Site Loader

АНАЛОГИ ТРАНЗИСТОРОВ

АНАЛОГИ ТРАНЗИСТОРОВ

     Очередной раз столкнувшись с необходимостью искать по справочникам замену импортным и отечественным транзисторам, решил создать таблицу аналогов. Полные и функциональные аналоги. Даташит на каждый транзистор можно посмотреть введя название в поисковую форму datasheet в правой части сайта. Цены на радиодетали смотрите в любом интернет магазине.

ИМПОРТНЫЙ — ОТЕЧЕСТВЕННЫЙ


1561-1008 2Т874А
1561-1015 2Т874Б
2005A 2Т942Б
2023-1,5 2Т9155Б
2023-1,5T КТ9153А
2023-3 2Т9155А
2023-6 2Т9146А, 2Т9158Б
2023-12 2Т9146Б
2023-16 2Т9146В
2307(A) 2Т9103А
46120 2Т962Б
222430 2Т9158А
27AM05 КТ9170А
2L08 2Т937А
2L15A 2Т937Б
2L15B КТ937Б
2N656 КТ6111А, Б
2N657 КТ6111В, Г
2N709 КТ397А
2N735A 2Т3130Г
2N739 КТ117БМ
2N844 КТ117ГМ, 2Т3130Д
2N1051 КТ6110В, Г, Д

2N1573 КТ117ВМ
2N1820 2Т862А
2N1923 КТ117АМ
2N2218 2Т649А, КТ928А
2N2218A КТ647А
2N2219 КТ928Б
2N2219A КТ928В
2N2221 КТ3117А
2N2222A КТ3117Б
2N2224 КТ638А
2N2369 КТ3142А
2N2459 2Т3130В
2N2463 2Т3130Б
2N2615 КТ3132Д
2N2616 КТ3132Е
2N2646 КТ132А
2N2647 КТ132Б
2N2712 КТ315А, Б
2N2784 КТ3101АМ
2N2906 КТ313А
2N2906A КТ313Б, 2Т3160А
2N3054 КТ723А
2N3055 КТ819ГМ
2N3114 КТ6117А
2N3397 КТ315Ж…Р
2N3584 2Т881Д
2N3712 КТ6117Б
2N3725 КТ635Б
2N3737 КТ659А
2N3839 КТ370А
2N3903 КТ645А
2N3904 КТ3117Б, КТ6137А
2N3905 КТ313А
2N3906 КТ313Б, КТ6136А
2N4123 КТ503А
2N4124 КТ503Б
2N4125 КТ502А
2N4126 КТ502Б
2N4128 КТ997В
2N4237 КТ719А
2N4238 КТ721А
2N4260 2Т3135А
2N4261 2Т3135Б
2N4400 КТ660А
2N4401 КТ660А
2N4402 КТ685А
2N4403 КТ685В
2N4411 КТ3127А
2N4440 КТ972В
2N4870 КТ133А
2N4871 КТ133Б
2N4913 КТ866Б
2N4914 КТ890А
2N4915 КТ890Б
2N4934 2Т939А
2N4976 КТ996А
2N5050 2Т892В
2N5086 КТ3107Б
2N5087 КТ3107К
2N5088 КТ3102Е
2N5089 КТ3102Е
2N5102 КТ921А, В
2N5177 2Т998А
2N5210 КТ3102Б
2N5240 КТ898А
2N5400 КТ698И, КТ6116Б
2N5401 КТ698К, КТ6116А
2N5550 КТ6127И, КТ6117Б
2N5551 КТ6127К, КТ6117А
2N5642 2Т945В, Г
2N5643 2Т949А
2N5651 КТ390Б
2N5839 КТ862Б
2N5840 КТ862В
2N5995 КТ972Г
2N5996 2Т945А, Б
2N6077 КТ898Б
2N6180 2Т877Г, КТ9180А, Б
2N6181 КТ9180В, Г
2N6428 КТ3117Б
2N6428A КТ3117Б
2N6515 КТ504Б
2N6516 КТ504В
2N6517 КТ504А
2N6518 КТ505Б
2N6519 КТ505А
2N6520 КТ505А
2N6679 КТ640Б
2N6701 КТ647А
2N7002LT1 КП214А9
2N7089 2П712Б
2SA555 КТ361А, Г, Д
2SA556 КТ361Ж, И
2SA715B КТ664А
2SA715C КТ664Б
2SA715D КТ6102А
2SA733 G КТ3107И
2SA733 L КТ3107И
2SA733 O КТ3107А
2SA733 R КТ3107А
2SA733 Y КТ3107Б
2SA738B КТ6116А, Б
2SA876H КТ313Г
2SA1009AM 2Т887А, Б
2SA1015 КТ502Е
2SA1090 КТ313В
2SA1175 КТ3107
2SA1584 2Т9143А, 2Т974А, Б, В, Г
2SA1660 2Т3129Б, КТ3171А
2SA1682-5 КТ9115А, Б, КТ9143А, Б, В
2SA1815 КТ503Е
2SA2785 КТ3102
2SB596 КТ9176А
2SB834 КТ842В
2SB1220Q 2Т3129А
2SC40 КТ3101АМ
2SC64 КТ6110А, Б
2SC380 КТ315Г
2SC388 КТ315Г
2SC404 КТ359А
2SC495 КТ646А
2SC496 КТ646Б
2SC543-5 КП302А1-Г1
2SC601 КТ396А
2SC633 КТ315А, Б
2SC634 КТ315Д, Е
2SC641 КТ315Ж…Р
2SC651 2Т610А
2SC945G КТ3102Б
2SC945L КТ3102Б
2SC945O КТ3102А
2SC945R КТ3102А
2SC945Y КТ3102Б
2SC976 КТ996Б
2SC1173 КТ862Г
2SC1269 2Т642В
2SC1270 2Т642Г
2SC1334 КТ962А
2SC1365 КТ610А, Б
2SC1436 2Т862В
2SC1440 КТ945Б
2SC1443 КТ879Б
2SC1551 2Т682Б
2SC1552 2Т682В
2SC1624 КТ863Б
2SC1625 КТ863В
2SC1786 2Т862Б
2SC1815BL КТ3102Б
2SC1815GR КТ3102Б
2SC1815L КТ3102Б
2SC1815O КТ3102А
2SC1815Y КТ3102Б
2SC2027 КТ828Б
2SC2033 КТ934В, Д
2SC2093 2Т9102А, Б, 2Т9103Б
2SC2229 КТ940А
2SC2240BL КТ503Е
2SC2240GR КТ503Е
2SC2482 КТ940А
2SC2642 КТ934Б
2SC2688 КТ846
2SC2794 КТ866А
2SC3150K КТ8137А, КТ8144Б
2SC3271 КТ940А
2SC3272 КТ940А
2SC3306 КТ8144А
2SC3455L КТ878В
2SC3596F КТ9142А
2SC3994L КТ878А
2SC4055 КТ8146Б, КТ8150А
2SC4296 КТ858А
2SD401A КТ8146А, КТ8147Б
2SD405B 2Т9117Б
2SD675A КТ945В
2SD691 КТ945Г
2SD734 КТ660Б
2SD814 КТ3176А
2SD1220Q КТ3169А
2SD1279 КТ846Б
2SD1554 КТ838
2SD1761 КТ819
2SD1878 КТ838
2SK49 2П336А1, Б1
2SK444 2П340Б1
2SK508 2П340А1
2SK513 КП803Б
2SK653 3П345А2, Б2, КП364А…И
3SK132 КП403А
3SK162 КП333А
3SR137 КП333Б
A5916 КТ934А
A5918 КТ934Г
AD545 П216Б
A630 КТ946А
AD1202 П213Б
AD1203 П214Б
ADP665 ГТ403Б
ADP666 ГТ403Г
ADP670 П201АЭ
ADP671 П201АЭ
ADP672 П203Э
ADY27 ГТ703Б
AF106 ГТ328Б
AF106A ГТ328В
AF109 ГТ328А
AF139 ГТ346Б
AF178 ГТ309Б
AF200 ГТ328А
AF201 ГТ328А
AF202 ГТ328А
AF239 ГТ346А
AF239S ГТ346А
AF240 ГТ346Б
AF251 ГТ346А
AF252 ГТ346А
AF253 ГТ328А
AF256 ГТ348Б
AF260 П29А
AF261 П30
AF266 МП42Б, МП20А
AF271 ГТ322В
AF272 ГТ322В
AF275 ГТ322Б
AF279 ГТ330Ж
AF280 ГТ330И
AF426 ГТ322Б
AF427 ГТ322Б
AF428 ГТ322Б
AF429 ГТ322Б
AF430 ГТ322В
AF429 ГТ322Б
AF430 ГТ322В
AFY11 ГТ313А
AFY12 ГТ328Б
AFY13 ГТ305В
AFY15 П30
AFY29 ГТ305Б
AFZ11 ГТ309Б
AL100 ГТ806В
AL102 ГТ806В
AL103 ГТ806Б
AM1416-200 2Т975А, Б
AM1416200 2Т986А, Б, 2Т994А, Б, В 2Т9114А, Б
ASX11 МП42Б
ASX12 МП42Б
ASY26 МП42А, МП20А
ASY31 МП42А
ASY33 МП42А, МП20А
ASY34 МП42А, МП20А
ASY35 МП42Б, МП20А
ASY70 МП42
ASY76 ГТ403Б
ASY76 ГТ403Г
ASY80 ГТ403Б
ASZ15 П217А, ГТ701А
ASZ16 П217А
ASZ17 П217А
ASZ18 П217В, ГТ701А
ASZ1015 П217В
ASZ1016 П217В
ASZ1017 П217В
ASZ1018 П217В
AT00510 2Т657А
AT00535 2Т657Б
AT00570 2Т657В
AT270 МП42Б, МП20А
AT275 МП42Б, МП20А
AT12570-5 КТ648А
AU103 ГТ810А
AU104 ГТ810А
AU107 ГТ810А
AU108 ГТ806Б
AU110 ГТ806Д
AU113 ГТ810А
AUY10 П608А, ГТ905А
AUY18 П214А
AUY19 П217
AUY20 П217
AUY21 П210Б
AUY21A П210Б
AUY22 П210Б
AUY22A П210Б
AUY28 П217
AUY35 ГТ806А
AUY38 ГТ806В
BAL004100 КТ970А
BC11 КТ638
BC12 КТ638
BC13 КТ638
BC14 КТ638
BC15 КТ638
BC16 КТ638
BC100 КТ605А
BC101 КТ301Е
BC107 КТ342А
BC107A КТ342А
BC107AP КТ3102А
BC107B КТ342Б
BC107BP КТ3102Б
BC108 КТ342
BC108A КТ342А
BC108AP КТ3102В
BC108B КТ342Б
BC108BP КТ3102В
BC108C КТ342В
BC108CP КТ3102Г
BC109B КТ342Б
BC109BP КТ3102Д, И
BC109C КТ342В
BC109CP КТ3102Е, К
BC140 КТ630Г
BC141 КТ630Г
BC141-16 КТ630Г
BC147A КТ373А
BC147B КТ373Б
BC148A КТ373А
BC148B КТ373Б
BC148C КТ373В
BC149B КТ373Б
BC149C КТ373В
BC157 КТ361Г
BC158A КТ349В
BC160B КТ933Б
BC161B КТ933А
BC167A КТ373А
BC167B КТ373Б
BC168A КТ373А
BC168B КТ373Б
BC168C КТ373В
BC169B КТ373Б
BC169C КТ373В
BC170A КТ375Б
BC170B КТ375Б
BC171A КТ373А
BC171B КТ373Б
BC172A КТ373А
BC172B КТ373Б
BC172C КТ373В
BC173B КТ373Б
BC173C КТ373В
BC174 КТ3102
BC177AP КТ3107А, Б
BC177VIP КТ3107Б, Б
BC178A КТ349В
BC178AP КТ3107В
BC178BP КТ3107Д
BC178VIP КТ3107В, Г
BC179AP КТ3107Е, Д
BC179BP КТ3107Ж, И
BC182 КТ3102
BC182A КТ3102А
BC182B КТ3102Б
BC182C КТ3102Б
BC183A КТ3102А
BC183B КТ3102Б
BC183C КТ3102Б, КТ3102Г
BC184A КТ3102Д
BC184B КТ3102Е
BC192 КТ351Б
BC212A КТ3107Б
BC212B КТ3107И
BC212C КТ3107К
BC213A КТ3107Б
BC213B КТ3107И
BC213C КТ3107К
BC216 КТ351А
BC216A КТ351А
BC218 КТ340Б
BC218A КТ340Б
BC223A КТ660Б
BC223B КТ660Б
BC226 КТ351Б
BC226A КТ351Б
BC234 КТ342А
BC234A КТ342А
BC235 КТ342Б
BC235A КТ342Б
BC237 КТ373Б
BC237A КТ3102А
BC237B КТ3102Б
BC237C КТ3102Б
BC238 КТ373В, КТ3102В
BC238A КТ3102А, КТ3102В
BC238B КТ3102В
BC238C КТ3102В, Г
BC239A КД3102Д
BC239B КТ3102Д, Ж
BC239C КТ3102Д, Е
BC250A КТ361А
BC250B КТ361Б
BC285 П308
BC300 КТ630Б
BC307A КТ3107Б
BC307B КТ3107И
BC307C КТ3107И
BC308 КТ3107Г
BC308A КТ3107Г, КТ3107Б
BC308B КТ3107Д
BC308C КТ3107К
BC309A КТ3107Е
BC309B КТ3107Ж
BC309C КТ3107Л
BC320A КТ3107Б
BC320B КТ3107Д
BC321A КТ3107Б
BC321B КТ3107И
BC321C КТ3107К
BC322B КТ3107Ж
BC322C КТ3107Л
BC327 КТ685А, КТ313
BC327-16 КТ686А
BC327-25 КТ686Б
BC327-40 КТ686В
BC328 КТ313
BC328-16 КТ686Г
BC328-25 КТ686Д
BC328-40 КТ686Е
BC337 КТ3102Б, КТ660А
BC337-16 КТ660А
BC337-25 КТ660А
BC337-40 КТ660А
BC337C КТ660А, КТ928
BC338 КТ645, КТ646, КТ660Б
BC338-16 КТ660Б
BC338-25 КТ660Б
BC338-40 КТ660Б
BC338C КТ660Б
BC355 КТ352Б
BC355A КТ352А
BC382B КТ3102Б
BC382C КТ3102Г
BC383B КТ3102Д
BC383C КТ3102Е
BC384B КТ3102Д
BC384C КТ3102Е
BC440 КТ630
BC446 КТ3107
BC451 КТ3102В
BC453 КТ3102Д
BC454A КТ3107Б
BC454B КТ3107И
BC454C КТ3107К
BC455A КТ3107Г
BC455B КТ3107Д, Е
BC455C КТ3107К
BC456A КТ3107Е
BC456B КТ3107Ж, И
BC456C КТ3107Л
BC513 КТ345А
BC516 КТ686Ж
BC517 КТ645А
BC526C КТ3107К, Л
BC527 КТ342Б, КТ342В
BC527-6 КТ629А, КТ6112А, Б
BC524-10 КТ6112В
BC528 КТ342В
BC546A КТ503Д
BC546B КТ3102Б, КТ3117Б
BC546C КТ3117Б
BC547 КТ3103А
BC547A КТ3102А
BC547B КТ3102Б
BC547C КТ3102Б, Г
BC548 КТ373А
BC548A КТ3102А, В
BC548B КТ3102В
BC548C КТ3102В, Г
BC549A КТ3102В
BC549B КТ3102В
BC549C КТ3102В, КТ3102ДМ
BC550A КТ3102А
BC550B КТ3102Б
BC550C КТ3102Б
BC556 КТ3107Б
BC556A КТ502Д
BC556B КТ502Д
BC556C КТ502Д
BC557 КТ3107
BC557A КТ3107Б
BC557B КТ3107И
BC557C КТ3107И
BC558A КТ3107Г
BC558B КТ3107Д
BC558C КТ3107К
BC559A КТ3107Е
BC559B КТ3107Ж
BC559C КТ3107Л
BC560A КТ3107Б
BC560B КТ3107И
BC560C КТ3107И
BC635 КТ503Б
BC636 КТ502Б
BC637 КТ503Г
BC638 КТ502Г
BC639 КТ503Е
BC640 КТ502Е
BC847A КТ3189А9
BC847B КТ3189Б9
BC847C КТ3189В9
BC857A КТ3129Б9
BC858A КТ3129В9
BC858B КТ3129Г9
BCW31 КТ3130В9
BCW47B КТ3187А
BCW71 КТ3130А9
BCW72 КТ3130Б8
BD135 КТ815Б
BD136 КТ626А, Е, КТ814Б, КТ6109А
BD137 КТ815В
BD138 КТ814В, КТ6104А
BD139 КТ815Г
BD140 КТ626Ж, КТ814Г, КТ6109А
BD165 КТ728А
BD166 КТ720А
BD168 КТ722А
BD170 КТ724А
BD202 2Т818А
BD204 2Т818Б
BD223 КТ856А
BD233 КТ817Б
BD234 КТ816Б
BD235 КТ817В
BD236 КТ816В
BD237 КТ817Г
BD238 КТ816Г
BD243C КТ819
BD370A6 КТ639А
BD372 КТ639Б
BD372A6 КТ639В
BD372A10 КТ639Г, Д
BD522 КП932А
BD676 КТ852Г
BD677 КТ829В
BD678 КТ852В
BD825 2Т642А
BD875 КТ972А
BD876 КТ973А
BD944 КТ856Б
BD946 КТ896А
BD948 КТ896Б
BDT21(A) КТ8101Б
BDV64 КТ8159В
BDV65 КТ8158В
BDW94 КТ818В
BDX78 2Т818В
BDX85 2Т716В
BDX85B 2Т716Б
BDX85C 2Т716А
BF177 КТ671А, 2Т3130Е
BF179B КТ682Б
BF189 КТ3172А
BF244A КП307Ж
BF245 КП303Е
BF258 КТ638Б
BF336 КТ6103А
BF337 КТ6113А, Б, В
BF339 КТ6113Г, Д, Е
BF371 КТ633Б
BD386 КТ629А
BF391 КТ698К
BF392 КТ504Б
BF393 КТ504В
BF410A 2П337АР, БР
BF422 КТ940А
BF423 КТ9115А
BF423S КТ3107К, Л, 2Т3129В, Г, 2Т3152В
BF457 КТ940Б
BF458 КТ940А
BF459 КТ940А
BF469 КТ969А
BF471 КТ846
BF491 КТ6127К
BF492 КТ505Б
BF493 КТ505А
BF506 КТ3126А
BF569 КТ3192А9
BF599 КТ368А9
BF680 КТ3109А
BF970 КТ9109В
BF979 КТ9109Б
BF998 2П347А2, КП402А
BFJ57 КТ6105А
BFL545 КП954А, Б
BFP23 КТ868А, Б
BFP720 КТ315В
BFP722 КТ315Г
BFR30 КП302А1-Г1
BFR37 КТ939А
BFY80 2Т3130А
BLY47A 2Т892А, Б
BSS88 КП504А
BSS92 КП508А
BSS124 КП502
BSS129 КП503А
BSS295 КП505А
BSS315 КП507А
BSW62A КТ361К, Л, М
BSW63A КТ361Н, П
BU108 КТ8107А, Б
BU205 КТ838Б
BU208A КТ8104А
BU289 КТ8101А
BU505 2SD818, BU705, KSD5064
BU508 КТ872А, В
BU508A КТ872Б
BU508AD КТ872А, Б
BU508AW BU508, BU508A
BU508D КТ846, КТ872В
BU508DW BU508AD, BU508D, BU508DR
BU807 КТ8156А
BU2506D КТ8248А
BU2508A КТ8224А
BU2508D КТ8224Б
BU2520DW KSD5090
BU2720DX 2SD2523, 2SD2551, 2SD2552, 2SD2554, BUH517D
BU2725DX 2SD2553
BU4506AF 2SD2381
BU4506AX 2SD819, 2SD1883, 2SD2294, 2SD2368, 2SD2510, 2SD2511, KSD5065
BU4506DX 2SD869, 2SD1877, 2SD2293, 2SD2369, KSD5061, KSD5071
BU4507AX 2SD820, 2SD1884, 2SD2370, 2SD2372, KSD5062, KSD5066, KSD5076
BU4507DX 2SD870, 2SD1878, KSD5072
BU4508AF 2SD2301, 2SD2311
BU4508AX 2SD821, 2SD1885, 2SD2296, 2SD2298, 2SD2373, 2SD2498, 2SD2513
BU4508DF 2SD2299, 2SD2300
BU4508DX 2SD1879, 2SD2371, 2SD2512, BUH515D, KSD5086, S2055AF, S2055F
BU4508DZ 2SD2499, BU508DXI, BUH515 FP, BUH515DX1
BU4522AX 2SD1886, BUH615, KSD5078, KSD5088
BU4522DX 2SD1880, 2SD2348, 2SD2539, BUH615D, KSD5080
BU4523AX 2SD2500, 2SD2515, BUH715
BU4523DX 2SD2349, 2SD2514
BU4525AX 2SD1887
BU4525DX 2SD1881
BUX97 КТ8106А
BUX97A КТ8106Б
BUY90 КТ8107В, Г
BUZ71 КП727А
BV104P КТ8126А
BV2310 2П803А
BVK462 КП959А, Б, В
BVP38 КТ878Б
BVR11 КТ867А
BVT91 КТ879А
BVX14 КТ846В
BVZ90 КП809В, Г
BVZ90(A) КП809Д, Е
CD1412 2Т946А
CD6105 КТ930А
CDR075 2Т9118А
CX954 2Т370Б
D44H7 КТ9181А, Б
D62T4040 КТ886А
DC5108 2Т370А
DC5445 2Т642А
DI4044 КТ222АС-ВС
DVZ216 КП810А
F1014 КП953Г, Д
F1053 2П917А, Б, КП934А
FJ201E 2Т642Б
FLM5964-4C 3П927А2
FLV5964-8C 3П927Б2
HXTR4105 КТ640А
I02015A КТ9116Б
IRF510 КП743А
IRF520 КП744А
IRF530 КП745А, Б
IRF540 КП746А, Б
IRF610 КП748А
IRF620 КП749А
IRF630 КП737А
IRF634 КП737Б
IRF635 КП737В
IRF710 КП731А
IRF720 КП751А
IRF730 КП752А
IRF830 КП753А
IRF5532 КП719Б
IRFBG30 КП803А
IRFR024 КП945А, Б
IRFZ30 КП727Б
IRFZ34 КП727В
IRFZ35 КП727Г
IRFZ40 КП723В
IRFZ44 КП723А
IRFZ45 КП723Б
IRLZ44 КП723Г
IRLZ46 КП741А
IRLZ48 КП741Б
IXTP3N80(A) КП809А,Б
KC508 КТ342А
KF423 2Т3129Д, 2Т3152Б, Е
KSD882G КТ8296Г
KSD882O КТ8296Б
KSD882R КТ8296А
KSD882Y КТ8296В
LDR405B 2Т9118Б
LOT-1000D1-12B КТ979А
LT1739 КТ9171В
MA42181-510 КТ937А
MGF1802 3П606А2…В2
MI10000 КТ892Б, В
MI10004PF1 КТ892А
MIE13005 КТ8121А
MIL13004 КТ8121Б
MJE304 КТ504В
MJE350 КТ505А
MJE13001 КТ538А
MJE13002 КТ8170Б1
MJE13003 КТ8170А1
MJE13004 КТ8164Б
MJE13005 КТ8164А
MJE13007 КТ8126А
MJE2801T КТ9177А
MMBT3904 КТ3197А9
MMBT3906 КТ3196А9
MPF873 2Т987А
MPS706 КТ648А, КТ682А
MPS3866 2Т633А
MPS6512 КТ3184А
MPS6513 КТ3184Б
MPSL07 2Т3164А
MPS A-42 КТ604В
MPS A-43 КТ3127К
MPS A-92 КТ505А
MPS A-93 КТ698К
MRF136 2П942А, Б, В
MRF327 2Т970А
MRF422 КТ9160А, Б, В
MRF430 КТ9181В, Г
MRF515 КТ606А
MRF544 2Т9159А
MRF627 КТ606Б
MRF840 КТ962Б
MRF846 2Т9117В, Г, 2Т9118В
MRF1035MA 2Т962В
MRF1035MC КТ962В
MRF2016M 2Т948А
MSC0204100 КП934В
MSC81325M 2Т9127Д, Е
MSC81400M 2Т9127В, Г
MSC85853 2Т637А
MSM5964-2 3П927В2
MSM5964-5 3П927Г2
MSM5964-10 ЗП927Д2
MTP4N10 2П703Б
MTP5N05 КП932А
MTP8P10 2П712В
MTP12P08 2П712А
NE080481E-12 2Т9109А
NE1010E 2Т962А
NE3001 2Т9119А2
NE24318 2Т640А
NE56755 2Т647А, 2Т648А
NE56787 2Т642А
NE56854 2Т971А
NE56887 2Т634А, КТ634Б
NE57835 2Т682А
NE243188 КТ642А, 2Т643А
NE243287 2Т643Б
NE243499 2Т9108А
NEM2015 КТ948А
NTP7N05 КП922А, КП931 А, Б, В
PBC107B 2Т3158А
PBC108A 2Т3133А
PBC108B 2Т3133А
PDE1001 КТ607Б
PEE1000U 2Т607А
PEE1001T КТ607А
PFP12P08 КП719А
Ph2214-60 2Т9122Б
PKB20010U КТ948Б
PN3691 КТ3117Б
PN5132 КТ3117А
PWB2010U 2Т948Б
PXT2222 КТ3153А
PZB27020V 2Т9122А
S923TS 2Т3152А, Г, Д
S2055AF КТ838
SD1015 КТ9116А
SDR075 2Т9117А
SDT3207 КТ9171А, Б
SDT69504 2Т880Д
SE5035 КТ939Б
SF123A 2Т672А
SF123C КТ6107А
SG769 2Т3133А
SML723 КТ828В
SML804 КТ828А
SML55401 КТ886Б
SS8050B КТ968В, КТ6114А
SS8050C КТ968В, КТ6114Б
SS8050D КТ968В, КТ6114В
SS8550B КТ6127В, КТ6115А
SS8550C КТ6127В, КТ6115Б
SS8550D КТ6127В, КТ6115В
SS9012D КТ681А, КТ6109А
SS9012E КТ681А, КТ6109Б
SS9012F КТ681А, КТ6109В
SS9012G КТ681А, КТ6109Г
SS9012H КТ681А, КТ6109Д
SS9013D КТ680А, КТ6110А
SS9013E КТ680А, КТ6110Б
SS9013F КТ680А, КТ6110В
SS9013G КТ680А, КТ6110Г
SS9013H КТ680А, КТ6110Д
SS9014A КТ3102А, КТ6111А
SS9014B КТ3102Б, КТ6111Б
SS9014C КТ3102Б, КТ6111В
SS9014D КТ3102Б, КТ6111Г
SS9015A КТ3107А, КТ6112А
SS9015B КТ3107И, КТ6112Б
SS9015C КТ3107И, КТ6112В
SS9016D КТ6128А
SS9016E КТ6128Б
SS9016F КТ6128В
SS9016G КТ6128Г
SS9016H КТ6128Д
SS9016I КТ6128Е
SS9018D КТ6113А
SS9018E КТ6113Б
SS9018F КТ6113В
SS9018G КТ6113Г
SS9018H КТ6113Д
SS9018I КТ6113Е
ST1053 КП934Б
STD18202 КТ828Г
STD55476 КТ846А
STH75N05 КП742Б
STH75N05 КП742A
TBC547A КТ3186А
TCC1821G 2Т942А, КТ942В
TCC2023-6L КТ9150А, 2Т9155В
THA-15 2Т9111А
THX-15 2Т9111Б
TIP31A КТ8176А
TIP31B КТ8176Б
TIP31C КТ8176В
TIP32A КТ8177А
TIP32B КТ8177Б
TIP32C КТ8177В
TIP41A КТ8212В
TIP41B КТ8212Б
TIP41C КТ8212А
TIP110 КТ8214В
TIP111 КТ8214Б
TIP112 КТ8214А
TIP120 КТ8116В
TIP121 КТ8116Б
TIP122 КТ8116А, КТ8147А
TIP125 КТ8115В
TIP126 КТ8115Б
TIP127 КТ8115А
TIP132 КТ8116А, КТ8147А
TIP150 КТ8111А
TIP151 КТ8111Б
TN20 2Т9130А
UMIL70 КТ930Б

Партнер статьи: Electronoff.ua

   Справочники радиодеталей

Замена транзисторов биполярных и полевых

Замена и подбор транзисторов биполярных и полевых

В данной статье я хочу описать, на какие критерии нужно обращать внимание при подборе замены транзисторам. Надеюсь, статья будет полезной для начинающих радиолюбителей.  Постараюсь информацию изложить очень кратко, но достаточно для правильного подбора транзистора при отсутствии аналогичного.

Биполярный и полевой транзистор

Биполярный и полевой транзистор

Биполярные транзисторы.

Предлагаю оценку и подбор аналога для замены транзистора начинать с анализа схемы – частота, напряжение, ток. Начнем подбор по быстродействию транзистора, то есть рабочей частоте транзистора. При этом граничная fгр. МГц (эта та на которой его коэффициент усиления равен единице) частота транзистора должна быть больше реальной частоты на которой работает устройство, желательно, во много раз. После подбора по частоте, производим выбор по допустимой мощности, иными словами ток коллектора транзистора должен превышать максимальный ток в первичной цепи. Далее подбираем транзистор по допустимому напряжению эмиттер-коллектор, которое также должно превышать максимальное прикладываемое к транзистору напряжение в любой момент времени. Коэффициент усиления: известно, что ток коллектора у биполярного транзистора с током базы связан через параметр h31. Проще говоря, ток коллектора больше тока базы в h31. Из этого можно сделать вывод, что лучше применять транзисторы значение этого параметра у которых как можно больше. Это позволит повысить КПД за счет снижения затрат на управление транзисторами, да и потом, транзистор с большим значением этого параметра проще ввести в режим насыщения. Далее чтобы меньше мощности потерять на транзисторе (при этом он будет меньше греться), нужно чтобы его напряжение насыщения (напряжение коллектор-эмиттер в открытом состоянии) было как можно меньше, ведь мощность выделяемая на транзисторе, равна произведению тока, протекающего через него, и падению напряжения на нем и еще, максимальная мощность рассеяния коллектора (приводится в справочнике) должна быть не меньше реально выделяемой, иначе транзистор не справится (мгновенно выйдет из строя). В статье «Транзисторы для импульсных блоков питания телевизоров. Замена» я уже описывал приемы замены транзисторов.

Полевые транзисторы.

Преимуществ перед биполярными у них много, а самое главное, цена ниже. Наиболее важные преимущества полевых транзисторов, на мой взгляд следующие:

  1. Он управляется не током, а напряжением (электрическим полем), это значительно упрощает схему и снижает затрачиваемую на управление мощность.
  2. В полевых транзисторах нет неосновных носителей, поэтому они могут переключаться с гораздо более высокой скоростью.
  3. Повышенная теплоустойчивость. Рост температуры полевого транзистора при подаче на него напряжения приведет, согласно закону Ома, к увеличению сопротивления открытого транзистора и, соответственно, к уменьшению тока.

Термоустойчивость полевого транзистора помогает разработчику при параллельном соединении приборов для увеличения нагрузочной способности. Можно включать параллельно достаточно большое число полевиков без выравнивающих резисторов в силовых цепях и при этом не опасаться рассиметрирования токов, что очень опасно для биполярных транзисторов. Однако параллельное соединение полевых транзисторов тоже имеет свои особенности.

Что касается подбора транзисторов для замены, то порядок примерно тот же самый, т е быстродействие затем мощность. Напряжение исток-сток также выбирается из тех же соображений, что и для биполярных, максимальный ток стока также выбирается с запасом, здесь это выбрать гораздо проще, т к полевые транзисторы имеют довольно большие допустимые токи стока и их разнообразие очень большое, чего не скажешь про биполярные — биполярные транзисторы с током коллектора больше 20 А, это уже редкость. Полевые транзисторы не имеют напряжения насыщения, у них есть аналогичный параметр — сопротивление открытого канала, у транзисторов с допустимым напряжением до 150 В оно составляет десятки миллиом, у более высоковольтных — омы. Чем меньше значение этого сопротивления, тем ближе параметры транзистора к идеальным и тем меньше потери. Мощность потерь (рассеяния) в открытом состоянии определяется как квадрат тока умноженный на сопротивление открытого канала. Естественно, чем меньше будет это значение, тем меньше будет транзистор греться. Аналог параметра h31 у полевого транзистора это крутизна характеристики. Этот параметр связывает между собой ток стока и напряжение на затворе, иными словами ток стока определяется как произведение напряжения на затворе и крутизны характеристики транзистора. Как правило ключевые транзисторы имеют большую крутизну характеристики. Еще у этого вида транзисторов есть так называемое порговое напряжение на затворе — это минимальное значения управляющего напряжения достаточное для введения транзистора в абсолютно открытый режим (насыщение). При подборе необходимо учитывать, чтобы минимальное напряжение на затворе не было ниже порогового, иначе вся мощность будет выделяться на транзисторе а не на нагрузке, т к он не полностью открыт. Такой режим работы, как правило, транзисторы не выдерживают — после включения выгорают с небольшой (или большой) задержкой. Параметр мощность рассеяния коллектора для биполярного транзистора имеет аналогичный для полевого — мощность рассеяния стока. Параметры абсолютно идентичны.

Активней пользуйтесь справочниками и интернетом, информации по параметрам транзисторов сейчас достаточно.

data-matched-content-rows-num=»4,8″ data-matched-content-columns-num=»1,4″ data-matched-content-ui-type=»image_stacked» data-ad-format=»autorelaxed»>

Чем заменить транзистор? — журнал «Рутвет»

  1. Какими же транзисторами можно заменить?
  2. Полевые транзисторы
  3. Чем можно заменить полевые транзисторы?

Почему у людей возникает вопрос, о том, как и чем можно заменить транзистор? Возникает он из-за того, что случается так, что при работе с чем-то или при ремонте какого-либо предмета, к примеру, при починке импульсивного блока питания, происходит так, что в магазине нет нужного филдистора, который был поломан. Мастер вынужден искать выход, ведь починить он обязан вовремя. Поэтому этот человек начинает искать аналоги, те, что есть в наличии.

чем можно заменить транзистор

Случается даже так, что прибор, который был прежде, просто перестали производить, по крайней мере, поставлять в ваш город. И, конечно же, вариантов других не остается, как просто пытаться найти аналог, но это не из самых простых задач, на самом деле. Нужно уметь смотреть на параметры каждого такого предмета, и только тогда уже делать выбор в пользу какого-то одного.

Какими же транзисторами можно заменить?

Для начала разберем биполярные транзисторы, самые распространенные. Главное, что важно знать о них:

  • первым делом необходимо выяснить, каково максимальное его напряжение;
  • после чего нужно проверить, как обстоят дела с током коллектора;
  • затем выяснение, насколько рассеиваема мощность, и какова частота;
  • ну и, наконец, то как передается ток.

Вначале, конечно же, нужно начать с оценивания характеристики в общем. Самыми главными и первыми шагами будут: выяснение частоты и быстроты. Будет очень хорошо, если частоты будут отличаться, то есть рабочая будет меньше, чем граничная частота. Так все функционировать будет лучше.

Ну а если же будет наоборот, и рабочая с граничной будут практически на одной частоте, то в таком случае необходимо будет невероятно большое количество энергии, так как коэффициент передачи по току будет иметь свою определенную цель, он будет идти к 1. Поэтому необходимо, чтобы граничная частота того аналога, которого вы подбираете, была равна частоте этого предмета, который был прежде. Но можно сделать и так, чтобы частота была больше.

Далее обязательно обратить свое внимание на мощность. То есть нужно выяснить максимальный ток коллектора и напряжение коллектора-эмиттера. Максимальный ток коллектора обязан быть намного выше тока данного прибора. С напряжением же все, наоборот, у рабочего прибора должно оно быть выше.

Смотрите видео о том, чем заменить советские радиодетали.

Если же вы используете даташит для поиска аналога, то, конечно же, важно понимать, что все показатели аналога должны соответствовать прежнему прибору, хорошо было бы, даже если превосходили бы.

К примеру, если же случилась неполадка с транзистором, а напряжение коллектор-эмиттер было около 80 вольт, а ток 10 ампер, то соответственно по данным должен составлять 15 ампер по току, а по напряжению около 230 вольт. И этот аналог пойдет для замены полностью.

Какими же транзисторами можно заменить?

К примеру, очень часто 2N3055 заменяется на КТ819ГМ, и эти полупроводниковые компоненты спокойно могут друг друга заменять. Если говорить о схожести данных усилителей, то оба они считаются идеальной заменой друг друга и выйдут довольно эффективными, и они не принесут особых проблем.

Полевые транзисторы

Так же очень распространенные на сегодняшний день компоненты. Их применяют даже чаще, чем биполярные. К примеру, инверторы теперь в основном только с полевыми, то есть биполярные приборы они уже стеснили. И если у вас возникает вопрос, можно ли заменить полевой транзистор биполярным, то ответ будет положительным. Однако в полевом плюсов намного больше, чем в биполярном.

Полевые усилители поглощают энергии намного меньше, чем биполярные, так как полевые управление фокусируют на напряжении и электрическим полем заряда, в то время когда биполярные же держатся на токе базы. Поэтому их предпочитают больше. Полевые транзисторы даже переключаются в разы быстрее, чем биполярные. К тому же они имеют хорошую термоустойчивость. И для того, чтобы переключить направления электрического тока, полевые транзисторы вправе соединяться параллельно и без резисторов, просто нужен драйвер, подходящий для этого.

Если же говорить о замене полевых триодов, то и здесь есть способ поиска их аналогов. В принципе в поиске с биполярными не сильно отличается, можно сказать даже, что будет практически таким же. Но разница небольшая есть: нет той проблемы с передачей тока, как у биполярного транзистора. Нельзя забывать о сток-исток, нужно помнить о запасе.

Читайте о том, как правильно произвести замеры тестером.
А также о том, как собрать катушку Тесла своими руками.

К тому же у полевого есть такой параметр, как сопротивление открытого канала. Вот от него легко определить, что будет с мощностью, и как она будет рассеиваться. Ну и, конечно же, очень важно рассчитывать это сопротивление открытого канала, так как можно потерять много энергии и напряжении при переходе не будет слишком высоким.

Чем можно заменить полевые транзисторы?

Крутизна S также очень важна при поиске аналога. Данный параметр будет показывать состояние тока стока при напряжении затвора. Это позволит определить, сколько понадобится напряжения для коммутации.

Чем можно заменить полевые транзисторы?

Помните, что выбирать важно и исходя от порогового напряжения затвора, если напряжение будет в разы меньше порогового, то нормального функционирования от вашего аналога ждать не придется. Цепь при получении напряжения не получит нужного и вся мощность, точнее ее рассеивание останется на приборе, а для него этого нежелательно, ведь может случиться перегрев.

В даташите еще говорится, что мощность рассеяния обоих приборов одинакова: и зависит это от корпуса. Если корпус большой, то получение тепловой мощности будет безопаснее рассеиваться.

Емкость затвора так же очень важна в случае данного предмета. Очень важно, чтобы затвор не был крайне тяжелым, и необходимо помнить об этом при выборе. Будет очень хорошо, если он будет меньше в разы, так как это принесет удобство и легкость в использовании данного механизма. Однако если вам нет необходимости перепаивать, то спокойно можно выбрать размер, который идеально подойдет, схожий с оригиналом.

К примеру, сейчас довольно часто меняют IRFP460 на более новую и современную 20N50, так как у него затвор крайне легкий. Опять-таки даташит скажет то же самое, указав на массу схожести, несмотря на преимущество второго.

А какой транзистор планируете заменить вы? Оставьте свой ответ в комментариях! А также смотрите видео о том, как правильно подобрать полевые транзисторы.

ЗАМЕНА ТРАНЗИСТОРА ДАРЛИНГТОНА ПОЛЕВЫМИ ТРАНЗИСТОРАМИ – СДЕЛАЙ САМ

Биполярные транзисторы, включенные по схеме Дарлингтона, т. е. соединенные с общим коллектором (транзистор Дарлингтона), часто являются составным элементов радиолюбительских конструкций. Как известно, при таком включении коэффициент усиления по току, как правило, увеличивается в десятки раз. Однако добиться значительного запаса работоспособности по напряжению, воздействующему на каскад, удается не всегда. Усилители по схеме Дарлингтона, состоящие из двух биполярных транзисторов (Рис. 1.23), часто выходят из строя при воздействии импульсного напряжения, даже если оно не превышает значение электрических параметров, указанных в справочной литературе.

С этим неприятным эффектом можно бороться разными способами. Одним из них — самым простым — является наличие в паре транзистора с большим (в несколько раз) запасом ресурса по напряжению коллектор-эмиттер. Относительно высокая стоимость таких «высоковольтных» транзисторов приводит к увеличению себестоимости конструкции. Можно, конечно, приобрести специальные составные кремниевые транзисторы в одном корпусе, например: КТ712, КТ825, КТ827, КТ829, КТ834, КТ848, КТ852, КТ853, КТ894, КТ897, КТ898, КТ972, КТ973 и др. Этот список включает мощные и средней мощности приборы, разработанные практически для всего спектра радиотехнических устройств. А можно воспользоваться классической схемой Дарлингтона — с двумя параллельно включенными полевыми транзисторами типа КП501В — или использовать приборы КП501А…В, КП540 и другие с аналогичными электрическими характеристиками (Рис. 1.24). При этом вывод затвора подключают вместо базы VT1, а вывод истока — вместо эмиттера VT2, вывод стока — вместо объединенных коллекторов VT1, VT2.

Рис. 1.23. Схема включения транзисторов по схеме Дарлингтона

Рис. 1.24. Замена полевыми транзисторами составного транзистора по схеме Дарлингтона

После такой несложной доработки, т.е. замены узлов в электрических схемах, универсального применения, усилитель тока на транзисторах VT1, VT2 не выходит из строя даже при 10-кратной и более перегрузке по напряжению. Причем сопротивление ограничительного резистора в цепи затвора VT1 также увеличивается в несколько раз. Это приводит к тому, что полевые транзисторы имеют более высокое входное сопротивление и, как следствие, выдерживают перегрузки при импульсном характере управления данным электронным узлом.

Коэффициент усиления по току полученного каскада не менее 50. Увеличивается прямо пропорционально увеличению напряжения питания узла.

Элементы схемы и их назначение

Резистор Rt. Сопротивление резистора           зависит от характера на грузки и выбирается таким, чтобы на выводе затвора параллельно соединенных полевых транзисторов присутствовало 0,5 Упит. При этом максимальный ток не должен превышать 0.2 А (в случае применения полевого транзистора из серии КП501).

Полевые транзисторы VT1, VT2. При отсутствии дискретных транзисторов типа КП501А…В можно без потери качества работы устройства использовать микросхему 1014КТ1В. В отличие, например, от 1014КТ1А и 1014КТ1Б эта микросхема выдерживает более высокие перегрузки по приложенному напряжению импульсного характера — до 200 В постоянного напряжения. Цоколевка включения транзисторов микросхемы 1014КТ1А…1014К1В показана на Рис. 1.25.

Так же как и в предыдущем варианте (Рис. 1.24), полевые транзисторы включают параллельно.

Рис. 1.25.

Цоколевка полевых транзисторов в микросхеме 1014КТ1А…В

Автор опробовал десятки электронных узлов, включенных по схеме Дарлингтона. Такие узлы используются в радиолюбительских конструкциях в качестве токовых ключей аналогично составным транзисторам, включенным по схеме Дарлингтона. К перечисленным выше особенностям полевых транзисторов можно добавить их энергоэкономичность, так как в закрытом состоянии из-за высокого входного сопротивления они практически не потребляют тока. Что касается стоимости таких транзисторов, то сегодня она практически такая же, как и стоимость среднемощных транзисторов типа КТ815, КТ817, КТ819 (и аналогичным им), которые принято использовать в качестве усилителя тока для управления устройствами нагрузки.

Источник: Кяшкаров А. П., Собери сам: Электронные конструкции за один вечер. — М.: Издательский дом «Додэка-ХХ1», 2007. — 224 с.: ил. (Серия «Собери сам»).

Как заменить полевой транзистор на биполярный

Рис.2
Корпус типа DPAK, так же известен как TO-252-3.
Наиболее часто используется, представляет собой уменьшенный D²PAK.

Рис.3
Корпус типа SO-8.
Встречается на материнских платах и видеокартах, чаще на последних. Внутри может скрываться один или два полевых транзистора.

Рис.4
SuperSO-8, оно же — TDSON-8. Отличается от SO-8 тем, что 4 вывода соединены с подложкой транзистора, что облегчает температурный режим. Характерен для продуктов фирмы Infineon. Легко заменяется на аналог в корпусе SO-8

Рис.5
IPAK. Другое название — TO-251-3. По сути — полный аналог DPAK, но с полноценной второй ногой. Такой тип транзисторов очень любит использовать фирма Интел на ряде своих плат

Рис.A Первый вариант, один N-канальный транзистор.

Рис.B
Второй, два N-канальных транзистора.

Рис.C
Третий, N-канальный плюс P-канальный транзисторы в одном флаконе.

Рис.D
Корпус типа LFPAK или SOT669.
Частный случай корпуса SO-8 с одним N-канальным транзистором, где ножки с 5″ой по 8″ю заменены на теплоотводный фланец. На данный момент замечен только на видеокартах.

Как правило на место прибора в корпусе D²PAK без проблем ставиться аналогичный но в корпусе DPAK.

При определенной сноровке можно на посадочное место под DPAK «раскорячить» D²PAK, хотя выглядеть будет не эстетично.

LFPAK естественно без проблем меняется на SO-8 с одним N-канальным транзистором, и наоборот.

В остальных случаях необходимо подбирать прибор в полностью аналогичном корпусе.

Где может использоваться полевый транзистор

Выше мы договорись что рассматриваем только подсистему питания, посему вариантов немного:

  • Импульсный преобразователь напряжения.
  • Линейный стабилизатор напряжения.
  • Ключ в цепях коммутации напряжения.

Система маркировки полевых транзисторов

Рассмотрим оную на примере. Пускай, у нас есть 20N03. Это означает, что он рассчитан на напряжение (Vds)

20A. Буковка N означает, что это N-канальный транзистор. Но из любого правила есть исключения, так, например, фирма Infineon указывает в маркировке полевика Rds, а не максимальный ток.

IPP15 N03 Vds=30V Rds=12.6mΩ >IPB15 N03 L — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=12.6mΩ >SPI80 N03 S2L-05 — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=5.2mΩ >NTD40 N03 R — On Semi Power MOSFET 45 Amps, 25 Volts Rds=12.6mΩ
STD10 PF06 — ST STripFET™ II Power P-channel MOSFET 60V 0.18Ω 10A IPAK/DPAK

Итак, в случае маркировки XXYZZ мы можем утверждать, что XX — или Rds, или Id Y — тип канала ZZ — Vds

Основные характеристики N-канального полевого транзистора

В общем различных параметров важных, и не очень, у полевых транзисторов много. Мы подойдем к вопросу с прикладной точки зрения и ограничимся рассмотрением необходимых нам практически параметров.

  • Vds — Drain to Source Voltage — максимальное напряжение сток-исток.
  • Vgs — Gate to Source Voltage — максимальное напряжение затвор-исток.
  • Id — Drain Current — максимальный ток стока.
  • Vgs(th) — Gate to Source Threshold Voltage — пороговое напряжение затвор-исток при котором начинает открываться переход сток-исток.
  • Rds(on) — Drain to Source On Resistance — сопротивление перехода сток-исток в открытом состоянии.
  • Q(tot) — Total Gate Charge — полный заряд затвора.

Хочу обратить внимание что параметр Rds(on) может указываться при разных напряжениях затвор-исток, как правило это 10 и 4.5 вольта, это важная особенность которую нужно обязательно учитывать.

Степень критичности параметров в разных применениях

  • Vds, Vgs — параметры всегда учитываемые, т.к. если если их превысить транзистор выходит из строя. Должен быть больше либо равен аналогичному параметру заменяемого прибора. В случае работы в импульсном преобразователе не стоит использовать приборы с запасом по рабочему напряжению более чем в 2-2.5 раза, т.к. приборы с большим рабочим напряжением, как правило, имеют худшие скоростные характеристики.
  • Id — параметр важный только в импульсном преобразователе, т.к. в остальных случаях ток крайне редко превышает 10% от номинального даже не слишком мощных приборов. Должен быть больше либо равен аналогичному параметру заменяемого прибора в случае с импульсным преобразователем, и быть не меньше 10 ампер в остальных случаях.
  • Vgs(th) — имеет, некоторое, значение при работе в линейном стабилизаторе, т.к. только там транзистор работает в активном, а не ключевом, режиме. Хотя практически logic-level полевых транзисторов которые могут не подойти по этому параметру не выпускается. Данный параметр критичен для линейных стабилизаторов, где в качестве управляющего элемента используется TL431 с питанием от +5В (к примеру, такая схема часто используется в линейных стабилизаторах напряжения на видеокартах)
  • Rds(on) — от этого параметра прямо-пропорционально зависит нагрев транзистора работающего в ключевом режиме, при прохождении тока через открытый канал. В данном случае чем меньше — тем лучше . ВНИМАНИЕ не следует забывать что защита от токовой перегрузки и КЗ ШИМ серий HIP63** и некоторых других исползует Rds(on) нижнего ключей (те что с дросселя на землю) в качестве датчика тока-зачителное его изменение изменит ток защиты и либо защита по току-будет работать раньше чем надо-результат просадки питания на пиках нагрузки-либо ток КЗ столь велик что убьет ключи раньше чем мама отключит БП снятием PW-ON поэтому строго говоря надо еще и Risen у шимки поменять(но это никто обычно не делает!)
  • Q(tot) — влияет на время перезаряда затвора, и соотвественно способно затягивать открытия и закрытия транзистора. Опять же чем меньше — тем лучше .

Документ от Fairchild Selection of MOSFETs in Switch Mode DC-DC Converters — рекомендации по подбору (а значит и замене) MOSFETs.

За изобретение этого компонента учёные-физики получили Нобелевскую премию, благодаря чему была совершена революция в появлении интегральных схем и компьютеров. Транзисторы используют для управления током в электрической цепи. Они могут усиливать, преобразовывать и генерировать электрические сигналы. Для увеличения выходного тока и напряжения эти приборы применяют в области цифровой связи, в процессорах, цифровой технике. Используют полевые (униполярные) и биполярные приборы.

Транзисторы различаются по частоте (низко- и высокочастотные), по мощности, по материалам (германиевые, кремниевые, арсенидо-галлиевые, получаемые путём соединени галлия и мышьяка). В матрицах дисплеев на данный момент используют приборы на основе прозрачных полупроводников, предполагается в скором времени применять полупроводниковые полимеры.

У радиолюбителей иногда возникают трудности с заменой зарубежных, в частности японских, транзисторов. В бытовой технике используется большое количество различных приборов полупроводникового типа. Больше всего производят биполярных транзисторов (обратной и прямой проводимости). Их выпускает электронная промышленность в странах Северной Америки, Европы и Япония. На корпусах приборов можно встретить маркировку, одинаковую для Японии и Южной Кореи.

В зависимости от сложности предстоящего ремонта аппаратуры, можно рассмотреть общие подходы к замене транзисторов. В первом случае на корпусе транзистора есть маркировка, по которой определяется его тип, и этот прибор можно приобрести по небольшой цене на обычном рынке радиоприборов. В более сложном случае тип прибора легко определить, но трудно приобрести в силу дороговизны или отсутствия на отечественном рынке. В сложных случаях не возможно определить тип прибора или отсутствует инструкция по его эксплуатации.

Трудность заключается в том, что зачастую приходится заменять мощные импульсные транзисторы зарубежного производства отечественными аналогами, которые не всегда соответствуют всем необходимым параметрам. Например, трудно подобрать прибор в компактных корпусах и корпусах, сделанных из пластмассы, пластика. Но с лёгкостью можно подобрать отечественную замену приборам типа ТО-3 в металлическом корпусе. Важно учитывать размеры прибора, они должны совпадать.

Правильная замена прибора происходит при соблюдении соответствия изоляции двух вариантов (поломанного и купленного), способ соединения коллектора с пластиной корпуса, которая отводит тепло.

Если прибор, требующий замены, снабжён корпусом, обеспечивающим изоляцию, а его аналог имеет лишь в креплении пластиковую втулку, то устанавливаем для защиты прокладку из фторопласта или слюды. Фторопластом делают первичную обмотку высоковольтных проводов благодаря высокой способности к изоляции тока. Может понадобиться изолировать винт крепления, если нет изоляции втулки. Важно помнить при замене прибора, что транзисторы в металлическом корпусе лучше выполняют теплоотвод, чем их аналоги в пластмассовом корпусе.

При замене прибора вначале определитесь, какие параметры наиболее важны для данной техники, и руководствуйтесь ими в выборе заменителя. Для этого нужно иметь конкретные представления о схемах и параметрах включении транзистора. В ремонте чаще всего приходится заменять приборы для бытовой техники, видеомагнитофонов, телевизоров (выходные каскады импульсных блоков питания).

Для бытовой техники лучше всего подходят высокочастотные транзисторы . По указаниям на приборе можно определить, как изолирован корпус, насколько шумно работает прибор, где его использовать (например, для средств связи применяют тип G). Но в приборах со встроенными резисторами, диодами и прочими модификациями маркировка может отличаться от общепринятой. Так фирмы NEC и TOSHIBA имеют собственные обозначения высоко- и низкочастотных транзисторов.

Поломка полупроводникового прибора может произойти из-за перегрузок, колебаний напряжения в сети. Поэтому нужно искать замену с защитными резисторами, диодами, учитывать уровень сопротивления. Чтобы корпус не перегревался и не произошла повторная поломка, нужен быстродействующий прибор.

Когда заменяем транзистор, нужно учесть коэффициент передачи по току, рабочее напряжение на коллекторе прибора. Желательно, чтобы замена не была худшего качества, чем оригинал. Или включить параллельно несколько приборов меньшей мощности, но одного типа. При ошибке в установке аналога может происходить перегревание системы.

Полевые транзисторы заменить труднее, нежели биполярные. Их разновидностей меньше, а параметры значительно различаются. Выделяют два основных типа: с изолированным затвором и с р-n переходом. На этих приборах базируется вся современная цифровая техника. Их изготавливают на кристаллах кремния и применяют для построения схем процессора, памяти, логики. Однако кремниевые транзисторы обычно не работают при напряжениях выше 1 000 вольт.

Идет заблужденце что биполярники лучше менять на полевые.И чем лучше?

Преимущество полевого транзистора в том, что он имеет высокое входное сопротивление, и управляется он не током а напряжением, что приближает его скорее к радиолампе, чем к транзистору.

Есть сообщения, в этом форуме тоже, что в драйверах УМ и в собственно УМ, меняют, допустим 2sc1969 на rd16

БЕЗ ИЗМЕНЕНИЯ обвязки — один к одному!!

Какие будут мнения, опыт замены и т.п. информация.

Шутники-однако ;-)!
Цепи смещения в любом случае необходимо корректировать, если не стоит задача загнать каскад в режим «С».
Усиления каскада вполне хватает не изменяя коэффициента трансформации в биноклях (количество витков).

Это я забыл, виноват, погорячился, — на затвор во всех случаях подают напряжение с потенциометра — задают рабочую точку (ток покоя).

Остальное — входной трансформатор, например — без изменений.

Трансформатор можно не трогать.

Что, входные сопротивления каскадов на БT и ПТ — одинаковы? Из-за глубокой ООС, что-ли?

Если ток потребления полевым транзистором (в оконечном каскаде УМВЧ) такой же как и у биполярного, то выходной трансформатор остаётся без изменения.

Это понятно — он определён сопротивлением нагрузки оконечного каякада — т.е. мощностью при заданном напряжении питания.

А вот с трансформатором по входу — надо смотреть по схемотехнике. Если транзистор

В этом и была суть моего вопроса. Однако утверждается, ссылаясь на многократную практику — не надо менять. И уменя сомнения. Ведь надо сохранить сопротивление нагрузки драйвера.

Речь в теме идёт о драйвере оконечного каскада!

Да, о согласовании драйвера с иным входным сопротивлением оконечника после замены БТ на ПТ.

«Проверено электроникой»- работает! Появляется неравномерность, уменьшается усиление, но каскад остаётся рабочим.

Ага, всё-таки есть различия!!

Ясненько-понятненько.
А rd16, к примеру, не подделывают?

Мне едут из Китая 2sc1969 — массовые от сибишек (5 шт вместо необходимых 2-х) на замену недоставаемых 2sc2509. Бум надеяться на рабочую подделку. Надо овса Году Лошади поставить.

Допустим для согласования 50ом с бполярным транзистором с входным сопротивлением 100 ом имеем трансформатор 1:2:2 (50:100:100 ом). Вот и посчитайте какой должен быть коэфф.тр при входном сопротивлении полевого транзистора хотя бы 1 Мом. Как будете мотать такое количество витков и на каком сердечнике?
Это что за биполярный транзистор, который имеет входное сопротивление 100 ом:oops:?
Вы же в курсе, что согласование в таких каскадах идёт на единицы ом;-), а в полевых? Там ещё ой как многоО факторов согласования.
Что бы такие опусы больше не писать зазря, не терять драгоценное время, желательно поконкретнее.
А то что современные полевые транзисторы стали надёжнее биполярных- это факт.

Добавлено через 5 минут(ы):

Нет ну были бы они дешевые базвра нет стоят почти также и нафик мараковать.
А где их взять?

То Gene RZ3CC
Не надо путать спец БТ с бытовушными ПТ и комерцию с радиолюбительством. В спец ПТ (имел с ними возможность работать) между стоком и истоком не было ни какой разницы. Что касается линейности . То по сравнению с ГУ-34 в УМ и ГУ-33 в драйвере, айкомовские лампочки стоят в очредь за тухлой селедкой. В том числе и транзисторы.

Добавлено через 10 минут(ы):

PS.
Если брать транзисторы, то многое зависит от схемотехники. В схеме УМ (по наводке Полякова) по схеме управляемого мощного автогенератора на полевом транзисторе мне удалось получить IMD = не хуже 70дБ.

В чем проблема? Входное сопротивление каскада на полевом транзисторе высокое. Поставьте в цепь затвора расчетное сопротивление, равное выходному сопротивлению согласующего тр-ра, создайте на нем падение напряжения, необходимое для нужного тока покоя и все.. Или включите его с блокировкой по ВЧ в цепь установки тока покоя. Цепь ООС также влияет на входное сопротивление каскада.

Добавлено через 11 минут(ы):

Есть и «минус» замены транзисторов в драйвере с биполярных на полевые. Если в стационаре это допустимо, в походном варианте это не очень хорошо. Дело в том, что ток покоя достаточный для биполярных транзисторов порядка 30 -80 мА, в схеме с полевыми приходится увеличивать раз в десять: до 300 — 800 мА.

А как тогда быть с драйверами в шпионских «микро жучках»? Ведь там каждый микроампер на учете.

Добавлено через 10 минут(ы):

Так в таких УМ, поняие «уровень ИМИ», просто не должно существовать. Как например, для простого тонального сигнала. Просто один тон.
С каких это пор это SSB стал однотональным:ржач:? Для начала почитайте статью В.Т. Полякова в журнале Радио №4 за 1984г стр.14. Если разберетесь тогда и можно будет по дискутировать как это реализуется на практике.

А кто Вам сказал что я снимаю с драйвера 10Вт? А я- снимаю. :super:

И при чем тут такая мощность? А при том, что я этим драйвером оконечник запитываю. Вы, похоже, услышали звон, да не поняли, где он. lol:Вот сюда http://v__e_3kf.build2.ru/viewtopic.php? >

Для начала почитайте статью В.Т. Полякова в журнале Радио №4 за 1984г стр.14. Если разберетесь
А вы то сами разобрались? И что это за УМ, на основе автогенератора. И откуда там такие характеристики по ИМИ, на достаточно посредственных транзисторах.

Поставьте в цепь затвора расчетное сопротивление, равное выходному сопротивлению согласующего тр-ра, создайте на нем падение напряжения, необходимое для нужного тока покоя и все.
И получите весьма посредственных характеристики по линейности. Плюс, входной импеданс такого каскада, будет довольно сильно меняться от частоты. Если же резистор поставить в цепь ООС, а а на массу резистор с номиналом 1 кОм или поболее, то входное сопротивление будет уже определяться резисторами сигнал-затвор/выход затвор. И при той же мощности раскачки мы получим гораздо более линейную АЧХ, почти активное входное сопротивление в гораздо более широком диапазоне частот, ну и более высокую линейность. Вы посмотрите все современные схемы линейных УМ. Они именно так и строятся.

Дело в том, что ток покоя достаточный для биполярных транзисторов порядка 30 -80 мА, в схеме с полевыми приходится увеличивать раз в десять: до 300 — 800 мА
А вы попробуйте сравнить транзисторы именно предназначенные для линейного усиления. Например, для MRF 150, уровень линейности нормирован при токе покоя порядка 200 ма. Что они там обеспечат при большем начальном токе, в справочнике не оговорено.

Полевик он как лампа высокое входное и т.д.. Не мешает добавлять- высокое входное на низких частотах. 😉 Понятно, что побольше, чем у биполярного, но, явно поменьше, чем у лампы.

Это новый тип транзистора Пойду за цилькуляторами. рж ач:

Добавлено через 29 минут(ы):

Что, входные сопротивления каскадов на БT и ПТ — одинаковы? Из-за глубокой ООС, что-ли?

Промоделировать, что-ли. Почти под ноль выводятся входные сопротивления, приведённые что к затвору, что к базе, в мощных усилителях, фактически, с достаточной для практики точностью, входное сопротивление определяется последовательным резистором от вторичной обмотки трансформатора драйверера к базе (затвору). Понятно, что если у полевика снять параллельную ООС, то входное сопротивление резко вырастет, но по жизни, для удерживая ровной АЧХ хотя бы в диапазоне 1..30 МГц, и более- менее приемлемых искажений, приходится её вводить довольно сильной. Мне, например, для поддержания указанного компромисса, приходилось делать усиление по мощности двухтактного оконечника в классе АВ не более 15 раз.

Я вижу схему ЧМ модулятора, с обратной связью. Вы мне ещё расскажите, что это, пригодно для усиления SSB сигнала. Насколько я помню, должны ещё присутствовать цепи, отслеживающие мгновенную амплитуду сигнала
Этот скрин и текст из той статьи. Надеюсь что поняли.

Добавлено через 16 минут(ы):

Пойду за цилькуляторами. рж ач:Только не на работу где признают только ГОСТы и что скажет военпред, а в библиотеку за книгой «Мощные высокочастотные транзисторы» Москва издатеоьство «Радио и связь»Для начала Вам и этой ссылки хватит. В той схеме что я выложил для раскачки до 10 Вт достаточно на вход двухзатворника подать максимум 20мвт. тоже самое и для УМ наполевике на 40Вт. Для Ваших100 Вт надо 10 Вт. это первое преимущество.

Свои цифры закрыл, чтобы Вы не списывали у меня. lol:
Пить пью пока здоровья хватает, но чтобы колоться, извинте это не ко мне.

RK4CI был прав. Трудно угадать что Вы в следующем посте из рукава выбросите. И вот тому первый пример.

Третий сейчас US7AW Mihail, дорисует, чтобы впридачу к цепи автоподстройки частоты, ещё и выходной амплитудой управлять в своём автогенераторе. lo l:

Второй пример. Интересно, из какой штанины Вы выбросили подкидную схему УМ что нарисована вот здесь http://www.cqham.ru/forum/attachment.php?attac hment > И вот последний пример

От это круто! Допотопный советский полевик, легко делает современные импортные транзисторы, имея усиление на 30 МГц 27 дБ по мощности, да ещё и почти при максимальном выходе! Вы бы хоть думали немного. :bad: Это даже в узкополосном варианте не реализуемо. Считайте снова- двойка Вам.
При чем тут допотопный советский полевик. когда проверялись все полевики в том числе и современные. Какая разница как я получу усиление путем синтеза или усиления. Вы когда в садик ходили слышали что такое DDS или DSP? Давать оценки тому что я пишу свойственно только тугодумам. Тормоз для чегото нового он и в африке тормоз.

Почти под ноль выводятся входные сопротивления, приведённые что к затвору, что к базе, в мощных усилителях, фактически, с достаточной для практики точностью, входное сопротивление определяется последовательным резистором от вторичной обмотки трансформатора драйвера к базе (затвору). Понятно, что если у полевика снять параллельную ООС, то входное сопротивление резко вырастет

Всё верно. Входное сопротивление каскада УМ (или драйвера) определяется в подавляющей степени цепями обратной связи при почти бесконечном входном сопротивлении самих полевых транзиторов. И имеют порядок сопротивления близкий к вх сопротивлению каскадов на БТ. И практика показывает, что это действительно так. По крайней мере — близко.

При чем тут допотопный советский полевик. А при том, что у Вас он давал усиление 27 дБ при 40 Ваттах на выходе и на 30 МГц. ржач:
для раскачки до 10 Вт достаточно на вход двухзатворника подать максимум 20мвт. тоже самое и для УМ наполевике на 40Вт.
А это

свойственно только тугодумам 😆

А при том, что у Вас он давал усиление 27 дБ при 40 Ваттах на выходе и на 30 МГц. ржач:
А это

😆
Откуда Вы взяли усиления 27дб если речь идет об автогенераторе. Я схему такого усилителя выкладывал? Мой УМ представляет собой обычный генератор как и в обычном трансивере. но только на мощных БТ или ПТ с напряжением питания до 100В (ограничено параметрами по дататышу). В этом генераторе есть только один вход, это управляющее напряжение на варикапы, мощность которого зависит только от параметров варикапа определяющего диапазон перестройки, а точнее полосы захвата. То есть мы имеем тот же синтезатор. ОС по амплитуде пока рассматривать нет смысла. Метод уже выкладывал. Опробована куча БТ и ПТ транзисторов. Самый лучший вариант по ИМД дал КП909. Выходная мощность меня мало интересовала. Я занимаюсь проектом по снтезу приема и передаче около 10 лет и высказал свое мнение в пользу ПТ. А Вы тут не разобравшись придумывать всякую ерунду. Ваш УМ на КТ956 но с другим драйвером на который Вы давали ссылку я тоже собирал, но инфо брал с другого источника когда еще небыло интернета.:ржач: Если ващих знаний хватило только что бы выжать с него по ИМД 30 дб, то против этого я ничего не имею и не собираюсь Вас критиковать или хвалить. Все реклама по ТВ кончилась, пошел дальше фильм смотреть.

Откуда Вы взяли усиления 27дб если речь идет об автогенераторе. Речь шла о том, что Вы предложили мне определить, какую мощность надо подать на КП904, чтобы снять с него 40 Вт. Я посчитал, спросил, сколько получилось у Вас. Вы написали то, что написали. :ржач: Если это не ответ на мой вопрос, то значит, есть два варианта- либо я не владею в совершенстве русским языком, либо же Ваше косноязычие и неумение излагать свои мысли на языке данного форума, сыграли с Вами злую шутку. 😉 Полагаю, что, как раз, последний вариант наиболее правдоподобен. ржа ть:

Если ващих знаний хватило только что бы выжать с него по ИМД 30 дб, то против этого я ничего не имею и не собираюсь Вас критиковать или хвалить. Да, моих знаний хватило только на то, чтобы обеспечить коэффициент усиления по мощности в оконечном каскаде порядка 12, выходную мощность 100 Вт, и интермодуляцию на пике огибающей не более -30 дБ. При введении ООС по огибающей я получал цифры, мягко говоря, получше. Если Вы готовы мне дать рекомендации, каким образом я без введения экзотики смогу получить с пары 956 лучшие параметры по интермодуляции, при сохранении прочих, с удовольствием выслушаю.

Все началось с Вашего поста #35. Что касается вопроса. Если бы сразу ответили на мой вопрос в посте №36 сразу, а не задавали встречно, не былобы и последующих постов в том числе и этого. Все финиш, Разойдемся красиво. Спокойной ночи.

Добавлено через 14 минут(ы):

Если Вы готовы мне дать рекомендации, каким образом я без введения экзотики смогу получить с пары 956 лучшие параметры по интермодуляции, при сохранении прочих, с удовольствием выслушаю.
На сколько помню вводил еще одну ОС (последовательно RCL) с колекторов на первичную обмотку входного трансформатора. В той схеме ОС заведена только на базу. Успехов.

Можно ли в этой схеме заменить биполярный транзистор на полевой? Если можно, то как?

Как заменить полевой транзистор на биполярный

С4 куда дальше на масу

Как заменить полевой транзистор на биполярный

Толщина пакета и ширина язычка

Как заменить полевой транзистор на биполярный

А то гугл мне только усилки ламповые предлагает на запрос

12 комментариев

всмысле биполярный на полярный)))

модет ты имел в виду мосфет?

может ты имел в виду гетерополярный, или гомополярный?

конечно ставь, если найдешь такой!

полевиком то можно, но резистор шунта уже не 33 Ома будет, а как минимум 100, и тепла на нем пропорционально на дофига больше. И входное напряжение поднимать нужно. Вобщем одни расходы дополнительные

А сам понял что сказал?

Нафига? Ставь как есть?

Андрей, полностью поддерживаю , напряжение на входе поднять ( 2-3вольта ) резистор с 33 поднять до 100 ом ( мощность побольше ) транзистор — IRFP 9140 N

извиняюсь, перепутал слова, не полярный, а полевой транзистор

Айрат, да все поняли , ….. ну а кто не понял… тот и не понял ))))

в подобных схемах полевые транзисторы всеравно будут работать в линейном режиме, поэтому менять можно (с некоторыми оговорками), а работать схема лучше/хуже не станет

Рис.1 Корпус типа D²PAK, так же известен как TO-263-3.
Встречается в основном на пожилых платах, на современных используется редко.

Как подобрать замену для биполярного транзистора || AllTransistors.com

 

Существует большое количество биполярных транзисторов и большинство из них имеет много аналогов, схожих по своим параметрам, так что подбор замены обычно не вызывает затруднений. Конечно, замена сгоревшего транзистора на такой же, это лучший вариант, но если достать его не удается, подобрать аналог не составит труда. Для этого необходимо:

  1. Узнать наименование транзистора. Если это СМД устройство — расшифровать его кодировку в разделе СМД-коды 🔗.
  2. Проанализировать схему включения транзистора (схему обвязки).
  3. Найти даташит неисправного транзистора и внести его основные параметры в форму поиска аналога.
  4. Просматривая даташиты предлагаемых транзисторов, выбираем наиболее подходящий аналог по параметрам, учитывая режимы его работы в устройстве.

На что нужно обратить внимание?

Открыв PDF-даташит, в первую очередь выясняем тип транзистора: биполярный или полевой, p-n-p или n-p-n, тип корпуса, расположение выводов (цоколевку).

Из числовых параметров это, прежде всего, максимальный ток и напряжение. У транзистора-замены максимальный ток и напряжение должны быть больше либо равны исходному.

Для биполярного транзистора важным параметром является коэффициент передачи по току hfe. Если транзистор стоит в ключевых схемах (включение-выключение нагрузок), hfe должен быть больше или равен искомому. Если стоит в аналоговых усилителях или подобных устройствах, то должен быть близок. В импульсных блоках питания транзисторы-аналоги также нужно выбирать с близким hfe (возможно придётся менять и исправный транзистор, стоящий в паре).

Необходимо проверить температурный режим (нагрев) транзистора после включения устройства. Если транзистор чрезмерно нагревается, то дело может быть как в самом транзисторе, так и в неисправных элементах его обвязки.

 

 

Расшифровка основных параметров биполярных транзисторов

Полупроводниковый материал: большинство транзисторов будут германиевые или кремниевые. Другие типы не используются в обычных устройствах. С учетом этого параметра будет спроектирована обвязка транзистора.

Полярность (проводимость): при установке транзистора другой полярности, он выходит из строя.

Pc — Максимальная рассеиваемая мощность: необходимо убедиться, что выбранный транзистор может рассеивать достаточную мощность. Этот параметр зависит от максимальной рабочей температуры транзистора — при повышении температуры максимальная рассеиваемая мощность уменьшается. Если рассеиваемая мощность недостаточна — ухудшаются остальные характеристики транзистора, может начаться резкое увеличение тока коллектора, что проводит к еще большему разогреву и выходу транзистора из строя.

Ucb — Максимально допустимое напряжение коллектор-база, определяемое величиной пробивного напряжения p-n перехода. Оно имеет зависимость от тока коллектора и температуры транзистора.

Uce — Максимально допустимое напряжение коллектор-эмиттер. Необходимо, чтобы Uce было на треть больше напряжения питания цепи коллектора. Если нагрузкой схемы является катушка реле, необходимо предусмотреть защиту транзистора от перенапряжения, например диод.

Ueb — Максимально допустимое напряжение эмиттер-база.

Ic — Максимальный постоянный ток коллектора. Ток транзистора также берется с запасом не менее 30%. Его величина зависит от температуры корпуса транзистора или окружающей среды.

Tj — Предельная температура PN-перехода. Этот параметр важно учитывать, если транзистору приходить работать в экстремальных условиях, например в автомобиле, где его температура может доходить до 100 градусов.

ft — Граничная частота коэффициента передачи тока — частота, при которой модуль коэффициента передачи тока в схеме с общим эмиттером стремится к единице. Данный параметр важен потому, что с ростом частоты входного сигнала коэффициент усиления падает.

Cc — Ёмкость коллекторного перехода. От этого параметра зависит быстродействие транзистора. Чем она ниже, тем лучше.

hfe — Статический коэффициент передачи тока — соотношение тока коллектора Iс к току базы Ib.

Выше описаны только наиболее важные параметры транзисторов. В даташитах производитель указывает много дополнительных параметров: напряжение насыщения коллектор-эмиттер, максимально допустимый импульсный ток коллектора, обратный ток эмиттера, максимально допустимый ток базы и т.д.

 

 
Back to Top

 

Оригинальные силовые биполярные IGBT транзисторы из Китая и немного о ремонте

Обзор специфичный, но наверняка кому-то будет полезен. Будет много технической информации, прошу понять и простить.

Длинная, но полезная предыстория

Иногда мне попадается на ремонт различная силовая электроника, например сварочные инверторы, преобразователи напряжения и частоты, приводы, блоки питания и т.п. Их ремонт часто связан с заменой различных силовых элементов (мосты, конденсаторы, реле, транзисторы MOSFET и IGBT). В магазинах чип и дип, компел, платан, элитан их купить в принципе не проблема, но оригинальные элементы стоят очень недёшево и с учётом доставки вызывают грусть-печаль…
В заначке у меня лежит немного разных силовых элементов для быстрого ремонта всячины, но когда требуется 8 одинаковых транзисторов, дело немного осложняется…

Есть 3 основные причины поломки такой техники:
1. Неправильная эксплуатация самим пользователем — это основная причина поломки аппаратов.
Существует куча способов убить исправный аппарат, перечислять их можно бесконечно…
2. Косяки производителя — некачественные элементы и сборка. В данном случае иногда помогает гарантия (но далеко не всегда).
3. Естественный износ — происходит, если аппаратом пользоваться очень аккуратно или редко за длительный период времени. Как правило, до естественного износа аппараты не доживают 🙁

На этот раз в ремонт попал сварочный инвертор Сварог ARC205 (Jasic J96) после неудачного ремонта в мастерской. Изначальная причина выхода их строя была №2 и затем аппарат добили в мастерской Очень часто после таких «ремонтов» аппараты восстановлению уже не подлежат, т.к. отсутствуют крепёжные элементы и появляются дополнительные механические и электрические повреждения. Так и в этот раз — половина крепежа утеряна, не хватает прижимных планок, транзисторы стоят все пробитые и разные, причём которые в принципе тут работать не могли. Первопричиной неисправности явился конструктивный недостаток этого инвертора — плата управления своими элементами касалась металлической рамы. Это и привело к сбою работы управляющей схемы и выходу из строя IGBT транзисторов, а затем драйвера и схемы плавного пуска. Ремонт получался либо быстро и дорого, либо приемлемо но долго, поэтому хозяин аппарата решил его не восстанавливать и просто отдал на запчасти. Такое часто бывает… Если-бы ремонт сразу проводил нормальный мастер, проблем с восстановлением было-бы заметно меньше.
Фото внутренностей сварочника в исходном виде я не делал, т.к. писать этот обзор не планировал.
Т.к. этот сварочник более-менее приличный, решил его неспешно восстановить для себя 🙂

О подборе

При замене транзисторов, вовсе не обязательно ставить точно такие-же, как стояли с завода. Кроме того, зачастую родные транзисторы стоят не лучшего качества, ибо китайский производитель также пытается сэкономить иногда в ущерб надёжности работы. В интернете мало информации по принципам подбора аналогов, поэтому напишу из собственного опыта.
Основными критериями при подборе IGBT транзистора в сварочный инвертор являются:
1. Наличие встроенного диода. Обычно он необходим всегда, кроме схемы подключения «косой полумост», где его наличие непринципиально.
2. Максимальное напряжение коллектор-эмиттер. В бытовых сварочниках на 220В почти всегда, за редким исключением, стоят транзисторы на 600-650 вольт. Туда можно ставить только транзисторы на 600 (650) вольт. Транзисторы на 900 и 1200 вольт ставить нельзя — они будут перегреваться за счёт повышенного падения напряжения, к тому-же и стоят они дороже.
3. Максимальный ток коллектора. Обычно используют транзисторы на 30А, 40А или 60А (при температуре 100°C). На ток при температуре 25гр внимание не обращаем ибо важен именно реальный рабочий режим.
4. Входная ёмкость затвора. Желательно, чтобы ёмкость была не более, чем у родных транзисторов, чтобы не перегружать драйвер и не затягивать фронты импульсов.
5. Время включения и особенно отключения. Должно быть не более, чем у родных, чтобы не греть транзисторы коммутационными потерями.
6. Напряжение насыщения. Должно быть не более, чем у родных транзисторов, чтобы не греть транзисторы омическими потерями.
7. Если транзисторы стоят на изоляционных прокладках, на максимальную мощность внимания можно вообще не обращать — всё равно термопрокладка не позволит передать радиатору более 50Вт рассеиваемой мощности. Если транзисторы установлены на отдельные изолированные радиаторы, на мощность уже следует смотреть, т.к. при этом из транзисторов выжимается максимум мощности (там их часто ставят в уменьшенном количестве 2 шт в полумост или 4шт в мост).
Для MOSFET критерии подбора немного другие, но общий принцип тот-же.
— Встроенный диод имеется всегда т.к. он автоматически получается в технологическом процессе производства
— Время включения и отключения не имеет большого значения, т.к. оно заведомо меньше требуемого (мосфеты весьма шустрые элементы)
— Вместо напряжения насыщения огромное значение имеет сопротивление открытого канала — чем оно меньше, тем будут меньше омическиие потери

О качестве

Под видом оригинальных, китайский продавец может прислать элементы сильно разного качества — неисправные, перемаркированные, либо восстановленные. На странице заказа фото товара можно не смотреть — показать могут и оригинал, а прислать не то.
Заказывая товар недорого у непроверенного продавца, Вам наверняка пришлют товар низкого качества, даже не сомневайтесь. Этот вариант для меня совершенно неприемлем, ибо нужны гарантированно качественные новые элементы.
Основные категории данного товара:
1. Неисправные — пустышки без кристалла, либо пробитые. Работать естественно не могут никак.
2. Восстановленные бывшие в употреблении — имеют кривые короткие либо кустарно наваренные выводы, которые ломаются при попытке их согнуть. Как правило, работают нормально, но у них есть неприятная особенность — их параметры довольно сильно гуляют у каждого экземпляра, что иногда неприемлемо.
3. Перемаркированные — берут транзистор меньшей мощности, спиливают или затирают маркировку и наносят новую для покупателя. Иногда уже при изготовлении берут кристалл от маломощного транзистора (для TO-220) и помещают его в корпус TO-3PN, TO-247. Такие элементы зачастую работают, но как правило недолго, иногда всего несколько секунд…
4. Оригинальные — тут всё понятно без комментариев 🙂


Представляю на обзор оригинальные биполярные IGBT транзисторы FGA40N65SMD от ON Semiconductor (Fairchild Semiconductor)
www.onsemi.com/products/discretes-drivers/igbts/fga40n65smd
www.onsemi.com/pub/Collateral/FGA40N65SMD-D.pdf
Почему я выбрал именно эти транзисторы? Да приглянулись они мне 🙂 Мог с тем-же успехом заказать для ремонта например FGh50N60SMD и кучу других аналогичных по параметрам.
Почему именно 10шт, когда нужно всего 8шт? Да не продаются они по 8шт 🙂

Почтовый пакет


Посылку доставили неожиданно быстро — всего за 2 недели.
Продавец запаял транзисторы под вакуумом в антистатический пакет




Основные параметры из даташита:
Корпус TO-3PN
Максимальное напряжение коллектор-эмиттер: 650В
Максимальный постоянный ток коллектора при 100°C: 40А
Максимальная рассеиваемая мощность при 100°C: 174Вт
Номинальное напряжение насыщения коллектор-эмиттер: 1,9В
Номинальная входная ёмкость затвора при напряжении коллектор-эмиттер 30В: 1880пФ
Номинальное время включения / отключения: 12нс / 92нс
Транзисторы имеют встроенный обратный силовой диод, необходимый для работы в мостовом включении инвертора.
Остальные параметры большого значения не имеют.

В оригинальности транзисторов я нисколько не сомневаюсь, т.к. по опыту интуитивно их определяю.
Но для обзора сделал несколько измерений.
Ничего магнитного внутри естественно нет.
Толщина выводов и корпуса соответствуют норме

Остальные размеры также в норме

Напряжение насыщения коллектор — эмиттер при токе 10А и напряжении на затворе 10В составило 1,36В — норма

Транзисторы в партии имеют очень небольшую разницу емкостей затвор — эмиттер 2726 — 2731пФ (измерено E7-22 при не подключенном выводе коллектора). Стабильность — это косвенный показатель качества.

Небольшое замечание — некоторые пытаются определять оригинальность транзистора по ёмкости затвора. Да, это в какой-то степени возможно, но только если измерять правильно и при этом правильно анализировать результаты.
Так вот, измерять ёмкость затвора надо именно на переменном токе при конкретном напряжении коллектор-эмиттер, причём нулевое напряжение не означает висящий в воздухе коллектор.

Измеренная ёмкость затвор-эмиттер сильно зависит от измерительного прибора, что не удивительно для нелинейного элемента.
Например, один и тот-же транзистор показывает входную ёмкость 2726пФ на положительной полярности и 3381пФ на отрицательной полярности прибором UT71E, 2660пФ и 2750пФ в зависимости от полярности тестером элементов MG328 VanVell ELC, 2860 пФ в обе стороны прибором E7-22

Ёмкость затвор — эмиттер при разном напряжении эмиттер-коллектор
Измерял E7-22 на 1кГц
0В — 3920пФ
1В — 3130пФ
2В — 2750пф
3В — 2570пФ
5В — 2380пФ
10В — 2200пФ
20В — 2000пФ
30В — 1830пФ

Для сравнения, измерил ёмкость затвор-эмиттер некоторых других оригинальных IGBT.
FGh50N60SMD — 2860пФ
FGH60N60SMD — 4410пФ
HGTG40N60A4 — 2270пФ

Взвешивать, поджигать, грызть и ломать транзисторы я не стал ибо в данном случае это не имеет никакого практического смысла.
Если интересно, что внутри сгоревших транзисторов, то вот два из них HGTG30N60A4 (слева и в центре) и FGh50N60SFD (родной)

HGTG30N60A4 вообще без диода и в принципе не мог нормально работать в этой сварке 🙁

Немного о ремонте

После разборки, аппарат очистил от грязи и пыли, провёл первичную диагностику, выпаял все неисправные элементы, подобрал им замену. Доступная схема аппарата неплохо помогает ремонту. Проверил состояние термопрокладок на пробой и повреждения. Восстановил цепь заряда конденсаторов, восстановил драйвер. Перепаял на другую сторону проблемный конденсатор на плате управления (который касался рамки)

Проверил осциллографом форму импульсов с драйверов на затворы транзисторов (которые ещё не впаяны).

Смазал прокладку термопастой КПТ-8, прилепил её на место, смазал транзисторы ей-же, вставил их на место, прикрутил к радиатору и только потом запаял. Очистил плату от флюса, всё ещё раз проверил.




Отдельно подал питание на систему управления и ещё раз проверил форму импульсов на затворах транзисторов (они пока без силового питания). Если всё в норме — подключаем сварочник в сеть через ЛАТР и лампу накаливания 100Вт или 95Вт. Это позволяет вовремя и безопасно диагностировать дополнительные проблемы в работе устройства. Прямое включение сварочника после ремонта иногда приводит к неприятностям. Плавно увеличиваю входное напряжение до запуска аппарата. Проверяю, что реле сработало, вентилятор крутится, на выходе появилось напряжение и лампа при этом не горит. При плавном повышении напряжения до полного сетевого, лампа не должна загораться. Если всё прошло нормально, устанавливаю крышку на место и включаю сварочник в сеть. Проверять его на электрод пока нельзя, т.к. необходимо убедиться в нормальной работе ограничения тока. При её неисправности, сварочник тут-же сгорит при касании электродом свариваемой детали. Для проверки работы токоограничения, необходим балласт и токовые клещи на постоянный ток или шунт ампер на 200. Я в качестве балласта использую толстую нихромовую спираль сопротивлением около 0,15 Ом.

Убедившись, что ток в замкнутой цепи регулируется в нужных пределах, можно приступать к тестовой сварке на токах от минимума до максимума.
В данной сварке ток нормально регулировался от 25А до 195А
Т.к. штатный ремень неудобен для оперативной переноски, на корпус была приклёпана дверная ручка 🙂

Более подробную информацию о ремонтах сварочников можно легко найти в интернете (например от Измаил инвертор)

Вывод: при желании, в Китае вполне возможно купить качественные оригинальные комплектующие. Покупайте в проверенных магазинах и Вам не придётся изучать, чем подделка отличается от оригинала. Магазин могу смело рекомендовать, теперь с них должок за рекламу 🙂
p.s. сварочные провода из этого обзора я делал для этого сварочника.
p.p.s. судя по комментариям, когда я товар ругаю, нахожу поддержку аудитории, но когда нормальный товар начинаю хвалить — сразу идут необоснованные обвинения во всех грехах. Это похоже местная традиция…

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *