут прийти волны путем одного или двух отражений от ионосферы. Изменение разности фаз этих двух волн также приводит к колебанию напряженности поля, называемому дальним замиранием. Скорость замираний невелика (период замираний составляет 1— 2 мин). Статистические характеристики замираний не исследованы.
Для борьбы с замиранием на передающем конце радиолинии применяются антенны с диаграммами направленности, прижатыми к земной поверхности. При такой диаграмме направленности зона ближних замираний удаляется от передатчика, а на больших расстояниях поле волны, пришедшей путем двух отражений, оказывается ослабленным.
К диапазону коротких волн (KB) относят волны длиною от 10 до 100 м (f = 30— 3 МГц). Волны KB диапазона распространяются земной волной на расстояние не более 100 км вследствие сильного поглощения в земной поверхности и плохих условий дифракции.

Схема распространения KB на большие расстояния

Рис. 5 Схема распространения KB на большие расстояния.

а — интерференция волн, отраженных однократно и двукратно от ионосферы,
1 — поверхностная волна;
2—волна, распространяющаяся путем одного отражения от ионосферы;
3 — волна, распространяющаяся путем двух отражений от ионосферы;
4 — волна, рабочая частота которой больше максимально допустимой;
б — интерференция рассеянных волн;
в—интерференция магниторасщепленных составляющих волн.
Распространение KB ионосферной волной происходит путем последовательного отражения от слоя F (иногда слоя Е) ионосферы и поверхности Земли. При этом волны проходят через нижнюю область ионосферы — слои Е и D, в которых претерпевают поглощение (рис. 5, а). Для осуществления радиосвязи на KB должны быть выполнены два условия: волны должны отражаться от ионосферы и напряженность электромагнитного поля в данном месте должна быть достаточной для приема, т. е. поглощение волны в слоях ионосферы не должно быть слишком большим. Эти два условия ограничивают диапазон применимых рабочих частот.

Для отражения волны необходимо, чтобы рабочая частота была не слишком высокой, а электронная плотность ионосферного слоя достаточной для отражения этой волны в соответствии с (3-44). Из этого условия выбирается максимальная применимая частота (МПЧ), являющаяся верхней границей рабочего диапазона.
Второе условие ограничивает рабочий диапазон снизу: чем ниже рабочая частота (в пределах коротковолнового диапазона), тем сильнее поглощение волны в ионосфере (см. рис. 5). Наименьшая применимая частота (НПЧ) определяется из условия, что при данной мощности передатчика напряженность электромагнитного поля должна быть достаточной для приема.
Электронная плотность ионосферы меняется в течение суток и в течение года. Значит, изменяются и границы рабочего диапазона, что приводит к необходимости изменения рабочей длины волны в течение суток:
— днем работают на волнах 10—25 м, а ночью на волнах 35—100 м.
Необходимость правильного выбора длины волны для сеансов связи в различное время усложняет конструкцию станции и работу оператора.
Зоной молчания KB называют кольцевую область, существующую на некотором расстоянии от передающей станции, в пределах которой невозможен прием радиоволн. Появление зоны молчания объясняется тем, что земная волна затухает и не достигает этой области, а для ионосферных волн, падающих под малыми углами на ионосферу, не выполняются условия отражения. Пределы зоны молчания (ВС) расширяются при укорочении длины волны и снижении электронной плотности.
Замирания в диапазоне KB более глубоки, чем в диапазоне СВ. Основной причиной замираний является интерференция лучей, распространяющихся путем одного и двух отражений от ионосферы. Помимо этого замирания вызываются рассеянием радиоволн на неоднородностях ионосферы и интерференцией рассеянных волн, а также интерференцией обыкновенной и необыкновенной составляющих магниторасщепленной волны.
При благоприятных условиях распространения KB могут огибать земной шар один и несколько раз. Тогда помимо основного сигнала может быть принят второй сигнал, запаздывающий примерно на 0,1 с и называемый радиоэхо. Радиоэхо оказывает мешающее действие, на линиях меридионального направления.
Радиосвязь на KB претерпевает нарушения, основной причиной которых являются ионосферно-магнитные бури. При этом слой F разрушается и отражение KB становится невозможным. Наиболее часто эти нарушения наблюдаются в приполярных районах и длятся от нескольких часов до двух суток. Второй вид нарушений — внезапные поглощения (наблюдаются только на освещенной части земного шара), которые длятся от нескольких минут до нескольких часов. Часто оба вида нарушений связи возникают одновременно.

Диапазон радиоволн и их распространение

В учебниках по физике приведены заумные формулы на тему диапазона радиоволн, которые порой не до конца понятны даже людям со специальным образованием и опытом работы. В статье постараемся разобраться с сутью, не прибегая к сложностям. Первым, кто обнаружил радиоволны, был Никола Тесла. В своем времени, где отсутствовало высокотехнологичное оборудование, Тесла не до конца понимал, что это за явление, которое он впоследствии назвал эфиром. Проводник с переменным электрическим током является началом радиоволны.

диапазон радиоволн

Источники радиоволн

К природным источникам радиоволн относятся астрономические объекты и молнии. Искусственным излучателем радиоволн является электрический проводник с движущимся внутри переменным электрическим током. Колебательная энергия высокочастотного генератора распространяется в окружающее пространство посредством радиоантенны. Первым рабочим источником радиоволн был радиопередатчик-радиоприёмник Попова. В этом устройстве функцию высокочастотного генератора выполнял высоковольтный накопитель, подключенный на антенну − вибратор Герца. Созданные искусственным способом радиоволны применяются для стационарной и мобильной радиолокации, радиовещания, радиосвязи, спутников связи, навигационных и компьютерных систем.

Диапазон радиоволн

диапазон частот радиоволн

Применяемые в радиосвязи волны находятся в диапазоне частот 30 кГц − 3000 ГГц. Исходя из длины и частоты волны, особенностей распространения, диапазон радиоволн подразделяется на 10 поддиапазонов:

  1. СДВ — сверхдлинные.
  2. ДВ — длинные.
  3. СВ — средние.
  4. КВ — короткие.
  5. УКВ — ультракороткие.
  6. МВ — метровые.
  7. ДМВ — дециметровые.
  8. СМВ — сантиметровые.
  9. ММВ — миллиметровые.
  10. СММВ — субмиллиметровые

Диапазон частот радиоволн

Спектр радиоволн условно поделен на участки. В зависимости от частоты и длины радиоволны подразделяются на 12 поддиапазонов. Диапазон частот радиоволн взаимосвязан с частотой переменного тока сигнала. Частотные диапазоны радиоволн в международном регламенте радиосвязи представлены 12 наименованиями:

  1. радиоволны распространение радиоволн КНЧ − крайне низкие.
  2. СНЧ − сверхнизкие.
  3. ИНЧ − инфранизкие.
  4. ОНЧ − очень низкие.
  5. НЧ − низкие частоты.
  6. СЧ − средние частоты.
  7. ВЧ − высокие частоты.
  8. ОВЧ − очень высокие.
  9. УВЧ − ультравысокие.
  10. СВЧ − сверхвысокие.
  11. КВЧ − крайне высокие.
  12. ГВЧ − гипервысокие.

При увеличении частоты радиоволны ее длина уменьшается, при уменьшении частоты радиоволны — увеличивается. Распространение в зависимости от своей длины – это важнейшее свойство радиоволны.

Распространение радиоволн 300 МГц − 300 ГГц называют сверхвысокими СВЧ вследствие их довольно высокой частоты. Даже поддиапазоны очень обширны, поэтому они, в свою очередь, поделены на промежутки, в которые входят определенные диапазоны телевизионные и радиовещательные, для морской и космической связи, наземной и авиационной, для радиолокации и радионавигации, для передачи данных медицины и так далее. Несмотря на то что весь диапазон радиоволн разбит на области, обозначенные границы между ними являются условными. Участки следуют друг за другом непрерывно, переходя один в другой, а иногда и перекрываются.

Особенности распространения радиоволны

частотные диапазоны радиоволн

Распространение радиоволн – это передача энергии переменным электромагнитным полем из одного участка пространства в другой. В вакууме радиоволна распространяются со скоростью света. При воздействии окружающей среды на радиоволны распространение радиоволн может быть затруднено. Это проявляется в искажении сигналов, изменении направления распространения, замедлении фазовой и групповой скоростях.

Каждая из разновидностей волн применяется по-разному. Длинные лучше могут обходить преграды. Это означает, что диапазон радиоволн может распространяться по плоскости земли и воды. Применение длинных волн широко распространено в подводных и морских суднах, что позволяет быть на связи в любой точке местонахождения в море. На волну длиной в шестьсот метров с частотой пятьсот килогерц настроены приемники всех маяков и спасательные станций.

Распространение радиоволн в различных диапазонах зависит от их частоты. Чем меньше длина и выше частота, тем прямее будет путь волны. Соответственно, чем меньше ее частота и больше длина, тем она более способна огибать преграды. Каждый диапазон длин радиоволн обладает своими особенностями распространения, однако на границе соседних диапазонов резкого изменения отличительных признаков не наблюдается.

распространение радиоволн в различных диапазонах

Характеристика распространения

Сверхдлинные и длинные волны огибают поверхность планеты, распространяясь поверхностными лучами на тысячи километров.

Средние волны подвержены более сильному поглощению, поэтому способны преодолевать расстояние лишь 500-1500 километров. При уплотнении ионосферы в данном диапазоне возможна передача сигнала пространственным лучом, который обеспечивает связь на несколько тысяч километров.

Короткие волны распространяются лишь на близкие расстояния вследствие поглощения их энергии поверхностью планеты. Пространственные же способны многократно отражаться от земной поверхности и ионосферы, преодолевать большие расстояния, осуществляя передачу информации.

Сверхкороткие способны передавать большой объем информации. Радиоволны этого диапазона проникают сквозь ионосферу в космос, поэтому для целей наземной связи практически непригодны. Поверхностные волны этих диапазонов излучаются прямолинейно, не огибая поверхность планеты.

В оптических диапазонах возможна передача гигантских объемов информации. Чаще всего для связи используется третий диапазон оптических волн. В атмосфере Земли они подвержены затуханию, поэтому в реальности передают сигнал на расстояние до 5 км. Зато использование подобных систем связи избавляет от необходимости получать разрешения от инспекций по электросвязи.

Принцип модуляции

Для того чтобы передать информацию, радиоволну нужно модулировать сигналом. Передатчик испускает модулированные радиоволны, то есть измененные. Короткие, средние и длинные волны имеют амплитудную модуляцию, поэтому они обозначаются как АМ. Перед модуляцией несущая волна движется с постоянной амплитудой. Амплитудная модуляция для передачи изменяет ее по амплитуде, соответственно напряжения сигнала. Амплитуда радиоволны изменяется прямо пропорционально напряжению сигнала. Ультракороткие волны имеют частотную модуляцию, поэтому они обозначаются как ЧМ. Частотная модуляция накладывает дополнительную частоту, которая несет информацию. Для передачи сигнала на расстояние его нужно промодулировать более высокочастотным сигналом. Для принятия сигнала нужно отделить его от поднесущей волны. При частотной модуляции помех создается меньше, однако радиостанция вынуждена вещать на УКВ.

Факторы, влияющие на качество и эффективность радиоволн

диапазон длин радиоволн

На качество и эффективность приема радиоволн влияет метод направленного излучения. Примером может послужить спутниковая антенна, которая направляет излучение в точку нахождения установленного приемного датчика. Этот метод позволил существенно продвинуться в области радиоастрономии и сделать множество открытий в науке. Он открыл возможности создания спутникового вещания, передачи данных беспроводным методом и многое другое. Выяснилось, что радиоволны способны излучать Солнце, многие планеты, находящиеся вне нашей Солнечной системы, а также космические туманности и некоторые звезды. Предполагается, что за пределами нашей галактики существуют объекты, обладающие мощными радиоизлучениями.

На дальность радиоволны, распространение радиоволн оказывают влияние не только солнечное излучение, но и метеоусловия. Так, метровые волны, по сути, не зависят от метеоусловий. А дальность распространения сантиметровых сильно зависит от метеоусловий. Происходит из-за того, что водной среде во время дождя или при повышенном уровне влажности в воздухе короткие волны рассеиваются или поглощаются.

Также на их качество влияют и препятствия, оказывающиеся на пути. В такие моменты происходит замирание сигнала, при этом значительно ухудшается слышимость или вообще пропадает на несколько мгновений и более. Примером может послужить реакция телевизора на пролетающий самолет, когда мигает изображение и появляются белые полосы. Это происходит за счет того, что волна отражается от самолета и проходит мимо антенны телевизора. Такие явления с телевизорами и радиопередатчиками чаще происходят в городах, поскольку диапазон радиоволн отражается на зданиях, высотных башнях, увеличивая путь волны.

ГОСТ 24375-80 Радиосвязь. Термины и определения

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

РАДИОСВЯЗЬ

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

ГОСТ 24375-80

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО СТАНДАРТАМ
Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

РАДИОСВЯЗЬ

Термины и определения

Radio communication.
Terms and definitions

ГОСТ
24375-80*

Постановлением Государственного комитета СССР по стандартам от 28 августа 1980 г. № 4472 срок введения установлен

с 01.01.82

Настоящий стандарт устанавливает применяемые в науке, технике и производстве термины и определения понятий в области радиосвязи.

Термины, установленные стандартом, обязательны для применения в документации всех видов, научно-технической, учебной и справочной литературе.

Для каждого понятия установлен один стандартизованный термин. Применение терминов-синонимов стандартизованного термина запрещается. Недопустимые к применению термины-синонимы приведены в стандарте в качестве справочных и обозначены «Ндп».

Для отдельных стандартизованных терминов в стандарте приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования. Установленные определения можно, при необходимости, изменять по форме изложения, не допуская нарушения границ понятий.

В случаях, когда необходимые и достаточные признаки понятия содержатся в буквальном значении термина, определение не приведено, и соответственно, в графе «Определение» поставлен прочерк.

В стандарте приведен алфавитный указатель содержащихся в нем терминов.

В стандарте имеется справочное приложение, содержащее термины и определения общетехнических понятий, используемых в тексте стандарта.

Стандартизованные термины набра

Влияние земли и атмосферы на распространение радиоволн.

Как известно, воздух не вызывает ослабление радиоволн практически во всех диапазонах частот и, казалось бы, поэтому земная волна должна распространяться без поглощения. Однако это верно лишь в том случае, если земная волна проходит высоко над поверхностью земли. Если же радиоволны проходят вблизи от поверхности земли, то часть энергии волны отклоняется в землю. Происходит это потому, что скорость распространения радиоволн в земле меньше, чем в воздухе, и при движении их вдоль её поверхности нижний край волны отстаёт от верхнего, фронт волны наклоняется и помимо движения вдоль поверхности земли происходит её распространение сверху вниз.

Если бы земная поверхность была идеально проводящей, радиоволны отражались бы от неё без потерь, т.е. земля в этом случае была бы экраном, препятствующим прохождению волн вглубь почвы. В реальных условиях земля не является ни идеальным проводником, ни идеальным изолятором. Радиоволны, попавшие в землю, возбуждают в ней переменные электрические токи, которые часть своей энергии расходуют на нагрев почвы. Величина потерь энергии в земле очень сильно зависит от частоты радиоволн и сопротивления почвы электрическому току. В почве с увеличением частоты радиоволн величина индуцируемой ЭДС возрастает и соответственно увеличиваются токи в земле, которые создают электромагнитное поле обратного направления. Поэтому дальность распространения поверхностных радиоволн очень быстро уменьшается с увеличением частоты.

При уменьшении проводимости грунта радиоволны глубже проникают в среду и, следовательно, возрастает их поглощение. Ещё изобретатель радио А.С. Попов заметил, что над поверхностью моря дальность радиосвязи увеличивается по сравнению с дальностью связи над сушей. Кроме того, с ростом частоты ухудшаются условия огибания (дифракции) радиоволнами препятствий.

Вышеперечисленные факторы ограничивают возможности использования поверхностной волны диапазонами сравнительно длинных волн (мириаметровые, километровые, гектометровые и частично декаметровые).

Атмосферой называется газообразная оболочка Земли, простирающаяся на высоту более 1000 км. Атмосфера подразделяется на три основные сферы (слоя): тропосферу – приземный слой атмосферы, верхний слой которой лежит на высоте 10-14 км; стратосферу – слой атмосферы до высот 60-80 км; ионосферу – ионизированный слой малой плотности над стратосферой, переходящий затем в радиационный пояс Земли. На высотах в сотни километров различные газы, составляющие воздух, располагаются слоями, более тяжёлые – ниже, более лёгкие – выше. Таким образом, атмосфера на этих высотах неоднородна по составу.

Под влиянием лучей Солнца, космических лучей и других факторов воздух ионизируется, т.е. часть атомов газов, входящих в состав воздуха, распадаются на свободные электроны и положительные ионы. Ионизированный воздух оказывает сильное влияние на распространение радиоволн.

Для различных газов максимум ионизации получается на разной высоте. Ионизированный слой атмосферы – ионосфера – состоит из нескольких слоёв.

                                                                                              F2

                                     Слой F

220-500 км

                                                                                               F1

                                            

                                        Слой Е

180-220 км

 

 

                                                                           

                                                                       Слой D

 

90-130 км

 

60-80 км

 

                                                                    Земля

 

 

Рис. 1. Строение атмосферы.

На высоте 60-80 км находится слой D, существующий только днём. Следующий слой Е располагается на высоте 90-130 км. Ещё выше находится слой F, имеющий ночью высоту 250-350 км, а днём разделяющийся на два слоя: F1- на высоте 180-220 км и F2 – на высоте 220-500 км.

Высота, толщина и проводимость ионизированных слоёв различны в разное время суток и года вследствие изменения ионизирующего действия солнечных лучей. Чем больше ионизирующее действие солнечных лучей, тем больше проводимость и толщина ионизированных слоёв и тем ниже они располагаются. Днём проводимость и толщина их больше, а высота над землёй меньше, чем ночью. Летом проводимость и толщина ионосферных слоёв больше, а высота меньше, чем зимой. Через каждые 11 лет на Солнце повторяется максимум солнечных пятен, являющихся мощными источниками ионизирующих излучений. В это время проводимость и толщина ионизированных слоёв достигают максимума, и они располагаются ниже. Таким образом, свойства земной атмосферы, влияющие на распространение радиоволн, изменяющиеся по довольно сложным законам. Происходят также изменения случайного характера, которые предусмотреть вообще невозможно.

Ионосфера оказывает существенно влияние на распространение радиоволн. Оно заключается прежде всего в том, что радиоволны, попадая в ионосферу, изменяют своё направление. Происходит это вследствие неоднородного характера ионосферы. Если бы относительные диэлектрические проницаемости воздуха и ионосферы были одинаковы, то волна не меняла бы своего направления. Так как в ионосфере имеются свободные электроны, её относительная диэлектрическая проницаемость меньше диэлектрической проницаемости неионизированного воздуха. Вследствие этого при переходе из воздуха в ионосферу происходит преломление волны, а поскольку концентрация электронов в верхних слоях ионосферы возрастает, то волна, многократно преломляясь, возвращается на землю.

Кроме изменения направления распространения радиоволн в ионосфере происходит поглощение их энергии. Объясняется это тем, что радиоволны, попадая в ионосферу, вызывают колебания находящихся там свободных электронов. Совершая колебательное движение, электроны сталкиваются с тяжёлыми частицами – ионами и молекулами. При этом они теряют энергию, приобретённую от радиоволны, и передают её указанным частицам; ионосфера нагревается. Таким образом, часть энергии радиоволны в ионосфере теряется. Чем выше частота радиоволн, тем меньше скорость колебательного движения электронов. Кинетическая энергия, получаемая ими от радиоволны и отдаваемая затем тяжёлым частицам, оказывается меньше. Поэтому с повышением частоты потери энергии радиоволны в ионосфере уменьшается.

Подводя итоги можно отметить следующее:

— из-за неоднородностей ионосферы радиоволны преломляются в ней и отражаются на землю;

— с ростом частоты отражаемая способность уменьшается;

— с ростом частоты уменьшается поглощение волн в ионосфере;

— состояние ионосферы и связанные с ним условия распространения имеют периодические и непериодические изменения.

2.Распространение радиоволн короче 10м.

Волны короче 10 м разбиты на пять диапазонов, которые часто называют диапазонами ультракоротких волн (УКВ). В течение многих лет использование УКВ ограничивалось требованиям прямой видимости между антеннами передатчика и приёмника, которое вытекает из прямолинейности распространения этих волн. Действительно, дифракция практически не свойственна УКВ, и они не могут огибать выпуклости земной поверхности. Степень же ионизации ионосферы недостаточна для отражения этих радиоволн.

Дальность распространения на расстояние прямой видимости составляет:

, где h 1 и h 2 – высоты расположения передающей и приёмной антенн (м).

Таким образом, если поднять антенны на высоту 25 м, то расстояние прямой видимости составит 36 км. Для осуществления связи на большие расстояния необходимо между пунктами связи устанавливать промежуточные станции (ретрансляторы), либо поднимать антенны на большие высоты. Первый принцип используется в радиорелейных системах передачи, где промежуточные станции располагаются на расстоянии 50-70 км. Для увеличения зоны обслуживания телевизионного вещания используются антенны, расположенные на башнях большой высоты. Так, высота Останкинской телевизионной башни составляет 525м.

Связь в пределах прямой видимости характеризуется возможностью одновременного прихода в точку приёма не только прямой волны, но и волны, отражённой от земной поверхности. Эффект интерференции может привести к резкому снижению напряжённости поля в точке приёма. Однако в отличие от диапазонов гектометровых и декаметровых волн, интерференционные явления здесь могут быть сведены до минимума оптимальным подбором высот антенн, расстояния между ними и длины волны.

Диапазон УКВ является, пожалуй, наиболее широко используемым участком радиодиапазона. Большая частотная ёмкость этого диапазона и ограниченный предел прямой видимости радиус действия позволяют разместить большое число одновременно работающих станций и осуществлять передачу информации в широкой полосе частот. Диапазон УКВ позволяет одновременно передавать большое число телевизионных программ, организовать тысячи телефонных каналов и цифровых систем связи. Диапазон широко используется для радиолокации, радионавигации, связи с искусственными спутниками, звукового и телевизионного вещания и в радиоастрономии. Диапазон метровых и декаметровых волн используется в основном для телевидения, радиовещания и радиосвязи с подвижными объектами. Диапазон сантиметровых волн отведён для различных видов многоканальной связи.

Диапазон метровых волн используется иногда для связи вне пределов прямой видимости, так как они способны огибать небольшие преграды на земной поверхности. Дальность такой связи обычно исчисляется километрами, реже – десятками километров. Наиболее сложными оказывается условия связи на метровых волнах в больших городах, где часто прибегают к ретрансляции через центральную станцию, антенна которой установлена на высотном доме.

На практике наблюдаются случаи дальнего распространения метровых и более коротких волн. Это объясняется тем, что возможно такое состояние атмосферы, при котором изменение коэффициента преломления по мере подъёма вверх происходит в гораздо большей степени, чем в нормальных условиях. Искривление траектории радиолуча вследствие рефракции увеличивается, становится возможным распространение радиоволн параллельно земной поверхности или даже попадание их после преломления на поверхность земли (явление сверхфракции). Падающие на землю волны отражаются, распространяются вверх, опять преломляются и т.д. В пространстве между поверхностью земли и преломляющими верхними слоями, вдоль которого волны распространяются на расстояния в десятки раз больше расстояний прямой видимости. Это создаёт возможность приёма телевизионных программ из других городов и даже стран.

Следует отметить, что появление волноводных каналов в атмосфере происходит редко. Для этого требуется стечение благоприятных условий: увеличение температуры воздуха по мере подъёма вверх (а не её уменьшение, как это происходит обычно) и сильное уменьшение влажности с высотой.

В тропосфере постоянно присутствуют малые случайные колебания температуры и влажности. Коэффициент преломления воздуха зависит от этих величин, поэтому радиоволны рассеиваются неоднородностями ионосферы. Это рассеянное поле наблюдается далеко за горизонтом. Существенно, что, несмотря на малое значение напряжённости поля и его флуктуации, в среднем напряжённость поля за горизонтом отличается большим постоянством. Явление рассеяния волн тропосферными неоднородностями называют дальним тропосферным распространением радиоволн.

Однако создание линии тропосферной связи значительно более сложная задача, нежели линии декаметрового диапазона , поскольку напряженность поля отражённых от тропосферы волн уменьшается с расстоянием очень быстро. Поэтому требуется значительные мощности передатчиков (от 1 до 50 кВт), антенны высокой направленности и высокочувствительные приёмники.

Для линий тропосферного рассеяния могут быть использованы метровых, дециметровых и часть сантиметровых волн.

Несомненное достоинство тропосферных линий связи – возможность передачи по ним широкополосных сигналов, т.е. организация многоканальных систем связи. Кроме того, эта связь не требует смены длины волны в течение суток. Тропосферные линии связи успешно конкурируют в труднодоступной местности с кабельными линиями. Тропосферные станции могут образовывать радиорелейные системы передачи с интервалом между станциями до 300-500 км.

Дальнее распространение волн УКВ диапазона возможно также за счёт их рассеяния на неоднородностях ионосферы. Здесь рассеяние происходит в слое D или в нижней части слоя Е за счёт неоднородности электронной концентрации. Наибольшая неоднородность поля наблюдается в диапазоне 30-60МГц при длине трассы 800-2000 км. Для ионосферных линий связи характерны замирания, сезонные и суточные изменения уровня. Искажения сигнала ограничивают ширину спектра передаваемых сигналов полосой в несколько килогерц, поэтому телевизионные и групповые сигналы многоканальных систем по ним не могут передаваться.

Преимуществом связи на метровых волнах за счёт ионосферного рассеяния является возможность работы круглосуточно на одной частоте. Ионосферное рассеяние целесообразно использовать для связи с труднодоступными районами. В периоды ионосферных возмущений, особенно характерных для арктических широт, когда связь в диапазоне декаметровых волн с отражением от слоя F2 прекращается, неоднородности в нижних областях ионосферы возрастают и ионосферная связь даже улучшается.

ВОПРОСЫ.

1. Что влияет на ослабление радиоволны в воздушном пространстве.

2. Когда радиоволна вызывает нагрев почвы и из-за чего это происходит.

3. Где увеличивается дальность радиосвязи на суше или море.

4. Атмосфера и её состав.

5. Состав ионосферы.

6. Влияние ионосферы на распространение радиоволн.

7. Расчёт дальности распространения радиоволны на расстояние прямой видимости при заданной высоте расположения передающей и приёмной антенн.

8. Наличие какого элемента системы необходимо для осуществления связи на дальние расстояния.

9. Понятие интерференция.

10. Преимущества связи на метровых волнах.

11. Достоинства тропосферных линий связи.


Рекомендуемые страницы:

Распространение радиоволн

         Двойное лучепреломление. Существенное влияние на Р. р. оказывает магнитное поле Земли

пронизывающее ионосферу. В постоянном магнитном поле ионизированный газ становится анизотропной средой. Попадающая в ионосферу волна испытывает Двойное лучепреломление, т. е. расщепляется на 2 волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. В магнитном поле

на электрон, движущийся со скоростью υ, действует Лоренца сила

, под действием которой электрон вращается с частотой

         В простейшем случае, когда направление Р. р. перпендикулярно H0 (Е лежит в одной плоскости с H0), волну можно представить в виде суммы 2 волн с Е Н0 и Е || Н0. Для первой волны (необыкновенной) характер движения электронов и, следовательно, n изменяются, для второй (обыкновенной) они остаются такими же, как и в отсутствии магнитного поля:

        

         В случае произвольного направления Р. р. относительно магнитного поля Земли формулы более сложные: как n1, так и n2 зависят от ωH. Поскольку отражение радиоволны происходит от слоя, где n = 0, то обыкновенная и необыкновенная волны отражаются на разной высоте. Критические частоты для них также различны.

         По мере Р. р. в ионосфере из-за различия в скорости накапливается сдвиг фаз между волнами, вследствие чего поляризация результирующей волны непрерывно изменяется. Линейная поляризация падающей волны в определённых условиях сохраняется, но плоскость поляризации при распространении поворачивается (см. Вращение плоскости поляризации). В общем случае поляризация обеих волн эллиптическая.

         Рассеяние радиоволн. Помимо регулярной зависимости электронной концентрации N от высоты (рис. 12), в ионосфере постоянно происходят случайные изменения концентрации. Ионосферный слой содержит большое число неоднородных образований различного размера, которые находятся в постоянном движении и изменении, рассасываясь и возникая вновь. Вследствие этого в точку приёма, кроме основного отражённого сигнала, приходит множество рассеянных волн (рис. 13), сложение которых приводит к замираниям — хаотическим изменениям сигнала.

         Существование неоднородных образований приводит к возможности рассеянного отражения радиоволн при частотах, значительно превышающих максимальные частоты отражения от регулярной ионосферы. Аналогично рассеянию на неоднородностях тропосферы это явление обусловливает дальнее Р. р. (метрового диапазона).

         Характерные неоднородные образования возникают в ионосфере при вторжении в неё метеоритов (См. Метеориты). Испускаемые раскалённым метеоритом электроны ионизируют окружающую среду, образуя за летящим метеоритом след, диаметр которого вследствие молекулярной диффузии быстро возрастает. Ионизированные следы создаются в интервале высот 80—120 км, длительность их существования колеблется от 0,1 до 100 сек. Радиоволны зеркально отражаются от метеорного следа. Эффективность этого процесса зависит от массы метеорита.

         Нелинейные эффекты. Для сигналов не очень большой мощности две радиоволны распространяются через одну и ту же область ионосферы независимо друг от друга (см. Суперпозиции принцип), ионосфера является линейной средой. Для мощных радиоволн, когда поле Е волны сравнимо с характерным «плазменным полем» Ep ионосферы, ε и σ начинают зависеть от напряжённости поля распространяющейся волны. Нарушается линейная связь между электрическим током и полем Е.

         Нелинейность ионосферы может проявляться в виде перекрёстной модуляции 2 сигналов (Люксембург — Горьковский эффект (См. Люксембург-Горьковский эффект)) и в «самовоздействии» мощной волны, например в изменении глубины модуляции сигнала, отражённого от ионосферы.

         Особенности распространения радиоволн различного диапазона в ионосфере. Начиная с УКВ волны, частота которых выше максимально применимой частоты (МПЧ), проходят через ионосферу. Волны, частота которых ниже МПЧ, отражаясь от ионосферы, возвращаются на Землю. Такие радиоволны называются ионосферными, используются для дальней радиосвязи на Земле. Диапазон ионосферных волн снизу по частоте ограничен поглощением. Поэтому связь при помощи ионосферных волн осуществляется в диапазоне коротких волн и в ночные часы (уменьшается поглощение) в диапазоне средних волн. Дальность Р. р. при одном отражении от ионосферы Распространение радиоволн 3500—4000 км, т.к. угол падения φ на ионосферу из-за выпуклости Земли ограничен: наиболее пологий луч касается поверхности Земли (рис. 14). Связь на большие расстояния осуществляется за счёт нескольких отражений от ионосферы (рис. 15).

         Длинные и сверхдлинные волны практически не проникают в ионосферу, отражаясь от её нижней границы, которая является как бы стенкой сферического радиоволновода (второй стенкой волновода служит Земля). Волны, излучаемые антенной в некоторой точке Земли, огибают её по всем направлениям, сходятся на противоположной стороне. Сложение волн вызывает некоторое увеличение напряжённости поля в противолежащей точке (эффект антипода, рис. 16).

         Радиоволны звуковых частот могут просачиваться через ионосферу вдоль силовых линий магнитного поля Земли. Распространяясь вдоль магнитной силовой линии, волна уходит на расстояние, равное нескольким земным радиусам, и затем возвращается в сопряжённую точку, расположенную в др. полушарии (рис. 17). Разряды молний в тропосфере являются источником таких волн. Распространяясь описанным способом, они создают на входе приёмника сигнал с характерным свистом (свистящие Атмосферики).

         Для радиоволн инфразвуковых частот, частота которых меньше гироскопической частоты ионов, ионосфера ведёт себя как проводящая нейтральная жидкость, движение которой описывается уравнениями гидродинамики (См. Гидродинамика). Благодаря наличию магнитного поля Земли любое смещение проводящего вещества, создающее электрический ток, сопровождается возникновением сил Лоренца, изменяющих состояние движения. Взаимодействие между механическими и электромагнитными силами приводит к перемещению случайно возникшего движения в ионизированном газе вдоль магнитных силовых линий, т. е. к появлению магнито-гидродинамических (альфвеновских) волн, которые распространяются вдоль магнитных силовых линий со скоростью 4 м/сек (ρ — плотность ионизированного газа).

         Космическая радиосвязь. Когда один из корреспондентов находится на Земле, диапазон длин волн, пригодных для связи с космическим объектом, определяется условиями прохождения через атмосферу Земли. Т. к. радиоволны, частота которых Мгц), не проходят через ионосферу, а волны с частотой > 6—10 Ггц поглощаются в тропосфере, то волны от космического объекта могут приниматься на Земле при частотах от Распространение радиоволн 30 Мгц до 10 Ггц. Однако и в этом диапазоне атмосфера Земли не полностью прозрачна для радиоволн. Вращение плоскости поляризации при прохождении через ионосферу при приёме на обычную антенну приводит к потерям, которые уменьшаются с ростом частоты. Только при частотах > 3 Ггц ими можно пренебречь (рис. 18). Эти условия определяют диапазон радиоволн для дальней связи на УКВ при использовании спутников.

         Для связи с объектами, находящимися на др. планетах, необходимо учитывать поглощение и в атмосфере этих планет. При осуществлении связи между 2 космическими кораблями, находящимися вне атмосферы планет, особенное значение приобретают миллиметровые и световые волны, обеспечивающие наибольшую ёмкость каналов связи (см. Оптическая связь). Сведения о процессах Р. р. в космическом пространстве даёт Радиоастрономия.

         Подземная и подводная радиосвязь. Земная кора, а также воды морей и океанов обладают проводимостью и сильно поглощают радиоволны. Для осадочных пород в поверхностном слое земной коры σ ≈ 10—3—10—2ом—1м—1. В этих средах волна практически затухает на расстоянии ≤ λ. Кроме того, для сред с большой σ коэффициент поглощения увеличивается с ростом частоты. Поэтому для подземной радиосвязи используются в основном длинные и сверхдлинные волны. В подводной связи наряду со сверхдлинными волнами используют волны оптического диапазона.

         В системах связи между подземными или подводными пунктами может быть использовано частичное распространение вдоль поверхности Земли или моря. Вертикально поляризованная волна, возбуждаемая подземной передающей антенной, распространяется до поверхности Земли, преломляется на границе раздела между Землёй и атмосферой, распространяется вдоль земной поверхности и затем принимается подземной приёмной антенной (рис. 19). Глубина погружения антенн достигает десятков м. Системы этого типа обеспечивают дальность до нескольких сотен км и применяются, например, для связи между подземными пунктами управления при запуске ракет. Системы др. типа используют подземные волноводы — слои земной коры, обладающие малой проводимостью и, следовательно, малыми потерями. К таким породам относятся Каменная соль, поташ и др. Эти породы залегают на глубинах до сотен м и обеспечивают дальность Р. р. до нескольких десятков км. Дальнейшим развитием этого направления является использование твёрдых горных пород (гранитов, гнейсов, базальтов и др.), расположенных на больших глубинах и имеющих малую проводимость (рис. 20). На глубине 3—7 км σ может уменьшиться до 10—11ом—1м—1. При дальнейшем увеличении глубины благодаря возрастанию температуры создаётся ионизация (обращенная ионосфера) и проводимость увеличивается. Образуется подземный волновод толщиной в несколько км, в котором возможно Р. р. на расстоянии до нескольких тыс. км. Одна из основных проблем подземной и подводной связи — расчёт излучения и передачи энергии от антенн (См. Антенна), расположенных в проводящей среде.

         Преимущество систем подземной связи состоит в их независимости от бурь, ураганов и искусственных разрушений на поверхности Земли. Кроме того, благодаря экранирующему действию верхних проводящих осадочных пород системы подземной связи обладают высокой помехозащищенностью от промышленных и атмосферных шумов.

         Лит.: Фейнберг Е. Л., Распространение радиоволн вдоль земной поверхности, М., 1961; Альперт Я. Л., Распространение электромагнитных волн и ионосфера, М., 1972; Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973; Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967; Чернов Л. А., Распространение волн в среде со случайными неоднородностями, М., 1958; Гинзбург В. Л., Распространение электромагнитных волн в плазме, М., 1967; Макаров Г. И., Павлов В. А., Обзор работ, связанных с подземным распространением радиоволн. Проблемы дифракции и распространения радиоволн, Сб. 5, Л., 1966; Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972; Гавелей Н. П., Никитин Л. М., Системы подземной радиосвяз Поделитесь на страничке

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *