Site Loader

Содержание

Простой ключевой стабилизатор напряжения 15-25В 4А

Электронные устройства, выполненные на цифровых микросхемах, не предъявляют слишком высоких требований к стабильности и уровню пульсаций питающего напряжения. Поэтому для питания таких устройств можно с успехом применять простейшие ключевые стабилизаторы напряжения. Они имеют высокий КПД, меньшие габариты и массу по сравнению с непрерывными стабилизаторами. Правильное конструктивное исполнение ключевого стабилизатора позволяет избежать проникновения высокочастотных помех в питаемое устройство.

На рис. 5.28 показана принципиальная схема простого ключевого стабилизатора. При высоких энергетических показателях качество выходного напряжения позволяет подключать к стабилизатору устройства, выполненные на цифровых микросхемах серий К130, КПЗ, К134, К155, К156, К561 и др.

Основные технические характеристики:

Входное напряжение, В……………………………………………………..15…25;

Выходное напряжение, В……………………………………………………5;

Максимальный ток нагрузки, А…………………………………………….4;

Пульсации выходного напряжения при токе нагрузки 4 А во всем интервале

питающего напряжения, мВ, не более…………………………………..50;

КПД, %, не хуже………………………………………………………………60;

Рабочая частота, кГц…………………………………………………………>20.

При подаче на вход устройства напряжения питания в цепи базы составного транзистора VT2, VT3 появляется ток, вследствие чего он открывается. Цепь R3, С2 обеспечивает импульсный характер возникновения этого тока, что способствует форсированному открыванию составного транзистора. После его открывания через дроссель L1 начинает протекать возрастающий ток, заряжающий накопительные конденсаторы СЗ, С4.

Когда напряжение на этих конденсаторах достигает некоторого уровня, открываются транзисторы VT4 и VT1. Последний из них, насыщаясь, подключает к эмиттерному переходу транзистора VT2 заряженный в закрывающей полярности конденсатор С2. Это способствует быстрому закрыванию составного транзистора.

Ток в дросселе L1 не может мгновенно прерваться, поэтому после закрывания транзисторов VT2, VT3 открывается диод VD1, который замыкает цепь тока через дроссель L1. В этот отрезок времени ток в дросселе уменьшается, а с момента, когда он сравняется с током нагрузки, начинает уменьшаться и напряжение на конденсаторах СЗ, С4. При некотором его значении транзисторы VT4 и VT1 закрываются, a VT2 и VT3 — открываются, и ток в дросселе L1 начинает снова увеличиваться, диод VD1 закрывается.

Напряжение на конденсаторах СЗ, С4 продолжает уменьшаться, и, когда ток в дросселе L1 становится равным току нагрузки, напряжение на конденсаторах СЗ, С4 снова начинает увеличиваться, и цикл работы стабилизатора повторяется. Конденсатор С5 создает на базе транзистора VT4 необходимый фазовый сдвиг сигнала обратной связи, определяющий частоту следования рабочих циклов. Фильтр L2, С6 служит для уменьшения пульсаций выходного напряжения.

Мощность, рассеиваемая на транзисторе VT3 и диоде VDI, незначительна. Это позволяет получить значительный ток нагрузки без применения теплоотводов для мощных элементов. Однако при длительной работе с током нагрузки свыше 3,5 А необходима установка этих элементов на теплоотводы. Полное описание работы схемы и монтажа стабилизатора приведено в [96]. Печатная плата устройства приводится на рис. 5.29.

О стабилизаторах напряжения на транзисторах: схема правильного стабилитрона

Для работы электронной аппаратуры необходимо напряжение, обладающие точно заданными характеристиками. Но в промышленной сети напряжение постоянно меняется. Его уровень зависит от подключенных в систему предприятий, зданий и оборудования. Функционирование любого прибора напрямую зависит от напряжения, колебания данного параметра влияют на качество работы, например, при перепадах приемник может начать хрипеть или гудеть. Для того чтобы решить данную проблему, используют стабилизаторы на транзисторе.

Стабилизатор импульсного типа

Принцип работы стабилизатора

Одна часть этого оборудования отвечает за сравнение с эталонным значением, а другая – управляет параметрами. Если входящий параметр оказывается больше требуемого показателя, то система снижает его. Если же значение меньше, то характеристики повышаются. По этой же схеме регулируется вода в кране: когда поток меньше, чем надо, вентиль закручивается и наоборот.

Принцип стабилизации применяется на самом разном оборудовании, начиная от утюгов и заканчивая космической отраслью. Разница заключается только в технологии контроля и управления показателями.

Важно! Согласно существующему ГОСТу, напряжение в сети может изменяться в пределах до 5%, а в реальных условиях и 10% от указанного значения. Для качественного функционирования оборудования этот показатель не может превышать 0,1%.

Самая простая схема стабилизатора напряжения содержит всего лишь 2 элемента:

  1. источник опорного напряжения – стабилитрон VD1;
  2. балластный резистор R1.

Стабилитроном называют диод, который при определенных значениях напряжения стабилизации (обратно приложенного) начинает пропускать ток в обратном направлении. Если напряжение растет, при уменьшении внутреннего сопротивления стабилитрон продолжает удерживать напряжение в заданном значении. Принцип работы можно увидеть на схеме стабилизатора напряжения.

Схема и график работы стабилизатора

Если обратное напряжение растет, то стабилитрон оказывает сопротивление, а, значит, ток на выходе минимален. При достижении заданного параметра ток начинает расти. Затем, доходя до точки 1 на вольтамперной характеристике, напряжение перестает расти, несмотря на повышение показателей тока. На p-n переходе напряжение увеличивается только на резисторе, стабилитрон работает в заданном режиме. Конечно, любой стабилитрон может удерживать напряжение только в заданном значении, и после повышения показателей до точки 2 элемент может начать греться и выйти из строя. Расстояние между точками 1 и 2 называется рабочим участком.

Такой простой метод стабилизации подходит только для сетей, в которых применяют малые токи. Для того чтобы повысить нагрузочную способность, применяется эмиттерный повторитель в виде биполярного транзистора. Данный элемент повторяет приложенное напряжение. За счет этого нагрузка может быть на порядок больше. Можно использовать схему из нескольких транзисторов, тогда нагрузка еще сильнее увеличится.

При создании таких схем важно учесть, что из-за падения на участке p-n перехода выходное напряжение уменьшится. Поэтому необходимо выбирать стабилитрон с учетом потерь на переходах на транзисторах. На рисунке в схеме с двумя транзисторами также можно увидеть еще один резистор. Его используют для ликвидации реактивной составляющей второго транзистора.

Два простых стабилизатора

Принципы расчета характеристик

Основными показателями стабилизатора являются максимальное выходное напряжение Uвых, минимальное выходное напряжение Uвых1 и максимальный ток Imax. Допустим, что эти величины составляют 14 Вольт, 1,5 Вольта и 1 Ампер, соответственно. Вычисляем входное напряжение по формуле:

Uвх=Uвых+ 3, где 3 – это коэффициент падения напряжение на переходе коллектор – эмиттер.

Обратите внимание! Паспортные параметры транзистора должны обеспечивать функционирование в полуоткрытом режиме и выдерживать разницу напряжений, возникающую между выходным напряжением и выходными данными.

Далее следует рассчитать максимальную мощность Pmax, которую будет рассеивать транзистор:

  • Pmax=1.3(Uвх-Uвых)Imax=1.3(17-14)=3.9 Вт;
  • Pmax=1.3(Uвх-Uвых1)Imax=1.3(17-1.5)=20,15 Вт.

Как видно, большее значение получается при расчете для минимального входного напряжения, и эта величина будет правильной, для того чтобы подобрать транзистор по справочнику. У нас это будет КТ817.

Важно! Значение напряжение должно быть больше входного значения, а ток – больше заданного максимального значения. Иначе элемент будет работать на пределе возможностей и быстро выйдет из строя.

Схема на полевом транзисторе

Теперь нужно учесть Iб max ток базы самого транзистора:

Iб max=Imax/h31Э min, где h31Э min – коэффициент передачи тока (в нашем случае эта величина равна 25).

Iб max=1/25=0.04 А.

Зная эти показатели, можно определить характеристики стабилизатора напряжения на транзисторе. Стабилизированное напряжение равно 14 вольтам, а ток по формуле – 0.04 А. По этим показателям подходит Д814Д, но в этом случае ток базы будет составлять 0,005 А, то есть надо понизить выходные значение. Для этого используется второй транзистор (КТ315). За счет его использования нагрузка уменьшится на величину максимального коэффициента передачи тока второго транзистора (у нас h31Э=30). Таким образом, ток будет составлять 0,04/30=0,00133 мА.

Теперь определим показатели для Rб балластного резистора:

Rб=(Uвх-Uст)/(Iб max+Iст min)=(17-14)/(0,00133+0,005) = 474 Ом, где:

  • Iст min – ток стабилизации;
  • Uст – напряжение стабилизации стабилитрона.

Затем считаем балластную мощность:

Prб=(Uвх-Uст)2/Rб=(17-14)2/473=0,02 Вт.

Параметры дополнительного резистора рассчитывают редко, при выборе этой детали нужно учесть только одно, что его значение тока должно быть меньше максимально нагрузочного. У нас используется резистор с сопротивлением в 1 Ом.

Компенсационные стабилизаторы

Рассмотренные выше схемы представляют собой параметрические стабилизаторы, то есть устройства, работающие на стабилитроне. Более точными считаются компенсационные схемы, где присутствует обратная связь, и уже стабилизирующую составляющую сравнивают с эталонными значениями. Основным преимуществом таких устройств является точное выходное напряжение, на которое практически не оказывает влияния ток нагрузки, тогда, как у параметрических систем именно нагрузка влияет на всю работу транзисторного стабилизатора.

Схема стабилизатора компенсационного типа может быть последовательной и параллельной. В первом варианте регулирующими элементами обычно являются транзисторы.

Компенсационные стабилизаторы последовательного типа

На схеме:

  • Р – регулирующий элемент;
  • И – источник опорного (эталонного) напряжения;
  • ЭС – элемент сравнения;
  • У – усилитель постоянного тока.

Выходное напряжение для последовательного стабилизатора определяется по вышеуказанной формуле, где R4’ и R4’’, соответственно, верхняя и нижняя величина резистора R4. Транзистор VT1 выполняет роль регулирующего элемента, а VT2 стабилизирует, то есть сравнивает и при необходимости усиливает показатели. Источником опорного напряжения является стабилитрон VD1. Между базой и эмиттером VT2 напряжение определяется как разность UОП и UРЕГ. Если на нагрузке идет рост напряжения, то UРЕГ увеличивает и эмиттерные, и коллекторные токи VT2. Далее по схеме коллекторный ток идет на резистор R1, что вызывает падание напряжения. Это напряжение обратно по полярности для эмиттерной части VT1, поэтому коллекторные и эмиттерные токи данного транзистора падают, а номинальное напряжение на нагрузке восстанавливается.

Для плавной регулировки на выходной цепи стабилизатора используется делитель напряжения, состоящий из R3, R4, R5. Ступенчатое регулирование происходит с помощью опорного напряжения стабилитрона.

Типовая схема компенсационного стабилизатора параллельного типа

В компенсационном стабилизаторе напряжения параллельного типа при возникновении отклонения значения от номинального появляется сигнал рассогласования, который составляет разницу между опорным и выходным напряжением. Далее этот сигнал усиливается на регулирующей части, которая стоит параллельно нагрузке. За счет этого ток на регулирующем элементе изменяется, напряжение на резисторе R1 падает, а на выходе сохраняются постоянные показатели:

U1=U0–IBXR1=const.

Важно! КПД стабилизаторов параллельного типа небольшое, поэтому подобные схемы используются довольно редко.

Импульсные стабилизаторы

Кроме компенсационных и параметрических стабилизаторов, существуют импульсные схемы, в которых коэффициент полезного действия самый большой, даже если диапазон входных напряжений достаточно большой. Работа этих устройств основана на том, что регулирующий элемент отключается и выключается в импульсном режиме. Общая схема стабилизатора состоит из ключа, накопителя энергии и цепи управления. Накопитель и ключ вместе представляют силовую часть, вместе с цепью они составляют контур регулирования.

Импульсный стабилизатор напряжения можно собрать на основе 3 транзисторов. При этом VT1, VT2 составляют ключевой регулирующий элемент, а VT3 необходим для усиления сигнала рассогласования.

Схема импульсного стабилизатора

Алгоритм работы следующий:

  1. С коллектора VT2 через конденсатор С2 на базу VT1 поступает напряжение положительной обратной связи;
  2. VT2 при насыщении током от резистора R2 открывается;
  3. На коллекторно-эмиттерном переходе при насыщенном VT1 меньше, чем напряжение для открывания VT2, значит, когда VT1 открыт, VT2 закрытый;
  4. Усилитель на VT3 через эмиттер подключен к стабилитрону VD2, а база – к делителю выходного напряжения R5, R6, R7;
  5. Таким образом, VT1 управляет закрыванием и открыванием VT2 по сигналу от VT3;
  6. Когда VT2 открыт, происходит накопление энергии в дросселе, после закрывания энергия идет в нагрузку.

Каждая из представленных схем позволит собрать простейшей вариант стабилизаторов.

Видео

Оцените статью:

Простой стабилизатор напряжения на 3 вольта схема. Миниатюрные стабилизаторы напряжения

Основой стабилизатора напряжения (см. рис.1)является микросхема К157ХП2. Прекрасный и не справедливо забытый стабилизатор, с дополнительным транзистором, например КТ972А, может работать с током до 4А.

В данной схеме выходное напряжение стабилизатора равно 3В. Стабилизатор предназначен для питания низковольтной радиоаппаратуры. Вообще, при указанных на схеме номиналах резисторов, выходное напряжение можно устанавливать от 1,3 до 6В. При больших токах нагрузки транзистор должен быть установлен на соответствующий радиатор. Входное напряжение, подаваемое на стабилизатор, должно быть не менее семи вольт, хотя практически оно может быть вплоть до сорока. Такой стабилизатор хорошо работает от автомобильного аккумулятора. Главное, чтобы выделяющаяся мощность на транзисторе не превышала максимально допустимую 8Вт. Выключателем SB1 можно коммутировать выходное напряжение. При больших токах нагрузки это очень удобно — возможно применение маломощных тумблеров.

Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах. Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*U бат)/(U раб. led *I раб. led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Как подключить от пальчиковой батарейки АА 1,5В

К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.

Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.

Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу. Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.

В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.

Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.

Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.

Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.

Как подключить от 9В батарейки Крона

«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.

Схема питания от батарейки крона

В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.

Схема устройства

Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1.25 — 30 вольт. Это позволяет использовать данный стабилизатор для питания пейджеров с 1.5 вольтовым питанием (например Ultra Page UP-10 и т.п.), так и для питания 3-х вольтовых устройств. В моем случае она используется для питания пейджера «Moongose PS-3050», то есть выходное напряжение установлено в 3 вольта.

Работа схемы

При помощи переменного резистора R2 можно установить необходимое выходное напряжение. Выходное напряжение можно рассчитать по формуле Uвых=1.25(1 + R2/R1) .
В качестве регулятора напряжения используется микросхема SD 1083/1084 . Без всяких изменений можно использовать российские аналоги этих микросхем 142 КРЕН22А/142 КРЕН22 . Они различаются только выходным током и в нашем случае это несущественно. На микросхему необходимо установить небольшой радиатор, так как при низком выходном напряжении регулятор работает в токовом режиме и существенно нагревается даже на «холостом» ходу.

Монтаж устройства

Устройство собрано на печатной плате размером 20х40мм. Так как схема очень простая рисунок печатной платы не привожу. Можно собрать и без платы с помощью навесного монтажа.
Собранная плата помещается а отдельную коробочку или монтируется непосредственно в корпусе блока питания. Я разместил свою в корпусе AC-DC адаптера на 12 вольт для радиотелефонов.

Примечание.

Необходимо сначала установить рабочее напряжение на выходе стабилизатора (при помощи резистора R2) и лишь, затем подключать нагрузку.

Другие схемы стабилизаторов.

Это одна из самых простых схем, которую можно собрать на доступной микросхеме LM317LZ . Путем подключения/отключения резистора в цепи обратной связи мы получаем на выходе два разных напряжения. При этом, ток нагрузки может достигать 100 мА.

Только обратите внимание на распиновку микросхемы LM317LZ. Она немного отличается от привычных стабилизаторов.

Простой стабилизатор на различные фиксированные напряжения (от 1,5 до 5 вольт) и ток до 1А. можно собрать на микросхеме AMS1117 -X.X (CX1117-X.X) (где X.X — выходное напряжение). Есть экземпляры микросхем на следующие напряжения: 1.5, 1.8, 2.5, 2.85, 3.3, 5.0 вольт. Также есть микросхемы с регулируемым выходом с обозначением ADJ. Этих микросхем очень много на старых компьютерных платах. Одним из достоинств этого стабилизатора является низкое падение напряжения — всего 1,2 вольта и небольшой размер стабилизатора адаптированный под СМД-монтаж.

Для его работы требуется всего пара конденсаторов. Для эффективного отвода тепла при значительных нагрузках необходимо предусмотреть теплоотводную площадку в районе вывода Vout. Этот стабилизатор также доступен в корпусе TO-252.

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

Метеостанции на .

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»

Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:
Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 — это линейный стабилизатор напряжения с малым падением напряжения.
Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:
Схема модуля с микросхемой AMS1117-3.3:


Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.


Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений — от 4,2 вольт до 10 вольт.


В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы — 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.
Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП «Завод ТРАНЗИСТОР».

Простой стабилизатор напряжения на 3 вольта схема. Как получить нестандартное напряжение

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение — это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда «заточены» различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ — это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 — 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона — это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт — уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода — 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Доступность и относительно невысокие цены на сверхъяркие светодиоды (LED) позволяют использовать их в различных любительских устройствах. Начинающие радиолюбители, впервые применяющие LED в своих конструкциях, часто задаются вопросом, как подключить светодиод к батарейке? Прочтя этот материал, читатель узнает, как зажечь светодиод практически от любой батарейки, какие схемы подключения LED можно использовать в том или ином случае, как выполнить расчет элементов схемы.

К каким батарейкам можно подключать светодиод?

В принципе, просто зажечь светодиод, можно от любой батарейки. Разработанные радиолюбителями и профессионалами электронные схемы позволяют успешно справиться с этой задачей. Другое дело, сколько времени будет непрерывно работать схема с конкретным светодиодом (светодиодами) и конкретной батарейкой или батарейками.

Для оценки этого времени следует знать, что одной из основных характеристик любых батарей, будь то химический элемент или аккумулятор, является емкость. Емкость батареи – С выражается в ампер-часах. Например, емкость распространенных пальчиковых батареек формата ААА, в зависимости от типа и производителя, может составлять от 0.5 до 2.5 ампер-часов. В свою очередь светоизлучающие диоды характеризуются рабочим током, который может составлять десятки и сотни миллиампер. Таким образом, приблизительно рассчитать, на сколько хватит батареи, можно по формуле:

T= (C*U бат)/(U раб. led *I раб. led)

В данной формуле в числителе стоит работа, которую может совершить батарея, а в знаменателе мощность, которую потребляет светоизлучающий диод. Формула не учитывает КПД конкретно схемы и того факта, что полностью использовать всю емкость батареи крайне проблематично.

При конструировании приборов с батарейным питанием обычно стараются, чтобы их ток потребления не превышал 10 – 30% емкости батареи. Руководствуясь этим соображением и приведенной выше формулой можно оценить сколько нужно батареек данной емкости для питания того или иного светодиода.

Как подключить от пальчиковой батарейки АА 1,5В

К сожалению, не существует простого способа запитать светодиод от одной пальчиковой батарейки. Дело в том, что рабочее напряжение светоизлучающих диодов обычно превышает 1.5 В. Для эта величина лежит в диапазоне 3.2 – 3.4В. Поэтому для питания светодиода от одной батарейки потребуется собрать преобразователь напряжения. Ниже приведена схема простого преобразователя напряжения на двух транзисторах с помощью которого можно питать 1 – 2 сверхъярких LED с рабочим током 20 миллиампер.

Данный преобразователь представляет собой блокинг-генератор, собранный на транзисторе VT2, трансформаторе Т1 и резисторе R1. Блокинг-генератор вырабатывает импульсы напряжения, которые в несколько раз превышают напряжение источника питания. Диод VD1 выпрямляет эти импульсы. Дроссель L1, конденсаторы C2 и С3 являются элементами сглаживающего фильтра.

Транзистор VT1, резистор R2 и стабилитрон VD2 являются элементами стабилизатора напряжения. Когда напряжение на конденсаторе С2 превысит 3.3 В, стабилитрон открывается и на резисторе R2 создается падение напряжения. Одновременно откроется первый транзистор и запирет VT2, блокинг-генератор прекратит работу. Тем самым достигается стабилизация выходного напряжения преобразователя на уровне 3.3 В.

В качестве VD1 лучше использовать диоды Шоттки, которые имеют малое падение напряжения в открытом состоянии.

Трансформатор Т1 можно намотать на кольце из феррита марки 2000НН. Диаметр кольца может быть 7 – 15 мм. В качестве сердечника можно использовать кольца от преобразователей энергосберегающих лампочек, катушек фильтров компьютерных блоков питания и т. д. Обмотки выполняют эмалированным проводом диаметром 0.3 мм по 25 витков каждая.

Данную схему можно безболезненно упростить, исключив элементы стабилизации. В принципе схема может обойтись и без дросселя и одного из конденсаторов С2 или С3 . Упрощенную схему может собрать своими руками даже начинающий радиолюбитель.

Cхема хороша еще тем, что будет непрерывно работать, пока напряжение источника питания не снизится до 0.8 В.

Как подключить от 3В батарейки

Подключить сверхъяркий светодиод к батарее 3 В можно не используя никаких дополнительных деталей. Так как рабочее напряжение светодиода несколько больше 3 В, то светодиод будет светить не в полную силу. Иногда это может быть даже полезным. Например, используя светодиод с выключателем и дисковый аккумулятор на 3 В (в народе называемая таблеткой), применяемый в материнских платах компьютера, можно сделать небольшой брелок-фонарик. Такой миниатюрный фонарик может пригодиться в разных ситуациях.

От такой батарейки — таблетки на 3 Вольта можно запитать светодиод

Используя пару батареек 1.5 В и покупной или самодельный преобразователь для питания одного или нескольких LED, можно изготовить более серьезную конструкцию. Схема одного из подобных преобразователей (бустеров) изображена на рисунке.

Бустер на основе микросхемы LM3410 и нескольких навесных элементов имеет следующие характеристики:

  • входное напряжение 2.7 – 5.5 В.
  • максимальный выходной ток до 2.4 А.
  • количество подключаемых LED от 1 до 5.
  • частота преобразования от 0.8 до 1.6 МГц.

Выходной ток преобразователя можно регулировать, изменяя сопротивление измерительного резистора R1. Несмотря на то, что из технической документации следует, что микросхема рассчитана на подключение 5-ти светодиодов, на самом деле к ней можно подключать и 6. Это обусловлено тем, что максимальное выходное напряжение чипа 24 В. Еще LM3410 позволяет свечения светодиодов (диммирование). Для этих целей служит четвертый вывод микросхемы (DIMM). Диммирование можно осуществлять, изменяя входной ток этого вывода.

Как подключить от 9В батарейки Крона

«Крона» имеет относительно небольшую емкость и не очень подходит для питания мощных светодиодов. Максимальный ток такой батареи не должен превышать 30 – 40 мА. Поэтому к ней лучше подключить 3 последовательно соединенных светоизлучающих диода с рабочим током 20 мА. Они, как и в случае подключения к батарейке 3 вольта не будут светить в полную силу, но зато, батарея прослужит дольше.

Схема питания от батарейки крона

В одном материале трудно осветить все многообразие способов подключения светодиодов к батареям с различным напряжением и емкостью. Мы постарались рассказать о самых надежных и простых конструкциях. Надеемся, что этот материал будет полезен как начинающим, так и более опытным радиолюбителям.

Светодиоды разного цвета имеют свою рабочую зону напряжения. Если мы видим светодиод на 3 вольта, то он может давать белый, голубой или зеленый свет. Напрямую подключать его к источнику питания, который генерирует более 3 вольт нельзя.

Расчет сопротивления резистора

Чтобы понизить напряжение на светодиоде, в цепь перед ним последовательно включают резистор. Основная задача электрика или любителя будет заключаться в том, чтобы правильно подобрать сопротивление.

В этом нет особой сложности. Главное, знать электрические параметры светодиодной лампочки, вспомнить закон Ома и определение мощности тока.

R=Uна резисторе/Iсветодиода

Iсветодиода – это допустимый ток для светодиода. Он обязательно указывается в характеристиках прибора вместе с прямым падением напряжения. Нельзя, чтобы ток, проходящий по цепи, превысил допустимую величину. Это может вывести светодиодный прибор из строя.

Зачастую на готовых к использованию светодиодных приборах пишут мощность (Вт) и напряжение или ток. Но зная две из этих характеристик, всегда можно найти третью. Самые простые осветительные приборы потребляют мощность порядка 0,06 Вт.

При последовательном включении общее напряжение источника питания U складывается из Uна рез. и Uна светодиоде. Тогда Uна рез.=U-Uна светодиоде

Предположим, необходимо подключить светодиодную лампочку с прямым напряжением 3 вольта и током 20 мА к источнику питания 12 вольт. Получаем:

R=(12-3)/0,02=450 Ом.

Обычно, сопротивление берут с запасом. Для того ток умножают на коэффициент 0,75. Это равносильно умножению сопротивления на 1,33.

Следовательно, необходимо взять сопротивление 450*1,33=598,5=0,6 кОм или чуть больше.

Мощность резистора

Для определения мощности сопротивления применяется формула:

P=U²/ R= Iсветодиода*(U-Uна светодиоде)

В нашем случае: P=0,02*(12-3)=0,18 Вт

Такой мощности резисторы не выпускаются, поэтому необходимо брать ближайший к нему элемент с большим значением, а именно 0,25 ватта. Если у вас нет резистора мощность 0,25 Вт, то можно включить параллельно два сопротивления меньшей мощности.

Количество светодиодов в гирлянде

Аналогичным образом рассчитывается резистор, если в цепь последовательно включено несколько светодиодов на 3 вольта. В этом случае от общего напряжения вычитается сумма напряжений всех лампочек.

Все светодиоды для гирлянды из нескольких лампочек следует брать одинаковыми, чтобы через цепь проходил постоянный одинаковый ток.

Максимальное количество лампочек можно узнать, если разделить U сети на U одного светодиода и на коэффициент запаса 1,15.

N=12:3:1,15=3,48

К источнику в 12 вольт можно спокойно подключить 3 излучающих свет полупроводника с напряжением 3 вольта и получить яркое свечение каждого из них.

Мощность такой гирлянды довольно маленькая. В этом и заключается преимущество светодиодных лампочек. Даже большая гирлянда будет потреблять у вас минимум энергии. Этим с успехом пользуются дизайнеры, украшая интерьеры, делая подсветку мебели и техники.

На сегодняшний день выпускаются сверхяркие модели с напряжением 3 вольта и повышенным допустимым током. Мощность каждого из них достигает 1 Вт и более, и применение у таких моделей уже несколько иное. Светодиод, потребляющий 1-2 Вт, применяют в модулях для прожекторов, фонарей, фар и рабочего освещения помещений.

Примером может служить продукция компании CREE, которая предлагает светодиодные продукты мощностью 1 Вт, 3Вт и т. д. Они созданы по технологиям, которые открывают новые возможности в этой отрасли.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение — это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда «заточены» различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ — это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 — 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона — это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт — уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода — 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Ниже приведены сразу две схемы 3-х Вольтовых блоков питания .
Они собраны на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих потребностей м возможностей.
На первом рисунке приведена простая схема блока питания на 3 В (ток в нагрузкеке 200 мА) с электронной защитой от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.

Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1…VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5…6 В, ≈ меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора. В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.

Транзистор VT1 крепится на теплорассеивающей пластине. Как рассчитать размер теплоотводящего радиатора можно более подробно посмотреть .
Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5…6 В. Конденсаторы С1…СЗ типа К50-35.

Вторая схема использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на первом рисунке, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме.

При низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку. Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор. Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.

Как сделать стабилизатор напряжения своими руками: инструкция

Практически каждый человек знает, что перепады напряжения могут повлиять на работу бытовой техники. Чтобы выровнять ток в домашних условиях вам необходимо использовать стабилизатор напряжения. Если у вас нет желания покупать это устройство, тогда мы расскажем, как сделать стабилизатор напряжения своими руками.

Это устройство способно надежно защитить вашу бытовую технику от перепада напряжения. Если вы желаете защитить технику от всех перепадов, тогда также можно использовать устройства защитного отключения.

Основные элементы стабилизатора напряжения

Перед тем как изготовить стабилизатор напряжения вам необходимо изучить его составные части. Чтобы собрать простой выравниватель тока вам потребуются стандартные навыки. Самодельный стабилизатор напряжения для дома состоит из:

  1. Трансформатора.
  2. Конденсатора.
  3. Нескольких диодов.
  4. Резистора.
  5. Проводов, которые соединят микросхемы.

Если вы возьмете старый сварочный аппарат, тогда он идеально справиться с этой задачей. Переделать сварочный аппарат в стабилизатор не составляет труда. Не у всех людей есть ненужный сварочный аппарат и поэтому мы решили рассмотреть другой способ изготовления стабилизатора напряжения своими руками. Импульсный стабилизатор сложно изготовить своими руками. Именно поэтому в этой статье мы рассмотрим изготовление линейного стабилизатора самостоятельно. Тирристорный стабилизатор напряжения также поможет защитить проводку.

Изготовление самодельного стабилизатора

Основой любого выпрямителя считается трансформатор. Это устройство представляет собою две небольшие катушки, которые в процессе работы образуют индуктивную электромагнитную связь. Эту взаимосвязь можно выразить формулой, которая изображена на фото ниже:

Формула считается не идеальной, так как она позволяет понижать или повышать напряжение. Если изучить статистику, тогда можно понять, что в 90% случаев потребители получают пониженный ток. Именно поэтому вам необходимо сделать повышающий трансформатор. Число его витков должно быть не менее 2000 тысяч. Для расчета витков следует использовать следующую формулу:

Также вам следует изучить вторую часть формулы, которая изображена ниже:

Теперь ваш стабилизатор напряжения, который будет увеличивать ток на заданную величину готов. Иногда потребитель может столкнуться со скачками напряжения. Именно поэтому формула примет следующие значения:

Чтобы устранить подобные неполадки вам следует использовать закон Ома. Если вы понизите сопротивление, тогда соответственно уменьшится и напряжение. Если вам будет интересно, тогда читайте про релейный стабилизатор напряжения.

Для изменения сопротивления в сети вы сможете использовать реостат. Вам сложно будет управлять этим устройством вручную. Именно поэтому благодаря микросхеме вы сможете его полностью автоматизировать. Наиболее простым способом считается вывод тока с трансформатора на конденсатор.

Этот способ считается достаточно архаичным. Если у вас нет желания с ним заморачиваться, тогда лучше всего использовать УЗО. В этом случае, если напряжение в квартире или доме возрастет, тогда УЗО просто отключит его подачу. В остальное время трансформатор самостоятельно сможет выравнивать напряжение. При повышенном напряжении вам необходимо использовать понижающий трансформатор. Собирать его можно также как и этот. Только обмотка на второй катушке обязательно должна быть из толстой проволоки. Если вы желаете получить хороший эффект, тогда необходимо собрать оба трансформатора.

В первом случае вам потребует использовать ручной процесс переключения, а во втором вы сможете его автоматизировать.

Советы по работе с самодельным стабилизатором

Во время сборки стабилизатора напряжения вам следует отталкиваться от параметров конкретной техники, такой как:

  1. Продумать прозвонку.
  2. Если ремонт не предполагается, тогда установить удлинители.
  3. Подключить каждую группу техники к отдельному стабилизатору.

Все виды бытовой техники обязательно содержат на своей тыльной стороне требования к электропитанию. Это позволит подстроить свой стабилизатор под сеть. Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева.

Рекомендуем прочесть: стабилизаторы напряжения для дачи.

Схема простого стабилизатора постоянного напряжения на опорном стабилитроне и транзисторе.

Для некоторых электрических цепей и схем вполне хватает обычного блока питания, не имеющего стабилизации. Источники тока такого типа обычно состоят из понижающего трансформатора, выпрямительного диодного моста и фильтрующего конденсатора. Выходное напряжение блока питания зависит от количества витков вторичной обмотки на понижающем трансформаторе. Но как известно сетевое напряжение 220 вольт нестабильно. Оно может колебаться в некоторых пределах (200-235 вольт). Следовательно и выходное напряжение на трансформаторе тоже будет «плавать» (в место допустим 12 вольт будет 10-14, или около того).

Электротехника, которая особо не капризна к небольшим изменения питающего постоянного напряжения может обойтись таким вот простым блоком питания. Но вот более чувствительная электроника уже это не терпит, она от этого даже может выйти из строя. Так что возникает необходимость в дополнительный схеме стабилизации постоянного выходного напряжения. В этой статье я привожу электрическую схему достаточно простого стабилизатора постоянного напряжения, который имеет стабилитрон и транзистор. Именно стабилитрон выступает в роли опорного элемента, который определяет и стабилизирует выходное напряжения блока питания.

Теперь давайте перейдем к непосредственному разбору электрической схемы простого стабилизатора постоянного напряжения. Итак, к примеру у нас имеется понижающий трансформатор с выходным переменным напряжением в 12 вольт. Эти самые 12 вольт мы подаем на вход нашей схемы, а именно на диодный мост и фильтрующий конденсатор. Диодный выпрямитель VD1 из переменного тока делает постоянный (но скачкообразный). Его диоды должны быть рассчитаны на ту максимальную силу тока (с небольшим запасом где-то 25%), который может выдавать блок питания. Ну, и напряжение их (обратное) должно быть не ниже выходного.

Фильтрующий конденсатор C1 сглаживает эти скачки напряжения, делая форму постоянного напряжения более ровной (хотя и не идеальной). Его емкость должна быть от 1000 мкф до 10 000 мкф. Напряжение, также больше выходного. Учтите, что есть такой вот эффект — переменное напряжение после диодного моста и фильтрующего конденсатора электролита увеличивается примерно на 18%. Следовательно в итоге мы уже получим на выходе не 12 вольт, а где-то 14,5.

Теперь начинается часть стабилизатора постоянного напряжения. Основным функциональным элементом тут является сам стабилитрон. Напомню, что стабилитроны имеют способность в некоторых пределах стабильно держать на себе определенное постоянное напряжение (напряжение стабилизации) при обратном своем включении. При подачи на стабилитрон напряжения от 0 до напряжения стабилизации оно просто будет увеличиваться (на концах стабилитрона). Дойдя до уровня стабилизации напряжение будет оставаться неизменным (с незначительным ростом), а расти начнет сила тока, протекающего через него.

В нашей схеме простого стабилизатора, который на выходе должен выдавать 12 вольт, стабилитрон VD2 рассчитан на напряжение 12,6 (поставим стабилитрон на 13 вольт, это соответствует Д814Д). Почему 12,6 вольт? Потому, что 0,6 вольт осядут на транзисторном переходе эмиттер-база. А на выходе получится ровно 12 вольт. Ну, а поскольку мы ставим стабилитрон на 13 вольт, то на выходе БП будет где-то 12,4 В.

Стабилитрон VD2 (создающим место опорного постоянного напряжения) нуждается в ограничителе тока, который будет предохранять его от чрезмерного перегрева. На схеме эту роль выполняет резистор R1. Как видно он подключен последовательно стабилитрону VD2. Еще один фильтрующий конденсатор электролит C2 стоит параллельно стабилитрону. Его задача также сглаживать излишки пульсаций напряжения. Можно обойтись и без него, но все же лучше будет с ним!

Далее на схеме мы видим биполярный транзистор VT1, который подключен по схеме общий коллектором. Напомню, схемы подключения биполярных транзисторов по типу общий коллектор (это еще называется эмиттерный повторитель) характеризуются тем, что они значительно усиливают силу тока, но при этом нет никакого усиления по напряжению (даже оно немного меньше входного, именно на те самые 0,6 вольт). Следовательно мы на выходе транзистора получаем то постоянное напряжение, которое имеется на его входе (а именно напряжение опорного стабилитрона, равное 13 вольтам). И поскольку эмиттерный переход на себе оставляет 0,6 вольта, то и на выходе транзистора уже будет не 13, а 12,4 вольта

Как вы должны знать, чтобы транзистор начал открываться (пропускать через себя управляемые токи по цепи коллектор-эмиттер) ему нужен резистор для создания смещения. Эту задачу выполняет все тот же резистор R1. Изменяя его номинал (в определенных пределах) можно менять силу тока на выходе транзистора, а значит и на выходе нашего стабилизированного блока питания. Тем, кто желает с этим поэкспериментировать советую на место R1 поставить подстроечное сопротивление номиналом около 47 ком. Подстраивая его смотрите, как будет изменяться сила тока на выходе блока питания.

Ну, и на выходе схемы простого стабилизатора постоянного напряжения стоит еще один небольшой фильтрующий конденсатор электролит C3, сглаживающий пульсации на выходе стабилизированного блока питания. Параллельно ему припаян резистор нагрузки R2. Он замыкает эмиттер транзистора VT1 на минус схемы. Как видим схема достаточно проста. Содержит минимум компонентов. Она обеспечивает вполне стабильное напряжение на своем выходе. Для питания многой электротехники данного стабилизированного блока питания будет вполне хватать. Данный транзистор рассчитан на максимальную силу тока в 8 ампер. Следовательно для такого тока нужен радиатор, который будет отводить излишек тепла от транзистора.

P.S. Если параллельно стабилитрону поставить еще переменный резистор номиналом 10 ком (средний вывод подсоединяем к базе транзистора), то в итоге мы получим уже регулируемый блок питания. На нем можно плавно изменять выходное напряжение от 0 до максимума (напряжение стабилитрона минус те самые 0,6 вольт). Думаю такая схема уже будет более востребована.

Стабилизаторы

Мощный стабилизатор напряжения

U = 3 — 8 В, Iн = 5 А П4Б, П201, П15х2

«Радио»

1964

9

Просеков Э.

Стабилизаторы напряжения с защитой от коротких замыканий

Несколько практических схем

«Радио»

1964

9

Буденко А.

Высоковольтный стабилизатор напряжения

250 В, 180 мА, Кст = 1000 МП15х2, МП25, П203х2

«Радио»

1967

3

Лукашов А.

Стабилизатор напряжения, защищенный от перегрузок

Пятитранзисторный

«Радио»

1967

1

Додонов Е.

Улучшение транзисторных стабилизаторов

Приведено 6 разновидностей стабилизаторов

«Радио»

1970

7

Назаров С.

Параллельный стабилизатор напряжения с высоким КПД

Теория, практическая схема.

«В помощь радиолюбителю»

1973

43

Назаров С.

Стабилизаторы напряжения на операционных усилителях

Описание двух схем на К1УТ401

«Радио»

1975

12

Лапшин В.

Стабилизаторы напряжения на К142ЕН

Схемы умощнения

«Радио»

1978

10

Крылов В.

Стабилизатор переменного напряжения

Приведены технические характеристики промышленных стабилизаторов, приведено описание стабилизатора, с лучшими характеристиками

«Радио»

1981

1

Ященко О.

Построение двуполярных стабилизаторов напряжения на ОУ

Приведено 4 схемы.

«В помощь радиолюбителю»

1982

79

Крылов В.

Стабилизатор напряжения и тока

0 — 30 В, 0 — 1 А, 9 транзисторов и К118УД1Бх2

«Радио»

1982

10

Светозаров В.

Стабилизатор напряжения с высоким КПД

Описан ключевой стабилизатор на МС К142ЕП1 и КТ315Б, КТ626А, КТ907А. 5 В, 2 А, КПД=78%

«Радио»

1982

4

Кондратьев Ю.

Стабилизатор напряжения двуполярного блока питания с защитой от перегрузок

+-30 В, П210Ах2, АОУ103В, транзисторы.

«В помощь радиолюбителю»

1983

84

Кучер И.

Простой ключевой стабилизатор напряжения

(Усовершенствование в №4 1987г стр.35). Uвх=15…25 В, Uвых=5 В. Iн=4 А

«Радио»

1985

8

Миронов А.

Стабилизаторы напряжения и тока на ИМС

Приведены расчетные данные, множество схем

«В помощь радиолюбителю»

1985

91

Успенский Б.

Электронно-дроссельный стабилизатор переменного напряжения

«Радио»

1985

2

Еремин П.

Импульсный стабилизатор напряжения

«Радио»

1986

11

Смирнов В.

Стабилизатор напряжения на компараторе

Импульсный с ШИМ на К554СА3

«Радио»

1986

3

Селезнев В.

Стабилизатор напряжения переменного тока

На мощность 200 Вт

«Радио»

1986

6

Журавлев Ю.

Конструирование высоковольтных стабилизаторов

700 В, 40 мА, на транзисторах и К140УД1Б

«Радио»

1987

3

Усманов Р.

Регулируемый стабилизатор тока

(Дополнения в №1 1994г стр.44). Iн=7 А, Uн=16 В

«Радио»

1987

8

Евсеев А.

Экономичный стабилизатор с системой защиты

9 В, 0,1 А

«Радио»

1987

6

Стехин А.

Стабилизатор напряжения

На полевом транзисторе КП903А, КТ315, КТ3102, не боится КЗ и перегрева.

«Радио»

1988

2

Александров И.

Стабилизатор для транзисторного РА

Описан стабилизатор на одно напряжение с быстродействующей защитой и с током до 10 А

«Радиолюбитель»

1992

2

Нет автора

Микросхема К174УН4 — стабилизатор напряжения постоянного тока

5 В, 0,5 А.

«Радио»

1993

9

Нечаев И. (UA3WIA)

Простой импульсный стабилизатор

12 В, 1 А, 5 транзисторов

«Радио»

1993

6

Засухин С.

Универсальный стабилизатор напряжения

5 В, 0,5…10 А, защита по току и напряжению

«Радиолюбитель»

1993

10

Родюшкин А.

Эффективный импульсный стабилизатор напряжения

20 В, 10 А, кпд=93%

«Радиолюбитель»

1993

1

Петров А.

Низковольтный стабилизатор

3 В, КТ908А, МП40А

«Радиолюбитель»

1995

11

Беседин В. (UA9LAQ)

Стабилизатор напряжения с защитой

Описан стабилизатор с тиристорной защитой

«Радиолюбитель»

1995

12

Зирюкин Ю. (EU3AS)

Вариант включения микросхемы К142ЕН6

Расширение пределов регулировки.

«Радио»

1996

12

Бирюков С.

Стабилизатор напряжения

Для телевизионных импульсных блоков питания

«Радиолюбитель»

1997

5

Панов В.

Стабилизатор переменного напряжения

(Дополнение в РЛ №4 1998г. стр.17). Компаратор управляет тиристорами, подключающими дополнительные обмотки трансформатора.

«Радиолюбитель»

1997

8

Ильин А.

Как улучшить работу стабилизатора напряжения

(Продолжение в РЛ №4 1998г.). Приведено несколько схем стабилизаторов

«Радиолюбитель»

1998

3

Николаев А.

Стабилизатор напряжения с защитой от короткого замыкания и перегрузки по току

Описано два стабилизатора на транзисторах

«Радио»

1998

5

Козлов В.

Регулируемый двуполярный стабилизатор напряжения

(Дополнение в №8 2004г.). 1,5…20 В, 5 А. Защита по току. На К142ЕН6А

«Радио»

1999

6

Александров И.

ШИ-стабилизатор тока

Uвх=17 В, Iср=3 А, Iзащ=20 А

«Радио»

1999

5

Жуков В.

Импульсный стабилизатор напряжения с повышенным КПД

На UC3843, IRF7309, 25CTQ035

«Радио»

2000

11

Миронов А.

Простой стабилизатор

(Дополнение в №11 2000г.). Описан стабилизатор для лабораторного блока питания с регулировкой от 0 В, с защитой от перегрузки. На транзисторах и ОУ КР140УД608

«Радио»

2000

1

Шипанов Ю.

Импульсный стабилизатор напряжения на микросхеме LM2576ADJ

3 А, 30 В

«Радио»

2001

7

Межлумян А.

Двуполярный стабилизатор

Описаны 2 схемы: 2…20 В и 10…15 В, регулировка одним резистором.

«Радиоконструктор»

2002

2

Нет автора

Низковольтные стабилизаторы напряжения на микросхеме КР142ЕН19

3…5 В, 0,4 А.

«Радио»

2002

10

Каныгин С.

Стабилизатор переменного тока

Регулировка до 8 А, на К140УД708, IRF740.

«Радиомир»

2002

3

Уваров А.

Стабилизатор с цифровой установкой напряжения

ЦАП на К561ПУ4х2

«Радиоконструктор»

2002

9

Нет автора

Стабилизатор сетевого напряжения с микроконтроллерным управлением

(Дополнение в №3 2004г.). На PIC16F84F

«Радио»

2002

8

Коряков С.

Стабилизатор тока до 150 А

КР140УД20х8, КТ827Ах16, КР142ЕН8Е, 79L15.

«Радио»

2002

10

Коротков И.

«Компромисный» (цена/качество) импульсный стабилизатор

КР140УД608А и 4 транзистора.

«Радио»

2003

7

Москвин А.

Низковольтный стабилизатор напряжения

1,5 В, 1,5 мА

«Радиомир»

2003

4

Дубовой С.

Простой импульсный стабилизатор напряжения

9…25 В > 5 В. На 4 транзисторах.

«Радио»

2003

7

Черномырдин А.

Регулятор напряжения и тока

Описан стабилизатор с регулировкой по току от 10 мА до 3 А и напряжения до 80% от входного. На КТ503, КТ815Г, КТ819Г.

«Радиоконструктор»

2003

2

Нет автора

Стабилизатор напряжения на мощном полевом транзисторе

КР142ЕН19, IRLR2905.

«Радио»

2003

8

Нечаев И. (UA3WIA)

Стабилизатор напряжения с двойной защитой

3…30 В, 2 А (КТ825А). Раздельная защита по току и КЗ

«Радиомир»

2003

11

Курбаков Ю.

Стабилизатор переменного напряжения

ОС осуществляется с помощью оптрона ОЭП2

«Радиомир»

2003

4

Абрамов С.

Транзисторные стабилизаторы напряжения с защитой от перегрузки

(Продолжение в №3 2003г.). Приведены расчеты, 7 практических схем.

«Радио»

2003

2

Москвин А.

Регулируемый стабилизатор напряжения с ограничением по току

(Дополнение в №7 2004г.). Uвых=2…25 В, Iвых=0…5 А. Описан импульсный стабилизатор.

«Радио»

2004

1

Антошин А.

Стабилизатор напряжения 35…70 В

КР142ЕН19, КТ831Г, IRF840.

«Радио»

2004

8

Нечаев И. (UA3WIA)

Стабилизатор напряжения с двойной защитой

(Дополнение в №9 2004г.). 3…30 В, 2 А. Раздельная защита по току и КЗ.

«Радио»

2004

2

Курбаков Ю.

Стабилизатор напряжения с защитой по току на микросхеме КР142ЕН19

«Радио»

2004

3

Каныгин С.

Бездроссельный стабилизатор для водяного насоса

С фазовым управлением на симисторе

«Радио»

2005

8

Порохнявый Б.

Модуль мощного стабилизатора напряжения на полевом транзисторе

200 Вт, на IRL2505L.

«Радио»

2005

2

Нечаев И. (UA3WIA)

Стабилизатор напряжения 0…15 В с шагом регулирования 1 В

(Усовершенствование в №1,4 2006г. стр. 28,10, дополнение в №8 2006г стр 50). Iн=0,5 А, защита от перегрузки, бросков напряжения, на К561ТЛ1, КР1157ЕН602А, К561ИЕ11, КР1040УД1, КТ361В, КТ829Г.

«Радио»

2005

5

Озолин М.

Стабилизатор напряжения отрицательной полярности на микросхеме КР142ЕН19

«Радио»

2005

4

Каныгин С.

Стабилизатор переменного напряжения

(Доработка в №4 2006г. стр.33, усовершенствование в №7 2006г. стр.34.). 6 кВт

«Радио»

2005

8

Годин А.

Повышающий стабилизатор переменного напряжения

150…220 > 220 В

«Радио»

2006

12

Коновалов В.

Регулируемый стабилизатор напряжения

КР142ЕН5А, КТ3102Г, КТ829А (8 А) или КТ927 (20 А)

«Радио»

2006

11

Скублин В.

Регулируемый стабилизатор напряжения/тока

На К142ЕН12

«Радио»

2006

10

Колинько С.

Стабилизатор напряжения на микросхеме КР142ЕН19 с защитой

«Радио»

2006

10

Каныгин С.

Стабилизатор напряжения сети

220 В с точностью 10 В при изменении напряжения в сети от 180 В до 270 В. Обмотки автотрансформатора переключаются симисторами ВТ41-800. Схема управления на LM3914.

«Радиоконструктор»

2006

6

Кривошеин Н.

Сетевой выпрямитель — стабилизатор напряжения и тока

Устройство обеспечивает регулировку выпрямленного напряжения и ограничения выходного тока. Может быть использовано для питания ламп накаливания, электродвигателей, для зарядки аккумуляторов и электролиза. На КТ904х2, КТ361, КТ3157, Т2-10-4х2

«Радио»

2007

2

Каплун В.

Регулируемый стабилизатор напряжения с защитой

0…20 В. На КР142ЕН12А, КТ3102х2 КР142ЕН18А (для минуса опорного)

«Радио»

2007

2

Каныгин С.

Электроника 102 — Урок 4

На предыдущем уроке мы улучшили усилитель, смоделировали его и продемонстрировали производительность с использованием SPICE.

В этом уроке мы собираемся разработать регулятор напряжения — сердце любого источника питания.

Потребность в регуляторах напряжения

Назначение регуляторов напряжения — обеспечить стабильное напряжение питания в цепях. вы проектируете.

Это самые распространенные схемы (каждая электронная система, независимо от ее функции, есть хотя бы один), и все же ими часто пренебрегают из-за их утилитарности природа.

Нам нужны регуляторы напряжения, потому что источники первичного питания (например, обычные батареи, или напряжение переменного тока, которое мы получаем от сетевой розетки) обычно не очень стабильны или нестабильны достаточно, чтобы гарантировать, что наши схемы работают в пределах своих спецификаций.

Например, напряжение, которое мы получаем от автомобильного аккумулятора, может варьироваться от 14,4 В. когда двигатель работает и генератор заряжает аккумулятор, и при низком уровне 8 или 9 В при запуске двигателя холодным утром.Потому что может быть положительный или отрицательные всплески, наложенные на напряжение батареи из-за другого оборудования, большинство автомобильное оборудование рассчитано на работу с напряжением до 16 В. Внутри некоторых цепей для правильной работы требуется стабильное напряжение, например микропроцессор, используемый для управления магнитолой. Большинство микропроцессоров работают от источника питания 3 В или 5 В, которое должно регулироваться с точностью до доли вольт. Например, многие микросхемы, рассчитанные на работу от номинального напряжения 5 В. требуется, чтобы напряжение оставалось в пределах 4.5 и 5,5 Вольт.

Опорное напряжение

Для работы регуляторам напряжения требуется ссылка. Опорное напряжение — это часть или цепь, обеспечивающая стабильное напряжение при выходе за пределы параметров, таких как напряжение питания или температура меняется.

Наиболее распространенным источником опорного напряжения является стабилитрон ([1]). Стабилитрон — это диод, в котором наблюдается лавинный обратный пробой. оптимизированы и количественно определены таким образом, чтобы диод мог безопасно работать в этой области.

Мы можем использовать SwitcherCAD, чтобы проиллюстрировать поведение стабилитрона.


<Зинер-1.png>

Эта простая схема будет использоваться для демонстрации еще одной функции программного обеспечения SPICE. Мы попросим программу развернуть напряжение от источника V1 и построить график напряжения на стабилитрон в результате.

Создайте схему сейчас, вам не нужно пока вводить какое-либо значение в Source V1. Не беспокойтесь о.Заявление постоянного тока в нижней части схемы, это просто строка текста, которую я поместил туда для справки. Когда вы закончите создание схемы, нажмите Simulate-> Edit Simulation Cmd. затем выберите «Развертка по постоянному току».

Введите следующие значения:

  • Название 1-го источника для проверки: V1
  • Тип развертки: линейный
  • Начальное значение: -4
  • Стоповое значение: 16
  • Приращение: 0,1
Нажмите «ОК», затем «Выполнить» и выберите «V (вывод)» в окне графика.

У вас должен получиться такой сюжет:


<Зинер-2.png>

Мы можем заметить, что в диапазоне от -0,5 до примерно 6 В выходной сигнал напряжение следует за входным напряжением. Ниже этого стабилитрон становится прямым. смещен, а напряжение на нем составляет от -0,5 до -0,6 В, просто вроде штатный диод.

При напряжениях источника выше примерно 6 В стабилитрон начинает проводить ток и напряжение на нем составляют около 6.2 В, что является номинальным Напряжение стабилитрона для этой части.

Область отрицательного напряжения интересна тем, что показывает, что Стабилитрон похож на настоящий диод, когда он смещен в прямом направлении. Однако мы не собираемся использовать стабилитрон в этой области.

Самая интересная часть — это область обратного смещения (когда напряжения от V1 равны положительный). Эффект Зенера обеспечивает напряжение около 6,2 В, что вполне достаточно. стабильно по сравнению с напряжением источника.

Чтобы выяснить, насколько стабильна, давайте повторно запустим симуляцию, но с разверткой исходного кода. между 8 и 18 В.


<Зинер-3.png>

Изменение выходного напряжения по сравнению с изменением входного напряжения, которое вызвало он называется Line Rules .

Регулировка линии = дельта (В

на выходе ) / дельта (В на выходе )

В этом случае изменение выходного напряжения при вводе изменение напряжения с 14 до 16 В (изменение на 2 В) составляет 20 мВ, поэтому Стабилизация линии между 14 и 16 В составляет 1%.

Если бы мы заменили источник V1 автомобильным аккумулятором, мы бы ожидайте, что регулируемое напряжение стабилитрона будет варьироваться от 6,24 до 6,38 В, в то время как напряжение батареи изменяется с 8 до 16 В, что является значительным улучшением.

Давайте посмотрим, как влияет температура, добавив оператор .STEP к моделирование.

Щелкните значок Текст и введите в текстовое поле следующее: «.STEP TEMP LIST 0 25 50», затем нажмите «Директива», «ОК» и запустите снова симуляция.


<Зинер-4.png>

Теперь общее изменение составляет от 6,24 до 6,39 Вольт, все еще отлично.

Шунтирующие регуляторы

Этот тип схемы называется шунтирующим регулятором , потому что регулирующая элемент находится параллельно (а не последовательно) с нагрузкой. Пока наши схема не показывает нагрузку (пока), нагрузка запитана от любой цепи от регулируемого напряжения, поэтому они будут подключены параллельно с стабилитроном.

Особенность шунтирующего регулятора, которая может быть как преимуществом, так и неудобством. в зависимости от того, где и как используется схема, шунтирующий регулятор тянет постоянный ток от источника. Ток, взятый из источника, является ток, протекающий через последовательный резистор. Поскольку текущий ток через последовательный резистор зависит только от напряжения источника, Напряжение стабилитрона и номинал резистора постоянны до тех пор, пока напряжение источника постоянно и не зависит от тока нагрузки.

Преимущество заключается в том, что ток источника не зависит от тока нагрузки.

Недостатком является то, что КПД схемы очень низок при малые токи нагрузки, поэтому схема не оптимизирована для работы от батареи.

Трудно представить более простую схему, она состоит всего из двух основных компонентов.

С другой стороны, доступный ток ограничен. Посмотрим, какой ток мы можем получить от этой схемы.

Расчет максимального тока нагрузки

В этой модифицированной схеме я добавил резистор R2, чтобы представить схему, которая будет используйте опорное напряжение. Резистор пока не имеет значения, он нужен для пояснения сути. Этот резистор составляет нагрузку и потребляет определенный ток. Нам нужно убедиться, что регулятор может обеспечивать ток, необходимый для цепи. представлен резистором R2.


<Зенера-5.png >>

Ток, проходящий через D1 и R2, должен исходить от резистора R1, поэтому ток ток через R1 будет делиться между R2 и стабилитроном.

Я

R1 = Я D1 + Я R2 В нашей примерной схеме, когда напряжение источника равно 12 В, напряжение на стабилитроне равно 6,34 В, поэтому напряжение на резисторе R1 составляет 5,66 В, поэтому ток в резисторе будет 5,66 / 1000 или 5,66 мА.

По мере уменьшения значения R2 ток через него будет увеличиваться, а ток через D1 уменьшится на такую ​​же величину.

Если ток нагрузки (ток через R2) приближается к 5,66 мА, стабилитрон будет голодать (ток через него будет очень низким или нулевым), и он не будет делать свое работа по регулированию напряжения. Давайте узнаем, сколько тока мы можем пропустить D1, посмотрев на спецификацию.

Чтобы просмотреть весь документ, нажмите на картинку.


Из раздела «Максимальные характеристики» спецификации видно, что максимальная мощность рассеивание при использовании обычных материалов для печатных плат, таких как FR-4, и при температуре окружающей среды 25 ° C составляет 225 мВт. Нам известно напряжение стабилитрона, поэтому легко вычислить, какой ток мы можем приложить к детали.

I

макс. = P макс. / V стабилитрон В этом случае максимальный ток равен 0.225 / 6,2 = 0,036 А или 36 мА.

Если вы прочитаете примечания в листе технических данных, вы увидите, что 225 мВт — это Абсолютный максимальный рейтинг при температуре окружающей среды 25 ° C. В техническом паспорте также указаны вы можете определить тепловое сопротивление и номинальные характеристики для температур выше 25 градусов.

Не вдаваясь в детали этих расчетов прямо сейчас, хороший практика проектирования заключается в ограничении максимального тока в нашей цепи до не более более 50% от абсолютного максимума рейтинга.Это 18 мА.

Если наша схема такова, что ток нагрузки может изменяться от нуля до некоторого значения, мы должны убедиться, что через R1 проходит не более 18 мА.

При выбранном нами (несколько произвольно) значении R1 мы достигнем 18 мА. когда напряжение от V1 составляет 6,2 + (1000 * 0,018) = 24,2 В, где 6,2 — это номинальное напряжение стабилитрона, а (1000 * 0,018) — это напряжение, которое нам нужно приложить через R1, чтобы через него протекал ток 18 мА.Итак, похоже, что у нас есть довольно большой запас прочности относительно максимальной рассеиваемой мощности в стабилитроне.

Теперь нам нужно рассмотреть, что происходит при минимальном напряжении питания. На примере автомагнитолы минимальное напряжение от аккумулятора может быть всего 8 В. При напряжении питания 8 В ток через R1 будет Только:

I

R1 = (V источник — V стабилитрон ) / R1 Это равняется 1.8 мА.

Итак, если эта схема использовалась в автомобильном радиоприемнике для обеспечения регулируемого напряжения 6,2 В некоторые чувствительные схемы, мы можем потреблять до 1,8 мА без потери регулирования, и не рискуя взорвать стабилитрон при максимальном напряжении батареи.

На практике, точно так же, как мы снижали максимальный ток, мы не хотели бы полностью заморозить стабилитрон и убедиться, что напряжение остается в норме, мы должны поддерживать минимальный ток в стабилитроне.В таблице данных перечислены напряжение стабилитрона для 3 значений тока 1, 5 и 20 мА, так что пока оно допустимо интерполировать между данными значениями, менее рекомендуется используйте часть за пределами указанного диапазона значений, поэтому мы должны сохранить минимум 1 мА хоть стабилитрон, чтобы он работал нормально.

Это означает, что у нас есть доступный ток нагрузки до 0,8 мА.

Получение большей мощности с помощью регулятора прохода серии

Что делать, если 0.8 мА мало?

Что ж, мы могли либо:

  1. Уменьшите значение R1. Мы видели, что при текущем значении 1 кОм мы не сможем достичь безопасного максимального рассеивания мощности до тех пор, пока напряжение питания составляет 24,2 В. Мы можем уменьшить значение R1 так, чтобы максимальная безопасная мощность рассеивание достигается при 18 В, что является максимальным напряжением питания, которое мы нужно проектировать для.
  2. Переконструируйте схему, установив стабилитрон с более высокой номинальной мощностью (и уменьшите значение резистора R1, чтобы через него протекал больший ток), или
  3. Добавьте усилитель тока, используя один или несколько транзисторов.

Решение 1 легко реализовать и недорого, но оно не дает многого. улучшения. В данном случае максимальный ток стабилитрона составляет 18 мА, т.е. также максимально возможный ток нагрузки.

В общем, решение 2 не имеет особого смысла, потому что стабилитрон большей мощности их труднее достать, и цепь быстро потратит много энергии. В связи с тенденцией к оборудованию с батарейным питанием важно знать решения, которые не тратят впустую электроэнергию и не тратят минимум, необходимый для выполнения функции.

Решение 3 немного сложнее, но предлагает большую гибкость и больше эффективный.

Итак, попробуем решение 3.

Существует хорошо известная схема, выполняющая нужную нам функцию, поэтому без лишних слов, вот оно:


<Регулятор-1.png>

Вы должны сразу заметить пару вещей. У нас появился новый символ SPICE I1, который является текущим источником.Теперь вы знакомы с источником напряжения, например, V1 в этой схеме. Источник напряжения запрограммирован на напряжение и обеспечивает это напряжение независимо от того, какой ток нам нужен. Это красота SPICE, не имеющая ограничений реального железа 🙂

Точно так же источник тока будет генерировать любое напряжение, необходимое для количество тока, которое мы запросили.

Вы можете выбрать текущий источник из меню «Компонент», просто найдите и нажмите на «текущий».

Источники тока не так интуитивно понятны, как источники напряжения, поэтому не беспокойтесь если концепция кажется странной. Просто следите за тем, что мы будем делать с этим, и снова раз он станет вам знакомым.

Еще одна вещь, которую вы могли заметить, если действительно наблюдательны, — это то, что мы есть стабилитрон с каталожным номером BZX84C5V6L, которого не было в библиотеке.

Я смухлевал. Я хотел продемонстрировать известную схему — стабилизатор на 5 В.Предыдущая схема представляла собой стабилизатор на 6,2 В, которого было достаточно для этой цели. упражнения, используется редко. 5 В — гораздо более распространенное напряжение, а Стабилитрон 5,6 В часто используется в схеме, подобной той, которую я только что описал. Но в библиотеке SwitcherCAD не было стабилитрона на 5,6 В.

Если вы обратитесь к спецификации Motorola (полный документ в формате pdf, а не выдержка выше), вы увидите, что некоторые номера деталей выделены жирным шрифтом. В примечании указано что эти номера деталей предпочтительнее , что означает, что они гораздо более вероятны быть в наличии.Часть 5,6 В выделена жирным шрифтом, поэтому разумно предположить, что она должна были в библиотеке. Учитывая, сколько мы заплатили за SwitcherCAD, мы Простите Linear Technology за то, что она не включила все возможные номера деталей.

Так как же мне получить стабилитрон 5,6 В в SwitcherCAD?

Я открыл файл библиотеки диодов, C: \ Program Files \ LTC \ SwCADIII \ lib \ cmp \ standard.dio в текстовом редакторе и добавил BZX84C5V6L следующим образом:

.модель BZX84C5V6L D (Is = 1,66n Rs = 0,5 Cjo = 205p nbv = 3 bv = 5,6 Ibv = 1 м Vpk = 5,6 mfg = Тип двигателя = стабилитрон)
 
Вы можете вырезать и вставить всю строку. Я поместил его прямо над частью BZX84C6V2L в файле. Обратите внимание, что эта модель, вероятно, не так хороша, как другие. Это подходит для приведенный ниже пример, но он может не подходить для более сложного моделирования. Поэтому, когда вы закончите курс, вы можете удалить модель из библиотеки.

Мне пришлось закрыть и снова открыть SwitcherCAD, потому что программа явно читает библиотеки при запуске программы и после того, как я изменил файл, она не перезагружала его автоматически.

Хорошо, хватит библиотеки SwitcherCAD, транзистор, который мы добавили к шунтирующему стабилизатору, в конфигурации, известной как Emitter-Follower . Это означает, что напряжение на эмиттер следует за напряжением на базе (с небольшим смещением обычно от 0,6 до 0,7 В). Коэффициент усиления по напряжению такой схемы чуть меньше 1.

Таким образом, если напряжение базы поддерживается на уровне 5,6 В, напряжение на эмиттере будет быть примерно от 4,9 до 5.0 Вольт.

Прежде чем двигаться дальше, убедитесь, что вы запрограммировали V1 как источник напряжения 12 В.

Чтобы сделать симуляцию более интересной, мы проведем развертку постоянного тока по току.

Нажмите Simulate-> Edit Simulation Cmd и выберите DC sweep . Введите значения следующим образом:

  • Название 1-го источника для проверки: I1
  • Тип развертки: линейный
  • Начальное значение: 0
  • Стоп-значение 0.1
  • Приращение: 0,001
Нажмите OK, затем нажмите кнопку «Выполнить», чтобы начать моделирование. Выберите V (выход). У вас должно получиться что-то вроде этого:


<Регулятор-2.png >>

Изменение выходного напряжения по сравнению с изменением выходного тока, вызвавшего это называется Положения о нагрузке . Обычно измеряется, когда выходной ток изменяется в определенном указанном диапазоне, например от 50% до 100%.

Регулировка нагрузки выражается в процентах от выходного напряжения или в абсолютном значении.

Если мы выразим это как изменение напряжения по сравнению с изменением тока, которое вызвало он будет называться Выходное сопротивление , поскольку значение сопротивления равно равным отношению напряжения на нем к проходящему через него току.

Регулировка нагрузки = Дельта (В

на выходе ) / Среднее В на выходе

Выходное сопротивление = Дельта (В

на выходе ) / Дельта (I на выходе ) В этом случае изменение выходного напряжения при изменении тока нагрузки от 50 до 100 мА составляет 40 мВ, поэтому выходное сопротивление равно.04 / 0,05 = 0,8 Ом для изменения тока нагрузки на 50%.

Регулировка нагрузки составляет 0,04 / 4,92 = 0,81%.

Обратите внимание, как напряжение быстро растет при малых токах (ниже нескольких мА). Это связано с тем, что при очень малом токе нагрузки базовый ток, который равен = ток нагрузки / Hfe, настолько мал, что базовое напряжение необходимое для его создания становится очень маленьким, намного ниже типичного От 0,6 до 0,7 В.

Я добавил резистор R2 (100 кОм), чтобы обеспечить минимальный ток нагрузки. а без этого резистора напряжение на свету увеличивалось бы еще больше. текущие значения I1.Например, вы можете попробовать поменять R2 на 1000k (1 мегом).

На практике, если бы схема действительно должна была работать до такой низкой токи, было бы неплохо немного уменьшить значение R2 для уменьшения роста напряжения при малых нагрузках.

С другой стороны, обратите внимание, что эта схема теперь выдает 100 мА, пока поддержание регулирования между 4,85 и 5,05 В для токов приблизительно между 5 мА и 100 мА.

Это было бы идеально для работы с большинством микропроцессоров с питанием 5 В.

Подавление пульсации

Подавление пульсаций — еще одна мера способности регулятора отклонять Колебания сетевого напряжения. Тем не менее, линейное регулирование, определенное выше, измеряется при статических (медленно меняющихся) изменениях входного напряжения, где подавление пульсаций измеряется при быстро меняющемся входном напряжении, обычно при сетевой частоте (60 Гц) или это вторая гармоника (120 Гц).

Если бы мы использовали реальные инструменты, мы бы измерили отклонение пульсаций наложение небольшого переменного напряжения на входное постоянное напряжение, затем измерение амплитуда того же сигнала на выходе регулятора и вычислителя Соотношение. Например, мы могли бы подать пиковое напряжение 1 В переменного тока (2 В размах), потому что это хорошо в пределах диапазона регулирования регулятора и производит расчеты Полегче.

Мы можем использовать ту же технику со Spice, хотя Spice предлагает другой метод, который мы изучим на следующем уроке.Для удобства замерим подавление пульсаций на частоте 1 кГц.

Установите источник тока I1 на фиксированное значение 50 мА, установите источник напряжения V1 на быть источником SINE со смещением 12 В постоянного тока, амплитудой 1 В и частотой 1 кГц, тогда отредактируйте команду моделирования следующим образом:

  • Анализ переходных процессов
  • Время остановки: 5 мс
  • Время начала сохранения данных: 0
Затем вернитесь к схеме, щелкните директиву «; DC» и оставьте комментарий (это должен стать синим), запустите моделирование и отобразите выходное напряжение.

Вот график пульсаций на выходе (обратите внимание на шкалу напряжения):


<Регулятор-3.png

Это график, показывающий входное напряжение и выходное напряжение в одном масштабе, Так легче оценить уменьшение пульсации:


<Регулятор-4.png

График показывает, что при питании цепи от источника пульсации 2 В (размах) (мы устанавливаем источник на 12 В постоянного тока с наложенным на него пиковым сигналом 1 В, вы можете используйте курсор для проверки), он обеспечивает регулируемый выход с пульсацией около 30 мВ размах.

Упражнения

  1. Сколько тока мы можем потребить от регулятора, прежде чем регулирование станет действительно плохим? (вы можете использовать SwitcherCAD для экспериментов).
    Какие факторы ограничивают увеличение тока?
  2. Постройте напряжение на базе транзистора на том же графике, что и выходное напряжение, чтобы увидеть разницу. Объясните разницу.
  3. Вычислите коэффициент подавления пульсаций в дБ. Поскольку пульсация измеряется в Вольты, а не ватты, уравнение составляет 20 * log (V2 / V1).
  4. Постройте график изменения выходного напряжения при температуре 25, 50 и 75 градусов C.
Щелкните здесь, чтобы увидеть ответы.

Выводы этого урока

  • Установлено, что регуляторы напряжения являются необходимой частью большинства современные электронные схемы.
  • Для регуляторов напряжения требуется источник опорного напряжения, обычно стабилитрон.
  • Регуляторы напряжения характеризуются линейным регулированием и регулированием нагрузки, характеристики подавления пульсаций и температурной стабильности.
  • Мы узнали, как использовать SPICE для получения этих значений.

В следующих уроках мы усовершенствуем стабилизатор напряжения с каскадом усиления. отдельно от силового каскада.

Ссылки

  1. Стабилитрон
  2. .

Базовые знания регулятора напряжения (1/4)

Обзор линейного регулятора CMOS

История линейных стабилизаторов CMOS относительно нова.Они разработали портативные электронные устройства с батарейным питанием. Поскольку процессы CMOS используются в крупномасштабных интегральных схемах, таких как LSI и микропроцессоры, они постоянно миниатюризируются. Используя все преимущества технологии миниатюризации, линейные КМОП-регуляторы превратились в ИС управления питанием, которые широко используются в портативной электронике для реализации низкопрофильного, низкого падения напряжения и низкого тока питания.

Чем они отличаются от биполярных линейных регуляторов?

Как правило, линейный стабилизатор CMOS обеспечивает более низкий ток питания по сравнению с биполярным линейным стабилизатором.Это связано с тем, что биполярный процесс управляется током, а процесс CMOS — напряжением. [См. Рисунок 1]

[Рис. 1] Устройство, управляемое током и устройство, управляемое напряжением

Транзистор биполярный

Ток проходит между эмиттером и коллектором, когда ток базы включен. Чтобы получить выходной ток, должен быть включен базовый ток.

МОП-транзистор

Ток проходит между истоком и стоком, когда напряжение заряжается на затворе.После того, как электрический заряд заряжен, ток для включения не требуется.

Линейные регуляторы, для которых не требуется синхронизация, особенно подходят для достижения низкого тока питания, поскольку рабочий ток регуляторов может быть почти нулевым в цепях, отличных от аналоговых рабочих цепей.

Одним из примеров биполярных линейных регуляторов являются многоцелевые 3-контактные регуляторы серии 78. Поскольку диапазон входного напряжения серии достигает 30 В ~ 40 В, а серия может потреблять ток более 1 А, серия используется в различной бытовой технике и промышленном оборудовании.Тем не менее, в сериях не так много отсева, потому что структура выходных данных серии — NPN Darlington Output. В таблице 1 приведены некоторые основные характеристики серии.

[Таблица 1] Основные характеристики универсальных регуляторов серии 78
Серия продуктов Максимальный
Выходной ток
Номинальное входное
Напряжение
Рабочий
Ток
Падение напряжения
78xx 1A 35 В, 40 В 4 ~ 8 мА 2 В при 1 А
78Mxx 500 мА 35 В, 40 В 6 ~ 7 мА 2 В при 350 мА
78Nxx 300 мА 35 В, 40 В 5 ~ 6 мА 1.7 В при 200 мА
2 В при 300 мА
78Lxx 100 мА 30В, 35В, 40В 6 ~ 6,5 мА 1,7 В при 40 мА

Тем не менее, количество процессов, необходимых для биполярных линейных регуляторов, составляет примерно половину или две трети процесса CMOS, и поэтому биполярный линейный регулятор более рентабелен, чем стабилизатор CMOS, даже если размер его матрицы больше. Таким образом, биполярный линейный регулятор лучше подходит для использования с большим током или высоким напряжением.С другой стороны, технологии миниатюризации процесса CMOS хорошо разработаны и имеют такие преимущества, как низкое напряжение, малое падение напряжения, малый размер и низкое энергопотребление.

Где и как используется CMOS?

Линейные стабилизаторы CMOS

широко используются в портативных электронных устройствах с батарейным питанием из-за их низкого падения напряжения и низких характеристик тока питания. Регуляторы LDO (Low Dropout) позволяют использовать батарею до предела, и поэтому регуляторы теперь являются важными ИС управления питанием для таких устройств, как мобильные телефоны, цифровые камеры и портативные компьютеры, чтобы иметь длительный срок службы батареи.Поскольку стабилизаторы LDO способны протягивать большой ток с малым перепадом входного-выходного напряжения при минимизации тепловых потерь, они могут удовлетворить широкий диапазон требований к току каждого устройства.

Некоторые типы регуляторов с низким потреблением тока используют ток автономного питания менее 1 мкА. Благодаря этой особенности, эти типы регуляторов могут поддерживать ток питания электронных устройств и беспроводных приложений, таких как мобильные телефоны, на максимально низком уровне, когда эти устройства находятся в спящем режиме.Поскольку эти регуляторы также могут обеспечить преимущества технологии миниатюризации CMOS, они открывают большой потенциал для мобильных электронных устройств, которым требуется низкий профиль и высокая точность.

Пакеты

Стандартные пакеты, используемые для линейных стабилизаторов CMOS — SOT-23 и SOT-89. В последнее время также стали доступны сверхмалые пакеты, такие как CSP (пакет масштабирования микросхемы). Поскольку разработка ИС управления питанием обусловлена ​​развитием мобильных устройств, они обычно помещаются в небольшие корпуса для поверхностного монтажа.На рисунке 1 показаны типичные упаковки.

[Рисунок 1] Примеры пакетов регуляторов CMOS

SOT-89: Стандартный комплект мини-пресс-формы

SOT-23: Стандартный пакет мини-пресс-форм

USP-6C: Стандартная упаковка типа USP

USPQ-4B04: Стандартная упаковка типа USP

USP-6B06: Стандартный корпус типа USP

WLP-5-02: Стандартный пакет типа WLP

Особенности: Что умеет CMOS?

Идея линейных регуляторов в качестве ИС управления питанием заключается в том, что они напрямую подключаются к батарее или адаптеру переменного тока, поэтому вы должны обращать внимание на максимальное входное напряжение.Правила проектирования ИС для процессов CMOS меняются в зависимости от максимального входного напряжения, а максимальное входное напряжение и технология микроминиатюризации находятся в обратной зависимости; они не действуют взаимно, как «большее служит меньшему». Если вы выберете высокое входное напряжение, тогда размер ИС будет больше, а его производительность снизится, а если вы выберете ИС небольшого размера, вам нужно будет осторожно относиться к максимальному входному напряжению. Существуют различные стабилизаторы CMOS с различным максимальным входным напряжением для различных приложений.Вы должны выбрать наиболее подходящие, внимательно изучив типы источников питания и желаемые характеристики вашего устройства [см. Таблицу 2].

[Таблица 2] Категории продукции по рабочему напряжению (трехконтактные регуляторы напряжения)
Рабочее напряжение Серия продуктов Пакет
USP-3 СОТ-23 СОТ-89 СОТ-223 К-252
1.5 В ~ 6 В XC6218
1,8 В ~ 6 В XC6206
2 В ~ 10 В XC6201
2 В ~ 20 В XC6202
2 В ~ 28 В XC6216
Линейные стабилизаторы CMOS

можно разделить на категории с низким потребляемым током, большим током, высоким напряжением, высокоскоростным, LDO и т. Д.Для этих категорий нет строгого определения, но обычно «низкий ток питания» — это те, у которых ток питания составляет несколько мкА, «большой ток» — те, которые могут тянуть 500 мА или более, «высокое напряжение» — те, которые имеют напряжение от 15 В до 20 В или более, а «высокоскоростной» — это те, у которых частота подавления пульсаций составляет приблизительно 60 дБ при 1 кГц. «LDO» также не имеет точного определения. Первоначально это относилось к низкому выпадению выхода PNP и выхода P-ch MOSFET, по сравнению с выпадением выхода эмиттерного повторителя NPN и выхода NPN Дарлингтона биполярного линейного регулятора.На рисунке 2 показаны типы выходных транзисторов. В наши дни значение менее 2 Ом при 3,3 В при преобразовании сопротивления во включенном состоянии становится одним из стандартов определения.

[Рисунок 2] Модели выходных драйверов

Выход повторителя эмиттера NPN

Цепь управления должна быть на 0,6 В (базовое напряжение) выше, чем выходной контакт, чтобы протекать базовый ток. Схема управления работает от входного источника питания, поэтому необходимо падение напряжения 0,6 В.

NPN Выход Дарлингтона

1.Требуется падение напряжения 2 В или более, поскольку схема состоит из 2 цепей эмиттерных повторителей. Схема может выводить большой ток, потому что базовый ток нагрузочного транзистора может быть усилен предварительным драйвером.

Транзисторный выход PNP

Транзисторный выход PMOS

Транзистор включается, когда входное напряжение ниже, чем напряжение базы и / или подается напряжение затвора. Нет ограничений на входное напряжение источника питания относительно выходного напряжения.Падение напряжения невелико, потому что схема работает, если есть базовое напряжение или напряжение затвора, а также входное напряжение питания, которое может управлять схемой управления.

Помимо вышеуказанных типов регуляторов, существуют регуляторы с функцией ВКЛ / ВЫКЛ с помощью контакта Chip Enable в зависимости от потребности, композитные регуляторы с 2 или 3 каналами, регуляторы со встроенным детектором напряжения и многое другое. Такое разнообразие — еще одна особенность CMOS. Это связано с тем, что процесс CMOS может легко масштабировать схемы и снизить ток питания, поскольку он может полностью отключить определенные блоки ИС, когда схемы отключаются по отдельности.На рисунке 3 показана блок-схема 2-канальных выходных регуляторов серии XC6415. Этот продукт может включать и выключать VR1 и VR2 независимо.

[Рисунок 3] Блок-схема 2-канального регулятора (серия XC6415)

Внутренняя схема и основная структура

Внутренняя схема состоит из источника опорного напряжения, усилителя ошибки, резистора с предварительной установкой выходного напряжения и выходного P-канального MOSFET-транзистора.В некоторых схемах также есть ограничитель постоянного тока, схема возврата и функция теплового отключения в целях защиты. Поскольку сложно построить опорные схемы с запрещенной зоной, которые используются для биполярных процессов в качестве источника опорного напряжения, обычно используемые источники опорного напряжения являются уникальными для процесса CMOS. По этой причине температурные характеристики выходного напряжения, как правило, немного хуже, чем у биполярных линейных регуляторов.

Кроме того, внутренняя фазовая компенсация и схемы различаются в зависимости от типов регуляторов, таких как малый ток питания, высокая скорость и совместимость с конденсаторами с низким ESR.Например, в то время как регулятор низкого тока питания обычно использует два усилителя, высокоскоростной регулятор иногда содержит три усилителя. На рисунке 4 показана принципиальная блок-схема высокоскоростного регулятора.

Добавляя буферный усилитель между предусилителем и выходным P-канальным MOSFET-транзистором, буферный усилитель может управлять нагрузочным P-ch MOSFET-транзистором с более высокой скоростью, несмотря на большую емкость затвора. Выходное напряжение может быть определено номиналами разделенных резисторов R1 и R2, а предельное значение тока определяется номиналами разделенных резисторов R3 и R4.Каждое значение точно устанавливается путем обрезки. Многие регуляторы высокоскоростного типа совместимы с конденсаторами с низким ESR, такими как керамические конденсаторы, поскольку они в основном используются для беспроводных приложений и портативных электронных устройств, и поэтому необходимо их уменьшение.

[Рисунок 4] Принципиальная принципиальная электрическая схема регулятора быстродействующего типа

Следующая страница

Важные особенности линейного регулятора CMOS

Что такое регулятор напряжения?

Регулятор напряжения — это компонент, который преобразует напряжение в более низкий (или более высокий) уровень.

Типичный пример: вы хотите использовать батарею на 9 В, но вам нужно 5 В в цепи. Например, чтобы создать портативное зарядное устройство USB. Затем вы можете использовать регулятор напряжения, который принимает эти 9 В в качестве входа и создает стабильный выход 5 В для использования в вашей схеме.

Или, если вам нужны разные уровни напряжения для схемы, которую вы строите. Допустим, у вас есть схема с микроконтроллером, которому требуется 5 В, и двигателем, которому требуется 12 В. Вместо двух блоков питания вы можете использовать только блок питания 12 В и добавить регулятор напряжения, обеспечивающий 5 В для микроконтроллера.

Как подключить регулятор напряжения

Обычно вам нужно несколько дополнительных компонентов, подключенных к регулятору напряжения, чтобы сделать выход более стабильным. По крайней мере, конденсатор или два. Но это зависит от того, какой вы выберете. Вы найдете информацию о том, как подключить конкретный регулятор напряжения, в его техническом описании.

Например, регулятор напряжения 7805 обычный. Это дает вам 5 В. В таблице данных 7805 вы можете найти этот пример схемы, которая показывает, что вам нужны два конденсатора:

Регулятор напряжения с выходом 5В

Типы регуляторов напряжения

Существует два распространенных типа регуляторов напряжения, о которых стоит знать:

  • Линейные регуляторы напряжения
  • Импульсные регуляторы постоянного / постоянного тока

Линейный стабилизатор напряжения — самый простой, для работы которого требуется всего пара конденсаторов и, возможно, один или два резистора.

Примерами линейных регуляторов являются 7805 и LM317 с регулируемым выходным напряжением.

Схема LM317 с регулируемым выходом

Импульсный стабилизатор DC-DC немного сложнее, и для работы требуется индуктор и диод. Одним из примеров является LM2596. Но часто вы можете найти их в виде небольших модулей (ищите преобразователи постоянного тока в постоянный), на плате которых есть все необходимое.

Модуль преобразователя постоянного / постоянного тока

Основное различие между ними состоит в том, что линейный регулятор потребляет гораздо больше энергии, чем импульсный регулятор.Таким образом, линейный регулятор может легко сильно нагреться, если вы не обеспечите хорошее охлаждение.

Кроме того, импульсный стабилизатор — единственный, который может дать вам более высокое выходное напряжение, чем то, которое вы вставили. Линейный стабилизатор всегда будет давать вам более низкое выходное напряжение.

Как работают линейные регуляторы напряжения

Есть много способов спроектировать линейный регулятор напряжения. Вот, пожалуй, один из самых простых:

На выходе всегда будет напряжение стабилитрона диода минус напряжение V BE транзистора.V BE обычно составляет от 0,6 В до 0,7 В. Таким образом, с стабилитроном 5,6 В на выходе будет около 5 В.

Если выходное напряжение превышает 5 В, это означает, что V BE становится ниже. Это заставит транзистор уменьшить ток, так что напряжение снова упадет. Если выходное напряжение упадет ниже 5 В, произойдет обратное.

Как работают регуляторы переключения

Другой основной тип — импульсный регулятор. Это регулятор напряжения, который включает и выключает входное напряжение и использует некоторые хитрости умных схем с индуктором для преобразования напряжения гораздо более энергоэффективным способом.

Существует 3 основных типа:

  • Понижающий преобразователь — Может преобразовывать в более низкое напряжение
  • Повышающий преобразователь — Может преобразовывать в более высокое напряжение
  • Понижающий преобразователь — Может преобразовывать как в более низкое, так и в более высокое напряжение

Вот основная концепция понижающего преобразователя :

Когда переключатель нажат, ток течет в катушку индуктивности, конденсатор и нагрузку от батареи. И индуктор, и конденсатор заряжаются. Когда переключатель отпускается, накопленная энергия в катушке индуктивности и конденсаторе обеспечивает ток для нагрузки.

В реальной жизни переключатель заменен на транзистор. И есть чувствительный механизм, который проверяет выходное напряжение и включает и выключает транзистор быстрее (для получения большего напряжения) или медленнее (для получения меньшего напряжения).

Вопросы?

Дайте мне знать, какие вопросы у вас есть о регуляторе напряжения в разделе комментариев ниже. Я постараюсь ответить на них и соответствующим образом обновить статью!

Цепи стабилизатора напряжения

с использованием транзистора и стабилитрона

В этой статье мы подробно обсудим, как создавать индивидуальные схемы транзисторных стабилизаторов напряжения в фиксированных режимах, а также в переменных режимах.

Все цепи линейного источника питания, которые предназначены для получения стабилизированного постоянного напряжения и тока на выходе, в основном включают в себя транзисторные и стабилитронные каскады для получения требуемых регулируемых выходов.

Эти схемы, использующие дискретные части, могут быть в форме постоянно фиксированного или постоянного напряжения или стабилизированного регулируемого выходного напряжения.

Простейший регулятор напряжения

Вероятно, самым простым типом стабилизатора напряжения является стабилитрон шунтирующего стабилизатора, который работает с использованием базового стабилитрона для регулирования, как показано на рисунке ниже.

Стабилитроны имеют номинальное напряжение, эквивалентное предполагаемому выходному напряжению, которое может точно соответствовать желаемому выходному значению.

Пока напряжение питания ниже номинального значения напряжения стабилитрона, он показывает максимальное сопротивление в диапазоне многих МОм, позволяя питанию проходить без ограничений.

Однако в момент, когда напряжение питания увеличивается сверх номинального значения «напряжения стабилитрона», происходит значительное падение его сопротивления, в результате чего перенапряжение шунтируется на землю через него, пока напряжение питания не упадет или не достигнет уровня напряжения стабилитрона. .

Из-за этого внезапного шунтирования напряжение питания падает и достигает значения стабилитрона, что вызывает повторное увеличение сопротивления стабилитрона. Затем цикл быстро продолжается, обеспечивая стабилизацию подачи на номинальном значении стабилитрона и никогда не позволяя ему превышать это значение.

Чтобы получить указанную выше стабилизацию, входное напряжение должно быть немного выше, чем требуемое стабилизированное выходное напряжение.

Избыточное напряжение выше значения стабилитрона вызывает срабатывание внутренних «лавинных» характеристик стабилитрона, вызывая мгновенный эффект шунтирования и падение напряжения питания до тех пор, пока оно не достигнет номинального значения стабилитрона.

Это действие продолжается бесконечно, обеспечивая фиксированное стабилизированное выходное напряжение, эквивалентное номинальному значению стабилитрона.

Преимущества стабилизатора напряжения на стабилитроне

Стабилитроны очень удобны там, где требуется стабилизация постоянного напряжения при малом токе.

Стабилитроны легко настраиваются и могут использоваться для получения достаточно точного стабилизированного выходного сигнала при любых обстоятельствах.

Для настройки каскада стабилизатора напряжения на основе стабилитрона требуется только один резистор, и его можно быстро добавить в любую схему для достижения желаемых результатов.

Недостатки стабилизаторов со стабилизацией напряжения

Хотя источник питания со стабилизацией стабилизации сигнала является быстрым, простым и эффективным методом достижения стабилизированного выхода, он имеет несколько серьезных недостатков.

  • Выходной ток низкий, что может поддерживать высокие токовые нагрузки на выходе.
  • Стабилизация возможна только при малых перепадах входа / выхода. Это означает, что входное напряжение не может быть слишком высоким, чем требуемое выходное напряжение. В противном случае сопротивление нагрузки может рассеять огромное количество энергии, что сделает систему очень неэффективной.
  • Работа стабилитрона обычно связана с генерацией шума, который может критически повлиять на работу чувствительных схем, таких как конструкции усилителей Hi-Fi, и других подобных уязвимых приложений.

Использование «усиленного стабилитрона»

Это версия с усиленным стабилитроном, в которой используется BJT для создания переменного стабилитрона с улучшенными возможностями управления мощностью.

Давайте представим, что R1 и R2 имеют одинаковое значение., Что создаст достаточный уровень смещения для базы BJT и позволит BJT работать оптимально.Поскольку минимальное требование к прямому напряжению базового эмиттера составляет 0,7 В, BJT будет проводить и шунтировать любое значение, превышающее 0,7 В или самое большее 1 В, в зависимости от конкретных характеристик используемого BJT.

Таким образом, выход будет стабилизирован примерно на уровне 1 В. Выходная мощность этого «усиленного переменного стабилитрона» будет зависеть от номинальной мощности BJT и номинала нагрузочного резистора.

Однако это значение можно легко изменить или отрегулировать до другого желаемого уровня, просто изменив значение R2.Или проще заменив R2 на горшок. Диапазон потенциалов потенциометра R1 и R2 может составлять от 1 кОм до 47 кОм, чтобы получить плавно регулируемый выходной сигнал от 1 В до уровня питания (максимум 24 В). Для большей точности вы можете применить следующую формулу делителя напряжения:

Выходное напряжение = 0,65 (R1 + R2) / R2

Недостаток стабилитрона

Еще раз, недостатком этой конструкции является высокое рассеивание, которое увеличивает пропорционально увеличивается разница между входом и выходом.

Чтобы правильно установить значение резистора нагрузки в зависимости от выходного тока и входного питания, можно соответствующим образом применить следующие данные.

Предположим, что требуемое выходное напряжение составляет 5 В, требуемый ток — 20 мА, а вход питания — 12 В. Тогда, используя закон Ома, мы имеем:

Нагрузочный резистор = (12-5) / 0,02 = 350 Ом

мощность = (12-5) x 0,02 = 0,14 Вт или просто 1/4 Вт.

Схема регулятора последовательного транзистора

По сути, последовательный стабилизатор, также называемый последовательным транзистором, представляет собой переменное сопротивление, создаваемое с помощью транзистора, подключенного последовательно с одной из линий питания и нагрузкой.

Сопротивление транзистора току автоматически регулируется в зависимости от выходной нагрузки, так что выходное напряжение остается постоянным на желаемом уровне.

В цепи последовательного регулятора входной ток должен быть немного больше, чем выходной ток. Эта небольшая разница — единственная величина тока, которая используется схемой регулятора самостоятельно.

Преимущества последовательного регулятора

Основным преимуществом схемы последовательного регулятора по сравнению с регулятором шунтового типа является его лучшая эффективность.

Это приводит к минимальному рассеянию мощности и потерям из-за тепла. Из-за этого большого преимущества последовательные транзисторные стабилизаторы очень популярны в приложениях для регуляторов напряжения большой мощности.

Однако этого можно избежать там, где требования к мощности очень низкие или где эффективность и тепловыделение не входят в число критических проблем.

Обычно последовательный регулятор может просто включать стабилитрон, нагружая буферную схему эмиттерного повторителя, как указано выше.

Вы можете найти единичное усиление напряжения всякий раз, когда используется каскад эмиттерного повторителя. Это означает, что когда к его базе применяется стабилизированный вход, мы обычно также получаем стабилизированный выход и от эмиттера.

Поскольку мы можем получить более высокий коэффициент усиления по току от эмиттерного повторителя, можно ожидать, что выходной ток будет намного выше по сравнению с применяемым базовым током.

Следовательно, даже если базовый ток составляет около 1 или 2 мА в каскаде стабилитрона, который также становится потребляемым током покоя конструкции, выходной ток 100 мА может быть доступен на выходе.

Входной ток складывается с выходным током вместе с 1 или 2 мА, используемыми стабилитроном, и по этой причине достигается выдающийся КПД.

Учитывая, что входной источник питания схемы достаточно рассчитан для достижения ожидаемого выходного напряжения, выход может практически не зависеть от уровня входного питания, поскольку он напрямую регулируется базовым потенциалом Tr1.

Стабилитрон и развязывающий конденсатор создают идеально чистое напряжение на базе транзистора, которое воспроизводится на выходе, создавая напряжение практически без шума.

Это позволяет схемам этого типа выдавать выходные сигналы с удивительно низкой пульсацией и шумом без использования огромных сглаживающих конденсаторов, а также с диапазоном тока, который может достигать 1 А или даже больше.

Что касается уровня выходного напряжения, он может не быть в точности равным подключенному напряжению стабилитрона. Это связано с тем, что между выводами базы и эмиттера транзистора существует падение напряжения примерно 0,65 В.

Это падение, следовательно, необходимо вычесть из значения напряжения стабилитрона, чтобы можно было достичь минимального выходного напряжения схемы.

Это означает, что если значение стабилитрона составляет 12,7 В, то выход на эмиттере транзистора может быть около 12 В, или, наоборот, если желаемое выходное напряжение составляет 12 В, то напряжение стабилитрона должно быть выбрано равным 12,7 В.

Регулирование этой схемы последовательного регулятора никогда не будет идентично регулированию схемы стабилитрона, потому что эмиттерный повторитель просто не может иметь нулевое выходное сопротивление.

И падение напряжения в каскаде должно незначительно увеличиваться в ответ на увеличение выходного тока.

С другой стороны, хорошего регулирования можно ожидать, когда ток стабилитрона, умноженный на коэффициент усиления по току транзистора, достигает как минимум 100-кратного ожидаемого максимального выходного тока.

Стабилизатор серии High Current, использующий транзисторы Дарлингтона

Для точного достижения этого часто подразумевается, что необходимо использовать несколько транзисторов, может быть 2 или 3, чтобы мы могли достичь удовлетворительного усиления на выходе.

Принципиальная схема с двумя транзисторами, использующая пару Дарлингтона с эмиттерным повторителем, указанная на следующих рисунках, демонстрирует технику применения 3 BJT в конфигурации с эмиттерным повторителем Дарлингтона.

Обратите внимание, что включение пары транзисторов приводит к более высокому падению напряжения на выходе, примерно 1,3 В, через базу 1-го транзистора к выходу.

Это связано с тем, что на каждом из транзисторов снижено примерно 0,65 Вольт. Если рассматривать схему из трех транзисторов, это может означать падение напряжения чуть ниже 2 В на базе 1-го транзистора и выходе и так далее.

Стабилизатор напряжения с общим эмиттером и отрицательной обратной связью

Хорошая конфигурация иногда наблюдается в конкретных конструкциях, имеющих пару усилителей с общим эмиттером, со 100-процентной чистой отрицательной обратной связью.

Эта установка показана на следующем рисунке.

Несмотря на то, что каскады с общим эмиттером обычно имеют значительную степень усиления по напряжению, в данном случае это может быть не так.

Это происходит из-за 100% отрицательной обратной связи, которая возникает между коллектором выходного транзистора и эмиттером транзистора драйвера. Это позволяет усилителю достичь коэффициента усиления, равного единице.

Преимущества регулятора с общим эмиттером и обратной связью

Эта конфигурация работает лучше по сравнению с регуляторами на основе эмиттерного повторителя с парой Дарлингтона из-за меньшего падения напряжения на входных / выходных клеммах.

Падение напряжения, достигаемое в этих конструкциях, составляет всего около 0,65 вольт, что способствует большей эффективности и позволяет схеме работать эффективно независимо от того, находится ли нестабилизированное входное напряжение всего на несколько сотен милливольт над ожидаемым выходным напряжением.

Устройство для исключения аккумуляторных батарей с использованием цепи последовательного регулятора

Указанная схема устранения аккумуляторных батарей является функциональной иллюстрацией конструкции, построенной с использованием стандартного последовательного регулятора.

Модель разработана для всех приложений, работающих от 9 В постоянного тока с максимальным током не более 100 мА.Это не подходит для устройств, требующих относительно большей силы тока.

T1 — это трансформатор 12–0–12 вольт 100 мА, который обеспечивает изолированную защитную изоляцию и понижение напряжения, в то время как его вторичная обмотка с центральным ответвлением управляет основным двухтактным выпрямителем с фильтрующим конденсатором.

Без нагрузки на выходе будет около 18 вольт постоянного тока, которое может упасть примерно до 12 вольт при полной нагрузке.

Схема, которая работает как стабилизатор напряжения, на самом деле представляет собой базовую конструкцию последовательного типа, включающую R1, D3 и C2 для получения стабилизированного номинального выходного напряжения 10 В.Ток стабилитрона колеблется от 8 мА без нагрузки до 3 мА при полной нагрузке. Рассеивание, создаваемое в результате R1 и D3, минимально.

Эмиттерный повторитель на паре Дарлингтона, образованный TR1 и TR2, можно увидеть сконфигурированным как выходной буферный усилитель, обеспечивающий усиление по току около 30 000 при полном выходе, в то время как минимальное усиление составляет 10 000.

На этом уровне усиления, когда устройство работает с использованием 3 мА при токе полной нагрузки, и минимальное усиление i почти не демонстрирует отклонения в падении напряжения на усилителе даже при колебаниях тока нагрузки.

Реальное падение напряжения на выходном усилителе составляет приблизительно 1,3 В, а при умеренном входном напряжении 10 В это дает на выходе примерно 8,7 Вольт.

Это выглядит почти равным указанным 9 В, учитывая тот факт, что даже настоящая 9-вольтовая батарея может показывать колебания от 9,5 В до 7,5 В в течение периода эксплуатации.

Добавление ограничения тока к последовательному регулятору

Для регуляторов, описанных выше, обычно становится важным добавить защиту от короткого замыкания на выходе.

Это может быть необходимо для обеспечения хорошего регулирования при низком выходном сопротивлении. Поскольку источник питания имеет очень низкий импеданс, в случае случайного короткого замыкания на выходе может пройти очень высокий выходной ток.

Это может привести к немедленному сгоранию выходного транзистора и некоторых других деталей. Типичный предохранитель может просто не обеспечить достаточной защиты, потому что повреждение, вероятно, произойдет быстро, даже до того, как предохранитель может среагировать и сработать.

Самый простой способ реализовать это, возможно, добавив в схему ограничитель тока. Это включает в себя дополнительные схемы без какого-либо прямого влияния на производительность конструкции в нормальных рабочих условиях.

Однако ограничитель тока может привести к быстрому падению выходного напряжения, если подключенная нагрузка пытается потреблять значительный ток.

На самом деле выходное напряжение снижается так быстро, что, несмотря на наличие короткого замыкания на выходе, ток, доступный из цепи, немного превышает указанный максимальный номинал.

Результат схемы ограничения тока подтвержден приведенными ниже данными, которые отображают выходное напряжение и ток с учетом постепенно снижающегося импеданса нагрузки, полученного с помощью предлагаемого блока Battery Eliminator.

Схема ограничения тока работает с использованием только пары элементов; R2 и Tr3. Его реакция на самом деле настолько быстрая, что она просто исключает все возможные риски короткого замыкания на выходе, тем самым обеспечивая отказоустойчивую защиту выходных устройств.Работу ограничения тока можно понять, как описано ниже.

R2 подключен последовательно с выходом, что приводит к тому, что напряжение, развиваемое на R2, пропорционально выходному току. При выходном потреблении, достигающем 100 мА, напряжения, создаваемого на R2, будет недостаточно для срабатывания на Tr3, поскольку это кремниевый транзистор, для включения которого требуется минимальный потенциал 0,65 В.

Однако, когда выходная нагрузка превышает предел 100 мА, он генерирует достаточный потенциал на T2, чтобы надлежащим образом включить Tr3 в режим проводимости.TR3, в свою очередь, вызывает протекание некоторого тока f к Trl через отрицательную шину питания через нагрузку.

Это приводит к некоторому снижению выходного напряжения. Дальнейшее увеличение нагрузки приводит к пропорциональному увеличению потенциала на R2, заставляя Tr3 включаться еще сильнее.

Это, следовательно, позволяет смещать более высокие величины тока в сторону Tr1 и отрицательной линии через Tr3 и нагрузку. Это действие дополнительно приводит к пропорциональному увеличению падения выходного напряжения.

Даже в случае короткого замыкания на выходе Tr3, вероятно, будет сильно смещен в проводимость, заставляя выходное напряжение упасть до нуля, гарантируя, что выходной ток никогда не будет превышать отметку 100 мА.

Настольный источник питания с регулируемым напряжением

Источники питания с регулируемым напряжением работают по тому же принципу, что и стабилизаторы постоянного напряжения, но они оснащены потенциометром, который обеспечивает стабилизированный выходной сигнал с переменным диапазоном напряжения.

Эти схемы лучше всего подходят в качестве настольных и мастерских источников питания, хотя их также можно использовать в приложениях, требующих различных регулируемых входов для анализа. Для таких работ потенциометр источника питания действует как предустановленный элемент управления, который можно использовать для настройки выходного напряжения источника питания в соответствии с желаемыми регулируемыми уровнями напряжения.

На рисунке выше показан классический пример схемы регулируемого стабилизатора напряжения, которая обеспечивает плавно регулируемый стабилизированный выход от 0 до 12 В.

Основные характеристики

  • Максимальный диапазон тока ограничен 500 мА, хотя его можно увеличить до более высоких уровней путем соответствующей модернизации транзисторов и трансформатора.
  • Конструкция обеспечивает очень хорошее регулирование шума и пульсаций, которые могут быть менее 1 мВ.
  • Максимальная разница между входным питанием и регулируемым выходом не более 0,3 В даже при полной выходной нагрузке.
  • Регулируемый источник переменного тока идеально подходит для тестирования почти всех типов электронных проектов, требующих высококачественных регулируемых источников питания.

Как это работает

В этой конструкции мы видим схему делителя потенциала, включенную между выходным каскадом стабилитрона и входным буферным усилителем. Этот потенциальный делитель создается VR1 и R5. Это позволяет отрегулировать рычаг ползунка VR1 от минимального 1,4 В, когда он находится рядом с основанием своей дорожки, до уровня стабилитрона 15 В, когда он находится в наивысшей точке своего диапазона регулировки.

На каскаде выходного буфера падает примерно 2 вольта, что позволяет диапазон выходного напряжения от 0 до примерно 13 В.При этом верхний диапазон напряжения подвержен частичным допускам, таким как допуск 5% для напряжения стабилитрона. Поэтому оптимальное выходное напряжение может быть чуть выше 12 вольт.

Несколько типов эффективных схем защиты от перегрузки могут быть очень важны для любого настольного источника питания. Это может быть важно, поскольку выход может быть уязвим для случайных перегрузок и коротких замыканий.

В данной конструкции мы используем довольно простое ограничение тока, определяемое Trl и связанными с ним элементами.Когда устройство работает в нормальных условиях, напряжение, создаваемое на резисторе R1, который подключен последовательно с выходом питания, слишком мало, чтобы привести Trl в состояние проводимости.

В этом сценарии схема работает нормально, за исключением небольшого падения напряжения, создаваемого резистором R1. Это практически не влияет на эффективность регулирования агрегата.

Это потому, что каскад R1 предшествует схеме регулятора. В случае перегрузки потенциал, наведенный на R1, возрастает примерно до 0.65 вольт, что заставляет Tr1 включаться за счет базового тока, полученного из разности потенциалов, генерируемой на резисторе R2.

Это приводит к тому, что R3 и Tr 1 втягивают значительное количество тока, что приводит к значительному увеличению падения напряжения на R4 и снижению выходного напряжения.

Это действие мгновенно ограничивает выходной ток максимумом от 550 до 600 мА, несмотря на короткое замыкание на выходе.

Так как функция ограничения тока ограничивает выходное напряжение практически до 0 В.

R6 устроен как нагрузочный резистор, который в основном предотвращает слишком низкий выходной ток и невозможность нормальной работы буферного усилителя. C3 позволяет устройству достичь отличной переходной характеристики.

Недостатки

Как и в любом типичном линейном регуляторе, рассеиваемая мощность в Tr4 определяется выходным напряжением и током и максимальна при регулировке потенциометра для более низких выходных напряжений и более высоких выходных нагрузок.

В наиболее серьезных обстоятельствах на Tr4 может быть наведено 20 В, что приведет к протеканию через него тока около 600 мА.Это приводит к рассеиваемой мощности на транзисторе около 12 Вт.

Чтобы выдерживать это в течение длительного времени, устройство должно быть установлено на довольно большом радиаторе. VR1 может быть установлен с большой ручкой управления с калиброванной шкалой, отображающей маркировку выходного напряжения.

Список деталей

  • Резисторы. (Все 1/3 ватта 5%).
  • R1 1,2 Ом
  • R2 100 Ом
  • R3 15 Ом
  • R4 1k
  • R5 470 Ом
  • R6 10k
  • VR1 4.7k линейный углерод
  • Конденсаторы
  • C1 2200 мкФ 40 В
  • C2 100 мкФ 25 В
  • C3 330 нФ
  • Полупроводники
  • Tr1 BC108
  • Tr2 BC107
  • Tr3 BFY451
  • Tr3 BFY451
  • Tr3 BFY451
  • Tr3 BFY451
  • D4 1N4002 (4 шт.)
  • D5 BZY88C15V (15 В, стабилитрон 400 мВт)
  • Трансформатор
  • T1 Стандартная первичная сеть, 17 или 18 В, 1 ампер
  • вторичная
  • Переключатель
  • S1 D.ТИХООКЕАНСКОЕ СТАНДАРТНОЕ ВРЕМЯ. роторная сеть или тумблер
  • Разное
  • Корпус, выходные разъемы, печатная плата, сетевой шнур, провод, припой
  • и т. д.

Как остановить перегрев транзистора при более высоких дифференциалах входа / выхода

Тип проходного транзистора Как объяснялось выше, регуляторы обычно сталкиваются с ситуацией, когда на транзисторе последовательного регулятора возникает чрезвычайно большое рассеивание, когда выходное напряжение намного ниже, чем входное напряжение..

Каждый раз, когда при низком напряжении (TTL) возникает высокий выходной ток, может оказаться важным использование охлаждающего вентилятора на радиаторе. Возможно, серьезной иллюстрацией может быть сценарий блока источника, рассчитанного на обеспечение 5 ампер через 5 и 50 вольт.

Блоки этого типа обычно имеют нерегулируемое питание 60 вольт. Представьте, что это конкретное устройство должно питать цепи TTL во всем номинальном токе. Последовательный элемент в схеме должен в этой ситуации рассеивать 275 Вт!

Затраты на обеспечение достаточного охлаждения, по-видимому, объясняются только ценой последовательного транзистора.В случае, если падение напряжения на транзисторе регулятора может быть ограничено до 5,5 В, независимо от предпочтительного выходного напряжения, рассеивание может быть существенно уменьшено на приведенном выше рисунке, это может быть 10% от его начального значения.

Этого можно добиться, применив три полупроводниковые детали и пару резисторов (рис. 1). Вот как это работает: тиристор Thy может нормально проводить через R1.

Тем не менее, как только падение напряжения на T2 — серийный регулятор выходит за пределы 5.5 вольт, T1 начинает проводить, в результате чего тиристор «открывается» при последующем переходе через ноль на выходе мостового выпрямителя.

Эта конкретная рабочая последовательность постоянно контролирует заряд, подаваемый через конденсатор фильтра C1, чтобы нерегулируемое питание было зафиксировано на 5,5 В выше регулируемого выходного напряжения. Значение сопротивления, необходимое для R1, определяется следующим образом:

R1 = 1,4 x В сек — (В мин + 5) / 50 (результат будет в кОм)

, где Vsec указывает вторичное среднеквадратичное значение. напряжение трансформатора, а Vmin означает минимальное значение регулируемого выхода.

Тиристор должен выдерживать пиковые пульсации тока, а его рабочее напряжение должно составлять минимум 1,5 В сек . Транзистор последовательного регулятора должен быть рассчитан на поддержку максимального выходного тока, I max , и должен быть установлен на радиаторе, где он может рассеивать 5,5 x I сек Вт.

Получение фиксированного напряжения от транзисторного регулятора

Используя всего один транзистор и несколько стабилитронов, вы можете получить различные напряжения в диапазоне от 5 В до 10 В от источника питания 12 В.На приведенной ниже схеме и диаграмме показано, как можно настроить транзистор, стабилитрон и резистор смещения для реализации простой схемы транзисторного стабилизатора.

Заключение

В этом посте мы узнали, как построить простые схемы линейного регулятора напряжения, используя последовательно проходной транзистор и стабилитрон. Источники питания с линейной стабилизацией предоставляют нам довольно простые варианты создания фиксированных стабилизированных выходов с использованием минимального количества компонентов.

В таких конструкциях в основном транзистор NPN конфигурируется последовательно с положительной входной линией питания в режиме общего эмиттера.Стабилизированный выход получается через эмиттер транзистора и отрицательную линию питания.

База транзистора сконфигурирована со схемой стабилитронного зажима или регулируемым делителем напряжения, который гарантирует, что напряжение на стороне эмиттера транзистора точно повторяет потенциал базы на выходе эмиттера транзистора.

Если нагрузка представляет собой сильноточную нагрузку, транзистор регулирует напряжение нагрузки, вызывая увеличение ее сопротивления, и, таким образом, гарантирует, что напряжение на нагрузке не превышает заданное фиксированное значение, установленное его базовой конфигурацией.

Схема транзисторного регулятора 5 В

Простой регулятор напряжения с использованием 2N3055

Вы хотите использовать регулятор постоянного тока или узнать о регуляторах напряжения с использованием 2N3055. Зачем нужен этот транзистор? Обычно его можно использовать с нагрузками, которым требуется ток не более 2 А и напряжение не более 30 В.

Этого достаточно для обычных работ. Это транзистор, которым люди пользуются долгое время. Поэтому найти легко и очень дешево. Схем, использующих 2N3055, очень много.

Теперь мы рекомендуем вам 2 принципиальные схемы. Обе схемы используют стабилитрон и транзистор.

Схема стабилизатора 12 В постоянного тока с использованием 2N3055

Вот линейный стабилизатор 12 В 1 А с транзистором и стабилитроном. Это последовательный стабилизатор напряжения, поскольку ток нагрузки проходит через транзистор серии .

Как показано на принципиальной схеме ниже, входной клемме требуется нерегулируемый источник постоянного тока, от 15 В до 20 В . Затем на нагрузку выйдет регулируемое напряжение.


Линейный стабилизатор напряжения 12 В 1 А с использованием транзистора 2n3055 и стабилитрона

Для начала, электрический ток, протекающий через резистор-R1 до , ограничивает ток на стабилитроне. Таким образом, он обеспечивает опорное напряжение.
Там же, напряжение базы транзистора-Q1 также является постоянным.

Когда ZD1 составляет 12 В, базовое напряжение также равно 12 В.

Рекомендуем: Что такое стабилитрон и принцип работы

Если поставить транзистор в таком виде.Выходное напряжение такое же, как у стабилитрона . И мы всегда называем это эмиттер-повторителем. На практике выходное напряжение ниже ZD1. Потому что при транзисторе работает. Он должен иметь напряжение база-эмиттер.

  • VBE = напряжение база-эмиттер
  • VZD = напряжение стабилитрона
  • Vout = выходное напряжение

Vout = VZD — VBE
VBe = 0,6 В
Vout = 12 В — 0,6 В = 11,4 В

Посмотрите на рисунок вы поймете больше.

Это напряжение все еще подходит для многих нагрузок, использующих источник питания 12 В , таких как радиоприемники.

Поскольку это источник питания , регулирует определенную выходную мощность.

В схеме транзистор имеет правильное усиление, этому помогает изменение VBE.

  • Когда нагрузка потребляет больше тока. Обычно выходное напряжение низкое. Но напряжение база-эмиттер повышается, транзистор Q1 работает больше. Таким образом, он поддерживает постоянное выходное напряжение.
  • Затем при нагрузке используйте меньший ток. Повышение выходного напряжения. Но на выходе по-прежнему фиксированное напряжение. Поскольку напряжение база-эмиттер меньше, транзистор Q1 тоже работает меньше.

Преимущество этой схемы, мы можем использовать крошечный ток на стабилитрон и базу транзистора. Таким образом, он имеет гораздо более стабильный выход.

Функции других компонентов

  • C1 — сглаживающий конденсатор на входе.
  • C2 поддерживает более стабильное опорное напряжение.
  • C3 — это развязывающий конденсатор емкостью 0,047 мкФ для фильтрации переходных шумов.
  • R1 увеличивает стабильность цепи нагрузки
  • Вы знаете, что такое переходные шумы?
    Блок питания имеет паразитное магнитное поле. Схема будет вводить их в переходной шум. Транзистор 2N3055 может питать ток нагрузки до . Но так жарко. Так что нужен правильный радиатор.

Потери мощности в цепи последовательного регулятора

Хорошая конструкция цепи питания.Это должно свести к минимуму потери энергии в цепи. Конечно, энергия будет выражаться теплом.

В эту серию проходят транзисторные стабилизаторы. Транзистор-Q1 работает как резистор. Когда мы учитываем потерю мощности. Он должен рассеять или уменьшить его.

Вы видите изображение? Это просто. Позвольте мне вам объяснить.

Рассмотрим три случая ниже:

В этих трех примерах A, B и C. Выходы — 15 В, 12 В и 5 В. На 1А ток.

Знаете ли вы, какой транзистор имеет наибольшие тепловые потери? Или…
Какой транзистор нагревается больше всего?
Да, пример C.Почему?
Потому что причина проста.

На транзисторе C падает максимальное напряжение. Это фактически капельный резистор, который должен рассеивать тепло в соответствии с законом Ома.

Вот пример каждого случая:

  • В случае A:
    Напряжение на транзисторе (VCE) составляет 20 В -15 В = 5 В.
    Требуется рассеиваемая мощность 5 В x 1 А = 5 Вт.
  • В случае B:
    напряжение на транзисторе (VCE) составляет 20 В -12 В = 7 В.
    Требуется рассеиваемая мощность 7 В x 1 А = 7 Вт.

Но…

  • В случае C :
    VEC составляет 20V-5V = 15V; Итак, мощность 15 Вт.

Короткое замыкание корпуса

Короткое замыкание источника питания. Все входное напряжение будет падать на силовой транзистор. И это приведет к огромным проблемам с отоплением.

Итак, по этой причине мы должны держать его холодным с помощью эффективного радиатора.

Источник питания 38 В с использованием 2N3055

Мой друг изучает ЧПУ, ему нужен регулируемый источник питания 38 В для серводвигателя.У нас есть много способов использовать это, но то, что лучше для него. Эта схема — один из правильных вариантов. Потому что у него есть все оборудование. Не нужно покупать новый.

Как работает эта схема

В качестве основной идеи мы используем простой стабилизатор напряжения на стабилитроне и два транзистора для увеличения тока нагрузки до 1A-2A.

Этот регулируемый источник питания включает в себя трансформатор-T1, мост-D1… D4 и цепи стабилизатора напряжения с фильтрацией постоянного тока 38 В, которые состоят из C1, C2, R1, R2, R3, Q1 и Q2.

При наличии 230 ВА или 120 В переменного тока (США) понижающий трансформатор T1 изменяет напряжение переменного тока в линии питания примерно на 30 В переменного тока. Двухполупериодный выпрямительный мост с D1 по D4 для преобразования переменного тока в пульсирующий постоянный ток, который затем фильтруется C1.

Конденсатор C1, C3 действует как накопительный конденсатор или фильтрует шум и выбросы переменного тока. Стабилитрон 40 В ZD1 поддерживает постоянное напряжение на базе транзистора Q1 NPN BD139 и транзистора Q2-2N3055 в форме Дарлингтона.

Электролитический конденсатор C2 используется для сглаженного напряжения стабилитрона.Это обеспечивает постоянное напряжение 38 В и высокую мощность на резисторе R3 и на выходных клеммах (+) и (-).

Когда выход подключен к нагрузке с низким сопротивлением, силовой транзистор Q2 сильно нагревается, поэтому мы всегда используем на нем радиатор.

CR: 2N3055, фото STS

Детали, которые вам понадобятся

Полупроводники:

  • D1-D1: 1N4002, 100V 1A Диоды
  • ZD1: 40V 1w Zener D 80 В 1.5A NPN транзистор
  • Q2: 2N3055 или TIP3055 100V, 15A, NPN транзистор

Резисторы (все 0,25 Вт, 5% металл / углеродная пленка, если не указано иное)

Электролитические конденсаторы

    : 470 мкФ 50 В
  • C2: 47 мкФ 50 В
  • C3: 100 мкФ 50 В

T1: 230 В или 120 В переменного тока первичная обмотка на 30 В, вторичный трансформатор 1A-2A

SW1: Переключатель питания
F1: предохранитель 0,5 A

Примечание:
Вы можете использовать мостиковый диод 2A-4A 200 В вместо D1-D4.Трансформатор используется минимум 2А для нагрузки 1-2А. Эта схема имеет

Вернуться к просмотру:

Транзисторный регулятор напряжения

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Введение в линейные регуляторы напряжения

13.02.2016 | Автор: Дэйв Найт,

Линейные регуляторы представляют собой простые схемы регуляторов напряжения, обычно используемые в электронике.В этой статье кратко обсуждается принцип работы линейных регуляторов, их преимущества и недостатки, варианты линейного регулятора и важные параметры из таблицы данных.

Как работают линейные регуляторы

Линейные регуляторы используют замкнутый контур обратной связи для смещения проходного элемента для поддержания постоянного напряжения на его выходных клеммах. На рисунке 1 операционный усилитель управляет базой Q1, чтобы гарантировать, что напряжение на его инвертирующем входе будет равно опорному напряжению на его неинвертирующем входе.

Операционный усилитель в этой схеме имеет небольшую нагрузку, базовый ток и минимальную емкостную нагрузку. Следовательно, он может очень быстро реагировать на изменения нагрузки.

Из этой схемы можно увидеть две вещи:

1.) Линейные регуляторы — это понижающие преобразователи, что означает, что выходное напряжение всегда будет меньше входного. Фактически, существует минимальная разница напряжений между V IN и V OUT , которая позволит линейному регулятору работать.В технических данных это значение называется отпускным напряжением. Если V OUT > V IN — V DROPOUT , то линейный регулятор не может регулировать выходное напряжение при желаемом напряжении.

2.) Мощность рассеивается в проходном транзисторе. Величина мощности P = (V IN -V OUT ) * I LOAD . Эта сила — потраченное впустую тепло. Это тепло нагревает регулятор.

Рисунок 1: Пример внутренней работы линейного регулятора

Источник изображения: http: // www.eetimes.com/document.asp?doc_id=1272466

Преимущества линейных регуляторов

Линейные регуляторы обычно имеют высокую степень интеграции, включая проходной элемент и контур обратной связи. Некоторые линейные регуляторы, такие как LM317, можно регулировать при использовании с внешним резистивным делителем.

Недостатки линейных регуляторов

Линейные регуляторы имеют следующие преимущества:

  • Простой.
  • Дешево.
  • Коэффициент отклонения блока питания.Линейные регуляторы быстро реагируют на изменения входного напряжения, создавая выходное напряжение, которое практически не имеет пульсаций на входе.
  • Быстро реагировать на изменения напряжения нагрузки.
  • Нет шума переключения. Другие схемы преобразования напряжения, известные как преобразователи постоянного тока в постоянный, имеют высокочастотный шум переключения. У линейных регуляторов такой характеристики нет.

Главный недостаток линейных регуляторов — их неэффективность. Это связано с падением напряжения на проходном элементе.Эта неэффективность может привести к перегреву линейного регулятора. Обратите внимание на ожидаемое тепловыделение для вашего приложения и обязательно используйте соответствующий радиатор или медный наполнитель для предотвращения повышения температуры. Если требуется высокая мощность, КПД или повышающий преобразователь, используйте преобразователь постоянного тока в постоянный.

Варианты на линейном регуляторе

Существует множество разновидностей линейных регуляторов. Некоторые линейные регуляторы имеют фиксированные выходы. Некоторые имеют выходы, программируемые резисторным делителем.Некоторые регулируют отрицательное напряжение. Стабилизаторы с малым падением напряжения, известные как LDO, имеют небольшое падение напряжения. Некоторые линейные регуляторы включают в себя умные устройства для зарядки аккумуляторов. Некоторые из них представляют собой сложные программируемые микросхемы, используемые в автоматизированном испытательном оборудовании. Для линейных регуляторов характерно отключение при перегреве.

Важные параметры таблицы данных

Максимальное входное напряжение: Это максимальное напряжение, которое может быть приложено к входной клемме без повреждения или разрушения детали.

Дифференциал входного напряжения и выходного напряжения: Некоторые регулируемые линейные регуляторы имеют максимальную номинальную разность входного и выходного напряжения.

Номинальный ток: Максимальный ток, который может выдавать линейный регулятор. Это зависит от других факторов, таких как перепад входного и выходного напряжения, температура окружающей среды и теплоотвод. Номинальная мощность пакета указывает, сколько мощности может рассеять пакет; это может зависеть от требований к радиатору и компоновке.

Падение напряжения: Это минимальный перепад входного-выходного напряжения, который устройство может принять и произвести регулируемое напряжение.

Заключение

В этой статье дается краткий обзор того, как работают линейные регуляторы, преимущества, недостатки, варианты линейных регуляторов и важные параметры из таблицы данных.

Различные типы регуляторов напряжения и принцип работы

ОСНОВНЫЕ ЗНАНИЯ — РЕГУЛЯТОР НАПРЯЖЕНИЯ Различные типы регуляторов напряжения и принцип работы

Автор / Редактор: Эммануэль Одунладе / Erika Granath

Регуляторы напряжения — это интегральные схемы, предназначенные для регулирования напряжения на их входе до постоянного, фиксированного напряжения на их выходе, независимо от изменений тока нагрузки или входного напряжения.

Связанные компании

Стабилизатор напряжения — это система, предназначенная для автоматического поддержания постоянного уровня напряжения.

(Источник: Adobe Stock)

Электронные конструкции / устройства обычно состоят из различных электронных компонентов, которые иногда работают на разных уровнях напряжения.Таким образом, для надежного удовлетворения требований к питанию конкретной конструкции или различных ее компонентов в блоке питания обычно используются регуляторы напряжения для регулирования напряжения в основном источнике до уровня, необходимого для различных секций устройства. .

При проектировании блока питания для любого устройства всегда приходится принимать массу решений. Одним из этих решений, хотя и трудным, является выбор регуляторов напряжения, поскольку они бывают разных «форм и размеров» с разными «прибамбасами», что делает их отличным выбором при использовании в одной цепи, но катастрофой в другие схемы.

В результате выбор правильного регулятора для вашего проекта (и его ограничений) требует тщательного понимания возможных вариантов, и сегодняшняя статья будет посвящена именно этому. Мы оценим различные типы регуляторов напряжения, их принципы работы и определим, когда имеет смысл использовать один перед другим.

Типы регуляторов напряжения

Регуляторы напряжения можно разделить на категории в зависимости от различных факторов, таких как их применение, напряжения, при которых они работают, механизмы преобразования мощности и многое другое.

В этой статье мы сосредоточимся на активных регуляторах напряжения и классифицируем их на две большие категории в зависимости от механизма, который они используют для регулирования. Эти две категории включают:

  • 1. Линейные регуляторы напряжения
  • 2. Импульсные регуляторы напряжения

1. Линейные регуляторы напряжения

Линейные регуляторы напряжения используют принцип делителей напряжения для преобразования напряжения на их входе в желаемое напряжение на выходе.В них используется контур обратной связи, который автоматически изменяет сопротивление в системе, чтобы противодействовать влиянию изменений импеданса нагрузки и входного напряжения, и все это для обеспечения постоянного выходного напряжения.

Типичные реализации линейных регуляторов напряжения включают использование полевых транзисторов в качестве одной стороны делителя напряжения с петлей обратной связи, подключенной к затвору транзистора, управляя им по мере необходимости для обеспечения согласованности выходного напряжения.

Хотя такое использование транзисторов в качестве резисторов помогает упростить конструкцию и реализацию линейных регуляторов, оно в значительной степени способствует неэффективности, связанной с регуляторами.Причина этого в том, что транзисторы преобразуют избыточную электрическую энергию (разницу напряжений между входным и выходным напряжением) в тепло, что приводит к потере мощности в результате нагрева транзисторов.

В ситуациях, когда напряжение на входе или ток нагрузки на выходе слишком высоки, регуляторы могут выделять тепло, которое может привести к его выходу из строя. Чтобы смягчить это, разработчики обычно используют радиаторы, размер которых определяется величиной тока (мощности), проходящего через регулятор.

Еще один момент, о котором стоит поговорить для линейных регуляторов, — это необходимость в том, чтобы напряжение на входе было больше, чем напряжение на выходе, на минимальное значение, называемое напряжением падения. Это значение напряжения (обычно около 2 В) варьируется в зависимости от регулятора и иногда является серьезным источником беспокойства для разработчиков, работающих с маломощными приложениями, из-за потери мощности. Чтобы обойти это, используйте тип линейных регуляторов напряжения, называемых стабилизаторами LDO (с низким падением напряжения), поскольку они разработаны с возможностью работы при разнице между входным и выходным напряжением всего 100 мВ.

Некоторые популярные примеры линейных регуляторов напряжения включают регуляторы напряжения серии 78xx (например, L7805 (5 В), L7809 (9 В)).

Достоинства и недостатки линейного регулятора напряжения LM7805

Плюсы

Некоторые преимущества линейных регуляторов напряжения включают: электромагнитных помех и шума

  • 3. Быстрое время отклика на изменения тока нагрузки или условий входного напряжения
  • 4.Низкие пульсации напряжения на выходе

Cons

Некоторые недостатки линейных регуляторов напряжения включают:

  • 1. Низкий КПД, поскольку большое количество электроэнергии расходуется на тепло
  • 2. Падение напряжения требования делают их плохим выбором для приложений с низким энергопотреблением.
  • 4. Низкий КПД, поскольку большое количество электроэнергии тратится впустую в виде тепла
  • 5. Требование падения напряжения делает их плохим выбором для приложений с низким энергопотреблением.
  • 6.Занимают больше места на печатных платах из-за потребности в радиаторах

2. Импульсные регуляторы напряжения

Хотя они имеют более сложную конструкцию и требуют для работы большего количества сопутствующих компонентов, импульсные регуляторы напряжения являются сверхэффективными регуляторами, используемыми в различных сценариях. где потеря мощности, как в линейных регуляторах, недопустима.

Механизм регулирования напряжения в импульсных регуляторах напряжения включает быстрое переключение элемента, последовательно соединенного с компонентом накопителя энергии (конденсатором или катушкой индуктивности), для периодического прерывания протекания тока и преобразования напряжения из одного значения в другое.Как это делается, зависит от управляющего сигнала от механизма обратной связи, подобного тому, который используется в линейных регуляторах.

В отличие от линейных регуляторов напряжения переключающий элемент находится либо в полностью проводящем, либо в выключенном состоянии. Он не рассеивает мощность и позволяет регулятору достичь высокого уровня эффективности по сравнению с линейными регуляторами.

В базовой реализации импульсного регулятора напряжения используется «проходной транзистор», работающий либо в состоянии отсечки, либо в состоянии насыщения, в качестве переключающего элемента.Когда проходной транзистор находится в состоянии отсечки, через него не протекает ток, как таковая мощность не рассеивается, но когда он находится в состоянии насыщения, на нем появляется незначительное падение напряжения, сопровождающееся рассеянием небольшого количества энергии. с максимальным током, передаваемым на нагрузку. В результате переключающего действия и экономии энергии в состоянии отключения КПД переключаемых регуляторов обычно составляет около 70%.

Управление на основе переключения и ШИМ дает довольно большую гибкость, что позволяет переключать регуляторы напряжения для работы в разных режимах и существовать в различных типах, в том числе: / Регуляторы повышающего переключения

1.Понижающие импульсные регуляторы напряжения

Понижающие импульсные регуляторы, также известные как понижающие регуляторы, преобразуют высокое напряжение на своих входных клеммах в более низкое напряжение на своих выходных клеммах. Эта операция аналогична работе линейных регуляторов, за исключением того факта, что понижающие регуляторы работают с более высокой степенью эффективности. Изображение, иллюстрирующее расположение компонентов понижающих регуляторов, приведено ниже.

2. Повышающие импульсные регуляторы напряжения

Повышающие импульсные регуляторы, также известные как повышающие регуляторы, могут преобразовывать низкое напряжение на входе в более высокое напряжение на выходе.Их конфигурация является одним из основных различий между линейными регуляторами и импульсными регуляторами, поскольку регулирование не происходит, если напряжение на входе линейных регуляторов напряжения больше, чем напряжение, требуемое на их выходе. Схема, иллюстрирующая повышающие импульсные регуляторы напряжения, представлена ​​ниже.

3. Понижающий / повышающий импульсный стабилизатор напряжения

Понижающий / повышающий стабилизатор сочетает в себе характеристики двух регуляторов, указанных выше. Он может обеспечивать фиксированное выходное напряжение независимо от разницы (+ или -) между входным и выходным напряжениями.Они очень полезны в аккумуляторных приложениях, где напряжение на входе, которое может быть выше, чем выходное напряжение в начале, со временем снижается до уровня ниже выходного напряжения. Схема, иллюстрирующая импульсный стабилизатор понижающего / повышающего напряжения, представлена ​​ниже:

Плюсы и минусы

Минусы

Какими бы эффективными и совершенными ни казались импульсные регуляторы напряжения, они имеют недостатки, некоторые из которых включают:

  • 2. Требуется больше дополнительных компонентов
  • 4.Высокие уровни электромагнитных помех и генерации шума, которые могут повлиять на сертификацию продукта при неправильном управлении
  • 5. Высокая пульсация выходного напряжения
  • 6. Более медленное время восстановления переходных процессов по сравнению с линейными регуляторами

Плюсы

В зависимости от вашего Применение импульсных регуляторов может перевесить их недостатки. Некоторые из преимуществ включают:

  • 3. Они могут обеспечивать выходное напряжение, которое больше или меньше входного напряжения
  • 4.Подходит для приложений с низким энергопотреблением
  • 7. Они могут обеспечивать выходное напряжение, которое больше или меньше входного напряжения
  • 8. Подходит для приложений с низким энергопотреблением

Выбор правильного регулятора напряжения для вашего проекта

Выбор подходящего регулятора напряжения для вашего проекта обычно не является проблемой выбора между линейным или импульсным стабилизатором напряжения. Выбор между ними можно сделать, просто рассмотрев их плюсы и минусы и решив, какой из них лучше всего подходит вам.Однако другие специфические свойства регулятора (переключающие или линейные) необходимо проверить, чтобы убедиться, что он идеально подходит для вашего проекта. Пять из этих основных свойств описаны ниже:

1. Выходное напряжение (или диапазон напряжений)

Вероятно, это первое, на что следует обратить внимание при работе с регулятором. Убедитесь, что выходное напряжение (или диапазон напряжений) регулятора соответствует требуемому значению для вашего приложения. Для некоторых регуляторов могут потребоваться внешние компоненты для поддержания постоянного выходного напряжения на желаемом уровне напряжения.Все это необходимо подтвердить, прежде чем штамповать регулятор для вашего проекта.

2. Выходной ток

Стабилизаторы напряжения разработаны с учетом конкретных номинальных значений тока. Подключение их к нагрузке с требованиями по току, превышающими их номинальный ток, может привести к повреждению регулятора или неисправности нагрузки. Это еще более важно в случае линейных регуляторов напряжения, поскольку ток оказывает прямое влияние на потери мощности.

Всегда следите за тем, чтобы выбранный вами регулятор выдерживал предполагаемый ток нагрузки.

3. Диапазон входного напряжения

Это относится к допустимому диапазону входных напряжений, поддерживаемых регулятором. Обычно это указывается в техническом описании, и как разработчику важно убедиться, что возможное входное напряжение для вашего приложения находится в пределах этого диапазона. Одна из ошибок, которые делают большинство молодых разработчиков по этому поводу, заключается в том, что они сосредотачиваются только на максимальном входном напряжении, забывая, что входное напряжение ниже указанного минимального напряжения может привести к ошибкам регулирования, особенно в случае линейных регуляторов.Знание этих значений поможет вам оценить условия, при которых регулятор выйдет из строя либо из-за чрезмерного тепловыделения в случае линейных регуляторов, либо из-за неисправности в случае импульсных регуляторов.

4. Диапазон рабочих температур

В большинстве технических описаний диапазон рабочих температур определяется как температура окружающей среды (Ta) или температура перехода. Это диапазон температур, в пределах которого регулятор функционирует должным образом. Говоря более конкретно, температура перехода обычно относится к максимальной рабочей температуре транзистора.Напротив, температура окружающей среды относится к температуре окружающей среды вокруг устройства. Оба значения важны, особенно для линейных регуляторов, поскольку они способствуют процессу выбора идеального радиатора для регулятора.

5. Падение напряжения

Это важно при выборе линейных регуляторов напряжения. Как объяснялось ранее, падение напряжения относится к величине, на которую входное напряжение должно быть больше, чем выходное напряжение, чтобы произошло регулирование.Хотя это может быть неважным фактором для большинства приложений, для приложений, где важны эффективность и низкая мощность, имеет смысл использовать регуляторы напряжения с низким падением напряжения.

Другие факторы, такие как эффективность, размер корпуса, переходная характеристика и потенциальные электромагнитные помехи / шум, также должны быть приняты во внимание.

В заключение, простой способ решить, какой регулятор использовать, — это сначала решить, будет ли линейный или импульсный регулятор напряжения лучшим выбором, исходя из их плюсов и минусов.После этого уровня принятия решения можно будет провести дальнейшие исследования свойств регулятора, так как это может повлиять на вашу конструкцию. Как бы ни казалась иногда такая должная осмотрительность ненужной, она может иметь решающее значение для успеха вашего проекта.

(ID: 46489302)

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.