Феномен транзисторного звучания УНЧ против «тёплого» лампового звука. История борьбы с феноменом транзисторного звучания уходит в далёкие 80-ые годы. С появлением продвинутых мощных транзисторных усилителей низкой частоты многих гурманов качественного воспроизведения музыки постигло разочарование — новинки с более высокими электрическими характеристиками никак не могли сравниться со своими ламповыми собратьями по мягкости и естественности звучания. Мало того, по «качеству» звучания они субъективно уступали и стареньким германиевым УМЗЧ, выполненным по канонам простейшей схемотехники, присущей ламповым конструкциям. Сотни умных разработчиков чесали свои просветлённые репы в надежде хоть как-то снизить тембральные искажения в транзисторных усилителях, меняли схемотехнику и элементную базу, оживлённо гнались за сверхпараметрами, писали разные статьи, пока не поняли, что к цифрам, указанным в характеристиках усилителя надо относиться сдержанно, а верить можно только собственным ушам. 1 — Глубокая отрицательная обратная связь, без которой не обходится ни один транзисторный усилитель, порождает
переходные искажения, вызванные запаздыванием сигналов в петле обратной связи. 5 — Не столь важен общий коэффициент нелинейных искажений УНЧ (в ламповых Hi-End системах он часто составляет величину 0,1% и выше), сколь спектр гармоник этих искажений. ИТАК, подытожим всё сказанное: Именно такую схему на полевых транзисторах мы рассмотрели на странице ссылка на страницу. Не так давно я наткнулся на обсуждение темы «Про тёплый ламповый звук». Полемика велась на странице
http://www.yaplakal.com/forum7/st/320/topic988477.html и, как это часто водится на любом неспециализированном форуме — никакого особого
интереса не представляла… И всё было бы как обычно, если бы не единичный комментарий товарища по имени «aleks49».
Так как это было оборонное предприятие мелкосерийной продукции, то разнообразие было очень широким. Образование у меня специфическое — спец. училище подводного плавания радиолокационные и телевизионные системы. 8 лет службы на подводных лодках по специальности. В процессе службы так же 2 раза проходил специальную подготовку по быстрому поиску неисправностей в аппаратуре моей сферы деятельности. Работая на «гражданке» в моих возможностях было использование любых лабораторных средств контроля и испытаний электронного оборудования. Эта преамбула нужна для того, чтобы те, кто будет мне оппонировать, могли ориентироваться в какие «дебри» может зайти разговор. Действительно, такие схемы обладали таким же громадным коэффициентом усиления, как и интегральные ОУ. С помощью общей обратной связи усиление доводилось до нужного уровня и нелинейность устранялась. Но даже усилители с КНИ 0,01% и ниже при этом не удовлетворяли по звучанию. То, что в этом виноват именно транзисторный УНЧ не вызывало сомнений. На тех же акустических системах звучание от ламповых усилителей воспринималось лучше (имелись в наличии два ламповых советских усилителя на 50 и 100W). В чём же дело? Работа с хорошим (правильным) осциллографом показала, что транзисторные УНЧ легковозбудимы. Так называемая нулевая точка на выходе совсем не нулевая. На уровне в несколько милливольт там присутствует хаотический колебательный процесс, который превращается в ВЧ генерацию при подаче на вход УНЧ даже самого маленького сигнала. В некоторых случаях эта генерация не превышает нескольких милливольт, а частенько бывает на весь размах напряжения питания. С хорошими высокочастотными транзисторами это может доходить до 100 и даже 200 кГц. Итого, если усилитель без обратной связи способен усиливать сигнал до 100 кГц то задержка будет составлять 10 микросек. До появления обратной связи на выходе усилителя наблюдается размах выходного сигнала равный всему напряжению питания выходного каскада. При этом имеется ещё дополнительный выброс на переднем фронте. Через 10 микросекунд «срабатывает» обратная связь и с затухающим колебательным процессом сигнал опускается на уровень, который определён обратной связью. Вывод. Как с этим бороться? Полностью отказаться от схемотехники операционного усилителя при использовании в качестве УНЧ. Для УНЧ низкого класса можно это использовать и даже применять интегральные ОУ, но выходной каскад такого ОУ должен обладать большим током покоя. Таких ОУ почти не выпускают. Так называемые микромощные ОУ, хотя и обладают большой единичной частотой, но выход в покое микротоковый. Ламповая схемотехника подсказала выход. В силу специфики ламп (они обладают невысокими показателями усиления и требуют для питания много энергии) не применяется излишнее усиление с последующим охватом общей обратной связью. В лампах используется довольно высокое анодное напряжение, что обусловливает очень протяжённую вольт-амперную характеристику. Перегрузка лампы тоже имеет протяжённую характеристику. Одна из особенностей лампы состоит в том, что и нелинейность у неё несколько иная, чем у транзистора. Здесь уже нужно сравнивать лампу с транзистором с помощью измерения образующихся при усилении гармоник. В ламповом усилительном каскаде чётные гармоники на 5-8 децибелл выше по уровню, чем нечётные. Причём существенное значение имеют только 2-я и 3-я гармоники. Остальные ниже на 20-30 дб. и могут не учитываться. В транзисторном усилителе на биполярном транзисторе 3-я гармоника выше, чем 2-я на 5 дб. но также существенна ещё и 5-я гармоника. На полевых транзисторах 2-я и 3-я гармоники примерно равны и 5-я гармоника не имеет существенного значения. Каскады усиления, построенные для увеличения токовой нагрузки(катодные повторители, истоковые повторители, эмиттерные повторители) не вносят заметных искажений в сигнал. Что можно предпринять для высококачественного усиления. 1. Входные каскады УНЧ необходимо строить на полевых транзисторах и лампах для того, чтобы изначальный сигнал на малых уровнях не приобрёл неисправимых искажений. 2. Максимальное усиление по напряжению на один каскад не должно превышать 30. 3. Не охватывать обратной связью даже 2 каскада. Обратная связь должна существовать только на одном усилительном элементе (лампа, транзистор). Всякие новомодные усилительные микросхемы не должны рассматриваться как единый усилительный элемент. 4. Усиление сигнала необходимо разделить на две функции: усиление по напряжению и усиление по току. После усиления по напряжению необходимо обязательно повторителем разгрузить каскад. 5. Между каскадами усиления напряжения и разгрузкой разделительные конденсаторы применять не нужно, а при усилении напряжения конденсаторы ставить нужно, чтобы вывести рабочую точку лампы или транзистора на линейный рабочий участок. 6. Для усилительных каскадов, работающих с сигналами близкими к 1 вольту, использовать транзисторы с большим напряжением и задавать питание близкое к предельному. Именно таким образом удаётся растянуть вольт-амперную характеристику транзистора и получить большой динамический диапазон. 7. Не сдваивать полевые транзисторы во входных каскадах УНЧ. Иногда применяется такое для уменьшения коэффициента шума. Но такое решение приводит к увеличению нелинейности вольт-амперной характеристики и растёт 3-гармоника. В результате по гармоникам полевой транзистор становится ближе к биполярному. 8. Применять каскодные схемы в анод для ламп и в коллектор для транзисторов. Каскоды через катод или эмиттер не применять т.к. КНИ при этом возрастает сразу до 0,2%. Существует проблема фазоинверторов. Как получить противофазные сигналы с минимумом нелинейных искажений? Мои соображения по поводу «мягкого лампового звука». Это сообщение отредактировал aleks49 — 12.01.2017 — 21:47
|
Усилители мощности
Все рассмотренные нами усилители относятся к категории усилителей напряжения, их основное назначение — получение максимального размаха выходного напряжения. Когда требуется большая выходная мощность, например для «раскачки» мощных громкоговорителей или антенн или питания электродвигателей, применяются усилители мощности. Они характеризуются высоким коэффициентом усиления по мощности, который достигается за счет высоких коэффициентов усиления по напряжению и по току.
|
|
||||
На рис. 30.9 приведена базовая схема выходного транзисторного каскада с эмиттером, заземленным по переменному току. Для получения неискаженного выходного сигнала усилитель должен работать в режиме класса А. КПД такого усилителя мощности очень мал из-за большого тока, потребляемого от источника питания. От этого усилителя можно получить только небольшую мощность. Его можно использовать в автомобильном радиоприемнике, где величина потребляемого тока не имеет значения.
Двухтактный режим работы
Двухтактные выходные каскады почти повсеместно используются в современных транзисторных усилителях. Двухтактный усилитель содержит два транзистора, работающих в режиме классаВ, каждый из которых обеспечивает усиление только одного полупериода входного сигнала.
Двухтактный усилитель с использованием двух идентичных транзисторов
На рис. 30.10 показана упрощенная схема двухтактного усилителя. Эмиттерные переходы транзисторов имеют нулевое напряжение смещения, поэтому каждый из транзисторов проводит ток только в одном из двух чередующихся полупериодов входного сигнала. Входной трансформатор Tp1 с отводом от средней точки вторичной обмотки работает как расщепитель фазы.
Рис. 30.10. Двухтактный усилитель мощности с двумя идентичными транзисторами и трансформаторным расщепителем фазы.
Два равных и противоположных по знаку (противофазных) сигнала формируются в каждом полупериоде на половинах вторичной обмотки этого трансформатора: сигнал Va, находящийся в фазе с входным сигналом, и сигнал Vb, противофазный входному сигналу. В то время как положительный полупериод сигнала Vaсоответствует положительному периоду входного сигнала, положительный полупериод сигнала Vbсоответствует отрицательному полупериоду входного сигнала. Транзисторы T1 и T2 открываются, когда потенциал базы транзистора становится положительным по отношению к потенциалу эмиттера. Таким образом, транзистор T1 открыт в течение положительного полупериода сигнала Va. При этом через него протекает ток i1 от эмиттера к коллектору и далее через верхнюю половину первичной обмотки выходного трансформатора Tp2 к источнику питания VCC. Этот ток создает положительный полупериод выходного сигнала на вторичной обмотке трансформатора Tp2. Транзистор T2 открыт в положительном полупериоде сигнала Vb, при этом ток i2 протекает снизу вверх (в обратном по отношению к току i1 направлении) через нижнюю половину трансформатора Tp2, создавая отрицательный полупериод выходного сигнала на его вторичной обмотке. Выходной трансформатор с отводом от средней точки первичной обмотки объединяет эти два полупериода в один полный период выходного сигнала. Транзисторы T1 и T2 включены по схеме с общим эмиттером и имеют при этом относительно высокое выходное сопротивление. Так как сопротивление нагрузки выходного каскада очень мало, обычно менее 10 Ом в случае громкоговорителя, всегда используется согласующий трансформатор Tp2.
Выходной сигнал двухтактного усилителя с нулевым смещением эмиттерных переходов транзисторов воспроизводится с искажениями типа «ступенька», как показано на рис. 30.10. Эти искажения связаны с нелинейными участками характеристик двух транзисторов. Искажения возникают в те моменты времени, когда один транзистор начинает открываться, а другой — закрываться. Для устранения этих искажений на базы транзисторов подается небольшое напряжение прямого смещения (0,1-0,2 В), как показано на рис. 30.11, где резисторы R1 и R2 образуют общую цепь смещения для обоих транзисторов. Нелинейности двух транзисторов компенсируют друг друга, и на выходе воспроизводится неискаженный сигнал.
Рис. 30.11. Цепь смещения R1 — R2 устраняет искажения типа «ступенька».
Транзисторные фазорасщепители
На рис. 30.12 показана схема фазорасщепителя на транзисторе прп-типа. Резисторы R3 и R4 имеют равные сопротивления, для того чтобы получить на выходе два равных по величине и противоположных по знаку синусоидальных сигнала, снимаемых с эмиттера и коллектора транзистора. Для обеспечения максимальной величины неискаженного выходного сигнала отношение сопротивлений R1 : R2 должно находиться в диапазоне от 2 : 1 до 3 : 1. Типичные значения постоянных напряжений, определяющих режим транзистора по постоянному току, указаны на схеме.
Рис. 30.12. Транзисторный фазорасщепитель.
Двухтактный усилитель на комплементарных транзисторах
Двухтактный усилитель мощности на комплементарных транзисторах позволяет отказаться от использования как фазорасщепителя на входе, так и трансформатора на выходе. В этом усилителе используются два симметричных транзистора, рпр- и npn-типа, называемые комплементарной парой. Принцип его работы основан на том факте, что положительный сигнал открывает прп-транзистор, а отрицательный сигнал — рпр-транзистор. На рис. 30.13 приведена базовая схема двухтактного усилителя на комплементарных транзисторах (иногда называемая каскадом с дополнительной симметрией). Транзисторы T1 и T2 работают в режиме класса В, т. е. в точке отсечки. Используются два источника питания: +VCC и –VCC. В положительном полупериоде входного сигнала транзистор T1 открыт, а транзистор T2 закрыт. Ток i1 транзистора T1 создает положительную полуволну тока в нагрузочном резисторе R. В отрицательном полупериоде открывается транзистор T2, и теперь его ток i2, имеющий противоположное току i1 направление, протекает через нагрузочный резистор. Таким образом, на нагрузке формируется полный синусоидальный сигнал, соответствующий двум половинам полного периода входного сигнала. Следует отметить, что в рассматриваемом каскаде транзисторы включены по схеме с общим коллектором, то есть как эмиттерные повторители, поскольку выходной сигнал снимается с эмиттеров транзисторов.
На рис. 30.14 приведена полная схема двухтактного усилителя мощности на комплементарных транзисторах вместе с предвыходным каскадом.
Рис. 30.13. Базовая схема двухтактного усилителя на комплементарных транзисторах.
Рис. 30.14. Двухтактный усилитель на комплементарных транзисторах с независимой цепью смещения для транзистора T1 предвыходного каскада.
Схема модифицирована для питания от одного источника. Транзистор T1 работает в предвыходном каскаде (предусилителе мощности). Цепь смещения R1 — R2 обеспечивает работу этого каскада в режиме класса А. При подаче питания устанавливается нормальный статический режим транзистора T1 (транзистор открыт). Разделительный конденсатор Сз разряжен. Следовательно, потенциал точки А, где соединяются эмиттеры транзисторов T2 и T3, равен нулю. Однако базы этих транзисторов находятся под положительным потенциалом, определяемым напряжением на коллекторе транзистора T1. Это положительное напряжение открывает транзистор T2. Транзистор T3 (рпр-типа) при этом закрыт. Таким образом, ток i2, протекающий через открытый транзистор, будет заряжать конденсатор C3, как показано на схеме. По мере заряда этого конденсатора возрастает напряжение в точке А. Процесс зарядки продолжается до тех пор, пока не закроется транзистор T2. Это происходит в тот момент, когда напряжение на эмиттере этого транзистора (в точке А) сравнивается с напряжением на его базе.
Если статический режим транзистора T1 выбран таким образом, что его коллекторное напряжение равно 0,5VCC, то транзистор T2 закроется, как только потенциал точки А возрастет до 0,5VCC. В результате схема будет сбалансирована по постоянному току и каждому транзистору будет приложено напряжение, равное половине напряжения источника питания. Транзисторы T2 и T3 оказываются в отсечке (режим класса В) с нулевым напряжением смещения на их эмиттерных переходах, т. е. они находятся на грани включения при отсутствии входного сигнала.
При подаче входного сигнала транзистор T1 находится в проводящем состоянии в течение всего периода, усиливая этот сигнал и обеспечивая «раскачку» выходных транзисторов T2 и T3. Комплементарная пара выходных транзисторов обеспечивает дальнейшее усиление сигнала, как это рыло описано выше при рассмотрении базовой схемы.
Схема на рис. 30.14 имеет низкую стабильность по постоянному тору. Любое изменение тока транзистора T1 вызывает изменение статического режима выходной пары транзисторов, что может привести к искажениям выходного сигнала. Для улучшения стабильности используется отрицательная обратная связь по постоянному току, обеспечивающая автоматическую подстройку смещения транзистора T1, как показано на рис. 30.15. Постоянное напряжение, действующее в точке А (0,5Vcc), подается обратно на базу транзистора T1 через резистор обратной связи RF. В этой схеме громкоговоритель подключен к положительной шине источника питания через разделительный конденсатор С3. Заметим, что в такой конфигурации ток транзистора T3 заряжает этот конденсатор, а ток транзистора T2 разряжает его. Вообще, транзистор, включенный «последовательно» с разделительным конденсатором, заряжает его, а включенный «параллельно» — разряжает. Через резистор R4 на базы выходных транзисторов подается небольшое напряжение прямого смещения, обеспечивающее уменьшение искажений типа «ступенька». Резисторы R6 и R7 в эмиттерных цепях транзисторов T2 и T3 обеспечивают стабильность по постоянному току, а также неглубокую обратную связь по переменному оку, улучшающую частотные характеристики усилителя.
Рис. 30.15. Типичный двухтактный усилитель мощности на комплементарных резисторах. Смещение на базу транзистора Т1 подается через резистор отрицательной обратной связи RF.
Усилители постоянного тока
При усилении сигналов постоянного тока между каскадами действует непосредственная связь, как показано на рис. 30.16. Напряжение на базу транзистора Т2 напрямую подается с коллектора транзистора Т1. Поэтому статический режим (в отсутствие сигнала) транзистора Т2 определяется статическим режимом предыдущего каскада. Отсутствие разделительного конденсатора позволяет усиливать самые низкочастотные сигналы.
Усилители постоянного тока подвержены так называемому дрейфу, представляющему собой сдвиг рабочей точки усилителя при изменении температуры. Для устранения дрейфа в схему включаются термисторы (термосопротивления) или другие температурно-чувствительные элементы, как показано на рис. 30.16.
Рис. 30.16. Усилитель с непосредственной связью.
Обратная связь в усилителях
На рис. 30.17 показана система с обратной связью, в которой часть выходного напряжения подается обратно на вход усилителя. Напряжение υf есть напряжение обратной связи, которое добавляется к входному напряжению υi для получения эффективного входного напряжения ei, действующего непосредственно на входе усилителя. Цепь обратной связи В передает весь или часть β выходного сигнала обратно на вход усилителя. Если выходное напряжение равно υ0, то напряжение обратной связи равно
υf = βυ0
Эффективный сигнал на входе усилителя υi = ei + υf = ei + βυ0. При введении обратной связи коэффициент усиления становится равным
Рис. 30.17. Обратная связь в усилителях.
При введении отрицательной обратной связи, когда напряжение обратной связи находится в противофазе с входным напряжением, эффективное входное напряжение ei = υi – υf, что приводит к уменьшению коэффициента усиления всей системы. При положительной обратной связи ситуация изменяется на обратную: напряжение обратной связи находится в фазе с входным напряжением, и эффективное входное напряжение ei = υi + υf, т. е. превышает входное напряжение на величину напряжения обратной связи, в результате увеличивается коэффициент усиления всей системы.
Используя величины, указанные на рис. 30.17, и предполагая, что действует отрицательная обратная связь, можно рассчитать некоторые параметры системы с обратной связью.
Эффективное входное напряжение ei = 10 — 2 = 8 мВ.
Выходное напряжение υ0 = 8 · 100 = 800 мВ.
Таким образом, коэффициент усиления системы с обратной связью
Коэффициент обратной связи
Различают обратную связь по току и обратную связь по напряжению. При обратной связи по току напряжение обратной связи пропорционально выходному току. Например, в схеме на рис. 30.18 такая связь осуществляется через резистор R4. Когда напряжение обратной связи пропорционально выходному напряжению, мы имеем дело с обратной связью по напряжению. В схеме на рис. 30.18 обратная связь по напряжению осуществляется через цепь C2 – R3.
Таблица 30.1. Сравнение характеристик систем с отрицательной и положительной обратной связью
Положительная обратная связь |
Отрицательная обратная связь |
1. Высокий коэффициент усиления 2. Узкая полоса пропускания 3. АЧХ с выбросами 4. Низкое входное сопротивление 5. Высокое выходное сопротивление 6.Вносит нестабильность как по переменному току (возникновение колебательных процессов), так и по постоянному току (неустойчивость стационарного режима) 7. Применяется в генераторах |
1. Низкий коэффициент усиления 2. Широкая полоса пропускания 3. Плоская АЧХ 4. Высокое входное сопротивление 5. Низкое выходное сопротивление 6. Улучшается устойчивость системы, как по переменному, так и по постоянному току 7. Часто применяется для улучшения устойчивости и расширения полосы пропускания усилителя |
Рис. 30.18. Усилитель на транзисторе, включенном по схеме с ОЭ, с двумя видами обратной связи: по току (через резистор R4) и по напряжению (через цепь C2 – R3).
Усилители радиочастоты (УРЧ)
На радиочастотах, например в УКВ-диапазоне, влияние межэлектродных емкостей транзистора, особенно между коллектором и базой, становится очень заметным. Для устранения влияния этих емкостей используется усилитель по схеме с общей базой. Однако в схеме с ОБ транзистор имеет низкое входное сопротивление, которое чрезмерно нагружает предыдущий каскад, работающий на усилитель.
Рис. 30.19. Каскодный усилитель.
Для решения проблемы существуют два метода. В первом методе используется усилительс ОЭ и схемой нейтрализации обратной связи. Такая схема компенсирует, или нейтрализует, отрицательную обратную связь через емкость перехода коллектор-база за счет введения еще одной петли обратной связи, но противоположного знака.
Во втором методе используется усилитель с общим эмиттером, каскодно включенный с усилителем с общей базой (рис. 30.19). Транзистор T1 работает в усилителе с ОЭ, а транзистор T2 — в усилителе с ОБ. Входной сигнал подается на базу транзистора T1. Его эмиттер развязан с шасси через конденсатор С3. Выходной сигнал с коллектора транзистора T1 подается на эмиттер транзистора T2, база которого развязана с шасси через конденсатор С1. Смещение обоих транзисторов обеспечивает резисторная цепочка R1 – R2 – R3.
Hi-Fi-усилители
Английское сокращение Hi-Fi(high fidelity — высокая верность передачи или воспроизведения, читается «хи-фи») используется для обозначения высокого качества. Этот термин применяется в звуковоспроизводящей аппаратуре, которая обеспечивает реалистичное воспроизведение исходного звука, — другими словами, высокое качество воспроизведения. Hi-Fi-системы должны иметь широкую полосу пропускания (40 Гц — 16 кГц), низкий уровень шумов и воспроизводить звук с минимальными искажениями.
Регулировка тембра
регулировка тембра нужна для расширения или сужения (т. е. изменения формы) АЧХ усилителя. Регулировка тембра осуществляется в области нижних (низкочастотный участок АЧХ) и верхних (высокочастотный участок АЧХ) звуковых частот. Для этой цели используются самые различные схемы: начиная от простейшей цепи, состоящей из последовательно включенных конденсатора и резистора, до очень сложных систем с использованием обратной связи. На рис. 30.20 приведена схема регулятора тембра с возможностью независимой регулировки тембра в области нижних и верхних звуковых частот. На элементах R1 и C1 выполнен делитель напряжения поступающего сигнала ЗЧ. Поскольку реактивное сопротивление конденсатора C1 мало па высоких частотах, этот делитель обеспечивает ослабление верхних звуковых частот, причем степень ослабления зависит от установки движка потенциометра R1. Элементы R2 и C2 образуют еще один делитель. Конденсатор C2 имеет высокое реактивное сопротивление в области нижних звуковых частот, поэтому второй делитель ослабляет эти частоты в степени, зависящей от установки потенциометра R2.
Рис. 30.20. Схема регулятора тембра.
Громкоговорители
Громкоговоритель представляет собой преобразователь электрической энергии в акустическую или звуковую энергию. Один из факторов, определяющих выбор громкоговорителя, — его АЧХ по звуковому давлению, т. е. диапазон эффективно воспроизводимых им звуковых частот. Еслидиапазон частот, воспроизводимых данным громкоговорителем, недостаточно широк, можно использовать два громкоговорителя, один из которых хорошо воспроизводит нижние, а другой — верхние звуковые частоты. На рис. 30.21 иллюстрируется один возможный способ разбиение частотного диапазона с помощью разделительного (двухполосного) фильтра.
Рис. 30.21. Двухполосный разделительный фильтр для акустической системы с использованием низкочастотного и высокочастотного громкоговорителей.
Разделительный фильтр состоит из фильтра нижних частот L1 — C1, к выходу которого подключается низкочастотный громкоговоритель, и фильтра верхних частот L2 — C2, связанного с высокочастотным громкоговорителем.
Другими факторами, влияющими на выбор громкоговорителя, являются его выходная мощность, КПД и сопротивление (для согласования с УЗЧ).
В этом видео рассказывается об усилителе мощности для самостоятельной сборки:
Добавить комментарий
Германиевый усилитель класса А. — Усилители на транзисторах — Звуковоспроизведение
Николай Трошин
Давно хотелось сделать усилитель класса А на германиевых транзисторах. Преимущества таких усилителей известны: это — низкие нелинейные искажения простота схемы, — постоянная потребляемая мощность, не зависящая от уровня выходной мощности что в свою очередь тоже приводит к снижению искажений.
Есть и недостатки: — большая мощность рассеиваемая транзисторами выходного каскада, что приводит к их значительному нагреву, из чего следует — сложность получения выходной мощности усилителя более 10…15 Вт.
Однако, как показывает жизнь, выходной мощности 10 Вт. (в стерео варианте 2*10 Вт), бывает вполне достаточно для нормального озвучивания помещения средних размеров, при наличии акустической системы средней чувствительности.
Попробуем определиться с транзисторами для выходного каскада. Поскольку они рассеивают значительную мощность (при 10ваттном варианте усилителя на каждом транзисторе выходного каскада рассеивается не менее 20 Вт), допустимая мощность этих транзисторов должна быть достаточно велика.
Допустим, что температура корпуса транзистора на радиаторе составляет 55 градусов (при температуре в помещении 25 градусов). Это совсем немного для подобных усилителей. По справочным данным на ГТ806 мощность на коллекторе не должна превышать 15 Вт (при 55 град.) При более высокой температуре допустимая мощность еще меньше. Поэтому на ГТ806 вряд ли получим 10 Вт на выходе усилителя.
Остаются из отечественных 1Т813 и П210. Транзисторы 1Т813 крайне редки. Поэтому попробуем П210.
Полазив по просторам интернета в поисках схем усилителей А класса, обнаружил, что кроме схемы Линси Худа в разных вариантах, ничего другого практически нет.
Собрав ее с П210 на выходе убедился, что на низких и средних частотах она работает хорошо, а на высоких (20кгц) удается получить всего 1-1,5 Вт неискаженной мощности.
Объясняется это видимо тем, что один из выходных транзисторов включен по схеме с общим эмиттером, преимуществом которой является усиление как по току так и по напряжению, а недостатком — неважные частотные свойства, особенно при использовании нч транзисторов.
Вследствие этого возникла мысль построить схему так, чтобы усиление по напряжению обеспечивалось первыми каскадами усилителя, а выходной каскад работал бы чисто, как усилитель тока с включением транзистора с общим коллектором.
Такой каскад имеет обычно лучшие частотные свойства, чем каскад с общим эмиттером. Схема усилителя в упрощённом для понимания виде представлена на рис. 1.
Однако в реальной жизни все несколько сложнее:
1. Поскольку транзисторы VT2 VT3 работают в режиме большего сигнала, для получения максимальной амплитуды и малых искажений, а также максимального усиления при разомкнутой ООС — вместо резисторов R6 R7 должны быть источники тока.
2. Для получения большего усиления (при разомкнутой ООС), желательно увеличить коэффициент усиления и рабочий ток транзистора первого каскада.
В итоге получилась вот такая схема (рис 2).
В коллекторной цепи транзистора VT6, стоит своеобразный источник тока. Поскольку для его изготовления нужен мощный N-P-N германиевый транзистор, а я знаю только один такой — это ГТ705, который довольно редкий.
Было принято решение собрать его аналог — составной транзистор по схеме Шиклаи на транзисторах МП37б и П214. Схема содержит всего три каскада усиления, по этому желательно иметь К ус VT6 не менее 80, VT8 не менее 50.
Настройка схемы сводится к установке на эмиттере VT8 половины напряжения питания. Данный усилитель обеспечивает выходную мощность до 10 вт при нагрузке 8 ом. Диапазон рабочих частот 20-20000 Гц.
Звучание очень приятное. При использовании приличной акустической системы, разницу звучания форматов МР3 320кб и lossless — я различаю.
Схема нормально работает и без подбора транзисторов по Кус, однако при Кус VT8 — 40, выходная мощность на частоте 20000 Гц составит примерно 8 Вт. Это не критично, поскольку в реальном музыкальном сигнале уровень столь высоких частот гораздо ниже чем на СЧ и НЧ. Кус П210 менее 40 встречаются редко.
При наличии транзистора ГТ705, схему можно упростить. Ставим его на место VT4. VT5 из схемы убираем. Резистор R8 уменьшаем до 1.5 кОм. Можно убрать VT2 без большой потери качества. При этом R5 1,5 кОм, R6 750 Ом, R7 100 Ом.
Детали:
Конденсаторы должны быть приличного качества. На вход можно поставить пленочный. Все резисторы мощностью 0,125 Вт, кроме резисторов R11 и R12. Резистор R11 — 5 Вт, R12 — 1 Вт.
Очень важен номинал резисторов R 10 — 1ом, R12 — 0,15ом. От этого зависит правильный режим работы усилителя.
Особое внимание нужно уделить радиаторам выходных транзисторов. Они должны быть площадью рассеивания не менее 1000 кв. см. на каждый выходной транзистор, либо применить принудительный обдув, на транзисторы П605 и П214 — не менее 100 кв. см. и!!! НИКАКИХ ПРОКЛАДОК между транзистором и радиатором а вот термо-проводящую пасту использовать – желательно.
При использовании нагрузки 4 Ом, нужно снизить напряжение питания до 20в, R12 до 0,1ом. Кус VT8 — желательно не менее 60, либо поставить параллельно еще один П210 (в эмиттерах каждого — резистор 0,1 Ом).
Ток потребляемый от источника питания примерно 1,7 А при нагрузке 8 Ом и 2.5 А при нагрузке 4 Ом.
Еще несколько слов. На кремниевых транзисторах усилитель получается заметно проще, а звучание тоже весьма достойное. Возможно схему позднее представлю .
Простой усилитель класса А — Усилители на транзисторах — Звуковоспроизведение
Николай Трошин
Данная статья является продолжением работы на тему использования усилителей работающих в А классе для высококачественного звуко-усиления.
Представляю на Ваше рассмотрение, хорошо отработанную схему усилителя на кремниевых транзисторах.
Неоспоримым преимуществом кремния — является способность работать при гораздо более высоких температурах (по сравнению с германием). При хорошем тепловом контакте транзистора с радиатором, можно считать допустимой температуру радиатора 90…95 град.
Понятно, что при столь высокой разнице температур радиатора и окружающей среды, теплообмен происходит очень эффективно.
Поэтому при одинаковых площадях радиаторов выходных транзисторов, на кремнии можно получить примерно в 2 раза больше мощности по сравнению с германием.
Большой ассортимент кремниевых средне и высокочастотных транзисторов большой мощности, позволяет построить высококачественный усилитель А класса при совсем простой схеме.
Данная схема обеспечивает выходную мощность 20 ватт на нагрузке 4 ом. Диапазон рабочих частот усилителя 20…25000 Гц.
В качестве транзистора VT1 здесь можно использовать КТ208Д, КТ209Д, КТ361Г, Е, КТ3107Б, Г, И, К. В качестве транзистора VT2 можно использовать транзисторы КТ815, КТ801, П701, транзистор VT3 КТ814, VT4 — КТ818БМ, ГМ, транзистор VT5 — КТ819БМ, ГМ.
Схема может работать без подбора транзисторов по коэффициенту усиления, однако поскольку она содержит всего 2 каскада усиления, желательно иметь коэффициент усиления транзистора VT1 — не менее 150, транзисторов VT2, VT5 — не менее 50, транзистора VT4 — не менее 80.
Оценить коэффициент усиления транзистора не сложно. Достаточно включить испытуемый транзистор по вот такой схеме (для мощных транзисторов).
Резистор R1 обеспечивает ток в базу примерно 1 ма. Измерительный миллиамперметр измеряет ток коллектора (я использовал стрелочный тестер с пределом измерений 300 ма). Отношение тока коллектора к базовому току — будет коэффициентом усиления транзистора.
Для транзисторов средней мощности, надо уменьшить базовый ток в 10 раз (R1 36k), а для транзистора малой мощности, базовый ток уменьшаем в 100 раз (R1 360k). В качестве источника питания, я использовал 3 щелочные (алкалиновые) батарейки размера АА, которые просто спаял между собой хорошо разогретым паяльником, с использованием не толстого провода (паять надо быстро, чтобы не перегреть батарейку).
При использовании нагрузки 8 ом, напряжение питания нужно увеличить до 39…40 вольт, резистор R10 до 0,25 Ом.
Настройка усилителя сводится к установке половины напряжения питания на коллекторе VT5.
Усилитель потребляет значительную мощность, примерно 100 ватт на каждый канал. Поэтому источник питания должен быть серьезным.
Силовой трансформатор для блока питания, нужно применять мощностью не менее 250 ватт, либо использовать два однотипных трансформатора (на каждый канал) с такой же общей мощностью.
Схема источника питания показана на рисунке ниже.
Вторичная обмотка силового трансформатора должна иметь выходное напряжение ХХ 26 — 27 вольт. Такая схема должна быть на каждый канал усилителя, причем при нагрузке 4 ом, возможно лучше сразу поставить конденсаторы по 22000 мкФ.
Диодный мост с номинальным током не менее 10 А либо 4 диода на 10 А. Большая емкость конденсаторов объясняется значительным током потребления, в том числе и в режиме покоя усилителя, когда пульсации особенно заметны.
Применять электронные фильтры или стабилизаторы я не стал, поскольку они иногда являются причиной самовозбуждения усилителя и источником помех и наводок.
Детали для усилителя:
Резисторы могут быть любой мощности не менее 0.125 ватт за исключением R9 5 ватт, R10 2 ватт. Очень важен номинал резистора R10. От этого зависит правильный режим работы усилителя.
Конденсатор С1 лучше поставить пленочный, С4 пленочный или слюдяной.
Выходные транзисторы КТ818, КТ819 обязательно с буквой «М» в конце (в металлическом корпусе), БМ, ГМ. Радиаторы под них я использовал ребристые размером 120*170, толщиной 35 мм. Если радиаторы будут меньше, то необходим принудительный обдув.
На КТ815 небольшой радиатор-пластинка 2-3 кв. см. На П701 радиатор не нужен.
На резисторе R9 рассеивается значительная мощность. При наличии осциллографа и генератора можно попробовать ее уменьшить. Подаем сигнал на вход,на выход подключаем эквивалент нагрузки и осциллограф. Резистором R4 добиваемся симметричного ограничения максимально возможной амплитуды сигнала. Далее увеличивая резистор R9 добиваемся начала ограничения сигнала сверху. Выпаиваем и измеряем номинал. После этого устанавливаем резистор на 25…30% меньше.
При желании поэкспериментировать можно собрать совсем упрощенную схему.
Транзисторы здесь должны иметь больший К ус. Первый не менее 200, второй не менее 100.
Резистор R7 мощностью не менее 50 ватт. При отсутствии такого можно использовать электрический чайник и утюг по 2000 ватт на220в, соединенные параллельно, либо 2 ТЭН на 2000 ватт. — получается сопротивление около 10 ом. Кстати это можно использовать и как эквивалент нагрузки.
Данная схема позволяет получить 4…5 ватт (потреблять будет все равно около 90 ватт.) На коллекторе VT2 нужно выставить 12 вольт.
Удачи Вам в творчестве и конструировании!
Святая простота или бестрансформаторный лампово-транзисторный усилитель мощности
На многих тысячах страниц воспета красота лампового звука и для многих, кто вкусил эту необычайную музыкальность и, не побоюсь этого слова, человечность, ламповое звуковоспроизведение стало пожизненной страстью, ибо становится очевидным, что лучшего в звуковоспроизведении нет и не будет.
Но, как показывает суровая практика, далее наступают мучительные годы поисков совершенства, бессонные ночи и опухшие уши. Ведь правильный ламповый аппарат необычайно чувствителен к каждому компоненту и при подборе оных результат чаще всего абсолютно непредсказуем. На моей практике, к примеру, неоднократно случалось отказываться от общепризнанных дорогих разъемов в пользу совершенно безымянных китайских экземпляров, потому что именно этот китайско-марсианский сплав металлов именно в этой схеме давал наиболее волшебный результат!
И особенная головная боль в истории с ламповыми усилителями с трансформаторным выходом возникает в процессе подбора акустики, ибо, как показывает опыт, то, что с одними колонками дает воистину божественный результат, с другими может дать самый отвратительный звук, который вы только слышали. А подбирать колонки, меняя их, как шнуры, согласитесь, не так-то просто.
Но годы идут, и голова седеет, да и лень-матушку никто не отменял… Вот именно на стыке таких полярных соображений и родилась эта схема, предназначенная для тех, кто желает побыстрее начать наслаждаться музыкой, максимально сократив время и мучения на этапе изготовления усилителя.
Кто виноват и что делать?
Как известно ключевым звеном усилителя мощности является выходной трансформатор, от него зависит 50, если не 70 процентов звучания аппарата. Изготовление “высокохудожественного” трансформатора сравнимо с изготовлением скрипки, и это отнюдь не преувеличение. Так что сделать достойный трансформатор в домашних условиях далеко не каждому под силу. К тому же именно сложные и нелинейные амплитудно-частотные и резонансные процессы, возникающие во взаимодействии трансформатора с акустической системой, порождают капризность и сложность подбора пары усилитель-колонки. Хотя, конечно, если такой подбор успешно удался, мы в итоге и получаем этот пресловутый замечательный звук. Попытаемся проанализировать ситуацию: на мой взгляд, ключевым моментом является тот факт, что трансформатор является, по сути, конвертором сопротивлений и позволяет высокоомному ламповому каскаду быть нагруженным на низкоомный динамик, т.е. лампа как бы “чувствует” акустику, что и дает во многом красивый звук. Есть ли у нас возможность обойтись без трансформатора, сохранив при этом данный принцип? Оказывается, есть! Это всем известный эмиттерный повторитель. Он является по сути конвертором сопротивлений, и его входное сопротивление зависит от того, что “делается” в эмиттерной цепи. На базе эмиттерного повторителя и была разработана следующая схема (см. рис. 1).
Описание и параметры
В этой схеме реализован золотой принцип хайэнда – максимальная краткость и простота звукового тракта.
Рис.1. Принципиальная схема усилителя
Усилитель напряжения выполнен на триоде и формирует общий характер звучания схемы, далее следует усилитель тока на составном транзисторе, который в данном варианте включения вносит в звук минимально возможную окраску.
При этом лампа-драйвер (половина сдвоенного триода) напрямую нагружена через эмиттерный переход на резистор R3 и нагрузку, исключено даже анодное сопротивление. Однотактный выходной каскад работает в жестком режиме А (ток покоя 1,25 А, в виде тепла рассеивается 27 Вт). Усилитель охвачен мягкой и неглубокой обратной связью за счет падения напряжения на резисторе R2.
В итоге мы получаем весьма благородное, свойственное ламповым усилителям, звучание при практически максимальной простоте и дешевизне изготовления. Звук этого совсем не сложного усилителя можно охарактеризовать как прозрачный, детальный, теплый, с хорошо прорисованной панорамой и весьма динамичный. При этом, благодаря транзисторной “всеядности”, практически исключаются сложности с подбором акустики. Это и стало причиной опубликовать эту схему: я надеюсь, что многие новички (и не только) в сфере лампового звука смогут благодаря ей получить красивое и благородное звучание при минимальных усилиях и затратах.
Рассчитан усилитель на нагрузку 8 Ом. Выходная мощность около 8-ми Вт на канал, в зависимости от характера музыкального произведения и того уровня гармоник, который на ваше ухо еще воспринимается, как художественный. Этой мощности оказывается вполне достаточно для домашнего звукового комплекса. Чувствительность – 0,6 В, что отлично подходит к большинству современных источников сигнала. Частотная характеристика очень линейна и снизу ограничивается лишь емкостью С1, при указанном номинале мы получаем нижнюю частоту воспроизведения около 5-ти Гц, что опять же выигрыш по сравнению с трансформаторным выходом. Хочу пояснить: здесь и далее в отношении вроде бы строгих технических характеристик я часто буду говорить “примерно” и “около” – это связано с тем, что на самом деле субъективное восприятие звука часто очень сильно отличается оттого, что мы видим на приборах. И так как финальный пользователь данной конструкции человек, а не осциллограф, то и измерять многие величины мы будем человеком и настраивать схему под человека.
Детали и конструкция
Данная схема обладает классической ламповой чувствительностью к компонентам! Поэтому к их подбору рекомендую отнестись серьезно. Начнем с регулятора громкости – как известно, это весьма критический и сложный узел, благодаря плохому переменному резистору мы можем значительно потерять прозрачность и глубину звука! Если у вас нет возможности или желания использовать такие вещи, как ALPS или Riken Ohm, пусть это будет хотя бы тщательно отобранный и приведенный в порядок советский СП3 максимальной мощности, и не забудьте почистить скользящие металлические контакты, обеспечивающие соединение ползунка с выводом резистора! Главное – не ставить дешевые современные импортные резисторы. Очень хороший вариант – сделать ступенчатый регулятор на основе советского многопозиционного переключателя с посеребренными контактами, благо их легко достать на радиорынках. Схема такого регулятора приведена на рис. 2.
Рис.2. Схема ступенчатого регулятора
При проектировке данного регулятора ставилась задача получить максимальное качество.
И действительно, в цепи источник – сетка лампы всего один резистор и ни одного контакта, в цепи сетка – земля один резистор и один контакт. Правда, в итоге мы имеем изменяющееся от 17,3 до 29,5 кОм входное сопротивление усилителя, но для большинства современных источников сигнала это абсолютно приемлемо. Если необходимо получить большее входное сопротивление, например, для подключения к ламповому источнику, пропорционально увеличьте номиналы всех резисторов на требуемую величину.
Сдвоенный переключатель должен быть с перемыканием соседних контактов в момент коммутации (иначе при переключении на малых громкостях будут неприятные броски громкости), его, конечно, тоже необходимо тщательно почистить и привести в порядок (посеребренные контакты необходимо чистить ученической резинкой, ни в коем случае не используйте лезвие или надфиль!).
Постоянные резисторы двухваттные, вполне подойдут МЛТ. Не поленитесь для левого и правого канала регулятора отобрать резисторы максимально близких номиналов! Монтировать их нужно прямо на переключателе.
Регулятор громкости рекомендую делать сдвоенным – это гораздо удобнее в эксплуатации, а возможность регулировать баланс в современной качественной системе, как показывает практика, вещь не нужная.
R3 – проволочный 20-ти ваттный, и учтите, что он будет значительно нагреваться!
R2 – двухваттный, можно составной (параллельно 1 Ом + 1 Ом МЛТ-2), любители “бархатности” звука могут попробовать угольные ВС. Меняя сопротивление R2 в пределах 0,2-1,2 Ома, мы будем получать различную глубину обратной связи и, соответственно, различный коэффициент усиления и уровень гармоник. Уменьшая сопротивление, мы будем получать большую чувствительность и более “теплый” и “жирный” звук, увеличивая – меньшую чувствительность и большую прозрачность.
Лампу VL1 рекомендую подыскать 60-70-х годов, при этом есть смысл послушать как простой, так и ЕВ вариант 6Н23П, они звучат по- разному. Любители особой прозрачности и легкости звучания могут попробовать ЕСС88 (цоколевка та же), в частности, старые Tesla или RFT с позолоченными ножками будут очень хороши. Лампу необходимо выбрать с низким внутренним сопротивлением так, чтобы на эмиттере VT1 было напряжение 10-12,5 В.
Составные транзисторы VT1 могут быть с любой буквой, желательно отобранные по максимальному коэффициенту передачи. КТ825 советских времен дают, на мой взгляд, более прозрачный звук, современные – более бархатистый. Можете попробовать сделать составной транзистор самостоятельно; к примеру, интересное, более мягкое звучание дает пара КТ3107И + КТ816, а большую прозрачность даст КТ3107И + КТ818 (в этом случае нужно будет подобрать лампу с большим внутренним сопротивлением, в крайнем случае, возможно, придется добавить анодный резистор). Транзистор размещается на радиаторе площадью не менее 1000 см2! Лучше не использовать электрическое изолирование транзисторов от радиатора, а разместить их на раздельных радиаторах, изолированных друг от друга и от корпуса.
С1 и С2 желательно зашунтировать неполярными конденсаторами емкостью около 1 мкФ, из наших рекомендую попробовать МБГЧ, МБГП, МБМ, КБГ – звук будет разным, и вы сможете подстроить его согласно личным пристрастиям. Особенно это резонно, если вы используете дешевые импортные электролиты. Можете попробовать отечественные электролиты советских времен, в некоторых случаях они звучат весьма интересно.
Дроссель фильтра питания L1 содержит не менее 300 витков провода 0,3-0,5 мм, намотанных на железе от сетевого трансформатора габаритной мощностью 10-20 Вт. Отличный вариант – сгоревший трансформатор от китайского магнитофона, намотанный до заполнения. Сопротивление дросселя постоянному току 1-2 Ома.
При расчете и изготовлении сетевого трансформатора учтите падение напряжения под нагрузкой! В итоге мы должны получить на верхнем контакте R3 напряжение около 22 В. “Ленивый” вариант – приобрести готовый трансформатор ±10 В/3 А и питать накал лампы через гасящий резистор 11,3 Ом/2 Вт.
Диодный мост на ток 10-20 А.
Настоятельно рекомендую сначала собрать усилитель в макетном варианте со всеми предполагаемыми деталями, разъемами, проводами и припоем и отстроить его, подобрав лампу по внутреннему сопротивлению и, добившись подбором компонентов желаемого звучания, лишь затем собрать его окончательно в корпусе!
Рекомендуемый окончательный монтаж следующий (см. рис. 3)
Рис.3. Компоновка усилителя
Детали размещаются как на принципиальной схеме, по ходу сигнала с минимальной запутанностью. Монтаж навесной, максимально используются выводы самих деталей, монтажный провод 1-1,5 мм в сечении, соединения минимальной длины. Провода накала следует скрутить вместе. Общие провода все сходятся в одной точке, расположенной рядом с С2, там же происходит заземление корпуса. Через корпус никакие токи течь не должны! Лампу VL1 можно припаять, исключив потери качества в панельке и контактах, при анодном напряжении в 12 В менять вам ее придется очень и очень не скоро.
Хороший вариант – разместить входные разъемы на передней панели рядом с R1 и VL1, а вот сетевой выключатель, наоборот, отодвинуть подальше, на заднюю панель.
VT1 и R3 должны иметь хорошую вентиляцию, т.к. в сумме на двух каналах будет выделятся в виде тепла около 60 Вт; хорошо их вынести наружу, например, на верхнюю панель, придав усилителю “винтажный” вид.
Настройка
Так как главная отладка произошла у нас на макете, то настройка готового усилителя сводится к контролю напряжения на эмиттерах VT1′ и VT2″ (мы должны получить требуемые 10-12,5 В). Проконтролируйте, чтобы усилитель не “гудел” и не возбуждался: если усилитель “гудит”, проверьте правильность развода земли, экранировку и изолируйте входные разъемы от корпуса. В случае самовозбуждения на высоких частотах включите сетки VL1 через фильтры-пробки, состоящие из 15-ти витков монтажного провода, намотанных на небольших ферритовых кольцах. Сбалансировать каналы по коэффициенту усиления, в случае ощутимого разброса между триодами лампы, можно подбором резисторов R2, рекомендую использовать естественный разброс между экземплярами, а не довешивать дополнительные резисторы.
Напоследок любителям “жирности” звучания рекомендую попробовать зашунтировать R2 емкостью в 4700 мкФ, исключив обратную связь, при этом в несколько раз возрастет чувствительность усилителя и немного упадет выходная мощность. Так же скажу, что на основе этой схемы можно создать превосходный усилитель для наушников, сделав номинал R3 равным внутреннему сопротивлению оных и пересчитав соответствующим образом R2, а так же все токи и мощности.
Успехов и отличного звука!
Автор работы: Владислав Креймер, г. Донецк. (журнал “Радиолюбитель” 2008, №4)
Описание работы усилителя мощности звука на транзисторах MOSFET
Редакция сайта «Две Схемы» представляет простой, но качественный усилитель НЧ на транзисторах MOSFET. Его схема должна быть хорошо известна радиолюбителям аудиофилам, так как ей уже лет 20. Схема является разработкой знаменитого Энтони Холтона, поэтому её иногда так и называют — УНЧ Holton. Система усиления звука имеет низкие гармонические искажения, не превышающие 0,1%, при мощности на нагрузку порядка 100 Ватт.
Данный усилитель является альтернативой для популярных усилителей серии TDA и подобных попсовых, ведь при чуть большей стоимости можно получить усилитель с явно лучшими характеристиками.
Большим преимуществом системы является простая конструкция и выходной каскад, состоящий из 2-х недорогих МОП-транзисторов. Усилитель может работать с динамиками сопротивлением как 4, так и 8 Ом. Единственной настройкой, которую необходимо выполнить во время запуска — будет установка значения тока покоя выходных транзисторов.
Принципиальная схема УМЗЧ Holton
Усилитель Холтон на MOSFET — схемаСхема является классическим двухступенчатым усилителем, он состоит из дифференциального входного усилителя и симметричного усилителя мощности, в котором работает одна пара силовых транзисторов. Схема системы представлена выше.
Печатная плата
Печатная плата УНЧ — готовый видВот архив с PDF файлами печатной платы — скачать.
Принцип работы усилителя
Транзисторы Т4 (BC546) и T5 (BC546) работают в конфигурации дифференциального усилителя и рассчитаны на питание от источника тока, построенного на основе транзисторов T7 (BC546), T10 (BC546) и резисторах R18 (22 ком), R20 (680 Ом) и R12 (22 ком). Входной сигнал подается на два фильтра: нижних частот, построенный из элементов R6 (470 Ом) и C6 (1 нф) — он ограничивает ВЧ компоненты сигнала и полосовой фильтр, состоящий из C5 (1 мкф), R6 и R10 (47 ком), ограничивающий составляющие сигнала на инфранизких частотах.
Нагрузкой дифференциального усилителя являются резисторы R2 (4,7 ком) и R3 (4,7 ком). Транзисторы T1 (MJE350) и T2 (MJE350) представляют собой еще один каскад усиления, а его нагрузкой являются транзисторы Т8 (MJE340), T9 (MJE340) и T6 (BD139).
Конденсаторы C3 (33 пф) и C4 (33 пф) противодействуют возбуждению усилителя. Конденсатор C8 (10 нф) включенный параллельно R13 (10 ком/1 В), улучшает переходную характеристику УНЧ, что имеет значение для быстро нарастающих входных сигналов.
Транзистор T6 вместе с элементами R9 (4,7 ком), R15 (680 Ом), R16 (82 Ом) и PR1 (5 ком) позволяет установить правильную полярность выходных каскадов усилителя в состоянии покоя. С помощью потенциометра необходимо установить ток покоя выходных транзисторов в пределах 90-110 мА, что соответствует падению напряжения на R8 (0,22 Ом/5 Вт) и R17 (0,22 Ом/5 Вт) в пределах 20-25 мВ. Общее потребление тока в режиме покоя усилителя должен быть в районе 130 мА.
Выходными элементами усилителя являются МОП-транзисторы T3 (IRFP240) и T11 (IRFP9240). Транзисторы эти устанавливаются как повторитель напряжения с большим максимальным выходным током, таким образом, первые 2 каскада должны раскачать достаточно большую амплитуду для выходного сигнала.
Резисторы R8 и R17 были применены, в основном, для быстрого измерения тока покоя транзисторов усилителя мощности без вмешательства в схему. Могут они также пригодиться в случае расширения системы на еще одну пару силовых транзисторов, из-за различий в сопротивлении открытых каналов транзисторов.
Резисторы R5 (470 Ом) и R19 (470 Ом) ограничивают скорость зарядки емкости проходных транзисторов, а, следовательно, ограничивают частотный диапазон усилителя. Диоды D1-D2 (BZX85-C12V) защищают мощные транзисторы. С ними напряжение при запуске относительно источников питания у транзисторов не должно быть больше 12 В.
На плате усилителя предусмотрены места для конденсаторов фильтра питания С2 (4700 мкф/50 в) и C13 (4700 мкф/50 в).
Самодельный транзисторный УНЧ на МОСФЕТУправление питается через дополнительный RC фильтр, построенный на элементах R1 (100 Ом/1 В), С1 (220 мкф/50 в) и R23 (100 Ом/1 В) и C12 (220 мкф/50 в).
Источник питания для УМЗЧ
Схема усилителя обеспечивает мощность, которая достигает реальных 100 Вт (эффективное синусоидальная), при входном напряжении в районе 600 мВ и сопротивлением нагрузки 4 Ома.
Усилитель Холтон на плате с деталямиРекомендуемый трансформатор — тороид 200 Вт с напряжением 2х24 В. После выпрямления и сглаживания должно получиться двух полярное питание усилители мощности в районе +/-33 Вольт. Представленная здесь конструкция является модулем монофонического усилителя с очень хорошими параметрами, построенного на транзисторах MOSFET, который можно использовать как отдельный блок или в составе самодельного домашнего аудиокомплекса.
Мощный германиевый усилитель — Усилители на транзисторах — Звуковоспроизведение
Жан Цихисели
Типичные ошибки при конструировании германиевых усилителей, происходят из за желания, получить от усилителя широкую полосу пропускания, малые искажения и т.д.
Привожу схему моего первого германиевого усилителя, спроектированного мной в 2000г.
Хотя схема вполне работоспособна, её звуковые качества оставляют желать лучшего.
Схема первого усилителя..
Практика показала, что применение дифференциальных каскадов, генераторов тока, каскадов с динамической нагрузкой, токовых зеркал и других ухищрений с ООС не всегда приводят к желаемому результату, а иногда просто ведут в тупик.
Наилучшие практические результаты для получения высокого качества звучания, дает применение однотактных каскадов пред. усиления и использование меж-каскадных согласующих трансформаторов.
Вашему вниманию представлен германиевый усилитель с выходной мощностью 60 Вт, на нагрузке 8 Ом. Выходные транзисторы используемые в усилителе П210А, П210Ш. Линейность 20-16000гц.
Субъективной нехватки высоких частот практически не ощущается.
При нагрузке 4ом усилитель выдает 100вт.
Схема усилителя на транзисторах П-210.
Усилитель питается от не стабилизированного, блока питания с выходным, двух-полярным напряжением +40 и -40 вольт.
На каждый канал, применяется отдельный мост из диодов Д305, которые устанавливаются на небольшие радиаторы.
Конденсаторы фильтра, желательно применять не менее 10000мк в плечо.
Данные силового трансформатора:
-железо 40 на 80. Первичная обмотка содержит 410 вит. провода 0,68. Вторичная по 59 вит. провода 1,25, намотанных четыре раза (две обмотки — верхнее и нижнее плечо одного канала усилителя, оставшиеся две — второго канала)
.Дополнительно по силовому трансформатору:
железо ш 40 на 80 от блока питания телевизора КВН. После первичной обмотки устанавливается экран из медной фольги. Один незамкнутый виток. К нему припаивается вывод который затем заземляется.
Можно использовать любое, подходящее по сечению ш железо.
Согласующий трансформатор выполнен на железе Ш20 на 40.
Первичная обмотка разделена на две части и содержит 480 вит.
Вторичная обмотка содержит 72 витка и мотается в два провода одновременно.
Сначала наматывается 240 вит первичкм, затем вторичка, затем снова 240 вит первички.
Диаметр провода первички 0,355 мм, вторички 0,63 мм.
Трансформатор собирается в стык, зазор — прокладка из кабельной бумаги примерно 0,25 мм.
Резистор 120 Ом включен для гарантированного отсутствия самовозбуждения при отключенной нагрузке.
Цепочки 250 Ом +2 по 4.7 Ом, служат для подачи начального смещения на базы выходных транзисторов.
С помощью подстроечных резисторов 4,7 Ом, устанавливается ток покоя 100ма. На резисторах в эмиттерах выходных транзисторов 0,47 Ом, должно при этом быть напряжение, величиной 47 мв.
Выходные транзисторы П210, должны быть при этом, практически едва теплые.
Для точной установки нулевого потенциала, резисторы 250 Ом, должны быть точно подобраны ( в реальной конструкции состоят из четырех резисторов по 1 кОм 2вт).
Для плавной установки тока покоя, используются подстроечные резисторы R18, R19 типа СП5-3В 4,7 Ом 5%.
Внешний вид усилителя сзади, изображен на фотографии ниже.
— Можно узнать Ваши впечатления от звучания этого варианта усилителя, в сравнении с предыдущим безтрансформаторным вариантом на П213-217?
Еще более насыщенное сочное звучание. Особо подчеркну качество баса. Прослушивание проводилось с открытой акустикой на динамиках 2А12.
— Жан, а все таки почему именно П215 и П210, а не ГТ806/813 в схеме стоят?
Внимательно посмотрите параметры и характеристики всех этих транзисторов, я думаю Вы все поймете, и вопрос отпадет сам собой.
Отчетливо осознаю желание многих, сделать германиевый усилитель более широкополосным. Но реальность такова, что для звуковых целей многие высокочастотные германиевые транзисторы не совсем подходят. Из отечественных могу рекомендовать П201, П202, П203, П4, 1Т403, ГТ402, ГТ404, ГТ703, ГТ705, П213-П217, П208, П210. Метод расширения полосы пропускания — применение схем с общей базой, или использования импортных транзисторов.
Применение схем с трансформаторами, позволило добиться отличных результатов и на кремнии. Разработан усилитель на 2N3055.
Поделюсь в ближайшее время.
— А что там с «0» на выходе? При токе 100 мА трудно верится, что его удастся удержать в процессе работы в приемлемых +-0.1 В.
В аналогичных схемах 30-и летней давности (схема Григорьева), это решается либо «виртуальной» средней точкой либо электролитом:
Усилитель Григорьева.
Нулевой потенциал удерживается в указанном Вами пределе. Ток покоя вполне можно делать и 50ма. Контролируется по осциллографу до исчезновения ступеньки. Больше нет необходимости. Далее, все ОУ легко работают на нагрузку 2ком. Поэтому особых проблем согласования с CD нет.
Некоторые высокочастотные германиевые транзисторы требуют внимания и дополнительного изучения их в звуковых схемах. 1Т901А, 1Т906А, 1Т905А, П605-П608, 1ТС609, 1Т321. Пробуйте,нарабатываете опыт.
Иногда происходили внезапные отказы транзисторов 1Т806, 1Т813, поэтому могу рекомендовать их с осторожностью.
Им надо ставить «быструю» защиту по току, рассчитанную на ток больший максимального в данной схеме. Чтобы не было срабатывания защиты в нормальном режиме. Тогда они работают очень надёжно.
Добавлю свою версию схемы Григорьева
Версия схемы усилителя Григорьева.
Подбором резистора с базы входного транзистора устанавливается половина напряжения питания в точке соединения резисторов 10ом. Подбором резистора параллельно диоду 1N4148, устанавливается ток покоя.
— 1. У меня в справочниках Д305 нормированы на 50в. Может безопаснее применить Д304? Думаю 5А — достаточно.
— 2. Укажите реальные h31 для приборов установленных в этом макете или их минимально-требуемые значения.
Вы совершенно правы. Если нет необходимости в большой мощности. На каждом диоде напряжение составляет около 30 В, так что проблем с надежностью не возникает. Применены были транзисторы со следующими параметрами; П210 h31-40, П215 h31-100, ГТ402Г h31-200.