Как научиться ремонтировать электронику
Количество электронных приборов с каждым годом растет с небывалой скоростью.
Так, производство электроники в Санкт-петербурге может только радовать. Однако, как бы ни было высоко ее качество, сломаться она все-таки может. Иногда поломку можно исправить и своими силами, поэтому не нужно без нужды везти технику в сервисный центр.
С чего начать
Исправление неполадок электронных приборов вещь тонкая, а чтобы научиться это делать самостоятельно, нужны некоторые знания физики, минимум школьного курса.
Вы хотя бы должны иметь понятие о том, что такое:
- сила тока;
- сопротивление металлов;
- индуктивность и т.д.
Также вам надо приобрести опыт паяния радиодеталей, и научится пользоваться электрическим тестером и мультиметром. Для ремонта вы должны будете приобрести все необходимое оборудование, а также в зависимости от вида ремонтируемой техники вы должны будете разбираться в электросхемах.
Чиним технику самостоятельно
Множество людей думают, что починка ПК это дело мастерских. Но даже новички могут почить компьютер дома, не имея специальных навыков при наличии минимум оборудования. Самостоятельно, при наличии паяльника, вы можете заменить конденсаторы. Но в случае потребности замены микросхем, если вы не имеете опыта и оборудования, такую поломку не желательно чинить самому.
Если электроника не включается
При подсоединении к электрической сети прибор не работает, не срабатывают никакие светодиодные сигналы или не выдается звук, причина этому сгоревший блок питания. Попробуйте включить аппарат последовательно с мощной лампой накаливания, для предотвращения короткого замыкания. Когда блок питания работает, лампа не будет гореть, а в случае короткого замыкания на блоке лампа загорится.
Потом ищем неисправность в самом блоке питания. Это может быть простой обрыв кабеля или выгорание предохранителя. В случае успеха устраняем неполадку заменой новых деталей или пайкой отломанных.
Некорректная работа
Если ваша электроника работает с перебоями, периодически выдавая проблему, причин такой работы множество. Например, когда при нагрузках на компьютер он отключается, а по истечении некоторого времени снова работает, неисправность может крыться в перегреве или повреждении контактов.
Чтобы найти причину неполадки, следует проверить, какие из микросхем греются. Это делают с помощью специального щупа, или на ощупь. К перегреву плат может привести множество пыли, плохое охлаждение и отсутствие термопасты.
Смотрите также:
Как подключить камеру наружного наблюдения к компьютеру http://euroelectrica.ru/kak-podklyuchit-kameru-naruzhnogo-nablyudeniya-k-kompyuteru/.
Интересное по теме: Как работает солнечная электростанция
Советы в статье «Как выбрать паяльник для пайки проводов» здесь.
С чего начать ремонт электроники смотрим в видео:
По материалам: http://cab-t.ru/
Как самостоятельно изучить электронику с нуля?
Научиться можно только тому, что любишь.
Гёте И.
- Творчество и результат
- Типичный подход к обучению
- Математика в электронике
- Книги по электронике
- Дорого ли заниматься электроникой?
- Что делать, если не получается?
- О практике
«Как самостоятельно изучить электронику с нуля?» — один из самых популярных вопросов на радиолюбительских форумах. При этом те ответы, которые я нашел, когда сам его задавал, мне мало помогли. Поэтому я решил дать свой.
Это эссе описывает общий подход к самообучению, а так как оно стало ежедневно получать множество просмотров, то я решил его развить и сделать небольшое руководство по самостоятельному изучению электроники и рассказать как это делаю я. Подписывайся на рассылку — будет интересно!
Творчество и результат
Чтобы что-то изучить надо это полюбить, гореть интересом и регулярно упражняться. Кажется, я только что озвучил прописную истину… Тем не менее. Для того, чтобы с лёгкостью и удовольствием изучать электронику надо её любить и относится к ней с любопытством и восхищением. Сейчас уже для всех привычно иметь возможность отправить видеосообщение на другой конец земли и мгновенно получить ответ. А это одно из достижений электоники. 100 лет труда тысяч ученых и инженеров.
Как нас обычно учат
Классический подход, который проповедуется в школах и университетах всего мира можно назвать подходом снизу-вверх. Сначала тебе рассказывают что такое электрон, атом, заряд, ток, резистор, конденсатор, индуктивность, заставляют решить сотни задач на нахождение токов в резисторных цепях, потом ещё сложней и т.д. Такой подход схож с восхождением на гору. Но лезть в гору сложней, чем спускаться. И многие сдаются так и не добравшись до вершины. Это верно в любом деле.
А что если спускаться с горы? Главная идея в том, чтобы сначала получить результат, а затем разобрать детально почему работает именно так. Т.е. это классический подход детских радиокружков. Он даёт возможность получить ощущение победы и успеха, которые в свою очередь стимулируют желание изучать электронику дальше. Понимаешь, очень сомнительная польза в изучении одной теории. Надо обязательно практиковаться, так как не все из теории 100% ложится на практику.
Есть такая старая инженерная шутка гласит: «Раз ты хорош в математике, то тебе надо пойти в электронику». Типичная чушь. Электроника — это творчество, новизна идей, практика. И не обязательно впадать в дебри теоритический расчетов, чтобы создавать электронные устройства. Ты вполне можешь освоить необходимые знания самостоятельно. А математику подтянешь в процессе творчества.
Главное — это понять основной принцип, и только потом тонкости. Такой подход просто переворачивает мир самостоятельного изучения. Он не нов. Так рисуют художники: сначала набросок, затем детализация. Так проектируют различные большие системы и т.д. Такой подход похож на «метод тыка», но только если не искать ответа, а тупо повторять одно и тоже действие.
Понравилось устройство? Собирай, разбирайся почему оно сделано именно так и какие идеи заложены в его конструкцию: почему именно эти детали используются, почему именно так соединены, какие принципы используются? А можно ли что-нибудь улучшить или просто заменить какую-нибудь деталь?
Конструирование — это творчество, но ему можно научиться. Для это надо только выполнять простые действия: читать, повторять чужие устройства, обдумывать результат, наслаждаться процессом, быть смелым и уверенным в себе.
Математика в электронике
В радиолюбительском конструировании считать несобственные интегралы вряд ли придётся, но знание закона Ома, правил Кирхгофа, формул делителя тока/напряжения, владение комплексной арифметикой и тригонометрией может пригодиться. Это азы азов. Хочешь уметь больше — люби математику и физику. Это не только полезно, но и чрезвычайно занимательно. Конечно, это не обязательно. Можно делать достаточно крутые устройства вообще ничего этого не зная. Только это будут устройства, придуманные кем-то другим.
Когда я, после очень длительного перерыва, понял, что электроника снова меня зовёт и манит в ряды радиолюбителей, то сразу стало ясно, что мои знания давно уже улетучились, а доступность компонентов и технологий стала шире. Что я стал делать? Путь был только один — признать себя полным нолём и стартовать из ничего: знакомых опытных электронщиков нет, какой-либо программы самообучения тоже нет, форумы я отбросил потому, что они представляют собой свалку информации и отнимают много времени (какой-то вопрос можно там узнать вкратце, но получить цельные знания очень сложно — там все такие важные, что лопнуть можно!)
И тогда япошел самым старым и простым пут
Курс начинающего электронщика часть 1
Перевёл alexlevchenko для mozgochiny.ru
Каждый из нас, когда начинает увлекаться чем-то новым, сразу кидается в «пучину страсти» пытаясь выполнить или реализовать непростые проекты
Шаг 1: Напряжение, ток, сопротивление
Эти понятия являются фундаментальными и без знакомства с ними продолжать обучение основам было бы бессмысленно. Давайте просто вспомним, что каждый материал состоит из атомов, а каждый атом в свою очередь имеет три типа частиц. Электрон — одна из этих частицы, имеет отрицательный заряд. Протоны же имеют положительный заряд. В проводящих материалах (серебро, медь, золото, алюминий и т.д.) есть много свободных электронов, которые перемещаются хаотично. Напряжение является той силой, которая заставляет электроны перемещаться в определенном направлении. Поток электронов, который движется в одном направлении, называется током. Когда электроны перемещаются по проводнику, то они сталкиваются с неким трением. Это трение называют сопротивлением. Сопротивление «ужимает» свободное перемещения электронов, таким образом снижая величину тока.
Более научное определение тока – скорость изменения количество электронов в определенном направлении. Единица измерения тока — Ампер (I). В электронных схемах протекающий ток лежит в диапазоне миллиампера (1 ампер = 1000 миллиампер). Например, свойственный ток для светодиода 20mA.
Единица измерения напряжения – Вольт (В). Батарея – является источником напряжения. Напряжение 3В, 3.3В, 3.7В и 5В является наиболее распространенным в электронных схемах и устройствах.
Напряжение является причиной, а ток – результатом.
Единица измерения сопротивления – Ом (Ω).
Шаг 2: Источник питания
Аккумуляторная батарея — источник напряжения или «правильно» источник электроэнергии. Батарея производит электроэнергию за счет внутренней химической реакции. На внешней стороне у неё присутствуют две клеммы. Одна из них является положительным выводом (+ V), а другая отрицательным (-V), или «землёй». Обычно источники питания бывают двух типов.
- Батареи;
- Аккумуляторы.
Батарейки используются один раз, а затем утилизируются. Аккумуляторы могут быть использованы несколько раз. Батарейки бывают разных форм и размеров, от миниатюрных, используемых для питания слуховых аппаратов и наручных часов до батарей размером с комнату, которые обеспечивают резервное питание для телефонных станций и компьютерных центров. В зависимости от внутреннего состава источники питания могут быть разных типов. Несколько наиболее распространённых типов, используемых в робототехнике и технических проектах:
Батареи 1,5 В
Батарейки с таким напряжением могут иметь различные размеры. Наиболее распространённые размеры АА и ААА. Диапазон ёмкости от 500 до 3000 мАч.
3В литиевая «монетка»
Все эти литиевые элементы рассчитаны номинально на 3 В (при нагрузке) и с напряжением холостого хода около 3,6 вольт. Ёмкость может достигать от 30 до 500мAч. Широко используется в карманных устройствах за счёт их крошечных размеров.
Никель-металлогидридные (NiМГ)
Эти батареи имеют высокую плотность энергии и могут заряжаться почти мгновенно. Другая важная особенность — цена. Такие аккумуляторы дешёвые (в сравнение с их размерами и ёмкостями). Этот тип батареи часто используется в робототехнических самоделках.
3.7 В литий-ионные и литий-полимерные аккумуляторы
Они имеют хорошую разряжающую способность, высокую плотность энергии, отличную производительность и небольшой размер. Литий-полимерный аккумулятор широко используется в робототехнике.
9-вольтовая батарея
Наиболее распространенная форма — прямоугольная призма с округленными краями и клеммами, что расположены сверху. Ёмкость составляет около 600 мАч.
Свинцово-кислотные
Свинцово-кислотные аккумуляторы являются рабочей лошадкой всей радио-электронной промышленности. Они невероятно дешёвы, перезаряжаются и их легко купить. Свинцово-кислотные аккумуляторы используются в машиностроении, UPS (источниках бесперебойного питания), робототехнике и других системах, где необходим большой запас энергии, а вес не так важен. Наиболее распространенными являются напряжения 2В, 6В, 12В и 24В.
Последовательно-параллельное соединение батарей
Источник питания может быть подключен последовательно или параллельно. При подключении последовательно величина напряжения увеличивается, а когда подключение параллельное – увеличивается текущая величина тока.
Существует два важных момента относительно батарей:
Емкость является мерой (как правило, в Aмп-ч) заряда, хранящейся в батарее, и определяется массой активного материала, содержащегося в ней. Ёмкость представляет собой максимальное количество энергии, которую можно извлечь при определенно заданных условиях. Тем не менее, фактические возможности хранения энергии аккумулятора могут значительно отличаться от номинального заявленного значения, а ёмкость батареи сильно зависит от возраста и температуры, режимов зарядки или разрядки.
Ёмкость батареи измеряется в ватт-часах (Вт*ч), киловатт-часах (кВт-ч), ампер-часах (А*ч) или миллиампер-час (мА * ч). Ватт-час – это напряжение (В) умноженное на силу тока(I) (получаем мощность – единица измерения Ватты (Вт)), которое может выдавать батарея определенный период времени (как правило, 1 час). Так как напряжение фиксируемое и зависит от типа аккумулятора (щелочные, литиевые, свинцово-кислотные, и т.д.), часто на внешней оболочке отмечают лишь Ач или мАч (1000 мАч = 1Aч). Для более продолжительной работы электронного устройства необходимо брать батареи с низким током утечки. Чтобы определить срок службы аккумулятора, разделите ёмкость на фактический ток нагрузки. Цепь, которая потребляет 10 мА и питается от 9-вольтной батареи будет работать около 50 часов: 500 мАч / 10 мА = 50 часов.
Во многих типах аккумуляторов, вы не можете «забрать» энергию полностью (другими словами, аккумулятор не может быть полностью разряжен), не нанося серьезный, и часто непоправимый ущерб химическим составляющим. Глубина разрядки (DOD) аккумулятора определяет долю тока, которая может быть извлечена. Например, если DOD определено производителем как 25%, то только 25% от ёмкости батареи может быть использовано.
Темпы зарядки/разрядки влияют на номинальную ёмкость батареи. Если источник питания разряжается очень быстро (т.е., ток разряда высокий), то количество энергии, которое может быть извлечено из батареи снижается и ёмкость будет ниже. С другой стороны если батарея разряжается очень медленно (используется низкий ток), то ёмкость будет выше.
Температура батареи также будет влиять на ёмкость. При более высоких температурах ёмкость аккумулятора, как правило, выше, чем при более низких температурах. Тем не менее, намеренное повышение температуры не является эффективным способом повышения ёмкости аккумулятора, так как это также уменьшает срок службы самого источника питания.
С-Ёмкость: Токи заряда и разряда любой аккумуляторной батареи измеряются относительно её емкости. Большинство батарей, за исключением свинцово-кислотных, оценено в 1C. Например, батарея с ёмкостью 1000mAh, выдает 1000mA в течение одного часа, если уровень – 1C. Та же батарея, с уровнем 0.5C, выдает 500mA в течение двух часов. С уровнем 2C, та же батарея выдает 2000mA в течение 30 минут. 1C часто упоминается как одночасовой разряд; 0.5C – как двухчасовой и 0.1C – как 10-часовой.
Ёмкость батареи обычно измеряется с помощью анализатора. Анализаторы тока отображают информацию в процентах отталкиваясь от значения номинальной ёмкости. Новая батарея иногда выдает больше 100 % тока. В таком случае, батарея просто оценена консервативно и может выдержать более длительное время, чем указанно производителем.
Зарядное устройство может быть подобрано с точки зрения ёмкости батареи или величины C. Например зарядное устройство с номиналом C/10 полностью зарядит батарею через 10 часов, зарядное устройство с номиналом в 4C, зарядило бы аккумулятор через 15 минут. Очень быстрые темпы зарядки (1 час или менее) обычно требуют того, чтобы зарядное устройство тщательно контролировало параметры аккумулятора, такие как предельное напряжение и температура, чтобы предотвратить перезаряд и повреждения батареи.
Напряжение гальванического элемента определяется химическими реакциями, что проходят внутри него. Например, щелочные элементы – 1.5 В, все свинцово- кислотные – 2 В, а литиевые – 3 В. Батареи могут состоять из нескольких ячеек, поэтому вы редко, где сможете увидеть 2-вольтовую свинцово-кислотную батарею. Обычно они соединены вместе внутри, чтобы выдавать 6 В, 12 В или 24 В. Не стоит забывать о том, что номинальное напряжение в «1.5-вольтовой» батарее типа AA фактически начинается с 1.6 В, затем быстро опускается к 1.5, после чего медленно дрейфует вниз к 1.0 В, при котором батарею уже принято считать ‘разряженной’.
Как лучше выбрать батарею для поделки?
Как вы уже поняли, в свободном доступе, можно найти много типов батарей с разным химическим составом, таким образом, не легко выбрать, какое питание является лучшим для именно вашего проекта. Если проект очень энергозависимый (большие системы звука и моторизованные самоделки) следует выбирать свинцово-кислотную батарею. Если вы хотите построить переносную поделку, которая будет потреблять небольшой ток, то следует выбрать литиевую батарею. Для любого портативного проекта (легкий вес и умеренное питание) выбираем литиево-ионный аккумулятор. Вы можете выбрать более дешёвый аккумулятор на основе метало-никелевого гидрида (NIMH), хотя они более тяжёлые, но не уступают литиево-ионным в остальных характеристиках. Если вы хотели бы сделать энергоёмкий проект то литиево-ионный щелочной (LiPo) аккумулятор будет лучшим вариантом, потому что он имеет маленькие размеры, лёгок по сравнению с другими типами батарей, перезаряжается очень быстро и выдаёт ток высокого значения.
Хотите, чтобы Ваши аккумуляторы прослужили долгое время? Используйте высококачественное зарядное устройство, которое имеет датчики для поддержания надлежащего уровня заряда и подзарядки малым током. Дешёвое зарядное устройство убьёт ваши аккумуляторы.
Шаг 3: Резисторы
Резистор — очень простой и наиболее распространённый элемент на схемах. Он применяется для того, чтобы управлять или ограничивать ток в электрической цепи.
Резисторы — пассивные компоненты, которые только потребляют энергию (и не могут производить её). Резисторы, как правило, добавляются в цепь, где они дополняют активные компоненты, такие как ОУ, микроконтроллеры и другие интегральные схемы. Обычно они используются, чтобы ограничить ток, разделить напряжения и линии ввода/вывода.
Сопротивление резистора измеряется в Омах. Большие значения могут быть сопоставлены с префиксом кило-, мега-, или гига, чтобы сделать значения легко читаемыми. Часто можно увидеть резисторы с меткой кОм и МОм диапазоне (гораздо реже мОм резисторы). Например, 4,700Ω резистор эквивалентен 4.7kΩ резистору и 5,600,000Ω резистор можно записать в виде 5,600kΩ или (более обычно ) 5.6MΩ.
Существуют тысячи различных типов резисторов и множество фирм, что их производят. Если брать грубую градацию то существуют два вида резисторов:
- с чётко заданными характеристиками;
- общего назначения, чьи характеристики могут «гулять» (производитель сам указывает возможное отклонение).
Пример общих характеристик:
- Температурный коэффициент;
- Коэффициент напряжения;
- Шум;
- Частотный диапазон;
- Мощность;
- Физический размер.
По своим свойствам резисторы могут быть классифицированы как:
Линейный резистор — тип резистора, сопротивление которого остается постоянным с увеличением разности потенциалов (напряжения), что прикладываются к нему (сопротивление и ток, что проходит через резистор не изменяется от приложенного напряжения). Особенности вольт-амперной характеристики такого резистора — прямая линия.
Не линейный резистор – это резистор, сопротивление которого изменяется в зависимости от значения прикладываемого напряжения или протекающего через него тока. Это тип имеет нелинейную вольт-амперную характеристику и не строго следует закону Ома.
Есть несколько типов нелинейных резисторов:
- Резисторы ОТК (Отрицательный Температурный Коэффициент) — их сопротивление понижается с повышением температуры.
- Резисторы ПЕК (Положительный Температурный Коэффициент) — их сопротивление увеличивается с повышением температуры.
- Резисторы ЛЗР (Светло-зависимые резисторы) — их сопротивление изменяется с изменением интенсивности светового потока.
- Резисторы VDR (Вольт зависимые резисторы) — их сопротивление критически понижается, когда значение напряжения превышает определенное значение.
Не линейные резисторы используются в различных проектах. ЛЗР используется в качестве датчика в различных робототехнических проектах.
Кроме этого, резисторы бывают с постоянным и переменным значением:
Резисторы постоянного значения — типы резисторов, значение которых уже установлено, при производстве и не может быть изменено во время использования.
Переменный резистор или потенциометр – тип резистора, значение которого может быть изменено во время использования. Этот тип обычно имеет вал, который поворачивается или перемещается вручную для изменения значения сопротивления в фиксированном диапазоне, например, от. 0 кОм до 100 кОм.
Магазин сопротивлений:
Этот тип резистора состоит из «упаковки», в которой содержится два или более резисторов. Он имеет несколько терминалов, благодаря которым может быть выбрано значение сопротивления.
По составу резисторы бывают:
Углеродные:
Сердечник таких резисторов отливается из углерода и связующего вещества, создающих требуемое сопротивление. Сердечник имеет чашеобразные контакты, удерживающие стержень резистора с каждой стороны. Весь сердечник заливается материалом (наподобие бакелита) в изолированном корпусе. Корпус имеет пористую структуру, поэтому углеродные композиционные резисторы чувствительны к относительной влажности окружающей среды.
Эти типы резисторов обычно производит шум в цепи за счёт электронов, проходящих через углеродные частицы, таким образом, эти резисторы, не используются в «важных» схемах, хотя они дешевле.
Осаждения углерода:
Резистор, который сделан путём нанесения тонкого слоя углерода вокруг керамического стержня — называется углеродо-осаждённым резистором. Он изготавливается путем нагревания керамических стержней внутри колбы метана и осаждением углерода вокруг них. Значение резистора определяется количеством углерода, осажденного вокруг керамического стержня.
Пленочный резистор:
Резистор выполнен путем осаждения распыляемого металла в вакууме на керамическую основу прута. Эти типы резисторов очень надежны, имеют высокую устойчивость, а также имеют высокий температурный коэффициент. Хотя они дороже по сравнению с другими, но используются в основных системах.
Проволочный резистор:
Проволочный резистор изготовлен путем намотки металлической проволоки вокруг керамического сердечника. Металлический провод представляет собой сплав различных металлов подобранных согласно заявленным особенностям и сопротивлениям требуемого резистора. Эти тип резистора имеет высокую стабильность, а также выдерживает большие мощности, но, как правило, они более громоздкие по сравнению с другими типами резисторов.
Метало-керамические:
Эти резисторы изготовлены путем обжига некоторых металлов, смешанные с керамикой на керамической подложке. Доля смеси в смешанном метало-керамическом резисторе определяет значение сопротивления. Этот тип очень стабилен, а также имеет точно вымеренное сопротивление. Их в основном используют для поверхностного монтажа на печатных платах.
Прецизионные резисторы:
Резисторы, значение сопротивлений которых лежит в пределах допуска, поэтому они очень точны (номинальная величина находится в узком диапазоне).
Все резисторы имеют допуск, который даётся в процентах. Допуск говорит нам, насколько близко к номинальному значению сопротивления может изменяться. Например, 500Ω резистор, который имеет значение допуска 10%, может иметь сопротивление между 550Ω или 450Ω. Если же резистор имеет допуск 1%, сопротивление будет меняться только на 1%. Таким образом, 500Ω резистор может варьироваться от 495Ω 505Ω.
Прецизионный резистор — резистор, у которого уровень допуска всего 0.005%.
Плавкий резистор:
Проволочный резистор, разработан таким образом, чтобы легко перегореть, когда номинальная мощность превысет граничный порог. Таким образом плавкий резистор имеет две функции. Когда питание не превышено, он служит ограничителем тока. Когда номинальная мощность превышена, оа функционирует как предохранитель, после перегорания цепь становится разорванной, что защищает компоненты от короткого замыкания.
Терморезисторы:
Теплочувствительный резистор, значение сопротивления которого изменяется с изменением рабочей температуры.
Терморезисторы показывают или положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC).
Насколько изменяется сопротивление с изменениями рабочей температуры зависит от размера и конструкции терморезистора. Всегда лучше проверить справочные данные, чтобы узнать все спецификации терморезисторов.
Фоторезисторы:
Резисторы, сопротивление которых меняется в зависимости от светового потока, что падает на его поверхность. В тёмной среде сопротивление фоторезистора очень высоко, несколько M Ω. Когда интенсивный свет попадает на поверхность, сопротивление фоторезистора существенно падает.
Таким образом фоторезисторы — переменные резисторы, сопротивление которых зависит от количества света, что падает на его поверхность.
Выводные и безвыводные типы резисторов:
Выводные резисторы: Этот тип резисторов использовался в самых первых электронных схемах. Компоненты подключались к выводным клеммам. С течением времени, начали использоваться печатные платы, в монтажные отверстия которых впаивались выводы радиоэлементов.
Резисторы поверхностного монтажа:
Этот тип резистора всё более часто стали использовать начиная с введения технологии поверхностного монтажа. Обычно этот тип резистора создается путём использования тонкоплёночной технологии.
Шаг 4: Стандартные или общие значения резисторов
Система обозначений имеет свои истоки, которые выходят с начала прошлого века, когда большинство резисторов были углеродными с относительно плохими производственными допусками. Объяснение довольно простое – используя 10% допуск можно уменьшить число выпускаемых резисторов. Было бы малоэффективно производить резисторы с сопротивлением 105 Ом, так как 105 находится в пределах 10%-го диапазона допуска резистора на 100 Ом. Следующая рыночная категория составляет 120 Ом, потому что у резистора на 100 Ом с 10%-й терпимостью, будет диапазон между 90 и 110 Ом. У резистора на 120 Ом диапазон лежит между 110 и 130 Ом. По этой логики предпочтительно выпускать резисторы с 10% допуском 100, 120, 150, 180, 220, 270, 330 и так далее (соответственно округлены). Это — ряд E12, показанный ниже.
Терпимость 20% E6,
Терпимость 10% E12,
Терпимость 5% E24 (и обычно 2%-я терпимость),
Терпимость 2% E48,
E96 1% терпимости,
E192 0,5, 0,25, 0,1% и выше допуски.
Стандартные значения резисторов:
Е6 серии: (20% допуска) 10, 15, 22, 33, 47, 68
E12 серии: (10% допуска) 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82
E24 серии: (5% допуска) 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91
E48 серии: (2% допуска) 100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953
E96 серии: (1% допуска) 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 959, 976
E192 серии: (0,5, 0,25, 0,1 и 0,05% допуска) 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976, 988
При разработке оборудования лучше всего придерживаться самого низкого раздела, т.е. лучше использовать E6, а не E12. Таким образом, чтобы число различных групп в любом оборудовании было минимизировано.
Продолжение следует
(A-z Source)
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ!
About alexlevchenko
Ценю в людях честность и открытость. Люблю мастерить разные самоделки. Нравится переводить статьи, ведь кроме того, что узнаешь что-то новое — ещё и даришь другим возможность окунуться в мир самоделок.Руководство по ремонту электронного устройства
Вот ты на радостях идешь к чайнику с мыслью хлопнуть кружку чая с баранкой в честь только что собранного устройства, но оно вдруг перестало работать. При этом видимых причин нет: конденсаторы целы, транзисторы вроде бы не дымятся, диоды тоже. Но при этом устройство не работает. Как быть? Можно воспользоваться вот таким простым алгоритмом поиска неисправности:
- Проверить правильность сборки устройства
- Проверить пайку на наличие «соплей» между контактами
- Проверить с помощью мультметра ( и осциллографа). Если нету — купить или попросить у кого-нибудь
- Проверить питание устройства
- Проверить диоды
- Проверить конденсаторы и резисторы
- Если есть, проверить транзисторы
- Проверить по возможности, если они входят в схему, ОУ и другие микросхемы
Монтажные «сопли»
«Сопли» — это небольшие капли припоя, которые создают короткое замыкание между двумя разными дорожками на печатной плате. Во время домашней сборки такие неприятные капли припоя приводят к тому, что устройство либо просто не запускается, либо работает неправильно, либо, что хуже всего, после включения тут же сгорают дорогие детали.
Чтобы не допускать таких неприятных последствий перед включением собранного прибора следует внимательно проверить печатную плату на наличие замыканий между дорожками.
Приборы для диагностики устройств
Минимальный набор приборов для наладки и ремонта радиолюбительских конструкций состоит из осциллографа, мультиметра и источника питания. В некоторых случаях можно обойтись только мультиметром. Но для более удобной отладки устройств желательно все же иметь осциллограф.
Для простых устройств такого набора хватает за глаза. Что касается, к примеру, отладки различных усилителей, то для их правильной настройки желательно иметь ещё и генератор сигналов.
Правильное питание — залог успеха
Прежде, чем делать какие-либо выводы и работоспособности деталей, входящих в твою радиолюбительскую конструкцию, следует проверить правильное ли питание подаётся. Иной раз окажется, что проблема была в неверном питании. Если начинать проверку устройства с его питания, то можно сэкономить много времени на отладке, если причина была в нём.
Проверка диодов
Если в схеме есть диоды, то их следует один за одним внимательно проверить. Если они внешне целые, то следует выпаять один вывод диода и проверить его с помощью мультиметра, включенного в режим измерения сопротивления. При этом если полярность клем мультиметра совпадает с полярностью выводов диода (+ клемма к аноду, а — клемма к катоду), то мультиметр покажет приблизительно 500-600 Ом, а в обратном включении (- клемма к аноду, а + клемма к катоду) не покажет вообще ничего, будто там обрыв. Если же мультиметр показывает что-либо другое, то скорее всего диод вышел из строя и негоден.
Проверка конденсаторов и резисторов
Сгоревшие резисторы видно сразу — они чернеют. Поэтому найти сгоревший резистор достаточно легко. Что касается кондесаторов, то их проверка сложней. Во-первых, как и в случае с резисторами, надо првоести их осмотр. Если они внешне не вызывают подозрений, тогда ихследует выпаять и проверить с помощью LRC-метра. Обычно выходят из строя электролитические конденсаторы. При этом они раздуваются, когда сгорают. Другая причина их выхода из строя — время. Поэтому в старых приборах часто заменяют все электролитические конденсаторы.
Проверка транзисторов
Транзисторы проверяются аналогично диодам. Сначала проводится внешний осмотр и если он не вызывает подозрений, то транзистор проверяется с помощью мультиметра. Только клемы мультиметра включаются поочерёдно между базой-коллектором, базой-эммитером и коллектором-эммитером. Кстати, у транзисторов бывает интересная неисправность. При проверке транзистор в норме, но когда включается в схему и на неё подается питание, то через некоторое время схема перестает работать. Оказывается, что транзистор нагрелся и в нагретом состоянии ведёт себя как поломанный. Такой транзистор следует заменить.
Радиоэлектроника для новичка.
Первый шаг — он самый сложный…
С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел «Старт«.
На страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.
Если Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!
Ну, а для начала, рекомендуем научиться паять…
Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.
Измерения и измерительная аппаратура
Универсальный тестер радиокомпонентов
Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.
Амперметр
Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.
Вольтметр
Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.
Стрелочный вольтметр
Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.
Как проверить транзистор?
Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.
Как проверить диод?
Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.
Как проверить диодный мост мультиметром?
Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.
Как проверить ИК-приёмник?
Как проверить ИК-приёмник? Методика проверки исправности инфракрасного приёмника с помощью мультиметра и пульта ДУ.
Как узнать мощность трансформатора?
Как узнать мощность трансформатора, не производя сложных расчётов? Здесь вы узнаете о простой методике определения мощности силового трансформатора.
Что такое децибел (дБ)? Перевод из децибел в разы.
Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.
Сокращённая запись численных величин
Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.
Измерение сопротивления цифровым мультиметром
Несколько рекомендаций и советов начинающим радиолюбителям по правильному измерению сопротивления цифровым мультиметром. Общие правила по проверке работоспособности цифрового мультитестера и подготовки его к работе.
Как проверить конденсатор? Проверка конденсаторов цифровым мультиметром
В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.
Эквивалентное последовательное сопротивление конденсатора. Что такое ESR?
Эквивалентное последовательное сопротивление (или ЭПС) — это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.
Мощность резистора.
Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.
Мастерская начинающего радиолюбителя
Как читать принципиальные схемы? Часть 1.
Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.
Как читать электронные схемы? Часть 2.
Вторая часть рассказа о чтении принципиальных схем. Соединения и разъёмы, повторяющиеся элементы, механически связанные элементы, экранированные детали и проводники. Обо всём этом читайте здесь.
Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.
Подробнее…
Универсальное зарядное устройство
Здесь я расскажу об универсальном зарядном устройстве, которым можно заряжать/разряжать практически любые аккумуляторы (Pb, Ni-Cd, Ni-Mh, Li-Po, Li-ion, LiFe).
USB-колонки для ноутбука. Электронная начинка и устройство.
Портативные USB-колонки для ноутбука являются достаточно востребованным атрибутом компьютерной периферии. Из каких электронных компонентов состоят данные устройства? В статье приводится принципиальная схема усилителя портативных компьютерных колонок с питанием от USB-порта.
Типы выпрямителей.
Для преобразования переменного тока в постоянный применяется так называемый выпрямитель. Здесь вы узнаете о типах диодных выпрямителей, а также об их особенностях и сферах применения. Материал будет интересен начинающим радиолюбителям и тем, кто хочет больше узнать о том, какие схемы выпрямителей применяются в электронике и электротехнике.
Маячок на микросхеме.
Здесь показана схема маячка на микросхеме к155ла3. Подробно рассказано о подборе деталей для светодиодного маячка на микросхеме.
Мультивибратор на микросхеме.
Как собрать мультивибратор на микросхеме? Здесь вы узнаете, как собрать мультивибратор на логических микросхемах серии К561, К176 и др.
Разное
Сенсорный RGB контроллер с радиоуправлением.
Трёхцветную светодиодную ленту можно использовать по-разному: фоновая и декоративная подсветка, световое оформление, мягкое освещение и пр. Но после приобретения RGB-ленты возникает вопрос: «А как управлять этой лентой?». Здесь я расскажу о личном опыте применения RGB контроллера с радиоуправлением. Кроме того, разберёмся в том, как подобрать блок питания для светодиодной ленты.
Как устроен фонарик с аккумулятором?
Как научиться электронике? Конечно, на самых простых вещах! Например, на обычном аккумуляторном фонарике. Показана схема аккумуляторного фонаря, а также даны пояснения о назначении радиоэлементов.
Основы практической электроники для чайников
Когда человек начинает интересоваться электроникой и радиотехникой впервые, его глаза разбегаются от огромного количества практических и теоретических знаний. Перед новичком всплывают сотни схем, которые он не понимает, а также множество непонятных формул теории.
Чтобы правильно и качественно научиться понимать электронные схемы и электронику в целом, надо последовательно погружаться в теорию, изучая общие термины и базисные формулы, а затем применять эти данные в простейших практических экспериментах. Для такого погружения были разработаны специальные книги, которые последовательно знакомят с общим курсом предмета, постепенно углубляясь дальше.
В этом материале будет рассмотрена книга «Электроника для чайников», некоторые теоретические моменты и другие книги для изучения.
Схема, описывающая течение тока
Азы электроники для чайников
Книга «Электроника для чайников» содержит сотни микросхем и фотографий, позволяющих даже самому далекому от этого дела человеку разобраться в принципах электроники. Подробнейшие советы и инструкции по проведению опытов помогут разобраться, как функционируют те или иные электронные детали. Также материал содержит рекомендации по выбору важнейших инструментов для работы в этой области и их полные описания.
Важно! По мере ознакомления с каждой главой читатель постепенно погружается в предмет, который увлекает его все больше и больше. Теоретические знания закрепляются практикой путем сборки простейших, но интересных устройств.
Книга содержит следующие разделы:
- «Основы теории электрических цепей», в котором дается определение напряжению, силе тока, проводникам, рассеиваемой мощности.
- «Компоненты электросхем», где рассказывается о том, как простейшие элементы по типу резисторов, транзисторов, диодов и конденсаторов управляют током и задают его характеристики.
- «Электрические схемы универсального предназначения». Здесь будет рассказано, как использовать простейшие цифровые и аналоговые схемы в сложных устройствах.
- «Анализ электрических цепей», который познакомит с основными законами электроники и научит управлять силой тока и напряжением в электрической сети, научит применять эти закономерности на практике.
- «Техника безопасности и рекомендации по ней». Этот раздел обучит безопасной работе с электрическими цепями и током в целом, поможет защищать себя и свои приборы от поражения током.
Обложка книги «Электроника для чайников»
Начало изучения радиотехники начинающими
Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку. Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму. Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать. Постепенное погружение подразумевает:
- Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
- Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
- Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.
Закон Ома
Напряжение и ток – понятия
Для работы любого электронного компонента требуется наличие электрического тока. Он создается электрическим потенциалом, то есть «напором» частиц. Самого потенциала недостаточно для течения тока. Нужен также проводник, способный пропустить его через себя. Если проводника нет, то потенциал уходит в воздух, который очень хорошо препятствует распространению тока. Объекты, которые останавливают ток, называются диэлектриками, а позволяющие протекать через них – проводниками.
Помимо проводника, для течения тока нужна разность потенциалов, возникающая в цепи. Аналогию можно провести с водопроводной трубой. Если с обеих ее сторон подается одинаковый напор, то каким бы сильным он ни был, вода не будет течь. Разность потенциалов называется напряжением. Оно обозначается буквой «U» и измеряется в вольтах. Сила тока же обозначается «I» и измеряется в амперах.
Важно! По общей договоренности считают, что ток течет от плюса к минусу, но на самом деле это условность. Все дело в том, что отрицательные электроны были открыты уже после этой договоренности. В схемах и на практике никто не вспоминает, откуда и куда течет ток.
Наглядное определение напряжения
Источники напряжения и тока
Под источниками часто понимают элементы, которые питают цепь электромагнитной энергией. Эту энергию потребляют пассивные элементы, запасают накопительные и расходуют в активном сопротивлении. Пример источника такой энергии – генератор постоянных, синусоидальных или импульсных сигналов различных форм. Для анализа электронных цепей удобно вводить идеализированные источники тока и напряжения, учитывающие основные свойства реальных источников.
Под источником напряжения понимается элемент цепи, обладающий двумя полюсами. Между этими полюсами образуется напряжение, которое задается некоторыми функциями от времени и не зависит тока в цепи. Этот источник в идеальном состоянии способен отдавать неограниченную мощность. Реальные же источники имеют внутреннее сопротивление, поэтому к ним сопротивление подключается последовательно.
Идеальный источник тока – это элемент цепи, через полюса которого протекает ток с заданной закономерностью изменения во времени. Он не зависит от напряжения между его выводами. Эта независимость означает, что внутренняя проводимость источника равно нулю, а внутреннее сопротивление бесконечно.
Реальный источник тока
Электроника на практике
ПЭ – это раздел электроники, на практике показывающий основные закономерности электричества. Именно в практической части изучается каждый элемент цепи отдельно и применяется на деле в совокупности с другими. С этим названием вышла и книга, в которой можно найти много интересных статей по электротехнике, сформулированных на общедоступном языке.
Материал включает в себя фотографии и опыты, к которым даны полные инструкции. Прочитав его, можно спокойно разбираться во всех электронных и радиотехнических терминах, овладеть пайкой и получить навыки дл чтения простых схем.
Важно! Прошло второе переиздание книги, в котором были отредактированы небольшие ошибки и опечатки, учтены пожелания читателей. Второе издание стало стоящим и полезным учебником для начинающих радиолюбителей.
Какие еще есть книги для изучения электроники
Помимо двух материалов, которые были рассмотрены в этой статье, есть также множество других. Они, возможно, более придутся по душе читателю. Среди них:
- Борисов В. Г. «Юный радиолюбитель».
- Ревич Ю. В. « Занимательная электроника».
- Хоровиц П., Хилл У. «Искусство схемотехники в трех томах».
Обложка книги «Практическая электроника»
Таким образом, практическая электроника не сложна даже для начинающих. Подготовив себя теорией из книг и реализовав все примеры на практике, можно стать настоящим электронщиком.
Как быстро научиться электронике? | Практическая электроника
Как быстро научиться электронике!? “А не сбрендил ли автор?” – подумаете вы. Кто-то может за пару лет научиться программировать микроконтроллеры, а кто-то до сих пор будет собирать пищалки и фонарики. Это уже зависит, конечно, от самого человека. Но давайте вернемся к вопросу… Реально ли можно быстро научиться понимать схемы, собирать по ним электронные безделушки и научиться программировать микроконтроллеры?
Итак, начнем издалека… Жил да был один итальянец. Звали его Вильфредо Парето. И был он очень наблюдательный, любил за всем наблюдать. Вот как-то наблюдал он за всем и всея и понял одну важную вещь во всей Вселенной. А звучит эта вещь как-то так: 20% усилий дают 80% результата, а остальные 80% лишь 20% результата. Хм, звучит неплохо, но так ли это? И соблюдается ли этот закон во всей нашей Вселенной? А давайте проверим! Вот некоторые статистические данные:
• 20 процентов стран, в которых проживает меньше 20 процентов населения земного шара, потребляют 70 процентов мировых запасов энергии, 75 процентов металла и 85 процентов древесины.
• Менее 20 процентов общей площади Земли дают 80 процентов всех минеральных ресурсов.
• Менее 20 процентов войн приносят более 80 процентов человеческих потерь.
• Где бы вы ни жили, 20 процентов облаков производят 80 процентов дождя.
• Меньше 20 процентов записанной музыки исполняется более 80 процентов времени.
• В большинстве художественных музеев 20 процентов сокровищ демонстрируются 80 процентов времени.
• Менее 20 процентов изобретений оказывают более 80 процентов влияния на нашу жизнь. В двадцатом веке атомная энергия и компьютеры обладали большим влиянием, чем, вероятно, сотни тысяч прочих изобретений и новых технологий.
• 20 процентов земли дают более 80 процентов продуктов питания.
• 20 процентов статей “Практической электроники” просматриваются 80 процентами читателей :-).
В действительности весь жизненный цикл, от желудя до гигантского дуба, от маленького зернышка до обширных пшеничных полей, является отражением принципа 80/20, взятом в самом масштабном значении. Незначительные причины — колоссальные результаты. Вскоре это принцип был назван 80/20 или принципом Парето, в честь наблюдательного итальянца.
Чтобы научиться электронике я ходил на радиокружок, читал книжки по электронике, закончил вуз по специальности “Радиотехника”, но про себя я не могу сказать, что я супер-пупер электронщик… Пять лет вуза – сплошная теория, которая вообще нахрен никому не нужна. Зачем надо было заучивать все эти трехэтажные формулы и теоремы? После окончания вуза они все равно выветрились, как семена одуванчика при легком дуновении ветерка, но все таки я благодарен вузу за то, что там меня научили быстро понимать материал и быстро соображать.
Где-то случайно на страницах Рунета я прочитал про принцип Парето и про себя подумал: “Где же зарыты эти 20% в изучении электроники?” Проанализировав время, в течение которого я изучал эту сферу, я все так понял: 20% – это
– сидение по вечерам с паяльником и паяние схем
– радиофорумы и сайты без копипаста с учебников и энциклопедий
– общение с такими же чайниками в электронике
– практика, практика и еще раз ПРАКТИКА!
Ох, а сколько сейчас в Рунете книжек по электронике… “Радиоэлектроника для чайников”, “Занимательная электроника”, “Электроника от А до Я”.
Сколько я их только не перечитал. Да, согласен, есть хорошие книжки, но в основном книжки по электронике написаны каким-нибудь профессором с пятиэтажными формулами и с логарифмическими графиками. Читать книги по электронике? Думаю, это на любителя. Опять же напрашивается принцип 80/20. 20% книг дают 80% знаний. Но эти книги еще надо найти. От себя добавлю, не тратьте зря время, если книжка по электронике вас ну никак не устраивает. Начните читать другую. И все таки, я больше склоняюсь к практической части электроники. Электроника на практике как раз и относится к тем 20%. Вы все еще сидите? А ну-ка бегом паяльник в руки!