Site Loader
Что такое электричество и как оно возникает ⋆ diodov.net

Программирование микроконтроллеров Курсы

Электроника – это замечательная прикладная и теоретическая наука, которая с каждым днем набирает обороты, распространяется и внедряется во все отрасли. Изучение ее следует начинать с самых общих понятий и физических процессов. Знание которых, в дальнейшем упростит понимание принципов работы различных электронных приборов и устройств. И первое понятие, которое нам нужно усвоить – это, что такое электричество?

Электрические схемы

Содержание

Открытие электричества

Впервые свойства электричества были обнаружены более 2,5 тысяч лет назад древним философом Фалесом Милетским, когда он протирал шерстью янтарь.

Открытие электричества

Внимательный философ заметил, что к уже натертому драгоценному камню притягиваются мелкие предметы. Хотя по логике, сформированной на уровне знаний того времени, все предметы должны были притягиваться к земле, т.е. падать на землю под действием сил притяжения. Однако натертый шерстью янтарь приобретал некоторое загадочное свойство, впоследствии названое зарядом, который создавал силу по величине превосходящую силу земного притяжения. И эта сила получила название «электричество». Так как слово «электрон» с греческого переводится «янтарь», то электричество дословно можно перевести янтаричество.

В те давние времена считалось, что только янтарь обладает неким загадочным свойством, способным после натирания шерстью притягивать легкие предметы, преодолевая силу земного притяжения. Однако сейчас подобный опыт довольно просто повторить, если вместо этого камня взять пластмассовую палочку и потереть ее об одежду, содержащую в своем составе шерсть. Затем, при поднесении натертой палочки к мелким кусочкам бумаги под действием электрических сил кусочки бумаги притянутся к палочке.

Из выше сказанного давайте выделим два важнейших момента:

  1. Только после натирания о шерсть пластмассовая палочка приобретает некие свойства.
  2. Приобретенные свойства порождают некую силу, под действие которой к палочке притягиваются кусочки бумаги.

Теперь мы четко знаем, на какие вопросы на нужно найти ответ, чтобы понять, что такое электричество.

Давайте рассмотрим физику происходящего процесса. И первым делом, чтобы анализировать, что происходит с веществом (в данном случае с пластмассой и шерстью) нам понадобятся знания о строении любого вещества. Заранее скажем, что в дальнейшем рассказе будем принимать обобщения и упрощения, однако они не исказят суть данной темы.

Строение атома

И так, начнем. Любое вещество, будь то дерево, камень, стекло или вода, состоит из более мелких элементов, которые называются молекулами. Например, капля воды состоит из множества отдельных молекул, имеющих знакомую нам химическую формулу H

2O. Далее молекулу вещества можно разделить еще на более мелкие частицы – атомы.

Строение вещества

Одно время считалось, что атом является наименьшей частичкой, существующей в природе и на более мелкие элементы разделить его уже невозможно. Поэтому слово «атом» переводится з древнегреческого «неделимый».

Сейчас известны всего лишь более ста различных атомов, однако они могут образовать миллионы разных молекул и соответственно столько же разных веществ. Например, молекулу воды H

2O образуют два атома водорода H и один кислорода O.

Молекула воды

Со временем, проделав множество кропотливых опытов, ученые пришли к выводу о существовании еще гораздо меньших частичек.

Планетарная модель атома

Центральный и наиболее тяжелым элементом атома считается ядро. Вокруг него на некотором расстоянии по разным орбитам перемещаются электроны. Ядро не является цельным элементом, его составляют протоны и нейтроны.

Планетарная модель атома

Электроны обладает отрицательным зарядом, а протоны – положительным. Нейтрон не проявляет свойств ни тех, ни других зарядов, т.е. он нейтрален, отсюда и получил свое название.

Для упрощения некоторых процессов применяется планетарная модель атома. По аналогии с Солнцем, вокруг которого по орбитам движутся планеты, в атоме вокруг ядра движутся электроны. Но электрон – это не какая-то плотная частичка, а размазанный в пространстве сгусток энергии, наподобие расплюснутой шаровой молнии.

Электрон

Масса протона приблизительно в 2000 раз превышает массу электрона. Но суммарный положительный электрический заряд всех протонов равен суммарному отрицательному заряду всех электронов. Поэтому при нормальных условиях (по умолчанию) атом электрически нейтрален и за его пределами не ощущаются никакие силы. Положительные и отрицательные заряды как бы нейтрализуют друг друга.

В периодической системе химических элементов, известной нам, как таблица Менделеева, все атомы расположены в строгой последовательности: от наиболее легкого до наиболее тяжелого – по величине относительной атомной массе, основную долю которой составляют протоны. Нейтроны также имею массу, но о них мы говорить не будем, поскольку они не обладают выраженным электрическим зарядом.

Таблица Менделеева

Наиболее легким химическим элементом является водород, поэтому он первый размещен в таблице Менделеева. Атом водород имеет один протон и один электрон. Другие химические элементы содержат несколько протонов в ядре. А вокруг ядра по нескольким орбитам перемещаются электроны. Чем ближе электрон находится к ядру, тем сильнее, с большей силой он притянут к протону. Электроны, расположенные на наиболее отдаленных орбитах, имеют самую слабую электрическую связь с протонами. И если атому придать некоторой энергии из вне, например нагреть его, то под действием избыточной энергии электрон может покинуть свою орбиту, и соответственно свой атом.

Однако он может не только покинуть совой атом, но и занять место на орбите другого атома. Именно те электроны, которые расположены на самых удаленных от ядра орбитах, в электронике имеют практическое применение, поскольку при наличии дополнительной энергии они легко покидают свои орбиты и становятся свободными. А свободный электрон при перемещении уже может выполнять некоторую полезную работу.

Положительный и отрицательный ионы

Как мы уже ранее заметили, по умолчанию атом электрически нейтрален: положительный и отрицательный заряды равны и компенсируют другу друга. Но как только хотя-бы один электрон покинет сове место в атоме, то суммарный положительный электрический заряд протонов преобладает отрицательный заряд всех оставшихся электронов, поэтому такой атом вцелом имеет свойства положительного заряда и называется

положительный ион.

Ион Положительный ион Отрицательный ион

Если атом получил дополнительный электрон, то в нем будет преобладать отрицательный заряд. В этом случае атом называется отрицательный ион.

Следует заметить, что не только атом будет иметь положительный или отрицательный заряд, но и молекула, а соответственно и вещество, которое содержит данный атом.

Электризация

Процесс получения дополнительного электрона или, наоборот потеря электрона, называется электризация. Если какое-либо тело имеет избыток или нехватку электронов, т.е. явно выраженный заряд какого либо знака, то говорят, что тело наэлектризовано.

Опытным путем установлено, что заряды одного знака отталкиваются, а разных знаков притягиваются. Подобный опыт можно повторить следующим очень известным образом: подвесить на нити два металлических шарика, которые изначально имеют нейтральный заряд. Далее придать одному шарику положительный заряд, а второму отрицательный. В результате шарики притянутся друг к другу. Если двум шарикам сообщить заряд одного знака, то они будут отталкиваться.

Свойства электрических зарядов

Теперь настало время вернуться к нашему опыту с натиранием шерстью пластмассовой палочки. При натирании пластмассы за счет сил трения, электронам, находящимся в атомах шерсти сообщается некоторая энергия, под действие которой они покидают свои атомы и занимают место на орбитах атомов пластмассы. В результате этого пластмассовая палочка приобретает отрицательный заряд за счет избытка электронов, поступивших из шерсти.

Электризация трением

При натирании стеклянной палочки шелком, все происходит наоборот. Электроны поверхностного слоя стекла покидают палочку. В этом случае стеклянная палочка приобретает положительный заряд за счет перевеса суммарного заряда протонов.

Таким образом, изменение количества электронов в верхних слоях рассматриваемых материалов во время их трения, называют электризация трением.

Здесь следует заметить, что вследствие трения лишь очень мизерная часть атомов отдает свои электроны. Даже если сказать, что одна миллиардная часть атомов остается без электронов на внешней орбите, то это все еще будет слишком большим преувеличением, поэтому массы наэлектризованных тел остаются практически неизменными.

Также нужно заметить, что в результате электризации электроны ни откуда не возникают и никуда не деваются, а лишь переходят с атомов одного тела к атомам другого тела.

В нашем опыте мы использовали стекло, пластмассу, шерсть, шелк. По этим материалам очень плохо перемещаются электроны, поэтому они относятся к хорошим диэлектрикам – материалам, которые в отличие от проводников, имеют очень плохую проводимость.

В диэлектриках заряд остается на месте его возникновения и не может перейти по поверхности через все тело на другие, соприкасающиеся с ним предметы. Поэтому, когда мы натираем шерстью пластмассовую палочку, то образовавшиеся свободные заряды остаются на своих местах: электроны, покинув шерсть находят новые места на поверхности пластмассовой палочки.

Электризация металла

Если мы возьмем хорошо проводящий материал, например кусок металла, то при натирании его о диэлектрик, образовавшийся на поверхности металла заряд, мгновенно уйдет в землю через наше тело и другие предметы. Поскольку в отличии от рассматриваемых диэлектриков наше тело обладает относительно хорошей проводимостью и по нему сравнительно легко перемещаются заряды.

Опыт электризации трением не получится оценить и в том случае, когда мы возьмём два металлических предмета даже с хорошо изолированными рукоятками. При взаимном трении металл об металл, как и в предыдущих опытах возникнут свободные электроны. Однако вследствие наличия неизбежной шероховатости поверхностей не получится одновременно по всей поверхности отделить оба металлические предмета, и в последней точке соприкосновения двух поверхностей электроны перетекут через так называемый «мостик» пока их количество снова не станет таким же, как и до натирания.

Статическое электричество

И так, с первым пунктом мы разобрались и теперь знаем, что при натирании рассмотренных предметов, некоторые электроны получают избыточную энергию и покидают атомы одного тело, которое становится положительно заряженным и занимают места на орбитах атомов другого вещества, которое приобретает свойства отрицательного заряда. При этом заряды одного знака отталкиваются друг от друга, а разных знаков – притягиваются. Силы, порождаемые зарядами, называются электрическими. А сам факт наличия электрических зарядов и их взаимодействие называют электричество.

В рассмотренных примерах получают так называемое статическое электричество.

Электрическая сила

Теперь рассмотрим второй пункт нашего опыта. Что же происходит с кусочком бумаги? Почему она притягивается к заряженной пластмассовой палочке?

Сущность физического процесса здесь заключается в следующем. При поднесении заряженного тела к незаряженному телу под действием электрических сил происходит перемещение электронов к одному из краев тела. И этот край тела ввиду избытка электронов становится отрицательно заряженным, а противоположный край соответственно положительно заряженным. Средняя часть тела будет нейтрально заряженной. Таким образом, заряды смещаются по краям данного тела.

Электрическое поле

Ближе к поднесенному заряженному телу будут стремиться заряды противоположного знака. Например, если палочка заряжена положительно, то к ней притянется бумага, той поверхностью, на которой скопились отрицательные заряды. И наоборот.

Такое воздействие заряженным телом на другие тела, находящиеся на расстоянии, называют индуцированным воздействием.

Перемещение зарядов в проводниках при воздействии на него заряженным телом, происходит под воздействием силы электрического поля, свойства которого мы рассмотрим отдельно.

Здесь же мы еще заметим, что сила, с которой притягиваются либо отталкиваются тела, определяется величиной заряда, расстоянием между телами и средой, в которой находятся заряженные тела. Эта зависимость была установлена известным ученым Кулоном, и получила название закон Кулона.

Закон Кулона формула

Подытожим выше сказанное. Что такое электричество? Электричество – это наличие и взаимодействие зарядов разного знака. В дальнейшем вы увидим, что заряды образуются не только путем электризации трением, но и другими способами, например под действием протекания химических реакций. Именно так появляются электричество в батарейке, которую правильно называть гальванический элемент.

Электроника для начинающих

Еще статьи по данной теме

«Что такое электричество?» – Яндекс.Кью

Включаешь прибор в розетку — он работает. От электричества. Но почему? Смотри.

Все началось в древности, когда люди узнали об электрических зарядах. Какой-нибудь древний грек случайно взял янтарную палочку и потёр ею о шерстяную тряпочку. Возникли искры. Вот это и есть электрические заряды. Кстати, янтарь по-гречески — «электрон». Но откуда в янтаре или шерсти электричество? Потому что все вокруг состоит из атомов (это, кстати, тоже греческое слово) — это как мелкие кубики Лего, из которых построено все в мире, включая тебя самого.

В атомах есть такие мелкие частицы, которые называются электроны. Их назвали так в честь янтаря, как ты теперь понимаешь. Когда ты трёшь янтарь о шерсть или, например, пластиковую расческу о свои волосы, ты выбиваешь электроны из атомов. Они вылетают из своих привычных мест в атоме и создают те самые искры.

Потом выяснилось, что заряд бывает двух видов: отрицательный и положительный. Это просто для удобства их так назвали. Это не значит, что один из них плохой, а другой хороший. Так вот, разные заряды притягиваются друг к другу, а одинаковые — отталкиваются. Именно поэтому волосы липнут к расческе, если ею сначала хорошенько потереть их. Потому что у расчески заряд отрицательный, а у волос — положительный. Они притягиваются.

А потом люди поняли, что заряды могут не только забавные искры создавать и волосы прилеплять к расческе. Оказалось, что заряды могут двигаться. Только не просто так, а по металлическим проводам. Если в одной части провода будет положительный заряд, а в другой — отрицательный, то в проводе побежит электрический ток. От одного конца провода к другому. Примерно так же вода в ручье течет из более высокого места в более низкое.

Так что же такое электричество? Это и есть электрический ток в проводах. Заряженные электроны бегут по проводу, попадают в какой-то прибор — телевизор или пылесос — и выполняют там какую-то полезную работу. Например, заставляют мотор пылесоса крутиться, а экран телевизора показывать мультики.

Я понимаю, как вырабатывается электричество. Но откуда берется электричество? Что такое ток, его природа?

Этот вопрос, как капуста, его раскрываешь-раскрываешь, а до «фундаментальной» кочерыжки всё ещё далеко. Хоть вопрос, видимо, касается этой самой кочерыжки, придётся всё же попробовать одолеть всю капусту.

На самый поверхностный взгляд природа тока кажется простой: ток — это когда заряженные частицы движутся. (Если частица не движется, то тока нет, есть только электрическое поле.) Пытаясь постичь природу тока, и не зная из чего состоит ток, выбрали для тока направление, соответствующее направлению движения положительных частиц. Позже оказалось, что неотличимый, точно такой же по действию ток получается при движении отрицательных частиц в противоположном направлении. Эта симметрия является примечательной деталью природы тока.

В зависимости от того, где движутся частицы природа тока тоже различна. Отличается сам текущий материал:

  • В металлах есть свободные электроны;
  • В металлических и керамических сверхпроводниках — тоже электроны;
  • В жидкостях — ионы, которые образуются при протекании химических реакций или при воздействии приложенного электрического поля;
  • В газах — снова ионы, а также электроны;
  • А вот в полупроводниках электроны несвободны и могут двигаться «эстафетно». Т.е. двигаться может не электрон, а как бы место, где его нет — «дырка». Такая проводимость называется дырочной. На спайках разных полупроводников природа такого тока рождает эффекты, делающие возможной всю нашу радиоэлектронику.
    У тока две меры: сила тока и плотность тока. Между током зарядов и током, например, воды в шланге больше различий, чем сходства. Но такой взгляд на ток вполне продуктивен, для понимания природы последнего. Ток в проводнике это векторное поле скоростей частиц (если это частицы с одинаковым зарядом). Но мы обычно для описания тока не учитываем эти детали. Мы усредняем этот ток.

Если мы возьмём одну только частицу (естественно заряженную и движущуюся), то ток равный произведению заряда и мгновенной  скорости в конкретный момент времени существует ровно там, где находится эта частица. Помните, как было в песне дуэта Иваси «Пора по пиву»: «…если климат тяжёл и враждебен астрал, если поезд ушёл и все рельсы ЗА-БРАЛ…» 🙂

И вот мы пришли к той кочерыжке, которую упоминали вначале. Почему частица имеет заряд (с движением вроде всё ясно, а что же такое заряд)? Наиболее фундаментальные частицы (вот теперь уж точно 🙂 вроде бы неделимые) несущие заряд — это электроны, позитроны (антиэлектроны) и кварки. Отдельно взятый кварк вытащить и исследовать невозможно из-за конфайнмента, с электроном вроде проще, но тоже пока не очень-то ясно. На данный момент видно, что ток квантуется: не наблюдается зарядов меньше заряда электрона (кварки наблюдаются только в виде адронов с совокупным зарядом таким же или нулевым). Электрическое поле отдельно от заряженной частицы может существовать только в связке с магнитным полем, как электромагнитная волна, квантом которой является фотон. Возможно, какие-то интерпретации природы электрического заряда лежат в сфере квантовой физики. Например, предсказанное ею и обнаруженное сравнительно недавно поле Хиггса (есть бозон — есть и поле) объясняет массу ряда частиц, а масса — это мера того, как частица откликается на гравитационное поле. Может быть и с зарядом, как с мерой отклика на электрическое поле, обнаружится какая-то похожая история. Почему есть масса и почему есть заряд — это в чём-то родственные вопросы.

Много

«Как объяснить ребёнку, что такое электричество?» – Яндекс.Кью

Начните с того, что в мире существует многое, что мы не видим глазами. Мир несёт в себе множество невидимых вещей. Например, мы не видим ветер, но зато видим и чувствуем то, что этот ветер делает. Мы понимаем, что если вот тут и вон там колышутся ветви деревьев, то значит, что и где-то по середине ветер тоже есть, потому что он движется с определённой скоростью в определённом направлении, то есть дует.

Вот и электричество состоит из невидимых частиц. Они настолько малы, что могут просачиваться внутри металлических предметов. Или накапливаться на разных других поверхностях. (Наэлектризуйте расчёску и поднесите близко к тонкой струйке воды из крана. Будет видно, что на расчёске что-то такое есть, и это что-то можно, например, снять рукой. Это эффектный фокус, и он позвоялет почти прикоснуться к невидимому.)

Итак, электричество — это невидимые частицы. Через воздух, пластмассу, резину, дерево они не текут, а через металлы текут вполне хорошо. Наблюдаем мы их только косвенно (как ветер по ветям деревьев), главным образом в двух проявлениях:

  1. Когда эти частицы никуда не текут — это статическое элекстричество. На одном предмете этих частиц много, и им тесно — этот тпредмет заряжен. А на другом предмете их мало — он не заряжен. Если близко поднести друг к другу эти предметы, то возникает притяжение, потому что частицы хотят течь туда, где свободно, чтобы заряд выровнялся. (Наэлектризованная расчёска может притягивать и поднимать мелкие кусочки бумаги.) Иногда, если заряд сильный, то частицы могут даже преодолеть воздух, тогда мы видим искру и слышим щелчок.
  2. Когда частицы текут по проводам — это уже электрический ток. Он работает не так как, например, ток (течение) воды, но с оговоркой эту аналогию можно привлечь. Например, вода может крутить мельницу, и ток может крутить электромотор. Только элекстричество делает это с помощью магнитного поля, а оно очень дружит с магнитным полем. Также электрический ток может что-нибудь нагревать, заставлять светиться, а такдже совершать и невидимую работу внутри компьютеров и других электроных устройств, переключая там полупроводниковые приборы из одного состояния в другое.

Электричество — Википедия

Электри́чество — физическое явление, обусловленное существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества[1].

История

Одним из первых, чьё внимание привлекло электричество, был греческий философ Фалес Милетский, который в VII веке до н. э. обнаружил, что потёртый о шерсть янтарь (др.-греч. ἤλεκτρον: электрон) приобретает свойства притягивать лёгкие предметы[2]. Однако, долгое время знание об электричестве не шло дальше этого представления. В 1600 году Уильям Гилберт ввёл в обращение сам термин электричество («янтарность»), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания[3]. В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество[4]. В 1733 году француз Шарль Дюфе установил существование двух типов электричества стеклянного и смоляного, которые выявлялись при трении стекла о шёлк и смолы о шерсть[5]. В 1745 г. голландец Питер ван Мушенбрук создаёт первый электрический конденсатор — Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов.

Первую теорию электричества создаёт американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний[6]. Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона.

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой[1]. В 1802 году Василий Петров обнаружил вольтову дугу.

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создаёт на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привёл Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка английским физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).

В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.

В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединённую теорию электрослабых взаимодействий.

Теория

Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся, прежде всего, в способности создавать вокруг себя электрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела[7]. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплён вполне определённый знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и, таким образом, имеют место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон имеет отрицательный заряд, а протон и позитрон — положительный.

Наиболее общая фундаментальная наука, изучающая электрические заряды, их взаимодействие и поля, ими порождаемые и действующие на них (то есть практически полностью покрывающая тему электричества, за исключением таких деталей, как электрические свойства конкретных веществ, как то электропроводность (и т. п.) — это электродинамика. Квантовые свойства электромагнитных полей, заряженных частиц (и т. п.) изучаются наиболее глубоко квантовой электродинамикой, хотя часть из них может быть объяснена более простыми квантовыми теориями.

Электричество в природе

Ярким проявлением электричества в природе служат молнии, электрическая природа которых была установлена в XVIII веке. Молнии издавна вызывали лесные пожары. По одной из версий, именно молнии привели к первоначальному синтезу аминокислот и появлению жизни на земле (Эксперимент Миллера — Юри и Теория Опарина — Холдейна). Атмосфера Земли представляет собой гигантский конденсатор, нижняя обкладка которого (земная поверхность) заряжена отрицательно, а верхняя обкладка (верхние слои атмосферы до высоты 50 км) положительно. Разность потенциалов между поверхностью Земли и верхними слоями атмосферы составляет 400 кВ, вблизи поверхности Земли существует постоянное электрическое поле напряжённостью 100 В/м. Отрицательный заряд земной поверхности поддерживается молниями Весьма сомнительное утверждение[источник не указан 214 дней][8].

Для процессов в нервной системе человека и животных решающее значение имеет зависимость пропускной способности клеточной мембраны для ионов натрия от потенциала внутриклеточной среды. После повышения напряжения на клеточной мембране натриевый канал открывается на время порядка 0,1 — 1,0 мс., что приводит к скачкообразному росту напряжения, затем разность потенциалов на мембране снова возвращается к своему первоначальному значению. Описанный процесс кратко называется нервным импульсом. В нервной системе животных и человека информацию от одной клетки к другой передают нервные импульсы возбуждения длительностью около 1 мс. Нервное волокно представляет собой цилиндр, наполненный электролитом. Сигнал возбуждения передаётся без уменьшения амплитуды вследствие эффекта кратковременного увеличения проницаемости мембраны для ионов натрия[9].

Многие рыбы используют электричество для защиты и поиска добычи под водой. Южноамериканский электрический угорь способен генерировать электрические разряды напряжением до 500 вольт. Мощность разрядов электрического ската может достигать 0,5 кВт. Акулы, миноги, некоторые сомообразные используют электричество для поиска добычи. Электрический орган рыб работает с частотой несколько сотен герц и создаёт напряжение в несколько вольт. Электрическое поле улавливается электрорецепторами. Находящиеся в воде предметы искажают электрическое поле. По этим искажениям рыбы легко ориентируются в мутной воде[10].

Производство и практическое использование

Генерирование и передача

Ранние эксперименты эпохи античности, такие, как опыты Фалеса с янтарными палочками, были фактически первыми попытками изучения вопросов, связанных с производством электрической энергии. Этот метод в настоящее время известен как трибоэлектрический эффект, и хотя с его помощью можно притягивать лёгкие предметы и порождать искры, в сущности он чрезвычайно малоэффективен[11]. Функциональный источник электричества появился только в 1800 году, когда было изобретено первое устройство для его получения — вольтов столб. Он и его современный вариант, электрическая батарея, являются химическими источниками электрического тока: в основе их работы лежит взаимодействие веществ в электролите. Батарея даёт возможность получить электричество в случае необходимости, является многофункциональным и широко распространённым источником питания, который хорошо подходит для применения в различных условиях и ситуациях, однако её запас энергии конечен, и после истощения последнего батарея нуждается в замене или перезарядке. Для удовлетворения более существенных потребностей в большем её объёме электрическая энергия должна непрерывно генерироваться и передаваться по линиям электропередач.

Обычно для её порождения применяются электромеханические генераторы, приводимые в действие либо за счёт сжигания ископаемого топлива, либо с использованием энергии от ядерных реакций, либо посредством силы воздушных или водных течений. Современная паровая турбина, изобретённая Ч. Парсонсом в 1884 году, в настоящее время генерирует примерно 80 % всего электричества в мире, используя те или иные источники нагрева. Эти устройства более не напоминают униполярный дисковый генератор Фарадея, созданный им в 1831 году, однако в их основе по-прежнему лежит открытый им принцип электромагнитной индукции — возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него[12]. Ближе к концу XIX века был изобретён трансформатор, что позволило более эффективно передавать электроэнергию при более высоком напряжении и меньшей силе тока. В свою очередь, эффективность передачи энергии обусловливала возможность генерировать электричество на централизованных электростанциях с выгодой для последних и затем перенаправлять его на довольно протяжённые дистанции к конечным потребителям[13][14].

Получение электричества из кинетической энергии ветра набирает популярность во многих странах мира

Поскольку электроэнергию затруднительно хранить в таких количествах, которые были бы достаточны в масштабах государства, необходимо соблюдать баланс: генерировать ровно столько электричества, сколько потребляется пользователями. Для этого энергетическим компаниям необходимо тщательно прогнозировать нагрузку и постоянно координировать производственный процесс со своими электростанциями. Некоторое количество мощностей при этом держится в резерве, чтобы в случае возникновения тех или иных проблем или потерь энергии подстраховывать электросети.

По мере того, как идёт модернизация и развивается экономика того или иного государства, спрос на электричество быстро возрастает. В частности, для Соединенных Штатов этот показатель составил 12 % роста в год на протяжении первой трети XX века[15], а в настоящее время аналогичный прогресс наблюдается у таких интенсивно развивающихся экономик, как Китай и Индия[16][17]. Исторически рост потребности в электричестве опережает аналогичные показатели для других видов энергоносителей[18]. Следует также заметить, что беспокойство по поводу влияния производств электроэнергии на окружающую среду привело к сосредоточению внимания на генерировании электричества посредством возобновляемых источников — в особенности за счёт энергии ветра и воды[19].

Применение

Лампа накаливания

Использование электричества обеспечивает довольно удобный[источник не указан 1101 день] способ передачи энергии, и в силу этого оно было адаптировано для существенного и по сей день растущего спектра практических приложений[20]. Одним из первых общедоступных способов применения электричества было освещение; условия для этого оказались созданы после изобретения лампы накаливания в 1870-х годах. Создателем лампы накаливания является русский электротехник А.Н. Лодыгин[21]. Первая лампа накаливания представляла собой замкнутый сосуд без воздуха с угольным стержнем.[22]. Хотя с электрификацией были сопряжены свои риски, замена открытого огня на электрическое освещение в значительной степени сократила количество возгораний в быту и на производстве[23].

В целом, начиная с XIX века, электричество плотно входит в жизнь современной цивилизации. Электричество используют не только для освещения[24], но и для передачи информации (телеграф, телефон, радио, телевидение), а также для приведения механизмов в движение (электродвигатель), что активно используется на транспорте[25] (трамвай, метро, троллейбус, электричка) и в бытовой технике (утюг, кухонный комбайн, стиральная машина, посудомоечная машина).

В целях получения электричества созданы оснащённые электрогенераторами электростанции, а для его хранения — аккумуляторы и электрические батареи.

Сегодня также электричество используют для получения материалов (электролиз), для их обработки (сварка, сверление, резка) и создания музыки (электрогитара).

Закон Джоуля-Ленца о тепловом действии электрического тока обусловливает возможности для электрического отопления помещений. Хотя такой способ довольно универсален и обеспечивает определённую степень управляемости, его можно рассматривать как излишне ресурсозатратный — в силу того, что генерирование используемого в нём электричества уже потребовало производства тепла на электростанции[26]. В некоторых странах, например — в Дании, были даже приняты законодательные нормы, ограничивающие или полностью запрещающие использование электрических средств отопления в новых домах[27]. В то же время электричество — это практичный источник энергии для охлаждения, и одной из активно растущих областей спроса на электричество является кондиционирование воздуха[28][29].

По данным Всемирного банка, на сегодняшний день (2015) более миллиарда человек в мире живут без использования электричества в быту. Около 3 млрд человек используют для приготовления пищи и отопления керосин, дрова, древесный уголь и навоз.[30].

Хронология основных открытий и изобретений

Примечания

  1. 1 2 Спиридонов О. П. «Универсальные физические постоянные», М., «Просвещение», 1984, с. 52, ББК 22.3 С72
  2. ↑ Электричество до Франклина
  3. ↑ Электростатическая машина Герике
  4. ↑ Первые опыты по передаче электричества на расстояние
  5. ↑ История электричества
  6. ↑ Открытие электричества
  7. ↑ Это не единственное свойство заряженных тел; например, заряженные тела при движении способны создавать ещё и магнитное поле, а также подвергаются воздействию последнего (также в случае своего движения).
  8. ↑ Электричество и магнетизм, 2004, с. 178.
  9. ↑ Электричество в живых организмах, 1988, с. 66.
  10. ↑ Богданов К. Ю. Физик в гостях у биолога. — М.: «Наука», Гл. ред. физ.-мат. лит., 1986, 144 с. (Б-чка «Квант», Вып. 49) тир. 135000 экз., ББК 22.3 + 28 Гл. 1. Живое электричество.
  11. ↑ Dell, Ronald & Rand, David (2001), «Understanding Batteries», Unknown (Royal Society of Chemistry) . — Т. 86: 2–4, ISBN 0-85404-605-4 
  12. ↑ McLaren, Peter G. (1984), Elementary Electric Power and Machines, Ellis Horwood, сс. 182–183, ISBN 0-85312-269-5 
  13. ↑ Patterson, Walter C. (1999), Transforming Electricity: The Coming Generation of Change, Earthscan, сс. 44–48, ISBN 1-85383-341-X 
  14. ↑ Edison Electric Institute, History of the Electric Power Industry, <http://www.eei.org/industry_issues/industry_overview_and_statistics/history>. Проверено 8 декабря 2007. 
  15. ↑ Edison Electric Institute, History of the U.S. Electric Power Industry, 1882-1991, <http://www.eia.doe.gov/cneaf/electricity/chg_stru_update/appa.html>. Проверено 8 декабря 2007. 
  16. ↑ Carbon Sequestration Leadership Forum, An Energy Summary of India, <http://www.cslforum.org/india.htm>. Проверено 8 декабря 2007. 
  17. ↑ IndexMundi, China Electricity — consumption, <http://www.indexmundi.com/china/electricity_consumption.html>. Проверено 8 декабря 2007. 
  18. ↑ National Research Council (1986), Electricity in Economic Growth, National Academies Press, с. 16, ISBN 0-309-03677-1 
  19. ↑ National Research Council (1986), Electricity in Economic Growth, National Academies Press, с. 89, ISBN 0-309-03677-1 
  20. ↑ Wald, Matthew (21 March 1990), «Growing Use of Electricity Raises Questions on Supply», New York Times, <http://query.nytimes.com/gst/fullpage.html?res=9C0CE6DD1F3AF932A15750C0A966958260>. Проверено 9 декабря 2007. 
  21. ↑ Один из первых коммерчески успешных вариантов электрической лампы накаливания был разработан Т. Эдисоном.
  22. ↑ Большая советская энциклопедия
  23. ↑ d’Alroy Jones, Peter, The Consumer Society: A History of American Capitalism, Penguin Books, с. 211 
  24. ↑ Жителям Подмосковья электричество не светит
  25. ↑ Из-за отключения электричества в Санкт-Петербурге встал электротранспорт
  26. ↑ ReVelle, Charles and Penelope (1992), The Global Environment: Securing a Sustainable Future, Jones & Bartlett, с. 298, ISBN 0-86720-321-8 
  27. ↑ Danish Ministry of Environment and Energy, F.2 The Heat Supply Act, <http://glwww.mst.dk/udgiv/Publications/1997/87-7810-983-3/html/annexf.htm>. Проверено 9 декабря 2007. 
  28. ↑ Brown, Charles E. (2002), Power resources, Springer, ISBN 3-540-42634-5 
  29. ↑ Hojjati, B. & Battles, S., The Growth in Electricity Demand in U.S. Households, 1981-2001: Implications for Carbon Emissions, <http://www.eia.doe.gov/emeu/efficiency/2005_USAEE.pdf>. Проверено 9 декабря 2007. 
  30. ↑ Более миллиарда людей в мире живут без электричества — ИА «Финмаркет»

Литература

  • Калашников С. Г. Электричество. — М., Наука, 1985. — 576 с.
  • Эйхенвальд А. А. Электричество. — М., Государственное технико-теоретическое издательство, 1933
  • Беркинблит М.Б., Глаголева Е.Г. Электричество в живых организмах. — М.: Наука, 1988. — 288 с.
  • Фейнман Р. Фейнмановские лекции по физике. Т. 5. Электричество и магнетизм. — М.: Едиториал УРСС, 2004. — 304 с.

Ссылки

Что такое электрический ток

Можно долго объяснять, что такое электрический ток. Использовать формулы, копировать определения из учебников по физике. Но в этой статье я хочу рассказать, что такое ток простыми словами.

Что такое электрический ток

Давайте представим такую картину:

Две бутылки, соединённые между собой трубой, и кран. Одна бутылка наполнена водой и в трубе летают рыбки.

Труба — это проводник (например, медный провод). Если поглядеть на медный провод под микроскопом, то мы увидим атомы, в состав которых входят электроны. А роль электронов будут выполнять наши рыбки, которые летают в трубе (т.е. хаотично движутся). И рыбки никуда целенаправленно не передвигаются, они летают как им угодно.

А теперь давайте откроем кран и посмотрим, что будет. В результате вода из одной бутылки будет перетекать в другую (принцип сообщающихся сосудов) и будет уносить наших рыбок, а это уже целенаправленное движение.

Что представляет собой ток

Перейдём к определению, что такое электрический ток!

Электрический ток — это направленное движение электрически заряженных частиц (в нашем случае это-рыбки) под воздействием электрического поля (в нашем случае это вода).

Что такое сила тока

Вернёмся к нашим рыбкам!

Чем больше рыбок за одну секунду будет проносить вода в трубе, тем больше будет сила!

В результате нашего опыта получаем определение:

Сила тока — это количество электричества (в нашем случае рыбки), проходящее через поперечное сечение проводника (в нашем случае труба) за одну секунду!

Закон Ома

Из этой статьи вы поняли, что является электрическим током. Но как же нам вычислить силу тока.

Вы видите формулу, по которой вычисляется ток для участка цепи.

I-ток, Ампер
U-напряжение, Вольт
R-сопротивление, Ом

Чтобы вычислить силу тока, необходимо напряжение разделить на сопротивление.

Дорогие читатели, подписывайтесь на обновления блога и в следующих статьях я расскажу, что такое напряжение и сопротивление!

Заключение

Дорогие читатели, в этой статье я максимально просто попытался рассказать, что такое электрический ток простыми словами! Здесь опущены многие формулы и определения! Я придерживаюсь принципа: от более лёгкого к более тяжёлому! Следите за обновлениями блога http://svoedelo.net, чтобы не пропустить интересной статьи

Что такое электрическое напряжение

Электрическое напряжение

Что такое электрическое напряжение – это разность потенциалов между двумя точками электрического поля; это физическая величина, значение которой равно работе электрического поля по перемещению единичного заряда между двумя точками. Всем всё понятно? Думаю нет.

Сейчас я попытаюсь максимально легко рассказать, что такое электрическое напряжение. Надеюсь у меня получится! Итак, поехали…

Обратите внимание на рисунок

В одной бутылке уровень воды составляет 300 мм, в другой 150мм, разница воды в бутылках получается 150мм. В электричестве это называется разностью потенциалов, т.е разность потенциалов в наших бутылках равна 150 мм.

Разность потенциалов

А теперь давайте соединим эти бутылки между собой шлангом и поместим в шланг шарик, что будет?

Вода начнёт перетекать из бутылки, в которой уровень воды больше, в другую бутылку. И соответственно поток воды будет перемещать наш шарик по шлангу. Процесс перетекания воды прекратится тогда, когда уровень в бутылках станет одинаковым (принцип сообщающихся сосудов).

Когда уровень воды в бутылках стал одинаковым, разность потенциалов стала равна нулю, т.е. электродвижущая сила (ЭДС) равна нулю и наш шарик остаётся на месте.

Что такое ЭДС

Что такое ЭДС, думаете Вы? Сейчас расскажу!

Электродвижущая сила (ЭДС) тоже измеряется в Вольтах, как и напряжение.

Давайте возьмём прибор, который измеряет вольты (вольтметр), батарейку и произведём замер.

Прибор показывает 1,5 Вольта и это не напряжение, а электродвижущая сила (ЭДС).

А теперь подключим к батарейке лампочки.

Измерение напряжения на различных участках электрической цепи.

Заметили, что на одной лампочке напряжение (не ЭДС) составляет 1 Вольт, а на другой 0,3 вольта

Напряжение на лампочках зависит от их мощности.Мощность измеряется в Ваттах.

 Мощность= Напряжение * ток (P=U*I)

Чем больше мощность лампочки, тем больше будет на ней напряжение.

Если батарейка у нас 1,5 вольта= 1 Вольт +0,3 Вольта= 1,3 Вольта, куда делись 0,2 Вольта? У батарейки есть тоже своё внутреннее сопротивление, вот туда они и ушли.

Подводим ИТОГИ:

Что такое электродвижущая сила (ЭДС)- это физическая величина, которая характеризует работу сторонних сил в источниках тока (батарейки, генераторы и т.д). ЭДС показывает нам работу источника тока по переносу заряду через всю цепь.

А напряжение показывает нам работу по переносу заряда на участке цепи.

Что такое напряжение простыми словами — это  внешняя сила, которая перемещает  наш с вами шарик в показанном примере выше.

А в электричестве — это сила, которая перемещает электроны от одного атома к другому.

Приведу ещё один пример, что такое электрическое напряжение :

Представьте, что вы можете поднять камень весом 50 кг, т.е Ваша подъёмная сила равна 50 кг (в электричестве это электродвижущая сила). Идетё вы и на пути у вас лежит камень массой 20 кг, вы берёте его и несёте 10 метров. Вы затратили определённую энергию по переносу этого камня  (в электричестве это — напряжение). Следующий камень уже весит 40 кг и чтобы его перенести из одной точки в другую вы затратите больше энергии, чем затратили по переносу камня весом 20 кг. Подъёмная сила (в электричестве-это ЭДС) у Вас всегда одна, но в зависимости от веса камня вы всегда тратите разное количество энергии (в электричестве — это напряжение). Т.е. на каждом отрезке пути у Вас разное напряжение.

Надеюсь вы поняли, что такое электрическое напряжение!

Зависимость тока от напряжения

Давайте вспомним закон Ома

Все помнят, что такое ток, если нет, то прочтите вот эту статью http://svoedelo.net/chto-takoe-tok-prostymi-slovami.html

По формуле видно, что ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Т.е. чем больше ток, тем больше и напряжение и наоборот.

Как померить напряжение мультиметром

В этом видео я рассказываю как померить напряжение мультиметром в розетке.

Простая английская Википедия, бесплатная энциклопедия

Электричество — это наличие и поток электрического заряда. Используя электричество, мы можем передавать энергию способами, которые позволяют нам выполнять простую работу по дому. [1] Его наиболее известная форма — это поток электронов через проводники, такие как медные провода.

Слово «электричество» иногда используется для обозначения «электрической энергии». Это не одно и то же: электричество — это среда для передачи электрической энергии, как морская вода — это среда для передачи волновой энергии.Элемент, который позволяет электричеству проходить через него, называется проводником. Медные провода и другие металлические предметы являются хорошими проводниками, позволяющими электричеству проходить через них и передавать электрическую энергию. Пластик является плохим проводником (также называемым изолятором) и не позволяет большему количеству электричества проходить через него, поэтому он останавливает передачу электрической энергии.

Передача электрической энергии может происходить естественным образом (например, молния) или производиться людьми (например, в генераторе).Может использоваться для питания машин и электрических устройств. Когда электрические заряды не движутся, электричество называется статическим электричеством. Когда заряды движутся, они представляют собой электрический ток, который иногда называют «динамическим электричеством» [Молния является наиболее известным и опасным видом электрического тока в природе, но иногда статическое электричество заставляет вещи слипаться в природе.

Электричество может быть опасным, особенно вокруг воды, потому что вода — это хороший проводник, поскольку в ней есть такие примеси, как соль.Соль может помочь потоку электричества. С девятнадцатого века электричество использовалось в каждой части нашей жизни. До тех пор это было просто любопытство, замеченное в молнии грозы.

Электрическая энергия может создаваться, если магнит проходит рядом с металлическим проводом. Это метод, используемый генератором. Самые большие генераторы находятся на электростанциях. Электрическая энергия также может высвобождаться путем сочетания химических веществ в банке с двумя различными видами металлических стержней. Это метод, используемый в батарее.Статическое электричество может быть создано посредством трения между двумя материалами — например, шерстяным колпачком и пластиковой линейкой. Это может вызвать искру. Электрическая энергия также может быть создана с использованием солнечной энергии, как в фотоэлектрических элементах.

Электроэнергия поступает в дома по проводам от тех мест, где она производится. Он используется электрическими лампами, электронагревателями и т. Д. Многие приборы, такие как стиральные машины и электрические плиты, используют электричество. На заводах электроэнергия приводится в действие машинами.Людей, которые занимаются электричеством и электрическими приборами в наших домах и на фабриках, называют «электриками».

Существует два типа электрических зарядов, которые толкают и притягивают друг друга: положительные и отрицательные заряды. Электрические заряды толкают или тянут друг друга, если они не соприкасаются. Это возможно, потому что каждый заряд создает электрическое поле вокруг себя. Электрическое поле — это область, которая окружает заряд. В каждой точке около заряда электрическое поле направлено в определенном направлении.Если положительный заряд будет помещен в этот момент, он будет перемещен в этом направлении. Если в этот момент будет выставлен отрицательный заряд, он будет сдвинут в противоположном направлении.

Он работает как магниты, и фактически электричество создает магнитное поле, в котором одинаковые заряды отталкивают друг друга и притягивают противоположные заряды. Это означает, что если вы поместите два негатива близко друг к другу и отпустите их, они разойдутся. То же самое верно для двух положительных зарядов. Но если вы положите положительный заряд и отрицательный заряд близко друг к другу, они будут тянуть друг к другу.Короткий способ запомнить это фраза противоположностей привлекает лайков отталкивает.

Вся материя во вселенной состоит из крошечных частиц с положительными, отрицательными или нейтральными зарядами. Положительные заряды называются протонами, а отрицательные заряды называются электронами. Протоны намного тяжелее электронов, но у них обоих одинаковое количество электрического заряда, за исключением того, что протоны положительны, а электроны отрицательны. Поскольку «противоположности притягиваются», протоны и электроны слипаются.Несколько протонов и электронов могут образовывать более крупные частицы, называемые атомами и молекулами. Атомы и молекулы все еще очень крошечные. Они слишком маленькие, чтобы видеть. Любой большой объект, такой как ваш палец, содержит больше атомов и молекул, чем может сосчитать любой. Мы можем только оценить, сколько их.

Поскольку отрицательные электроны и положительные протоны слипаются, образуя большие объекты, все большие объекты, которые мы можем видеть и чувствовать, электрически нейтральны. Электрически — это слово, означающее «описание электричества», а нейтральное — это слово, означающее «сбалансированный».«Вот почему мы не чувствуем, как объекты толкают и толкают нас на расстоянии, как если бы все было электрически заряжено. Все большие объекты электрически нейтральны, потому что в мире одинаковое количество положительного и отрицательного заряда. Мы могли бы говорят, что мир точно сбалансирован или нейтрален. Ученые до сих пор не знают, почему это так.

Рисунок электрической цепи: ток (I) течет от + вокруг цепи обратно к — Электричество отправляется по проводам.

Электроны могут двигаться вокруг материала. Протоны никогда не движутся вокруг твердого объекта, потому что они такие тяжелые, по крайней мере, по сравнению с электронами. Материал, который позволяет электронам перемещаться, называется проводником . Материал, который удерживает каждый электрон на месте, называется изолятором . Примерами проводников являются медь, алюминий, серебро и золото. Примерами изоляторов являются резина, пластик и дерево. Медь очень часто используется в качестве проводника, потому что это очень хороший проводник, и его так много в мире.Медь находится в электрических проводах. Но иногда используются другие материалы.

Внутри проводника электроны подпрыгивают, но они долго не движутся в одном направлении. Если внутри проводника установлено электрическое поле, все электроны начнут двигаться в направлении, противоположном направлению, на которое указывает поле (поскольку электроны заряжены отрицательно). Батарея может создать электрическое поле внутри проводника. Если оба конца куска провода подключены к двум концам батареи (называемые электродами ), созданная петля называется электрической цепью . Электроны будут течь вокруг и вокруг цепи, пока батарея создает электрическое поле внутри провода. Этот поток электронов вокруг цепи называется электрическим током .

Проводящий провод, используемый для передачи электрического тока, часто обернут в изолятор, такой как резина. Это потому, что провода, которые несут ток, очень опасны. Если человек или животное дотронутся до неизолированного провода, несущего ток, они могут получить травму или даже умереть, в зависимости от силы тока и количества передаваемой электрической энергии.Вы должны быть осторожны с электрическими розетками и оголенными проводами, которые могут пропускать ток.

Можно подключить электрическое устройство к цепи, чтобы электрический ток протекал через устройство. Этот ток будет передавать электрическую энергию, чтобы заставить устройство делать то, что мы хотим. Электрические устройства могут быть очень простыми. Например, в лампочке ток переносит энергию через специальный провод, называемый нитью накала, который заставляет его светиться. Электрические устройства также могут быть очень сложными.Электрическая энергия может использоваться для привода электродвигателя внутри инструмента, такого как дрель или точилка для карандашей. Электрическая энергия также используется для питания современных электронных устройств, включая телефоны, компьютеры и телевизоры.

Некоторые термины, связанные с электричеством [изменить | изменить источник]

Вот несколько терминов, с которыми человек может столкнуться при изучении работы электричества. Изучение электричества и того, как оно делает возможным создание электрических цепей, называется электроникой. Существует область инженерии под названием электротехника, где люди придумывают новые вещи, используя электричество.Все эти термины важны для них, чтобы знать.

  • Ток — это количество электрического заряда, который течет. Когда 1 кулон электричества проходит где-то за 1 секунду, ток составляет 1 ампер. Чтобы измерить ток в одной точке, мы используем амперметр.
  • Напряжение, также называемое «разностью потенциалов», является «толчком» позади тока. Это объем работы на один электрический заряд, который может выполнять электрический источник. Когда 1 кулон электричества имеет 1 джоуль энергии, он будет иметь 1 вольт электрического потенциала.Для измерения напряжения между двумя точками мы используем вольтметр.
  • Сопротивление — это способность вещества «замедлять» течение тока, то есть уменьшать скорость, с которой заряд протекает через вещество. Если электрическое напряжение в 1 вольт поддерживает ток в 1 ампер через провод, сопротивление провода составляет 1 Ом — это называется законом Ома. Когда поток тока противоположен, энергия «израсходована», что означает, что она преобразуется в другие формы (такие как свет, тепло, звук или движение)
  • Электрическая энергия — это способность выполнять работу с помощью электрических устройств.Электрическая энергия является «консервативным» свойством, что означает, что она ведет себя как вещество и может перемещаться с места на место (например, вдоль среды передачи или в батарее). Электрическая энергия измеряется в джоулях или киловатт-часах (кВтч).
  • Электроэнергия — это скорость, с которой электроэнергия используется, хранится или передается. Поток электрической энергии по линиям электропередачи измеряется в ваттах. Если электрическая энергия преобразуется в другую форму энергии, она измеряется в ваттах.Если некоторые из них преобразуются, а некоторые из них хранятся, это измеряется в вольт-амперах, или, если оно хранится (как в электрических или магнитных полях), оно измеряется в вольт-амперных реактивных.
Электроэнергия производится на электростанциях.

Электроэнергия в основном вырабатывается в местах, называемых электростанциями. Большинство электростанций используют тепло для кипячения воды в пар, который превращает паровую машину. Турбина парового двигателя вращает машину, называемую «генератор». Спиральные провода внутри генератора предназначены для вращения в магнитном поле.Это заставляет электричество течь через провода, перенося электрическую энергию. Этот процесс называется электромагнитной индукцией. Майкл Фарадей обнаружил, как это сделать.

Существует много источников тепла, которые можно использовать для выработки электрической энергии. Источники тепла могут быть классифицированы на два типа: возобновляемые источники энергии, в которых запас тепловой энергии никогда не заканчивается, и невозобновляемые источники энергии, в которых поставки будут в конечном итоге израсходованы.

Иногда естественный поток, такой как энергия ветра или вода, может быть использован непосредственно для вращения генератора, поэтому нет необходимости в тепле.

,

Что такое электричество? — learn.sparkfun.com

Избранные любимец 61

Начало работы

Электричество повсюду вокруг нас — питание таких технологий, как наши мобильные телефоны, компьютеры, освещение, паяльники и кондиционеры. Сложно избежать этого в нашем современном мире. Даже когда вы пытаетесь избежать электричества, оно все еще действует по всей природе, от молнии во время грозы до синапсов внутри нашего тела.Но что именно это электричество? Это очень сложный вопрос, и когда вы копаете глубже и задаете больше вопросов, на самом деле нет однозначного ответа, а только абстрактные представления о том, как электричество взаимодействует с нашим окружением.

Электричество — это природное явление, которое встречается в природе и принимает разные формы. В этом уроке мы сосредоточимся на текущем электричестве: материале, который питает наши электронные гаджеты. Наша цель — понять, как электричество течет от источника питания по проводам, зажигая светодиоды, вращающиеся двигатели и запитывая наши устройства связи.

Электричество кратко определяется как поток электрического заряда , , но за этим простым утверждением стоит так много. Откуда взялись обвинения? Как мы их перемещаем? Куда они переезжают? Как электрический заряд вызывает механическое движение или заставляет вещи загораться? Так много вопросов! Чтобы начать объяснять, что такое электричество, нам нужно увеличить, помимо материи и молекул, атомы, которые составляют все, с чем мы взаимодействуем в жизни.

Это руководство основано на некотором базовом понимании физики, силы, энергии, атомов и [полей] (http: // en.wikipedia.org/wiki/Field_(physics)) в частности. Мы замаскируем основы каждого из этих понятий физики, но это может помочь также обратиться к другим источникам.

Going Atomic

Чтобы понять основы электричества, нам нужно начать с концентрации на атомах, одном из основных строительных блоков жизни и материи. Атомы существуют в более чем сотне различных форм в качестве химических элементов, таких как водород, углерод, кислород и медь. Атомы многих типов могут объединяться в молекулы, которые создают материю, которую мы можем физически видеть и трогать.

Атомов — это крошечных , длина которых не превышает 300 пикометров (это 3×10 -10 или 0,0000000003 метра). Медная копейка (если бы она на самом деле была сделана из 100% меди) содержала бы 3,2×10 22 атомов (32 000 000 000 000 000 000 000 атомов) меди внутри нее.

Даже атом не достаточно мал, чтобы объяснить работу электричества. Нам нужно спуститься еще на один уровень и посмотреть на строительные блоки атомов: протоны, нейтроны и электроны.

Строительные блоки атомов

Атом состоит из трех отдельных частиц: электронов, протонов и нейтронов. Каждый атом имеет центральное ядро, где протоны и нейтроны плотно упакованы вместе. Вокруг ядра находится группа орбитальных электронов.

Очень простая модель атома. Это не в масштабе, но полезно для понимания того, как строится атом. Ядро протонов и нейтронов окружено орбитальными электронами.

В каждом атоме должен быть хотя бы один протон. Количество протонов в атоме важно, потому что оно определяет, какой химический элемент представляет атом. Например, атом с одним протоном является водородом, атом с 29 протонами является медью, а атом с 94 протонами является плутонием. Этот счет протонов называется атомным номером атома .

Ядро-партнер протона, нейтроны, служат важной цели; они удерживают протоны в ядре и определяют изотоп атома.Они не важны для нашего понимания электричества, поэтому давайте не будем о них беспокоиться в этом уроке.

Электроны имеют решающее значение для работы электричества (обратите внимание на общую тему в их именах?) В своем наиболее стабильном, сбалансированном состоянии, атом будет иметь то же количество электронов, что и протоны. Как и в приведенной ниже модели атома Бора, ядро ​​с 29 протонами (что делает его атомом меди) окружено равным количеством электронов.

По мере того, как развивалось наше понимание атомов, развивался и наш метод их моделирования.Модель Бора — очень полезная модель атома, когда мы исследуем электричество.

Электроны атома не все навсегда связаны с атомом. Электроны на внешней орбите атома называются валентными электронами. При достаточной внешней силе валентный электрон может покинуть орбиту атома и стать свободным. Свободные электроны позволяют нам перемещать заряд — вот что такое электричество. Кстати, о зарядке …

текущие заряды

Как мы уже упоминали в начале этого урока, электричество определяется как поток электрического заряда. Заряд — это свойство материи, как масса, объем или плотность. Это измеримо. Точно так же, как вы можете измерить, сколько массы у чего-то, вы можете измерить, сколько у него заряда. Ключевая концепция с зарядом заключается в том, что он может быть двух типов: положительный (+) или отрицательный (-) .

Чтобы переместить заряд, нам нужно носителей заряда , и здесь наши знания об атомных частицах — особенно электронах и протонах — пригодятся. Электроны всегда несут отрицательный заряд, в то время как протоны всегда заряжены положительно.Нейтроны (соответствуют их названию) являются нейтральными, они не заряжены. И электроны, и протоны несут одно и то же количество заряда , просто другого типа.

Модель атома лития (3 протона) с обозначенными зарядами.

Заряд электронов и протонов важен, потому что он дает нам возможность оказывать на них силу. Электростатическая сила!

Электростатическая сила

Электростатическая сила (также называемая законом Кулона) — это сила, действующая между зарядами.В нем говорится, что заряды одного типа отталкивают друг друга, а заряды противоположных типов притягиваются вместе. Противоположности привлекают, а любит отталкивать .

Количество силы , действующей на два заряда, зависит от того, насколько они удалены друг от друга. Чем ближе два заряда, тем больше сила (или отталкивание, или отрыв).

Благодаря электростатической силе электроны отталкивают другие электроны и притягиваются к протонам.Эта сила является частью «клея», который удерживает атомы вместе, но это также инструмент, который нам нужен, чтобы заставить электроны (и заряды) течь!

Подача начислений

Теперь у нас есть все инструменты для подачи зарядов. Электроны в атомах могут выступать в качестве наших носителей заряда , потому что каждый электрон несет отрицательный заряд. Если мы сможем освободить электрон от атома и заставить его двигаться, мы сможем создать электричество.

Рассмотрим атомную модель атома меди, одного из предпочтительных элементарных источников для потока заряда.В своем сбалансированном состоянии медь имеет 29 протонов в своем ядре и равное количество электронов, вращающихся вокруг нее. Электроны движутся по орбите на разных расстояниях от ядра атома. Электроны, расположенные ближе к ядру, ощущают гораздо более сильное притяжение к центру, чем те, которые находятся на далеких орбитах. Внешние электроны атома называются валентными электронами , они требуют наименьшего количества силы, чтобы освободиться от атома.

Это диаграмма атома меди: 29 протонов в ядре, окруженные полосами кружащихся электронов.Электроны, расположенные ближе к ядру, трудно удалить, в то время как валентный электрон (внешнее кольцо) требует относительно небольшой энергии для выброса из атома.

Используя достаточную электростатическую силу на валентном электроне — либо толкая его другим отрицательным зарядом, либо притягивая его положительным зарядом — мы можем выбросить электрон с орбиты вокруг атома, создав свободный электрон.

Теперь рассмотрим медную проволоку: вещество, заполненное бесчисленными атомами меди. Поскольку наш свободный электрон плавает в пространстве между атомами, он притягивается и подталкивается окружающими зарядами в этом пространстве.В этом хаосе свободный электрон в конечном итоге находит новый атом, к которому можно привязаться; при этом отрицательный заряд этого электрона выбрасывает другой валентный электрон из атома. Теперь новый электрон дрейфует в свободном пространстве, пытаясь сделать то же самое. Этот цепной эффект может продолжаться и создавать поток электронов, называемый электрическим током .

Очень упрощенная модель зарядов, протекающих через атомы для создания тока.

Проводимость

Некоторые элементарные типы атомов лучше других высвобождают свои электроны.Чтобы получить максимально возможный поток электронов, мы хотим использовать атомы, которые не очень сильно связаны с их валентными электронами. Проводимость элемента измеряет, насколько сильно электрон связан с атомом.

Элементы с высокой проводимостью, которые имеют очень подвижные электроны, называются проводниками . Это типы материалов, которые мы хотим использовать для изготовления проводов и других компонентов, которые способствуют потоку электронов. Такие металлы, как медь, серебро и золото, как правило, являются нашим лучшим выбором для хороших проводников.

Элементы с низкой проводимостью называются изоляторами . Изоляторы служат очень важной цели: они предотвращают поток электронов. Популярные изоляторы включают стекло, резину, пластик и воздух.

Статическое или текущее электричество

Прежде чем мы пойдем дальше, давайте обсудим две формы, которые может принимать электричество: статическое или текущее. При работе с электроникой, текущее электричество будет гораздо более распространенным, но статическое электричество также важно понимать.

Статическое электричество

Статическое электричество существует, когда на объектах, разделенных изолятором, накапливаются противоположные заряды. Статическое (как в «покое») электричество существует до тех пор, пока две группы противоположных зарядов не смогут найти путь между собой, чтобы сбалансировать систему.

Когда заряды находят способ выравнивания, возникает статический разряд . Притяжение зарядов становится настолько сильным, что они могут проходить даже через самые лучшие изоляторы (воздух, стекло, пластик, резину и т. Д.).). Статические разряды могут быть вредными в зависимости от того, через какую среду проходят заряды и на какие поверхности переносятся заряды. Заряды, выравнивающиеся через воздушный зазор, могут привести к видимому удару, когда бегущие электроны сталкиваются с электронами в воздухе, которые возбуждаются и выделяют энергию в виде света.

Свечи зажигания используются для создания контролируемого статического разряда. Противоположные заряды накапливаются на каждом из проводников, пока их притяжение не станет настолько сильным, что в воздухе могут протекать большие заряды.

Одним из наиболее ярких примеров статического разряда является молнии . Когда облачная система накапливает достаточно заряда относительно другой группы облаков или земной поверхности, заряды будут пытаться уравновесить. Когда облако разряжается, огромное количество положительных (или иногда отрицательных) зарядов проходит через воздух от земли к облаку, вызывая видимый эффект, с которым мы все знакомы.

Статическое электричество также привычно существует, когда мы натираем воздушные шарики на голове, чтобы заставить волосы выпрямиться, или когда мы перетасовываем на полу нечеткие тапочки и шокируем семейную кошку (случайно, конечно).В каждом случае трение от различных типов материалов переносит электроны. Объект, теряющий электроны, становится положительно заряженным, в то время как объект, приобретающий электроны, становится отрицательно заряженным. Два объекта притягиваются друг к другу до тех пор, пока они не смогут найти способ уравнять.

Работая с электроникой, мы обычно не имеем дело со статическим электричеством. Когда мы это делаем, мы обычно пытаемся защитить наши чувствительные электронные компоненты от статического разряда.Профилактические меры против статического электричества включают в себя ношение антистатических браслетов или добавление специальных компонентов в цепи для защиты от очень высоких пиков заряда.

Текущее электричество

Текущее электричество — это форма электричества, которая делает возможными все наши электронные штуковины. Эта форма электричества существует, когда заряды в состоянии постоянно текут . В отличие от статического электричества, когда заряды собираются и остаются в покое, текущее электричество является динамическим, заряды всегда в движении.Мы будем фокусироваться на этой форме электричества в оставшейся части урока.

Схемы

Для того, чтобы течь, текущему электричеству требуется цепь: замкнутая бесконечная петля из проводящего материала. Схема может быть такой же простой, как проводной провод, соединенный сквозной, но полезные схемы обычно содержат смесь проводов и других компонентов, которые контролируют поток электричества. Единственное правило, когда дело доходит до изготовления цепей, это то, что они не могут иметь никаких изолирующих зазоров в них.

Если у вас есть провод, полный атомов меди, и вы хотите, чтобы через него проходил поток электронов, , то все свободных электронов должны куда-то течь в одном и том же общем направлении. Медь — отличный проводник, идеально подходящий для протекания зарядов. Если цепь из медного провода оборвана, заряды не могут проходить через воздух, что также предотвратит попадание любого из зарядов к середине.

С другой стороны, если провод был соединен сквозным, все электроны имеют соседний атом и могут течь в одном и том же общем направлении.


Теперь мы понимаем , как могут течь электронов, но как мы можем заставить их течь в первую очередь? Затем, когда электроны текут, как они производят энергию, необходимую для освещения лампочек или спиновых двигателей? Для этого нам нужно понять электрические поля.

Электрические поля

Мы имеем представление о том, как электроны протекают через вещество, чтобы создать электричество. Это все, что нужно для электричества. Ну, почти все.Теперь нам нужен источник, чтобы вызвать поток электронов. Чаще всего этот источник потока электронов приходит из электрического поля.

Что такое поле?

Поле — это инструмент, который мы используем для моделирования физических взаимодействий, в которых не задействован какой-либо наблюдаемый контакт . Поля не видны, так как они не имеют физического вида, но эффект, который они имеют, очень реален.

Мы все подсознательно знакомы с одним конкретным полем: гравитационным полем Земли, эффектом массивного тела, притягивающего другие тела.Гравитационное поле Земли может быть смоделировано с помощью набора векторов, указывающих в центр планеты; независимо от того, где вы находитесь на поверхности, вы почувствуете силу, толкающую вас к ней.

Сила или интенсивность полей не одинаковы во всех точках поля. Чем дальше вы находитесь от источника поля, тем меньший эффект оказывает поле. Величина гравитационного поля Земли уменьшается по мере удаления от центра планеты.

. Продолжая исследовать электрические поля, помните, как работает гравитационное поле Земли, оба поля имеют много общего.Гравитационные поля оказывают силу на объекты массы, а электрические поля оказывают силу на объекты заряда.

Электрические поля

Электрические поля (электронные поля) являются важным инструментом для понимания того, как электричество начинается и продолжает течь. Электрические поля описывают силу тяги или толкания в пространстве между зарядами . По сравнению с гравитационным полем Земли электрические поля имеют одно существенное отличие: в то время как поле Земли обычно притягивает только другие объекты массы (поскольку все и значительно менее массивные), электрические поля отталкивают заряды так же часто, как и притягивают их.

Направление электрических полей всегда определяется как направление , положительный пробный заряд переместился бы на , если бы его бросили в поле. Пробный заряд должен быть бесконечно малым, чтобы его заряд не влиял на поле.

Мы можем начать с построения электрических полей для одиночных положительных и отрицательных зарядов. Если вы положили положительный пробный заряд рядом с отрицательным зарядом, пробный заряд будет притягиваться к отрицательному заряду . Таким образом, для одного отрицательного заряда мы рисуем стрелки электрического поля , направленные внутрь во всех направлениях.Тот же самый тестовый заряд, сброшенный рядом с другим положительным зарядом , приведет к отталкиванию наружу, что означает, что мы рисуем стрелок, выходящих из положительного заряда.

Электрические поля разовых зарядов. Отрицательный заряд имеет внутреннее электрическое поле, потому что он привлекает положительные заряды. Положительный заряд имеет внешнее электрическое поле, отталкивающее как заряды.

Группы электрических зарядов могут быть объединены для создания более полных электрических полей.

Равномерное электронное поле выше указывает от положительных зарядов к отрицательным. Представьте себе крошечный положительный тестовый заряд, упавший в электронном поле; оно должно следовать направлению стрелок. Как мы уже видели, электричество обычно включает в себя поток электронов — отрицательных зарядов — которые протекают против электрических полей.

Электрические поля дают нам толкающую силу, необходимую для создания тока. Электрическое поле в цепи похоже на электронный насос: большой источник отрицательных зарядов, которые могут продвигать электроны, которые будут течь через цепь к положительному объему зарядов.

Электрический потенциал (энергия)

Когда мы используем электричество для питания наших цепей, устройств и гаджетов, мы действительно преобразуем энергию. Электронные схемы должны быть способны накапливать энергию и передавать ее в другие формы, такие как тепло, свет или движение. Накопленная энергия цепи называется энергией электрического потенциала.

энергии? Потенциальная энергия?

Чтобы понять потенциальную энергию, нам нужно понять энергию в целом. Энергия определяется как способность объекта выполнять работ над другим объектом, что означает перемещение этого объекта на некоторое расстояние.Энергия приходит в году во многих формах , некоторые из которых мы можем видеть (например, механические), а другие — нет (например, химические или электрические). Независимо от того, в какой форме она находится, энергия существует в одном из двух состояний : кинетическом или потенциальном.

Объект имеет кинетическую энергию , когда он находится в движении. Количество кинетической энергии, которое имеет объект, зависит от его массы и скорости. Потенциальная энергия , с другой стороны, представляет собой запасенную энергию , когда объект находится в покое. Он описывает, сколько работы может выполнить объект, если его привести в движение.Эту энергию мы обычно можем контролировать. Когда объект приводится в движение, его потенциальная энергия превращается в кинетическую энергию.

Давайте вернемся к использованию гравитации в качестве примера. Шар для боулинга, неподвижно расположенный на вершине башни Халифы, обладает большой потенциальной (накопленной) энергией. После падения шар, притянутый гравитационным полем, ускоряется к земле. По мере ускорения шара потенциальная энергия превращается в кинетическую энергию (энергию от движения). В конце концов вся энергия шара преобразуется из потенциальной в кинетическую, а затем передается всему, что попадает в него.Когда мяч находится на земле, у него очень низкая потенциальная энергия.

Электрическая потенциальная энергия

Так же, как масса в гравитационном поле обладает потенциальной гравитационной энергией, заряды в электрическом поле имеют электрическую потенциальную энергию . Электрическая потенциальная энергия заряда описывает, сколько накопленной энергии у него есть, когда оно приводится в движение электростатической силой, эта энергия может стать кинетической, и заряд может работать.

Как шар для боулинга, сидящий на вершине башни, положительный заряд в непосредственной близости от другого положительного заряда обладает высокой потенциальной энергией; если оставить его свободным для движения, заряд будет отталкиваться от аналогичного заряда.Положительный пробный заряд, помещенный рядом с отрицательным зарядом, будет иметь низкую потенциальную энергию, аналогично мячу для боулинга на земле.

Чтобы привить что-либо с потенциальной энергией, мы должны сделать работу , перемещая это на расстояние. В случае шара для боулинга работа заключается в том, чтобы поднять его на 163 этажа против поля тяжести. Точно так же должна быть проведена работа, чтобы подтолкнуть положительный заряд к стрелкам электрического поля (либо к другому положительному заряду, либо от отрицательного заряда).Чем дальше вверх по полю идет заряд, тем больше работы вам предстоит выполнить. Аналогично, если вы пытаетесь отвести отрицательный заряд от от положительного заряда — против электрического поля — вы должны сделать работу.

Для любого заряда, находящегося в электрическом поле, его электрическая потенциальная энергия зависит от типа (положительного или отрицательного), количества заряда и его положения в поле. Потенциальная электрическая энергия измеряется в джоулях ( Дж ).

Электрический потенциал

Электрический потенциал основан на электрическом потенциале энергии , чтобы помочь определить, сколько энергии хранится в электрических полях .Это еще одна концепция, которая помогает нам моделировать поведение электрических полей. Электрический потенциал — это , а не , то же самое, что энергия электрического потенциала!

В любой точке электрического поля электрический потенциал представляет собой величину электрической энергии , деленную на величину заряда в этой точке. Он берет величину заряда из уравнения и оставляет нам представление о том, сколько потенциальной энергии могут обеспечить определенные области электрического поля. Электрический потенциал выражается в единицах джоулей на кулон ( Дж / с ), которые мы определяем как вольт (В).

В любом электрическом поле есть две точки электрического потенциала, которые представляют для нас значительный интерес. Есть точка с высоким потенциалом, где положительный заряд будет иметь максимально возможную потенциальную энергию, и есть точка с низким потенциалом, где заряд будет иметь минимально возможную потенциальную энергию.

Одним из наиболее распространенных терминов, которые мы обсуждаем при оценке электроэнергии, является напряжение . Напряжение — это разность потенциалов между двумя точками в электрическом поле.Напряжение дает нам представление о том, какую силу толкает электрическое поле.


Имея потенциальную и потенциальную энергию под нашим поясом, у нас есть все ингредиенты, необходимые для производства электроэнергии. Давай сделаем это!

Электричество в действии!

Изучив физику элементарных частиц, теорию поля и потенциальную энергию, мы теперь знаем достаточно, чтобы заставить электричество течь. Давайте сделаем схему!

Сначала мы рассмотрим ингредиенты, необходимые для производства электричества:

  • Определение электричества — поток заряда .Обычно наши заряды будут переноситься свободно текущими электронами.
  • Отрицательно заряженные электроны свободно удерживаются на атомах проводящих материалов. С небольшим толчком мы можем освободить электроны от атомов и заставить их течь в общем равномерном направлении.
  • Замкнутая цепь из проводящего материала обеспечивает путь для непрерывного потока электронов.
  • Заряды приводятся в действие электрическим полем . Нам нужен источник электрического потенциала (напряжения), который толкает электроны из точки с низкой потенциальной энергией в более высокую потенциальную энергию.

короткого замыкания

Батареи — это распространенные источники энергии, которые преобразуют химическую энергию в электрическую. У них есть две клеммы, которые подключаются к остальной части цепи. На одном терминале имеется избыток отрицательных зарядов, а на другом все положительные заряды объединяются. Это разность электрических потенциалов, просто ожидающая действий!

Если мы подключили наш провод, полный проводящих атомов меди, к батарее, это электрическое поле будет влиять на отрицательно заряженные свободные электроны в атомах меди.Одновременно выталкиваемые отрицательной клеммой и вытягиваемые положительной клеммой, электроны в меди будут перемещаться от атома к атому, создавая поток заряда, который мы знаем как электричество.

Через секунду после протекания тока электроны на самом деле сместились на , очень мало, на — доли сантиметра. Тем не менее, энергия, создаваемая потоком тока, составляет огромных , тем более что в этой схеме нет ничего, что могло бы замедлить поток или потреблять энергию.Подсоединение чистого проводника непосредственно через источник энергии — это плохая идея . Энергия очень быстро проходит через систему и преобразуется в тепло в проводе, которое может быстро превратиться в плавящуюся проволоку или огонь.

Подсветка лампочки

Вместо того, чтобы тратить всю эту энергию, не говоря уже о разрушении аккумулятора и провода, давайте построим схему, которая делает что-то полезное! Обычно электрическая цепь передает электрическую энергию в другую форму — свет, тепло, движение и т. Д.Если мы подключим лампочку к батарее с проводами между ними, у нас будет простая, функциональная схема.

Схема: батарея (слева), подключенная к лампочке (справа), цепь замыкается, когда выключатель (вверху) замыкается. Когда цепь замкнута, электроны могут протекать от отрицательной клеммы батареи через лампочку к положительной клемме.

Пока электроны движутся со скоростью улитки, электрическое поле воздействует на всю цепь практически мгновенно (мы говорим о скорости света).Электрическое поле влияет на электроны в цепи, будь то с наименьшим потенциалом, с наибольшим потенциалом или рядом с лампочкой. Когда переключатель замыкается и электроны подвергаются воздействию электрического поля, все электроны в цепи начинают течь, по-видимому, в одно и то же время. Те заряды, которые находятся рядом с лампочкой, пройдут один шаг по цепи и начнут преобразовывать энергию из электричества в свет (или тепло).

Ресурсы и дальнейшее развитие

В этом уроке мы раскрыли лишь крошечную часть кончика айсберга пословиц.Там все еще остается масса понятий, оставшихся не раскрытыми. Отсюда мы рекомендуем вам перейти прямо к нашему учебнику по напряжению, току, сопротивлению и закону Ома. Теперь, когда вы знаете все об электрических полях (напряжение) и протекающих электронах (ток), вы уже на пути к пониманию закона, который регулирует их взаимодействие.

Для получения дополнительной информации и визуализации, объясняющих электричество, посетите этот сайт.

Вот некоторые другие учебные пособия для начинающих, которые мы рекомендуем прочитать:

Или, может быть, вы хотите узнать что-то практическое? В этом случае, ознакомьтесь с некоторыми из этих базовых уроков навыков:

,
означает в кембриджском словаре английского языка ЭЛЕКТРОЭНЕРГИЯ | смысл в кембриджском словаре английского языка Электричество было отключено. Тезаурус: синонимы и родственные слова ,

электричество | Определение, факты и типы

Электростатика — это изучение электромагнитных явлений, которые возникают, когда нет движущихся зарядов, то есть после установления статического равновесия. Заряды быстро достигают своих положений равновесия, потому что электрическая сила чрезвычайно велика. Математические методы электростатики позволяют рассчитывать распределения электрического поля и электрического потенциала по известной конфигурации зарядов, проводников и изоляторов.И наоборот, при наличии набора проводников с известными потенциалами можно рассчитать электрические поля в областях между проводниками и определить распределение заряда на поверхности проводников. Электрическая энергия набора зарядов в состоянии покоя может рассматриваться с точки зрения работы, необходимой для сборки зарядов; альтернативно, можно также считать, что энергия находится в электрическом поле, создаваемом этой сборкой зарядов. Наконец, энергия может храниться в конденсаторе; энергия, необходимая для зарядки такого устройства, накапливается в нем как электростатическая энергия электрического поля.

Изучите, что происходит с электронами двух нейтральных объектов, соприкасающихся в сухой среде. Объяснение статического электричества и его проявлений в повседневной жизни. Encyclopædia Britannica, Inc. Просмотреть все видео этой статьи

Статическое электричество — это знакомое электрическое явление, при котором заряженные частицы переносятся из одного тела в другое. Например, если два объекта соприкасаются друг с другом, особенно если объекты являются изоляторами, а окружающий воздух сухой, объекты приобретают равные и противоположные заряды, и между ними возникает сила притяжения.Объект, который теряет электроны, становится положительно заряженным, а другой — отрицательно заряженным. Сила — это просто притяжение между зарядами противоположного знака. Свойства этой силы были описаны выше; они включены в математические отношения, известные как закон Кулона. Электрическая сила на заряде Q 1 в этих условиях из-за заряда Q 2 на расстоянии r задается законом Кулона,

Жирные символы в уравнении указывают вектор Характер силы и единичный вектор r — это вектор, размер которого равен единице и который указывает от заряда Q 2 до заряда Q 1 .Константа пропорциональности k равна 10 −7 c 2 , где c — скорость света в вакууме; k имеет числовое значение 8,99 × 10 9 квадратных метров на квадратный кулон (Нм 2 / C 2 ). На рисунке 1 показано усилие на Q 1 из-за Q 2 . Численный пример поможет проиллюстрировать эту силу. И Q 1 , и Q 2 выбраны произвольно в качестве положительных зарядов, каждый из которых имеет величину 10 -60036 кулонов.Заряд Q 1 расположен в координатах x , y , z со значениями 0,03, 0, 0 соответственно, а Q 2 имеет координаты 0, 0,04, 0. Все координаты даны в метрах. Таким образом, расстояние между Q 1 и Q 2 составляет 0,05 метра.

электрическая сила между двумя зарядами Рисунок 1: электрическая сила между двумя зарядами. Предоставлено факультетом физики и астрономии Мичиганского государственного университета. Получите эксклюзивный доступ к контенту из нашего первого издания 1768 года с вашей подпиской.Подпишитесь сегодня

Величина силы F на заряде Q 1 , рассчитанная по уравнению (1), составляет 3,6 ньютона; его направление показано на рисунке 1. Сила на Q 2 из-за Q 1 составляет — F , которая также имеет величину 3,6 ньютона; однако его направление противоположно направлению F . Сила F может быть выражена через ее компоненты вдоль осей x и y , поскольку вектор силы лежит в плоскости x y .Это делается с помощью элементарной тригонометрии из геометрии на рисунке 1, а результаты показаны на рисунке 2. Таким образом, в ньютонах. Закон Кулона математически описывает свойства электрической силы между зарядами в покое. Если обвинения имеют противоположные знаки, сила будет привлекательной; притяжение будет указано в уравнении (1) отрицательным коэффициентом единичного вектора r̂. Таким образом, электрическая сила на Q 1 будет иметь направление, противоположное единичному вектору r и будет указывать от Q 1 до Q 2 .В декартовых координатах это привело бы к изменению знаков как x , так и y компонентов силы в уравнении (2).

составляющих кулоновской силы Рисунок 2: x и y составляющих силы F на рисунке 4 (см. Текст). Предоставлено факультетом физики и астрономии Мичиганского государственного университета.

Как можно понять эту электрическую силу на Q 1 ? По сути, сила обусловлена ​​наличием электрического поля в позиции Q 1 .Поле вызвано вторым зарядом Q 2 и имеет величину, пропорциональную величине Q 2 . При взаимодействии с этим полем первый заряд на некотором расстоянии либо притягивается, либо отталкивается от второго заряда, в зависимости от знака первого заряда.

,

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *