Site Loader

Эффективный фильтр напряжения питания на полевом транзисторе

Усилитель мой от рождения уже обладал весьма почётным уровнем подавления пульсаций напряжения питания (PSRR — англ. — Power Supply Rejection Ratio). Блок питания я снабдил емкостями щедро, да ещё заряжаются они «мягко» (простенький трюк, но не о нём сейчас). В общем, по всем прикидкам усилитель должен был получиться абсолютно тихим. Т.е. уровень «гудежа» 100Гц по идее ниже всех слышимых пределов. И в недорогих тестовых наушниках, да днём — так и было. Но тут послушал я его глубокой ночью, да в любимых Sennheiser HD580. Гудит. Ненавязчиво, почти незаметно. Слышно, естественно, только без сигнала и на выкрученной на полную громкости. Если бы делал для себя — наверное, так бы и оставил.

Из идеологических соображений я ни в какую не хотел применять петлевые ООС в аналоговой части, даже в стабилизаторах питания. Немножко попахивает high-end’ным экстремизмом, ну да вот так мне тогда «упёрлось», а к своим прихотям надо относиться уважительно! 😉 Посему возможность применить интегральные стабилизаторы была отринута на корню. Решил добавить «виртуальную батарею», по слухам придуманную ещё в прошлом столетии инженерами фирмы Technics. А по сути же — простой истоковый (или эмиттерный) повторитель в питании, на вход которого подано отфильтрованное это же самое напряжение питания. Ещё это чудо электронной мысли иногда называют «

Электронный Дроссель«, «Усилитель или Умножитель Ёмкости», а так же «Устройство Защиты и Фильтрации», или «УЗФ», хотя защищать на практике надо его самого…

Кстати, в Сети гуляет немало вариантов, более (а чаще) менее грамотных. Для начала приведу базовую схему фильтра. Критиковать альтернативные варианты сейчас не буду. Если что вызвало удивление — пишите, пожалуйста, в комментариях. Может совместно создадим обучающую статью для только-только постигающих искусство схемотехники 😉

Конденсатор С2 должен быть с минимальными утечками. Ёмкость где-нибудь от 1мкФ до… сколько душа пожелает. Можно так же увеличить сопротивление резистора фильтра, мне 1МОм нравится из соображений уменьшения влияния всевозможных утечек. Стабилитрон, что защищает затвор транзистора от пробоя, должен быть на напряжение от 10 до 20 Вольт.

Для пробы впаял в одном, самом важном источнике. Использовал «логический» MOSFET (с низким пороговым напряжением Vgs), так что потеряли мы лишь пару вольт на таком стабилизаторе. Стало существенно тише. Одна беда — фильтрующий конденсатор заряжается до номинального напряжения очень медленно. Теперь вся схема «плывёт» по напряжениям несколько минут после включения. И тут пришло первое «озарение»: пульсации питания, которым я «кормлю» повторитель этой самой виртуальной земли — в моем случае сотня милливольт. Два встречно включенных кремниевых диодика, шунтирующие резистор фильтра, никак не повлияют на работу фильтра в установившемся режиме, и в тоже время обеспечат на порядок более быстрый заряд и разряд конденсатора фильтра.

Если же в каком-либо конкретном применении пульсации питающего напряжения на входе фильтра (V+) превышают пару сотен милливольт — всегда можно включить несколько диодов последовательно, или даже стабилитрон.

Как нарисовал — сразу же понял, что дополнительный скромный диод решил мне ещё одну задачку: где взять полевики «L»-типа для более высоковольтных источников (терять четыре-пять вольт — типичный Vgs обычных MOSFET — даже там было жалко). Ведь теперь Vds на полевом транзисторе никогда не превысит его собственного Vgs при заданных токах нагрузки плюс падение на диоде. Значит можно использовать низковольтные полевики, которых у меня оказалось в достатке, и для высоковольтного питания.

Те же два диода (или стабилитрон) кардинально решают ещё более серьёзную проблему, особенно остро стоящую в по-настоящему высоковольтных источниках, где народ применяет эти самые «виртуальные батареи» безо всякой защиты. Там при неудачном стечении обстоятельств на повторителе может рассеиваться мгновенная мощность в сотни ватт. Любой, даже непомерно большой (для требуемых рабочих режимов) транзистор разлетается в пыль. Диоды исключают подобные ситуации, эффективно ограничивая падение напряжения на повторителе. Правда, теперь не получится использовать тот же фильтр ещё и для задержки подачи анодного напряжения — ну да это меня мало беспокоило. Во-первых аппарат был не ламповый. Во-вторых то, как народ это дело обычно использует — подачу-то анодного при включении прибора такой фильтр задерживал, а вот снятие высокого напряжения при отключении питания он ни разу не ускорял. Так что задачку о правильном соотношении во времени подачи и снятия накального и анодного напряжений мы сейчас рассматривать не будем.

На этом мысль останавливаться не пожелала. Мне-то была нужна ещё схема автоматики, которая будет эффективно защищать нагрузку (дорогие аудиофильские наушники) от всевозможных перепадов напряжения, которые неизбежны при включении и выключении аппарата. Если задержку при включении сделать может и ребёнок, то как определить момент выключения без пристального мониторинга «сырого», несглаженного огромными емкостями фильтров, напряжения питания? Да вот же он, отличный монитор! Причём реагировать будет не только на On/Off, но и на любые достаточно резкие броски питания. Вместо диодов включаем эмиттерные переходы транзисторов. Коллекторы соединяем вместе и заводим на схему автоматики, с условием, что она не заберёт большого тока.

Итого, простой фильтр пульсаций удалось усовершенствовать:

  1. Быстрый выход на рабочий режим (заряд и разряд фильтрующего конденсатора) при сохранении потенциально очень большой постоянной времени фильтра
  2. Возможность использовать низковольтные полевые транзисторы для фильтрации любого напряжения
  3. Полная защита полевого транзистора и от пробоя затвора, и от неожиданных перегрузок
  4. Практически бесплатные детекторы резких скачков напряжения питания (в обе стороны) — в каждом стабилизированном источнике

Кстати, датчик бросков и включения-выключения питания оказался чересчур чувствительный — отлавливал броски от включения утюга в соседней комнате. Пришлось добавить пару диодов и резистор. Вот теперь автоматика стала отрабатывать идеально, быстро и без ложных тревог.

Если Вам, дорогой читатель, данный фильтр нужен для высокого напряжения — необходимо лишь выбрать конденсаторы на соответствующее напряжение (с запасом!) В остальном фильтр без изменений будет отлично работать и в высоковольтной цепи. Если тема интересна — есть ещё куда совершенствоваться. Так что если будет интерес — будет ещё статья, уже с прицелом на ламповую технику, фильтр с дополнительной защитой; а так же обсудим эффективные приёмы по уменьшению эрозии катода…

Литература: Г. С. Векслер, В. И. Штильман. Транзисторные сглаживающие фильтры, издание второе. М: «Энергия», 1979г.

Disclaimer: Скан книги был найден на просторах Сети в свободном доступе.
Копия предоставляется исключительно для ознакомления и личного пользования.

Кстати, наверняка даже такой пустяк можно запатентовать. Если есть кто из моих читателей грамотный в патентном деле — научите? 😉 А лучше просто поделитесь статьёй с друзьями-электронщиками. Мне будет приятно, и им, надеюсь — полезно.

Транзисторные сглаживающие фильтры

Транзисторные сглаживающие фильтры

В настоящее время в радиоэлектронной аппаратуре широко применяют транзисторы и микросхемы, открывающие большие возможности для ее миниатюризации. Однако комплексная миниатюризация невозможна без существенного снижения габаритов и массы вторичных источников питания и, в частности, сглаживающих фильтров.
Уменьшить массогабаритные показатели сглаживающих фильтров можно, используя вместо громоздких фильтрующих дросселей и конденсаторов транзисторные фильтры. Преимущества транзисторных сглаживающих фильтров по сравнению с их LC-прототипами проявляются особенно при работе в условиях пониженной температуры окружающей среды, когда емкость фильтрующих конденсаторов уменьшается, а также при частоте питающей сети 50 Гц.
Однако, имея выигрыш перед LC-фильтрами по указанным показателям (в 2…9 раз), транзисторные сглаживающие фильтры уступают им в коэффициенте полезного действия (КПД). Если на дросселе индуктивно-емкостного фильтра падает напряжение 1…2 В, то в транзисторном фильтре на регулирующем транзисторе — до 3…5 В.
Рассмотрим несколько известных вариантов транзисторных сглаживающих фильтров.


Рис.1


На рис. 1 представлена схема наиболее простого транзисторного фильтра. Принцип его работы заключается в следующем. На коллектор транзистора VT1 поступает напряжение с большой амплитудой пульсации, а цепь базы питается через интегрирующую цепь R1C1, которая сглаживает пульсации напряжения на базе. Сопротивление резистора R1 выбирают из условия достаточности тока базы для обеспечения заданного тока в нагрузке. Чем больше постоянная времени T=R1C1, тем меньше пульсации напряжения на базе. Так как устройство представляет собой эмиттерный повторитель, то на выходе фильтра пульсации будут столь же малыми, как и на базе. Емкость конденсатора С1 может быть в несколько раз меньше, чем у конденсатора в LC-фильтре, так как базовый ток намного меньше выходного тока фильтра (коллекторного тока транзистора) — примерно в h31э раз.


Рис. 2


Преимущество этого фильтра — в простоте. К недостаткам следует отнести, во-первых, противоречивые требования к значению сопротивления резистора R1 (для уменьшения пульсации на выходе фильтра следует увеличивать сопротивление, а для повышения КПД фильтра-уменьшать), во-вторых, сильная зависимость параметров фильтра от температуры, времени, значения тока нагрузки, статического коэффициента передачи тока базы транзистора. В таких фильтрах обычно резистор R1 подбирают опытным путем.

На рис. 2 представлена схема фильтра, у которого пульсации выходного напряжения меньше, так как он позволяет увеличить сопротивление резистора R1. Такая возможность обусловлена тем, что цепь базы здесь питается от отдельного источника питания с напряжением Uб, большим, чем у основного источника (Uвх). Мощность, выделяющаяся на резисторе R1, незначительна, поскольку ток базы мал.
Однако, наряду с положительным эффектом уменьшения пульсации, этому фильтру присущи те же недостатки, что и выполненному по схеме на рис.1. Кроме того, в этом фильтре транзистор может войти в режим насыщения и тогда пульсации со входа будут без какого бы то ни было ограничения переданы на выход фильтра. Насыщение транзистора наступит тогда, когда по каким-либо причинам напряжение на базе превысит напряжение на коллекторе.

На рис. 3 представлена схема фильтра, позволяющего избежать зависимости выходных параметров от температуры, времени, нагрузки и коэффициента h31э транзистора. Ток через делитель R1R2 выбирают в 5…10 раз большим, чем ток, ответвляющийся в базу. Поэтому выходное напряжение фильтра будет определяться распределением входного напряжения на делителе.


Рис. 3


Недостатки фильтра: меньший КПД по сравнению с собранными по схемам на рис.1 и 2, необходимость увеличения емкости конденсатора С1 для получения того же уровня пульсации на выходе, что и у предыдущих фильтров. Для улучшения его фильтрующих свойств применяют N-звенные RC-фильтры в цепи базы транзистора.

На рис.4 показана схема устройства с двузвенным RC-фильтром. Здесь сумма значений сопротивления резисторов R1 и R2 равна сопротивлению резистора R1 в предыдущем устройстве, а сопротивление резистора R3 равно сопротивлению резистора R2 в фильтре по рис.3.


Рис. 4


Недостаток этого устройства — сравнительно невысокий КПД.
Из рассмотренных фильтров практическое применение получили устройства, выполненные по схемам на рис.3 и 4.
С учетом интересных качеств, заложенных в фильтре по схеме на рис.2, была проведена работа по усовершенствованию этого устройства. Ее результатом явились два варианта фильтра, по КПД и уровню пульсации близкого к LC-фильтрам, а по массогабаритным показателям значительно превосходящего их.


Рис. 5


Рис. 6

Схема одного из этих фильтров показана на рис.5, а на рис.6 — несколько упрощенные графики, иллюстрирующие его работу. На коллектор транзистора VT2 поступает от выпрямителя постоянное напряжение Uвх с большой амплитудой пульсации. На резистор R1 поступает напряжение Uб с дополнительного источника (на рис.6 оно показано не содержащим пульсации для облегчения понимания работы фильтра; реально оно может иметь пульсации). Всегда следует выбирать Uб>Uвх, что позволит увеличить сопротивление резистора R1, а значит, уменьшить емкость конденсатора С1.
Конденсатор С1 будет заряжаться от источника Uб через резистор R1. Пока напряжение на конденсаторе меньше входного (то есть напряжения на базе транзистора VT1), транзистор закрыт. Как только напряжение на конденсаторе превысит входное на величину UэбVT1 транзистор VT1 откроется и конденсатор С1 начнет разряжаться (момент t1 на рис.6). Разрядка продолжается до тех пор, пока входное напряжение не начнет увеличиваться. В момент t2 транзистор VT1 закроется и конденсатор С1 снова начнет заряжаться. Далее этот процесс будет периодически повторяться.


Рис. 7

Размах пульсации на конденсаторе определяется постоянной времени T=R1C1. Номинал резистора выбирают, исходя из тех же соображений, что и в рассмотренных ранее фильтрах по схеме на рис.1 и 2. Необходимую емкость конденсатора рассчитывают из условия, что постоянная времени T больше в 10…20 раз периода колебаний входного напряжения Uвх. Вообще же, чем больше емкость конденсатора, тем меньше размах пульсации.
Напряжение с конденсатора С1 поступает на базу транзистора VT2 через диоды VD1, VD2. Так как транзистор VT2 включен по схеме эмиттерного повторителя, то выходное напряжение фильтра по форме будет повторять напряжение на конденсаторе С1, то есть пульсации на выходе фильтра будут намного меньше входных.
Выходное напряжение жестко связано с минимальным значением входного напряжения и не зависит от температуры, времени, сопротивления нагрузки и статического коэффициента передачи тока основного транзистора фильтра. Минимальное напряжение между коллектором и эмиттером транзистора VT2 определяется числом диодов, включенных между конденсатором и базой этого транзистора и служащих для смещения уровня постоянной составляющей выходного напряжения.
На рис.7 изображена схема второго варианта фильтра. Условия работоспособности для него те же, что и для первого (см. рис.5). Зарядка конденсатора С1 продолжается до тех пор, пока напряжение на нем не превысит входное на величину UпрVD1 (момент t1 на рис.8). С этого момента конденсатор С1 разряжается через открывшийся диод VD1, транзистор VT1 и нагрузку, а также через источник напряжения Uвх. Разрядка будет продолжаться до тех пор, когда входное напряжение Uвх начнет вновь увеличиваться (момент t2). Этот процесс будет повторяться периодически.
Диоды VD2, VD3 служат для смещения уровня постоянной составляющей, как и в предыдущем фильтре. Кроме этого, диод VD2 выполняет функцию ключа в пиковом детекторе VD2C2. Так как ток базы довольно мал и конденсатор С2 разряжается только через цепь базы, то пульсации на нем будут меньше, чем на конденсаторе С1. Следовательно, на выходе фильтра пульсации будут незначительны.


Рис. 8

Наличие конденсатора С2 и диода VD2 изменяет характер кривой зарядки конденсатора С1 (рис.8). Пока напряжение на конденсаторе С1 меньше, чем на С2, и диод VD2 закрыт, наклон кривой Uс1 определяется постоянной времени зарядки T1=R1C1. Когда же напряжение UC1 превысит напряжение Uc2 настолько, что откроется диод VD2 (момент t3), то конденсаторы окажутся включенными параллельно. Скорость их зарядки уменьшится и будет определяться постоянной времени зарядки T2=R1 (C1+C2). После того, как напряжение на конденсаторе С1 достигнет своего максимального значения и начнет уменьшаться, диод VD2 закрывается и конденсатор С2 медленно разряжается через цепь базы транзистора VT1.
Параметры этого фильтра так же, как и предыдущего (см. рис.5), практически не зависят от дестабилизирующих факторов.
Сглаживающий фильтр, собранный по схеме на рис.7, при минимальном значении входного напряжения Uвх min=14 В с размахом пульсации dUвх=2,5 В и Uб=18 В обеспечи

Транзисторный фильтр, ака «электронный дроссель» — Страница 25 — Источники питания

Так, как у меня в корректоре стабилизаторы накала имеют на выходе дроссели, а дроссели в свою очередь, имеют сопротивление, и полное напряжение накала появляется не сразу, решил все-таки дополнить электронный фильтр, обсуждаемый в данной ветке, задержкой. Отмакетил вот такую схемку. В первый момент времени после включения, на нижней ноге конденсатора С3 присутствует полное напряжение питания, а на затворе транзистора VT1 — 12 вольт, образуемые резистором R2 и стабилитроном VD2, транзистор VT1 открыт и шунтирует на землю нижний вывод резистора R4. Когда конденсатор С3 зарядится через резистор R1, напряжение на нижнем выводе этого конденсатора упадет, упадет и напряжение на затворе VT1, он закроется и фильтр начнет свою работу. Резистор R2 является токозадающим для стабилитрона VD2. Резистор R4 является токозадающим и для цепочки стабилитронов VD4-VD6, и для тока через транзистор VT1 во время задержки. При кратковременном выключении питания с последующим включением, конденсатор С6 будет разряжаться на землю через транзистор VT1, резистор R2 ограничивает проходящий в этом случае ток, я применил МЛТ-2, так как кратковременная мощность в этот момент на резисторе будет выделяться большая, а МЛТ это переварит без проблем. Диод VD3 несколько облегчает жизнь этого резистора, ускоряя разряд конденсатора С6. Пульсации напряжения на конденсаторе С1, зависящие от тока нагрузки и собственно емкости этого конденсатоа, будут беспрепятственно через конденсатор С3, являющийся в данном случае разделительным, пролазить на затвор транзистора VT1, и могут его приоткрывать, особенно в моменты пробоя стабилитронов VD4-VD6. Чтобы этого не происходило и схема не начала генерить на инфра-инфра низе, нужны конденсаторы С4, С5. На самом деле, из-за неидеальности транзистора VT1, даже когда он закрыт, напряжение на его истоке, благодаря резистору R3, слегка приподнято над землей. И хорошо подобрать конденсатор C4 так, чтобы пульсации на нем уместились под напряжением на истоке. Однако при слишком большом номинале этого конденсатора, потребуется много времени, чтобы при включении схемы напряжение на затворе поднялось до открытия транзистора, и напряжение на выходе схемы начнет расти сразу, с замедлением где-нибудь по середине. Понятно, что из за невозможности сделать надежное смещение для VT1, для другой, большей нагрузки, придется брать другие номиналы C3 и C4. Транзистор VT1 спокойно обходится без радиатора. При данном номинале R1, задержка составляет около 30 сек.

????????.JPG

Активный фильтр 4.0.0.0 для источника питания (Е.А. Москатов)

Программа позволяющая рассчитывать активные фильтры на биполярных транзисторах, предназначенные для фильтрации пульсаций напряжения в источниках питания. Схема фильтра.

Транзисторные фильтры обладают малыми массой и габаритами в отличие от реактивных низкочастотных LC-фильтров, не имеют крупногабаритного и тяжёлого дросселя и способны обеспечить малое выходное сопротивление. Кроме того, транзисторные фильтры имеют более высокий коэффициент сглаживания пульсаций. Транзисторный фильтр с последовательным включением транзистора и нагрузкой в цепи эмиттера эквивалентен П-образному индуктивно- ёмкостному фильтру. В рассчитываемом фильтре (смотрите рис. 1) с нагрузкой в цепи эмиттера, включённой последовательно с транзистором, на базу транзистора подаётся напряжение, отфильтрованное RC-цепочкой, состоящей из резистора Rб и конденсатора Cб.

Так как напряжение Uбэ биполярного транзистора весьма мало, то выходное напряжение будет мало отличаться от напряжения на базе транзистора. Пульсации на выходе этого фильтра зависят от cглаживающего действия RC-цепи. Рассчитываемая схема транзисторного фильтра представляет собой эмиттерный повторитель, выходное сопротивление которого мало, поэтому такой фильтр менее чувствителен к изменениям нагрузки. Так как база транзистора VT1 соединена с коллектором через резистор Rб, то в цепи имеется автоматическое смещение. Следовательно, активный фильтр устойчиво работает при изменении температуры внешней среды и не требует подгонки режима работы транзистора. Иногда конденсатор параллельно нагрузке не ставят, так как конденсатор Сб в цепи базы транзистора оказывает фильтрующее действие при колебаниях тока нагрузки. Его ёмкость, пересчитанная на выход, примерно в h31э раз больше (h31э – коэффициент усиления транзистора по току в схеме с общим эмиттером). Переменная составляющая напряжения пульсаций прикладывается к переходу база-коллектор и выделяется на транзисторе VT1. В коллекторном и эмиттерном токах переменная составляющая практически отсутствует, поэтому пульсации в нагрузке малы. Коэффициент полезного действия (КПД) транзисторного фильтра будет тем больше, чем меньше падение постоянного напряжения на транзисторе VT1. Но при этом амплитуда переменной составляющей напряжения на транзисторе не должна превышать значение постоянного напряжения на нём, иначе фильтр потеряет свою работоспособность. Применение транзисторных фильтров на выходе однофазных выпрямителей без предварительного фильтра невозможно.


Рис.2 Вид программы

В основном окне программы расположены поля ввода числовых значений. Расчёт осуществляется после нажатия на кнопку «Рассчитать!» . После заполнения всех полей ввода при нажатии на кнопку расчёта в нижней части окна появятся результаты вычислений (смотрите рис.2). Вызвать файл справки можно, нажав на клавиатуре клавишу F1.

Скачать справку (130кб)

Скачать программу рассчета активного фильтра (780кб)

 

Е. А. Москатов http://moskatov.narod.ru

Транзисторные сглаживающие фильтры

⇐ ПредыдущаяСтр 20 из 36Следующая ⇒

Уменьшить массогабаритные показатели можно, используя транзисторные СФ, вместо громоздких LC-фильтров. Правда выигрыш транзисторных фильтров компенсируется меньшим КПД. Рассмотрим типичные схемы транзисторных фильтров.

На рисунке 26.4 представлена схема наиболее простого транзисторного фильтра.

 

Рис.26. 4 — Простейший транзисторный фильтр

На коллектор транзистора VT поступает напряжение с выпрямителя с большой амплитудой пульсаций. Цепь базы питается через интегрирующую цепь RC. Эта цепочка сглаживает пульсации на базе транзистора. В принципе, эту цепь можно представить, как RC-фильтр. Чем больше постоянная времени τ = RC, тем меньше пульсации напряжения на базе транзистора. Ну а поскольку транзистор включен по схеме эмиттерного повторителя, то на выходе напряжение будет повторять напряжение на базе, т. е. пульсации будут столь же малыми, как и на базе. Емкость конденсатора С может быть в несколько раз меньше (примерно в h21э раз), чем в LC-фильтре, поскольку базовый ток намного меньше выходного тока фильтра, т. е. коллекторного тока транзистора. Основное достоинство схемы — простота. А вот недостатков… Во-первых, противоречивые требования к сопротивлению резистора R — для уменьшения пульсаций следует увеличивать сопротивление, для повышения КПД — уменьшать. Во-вторых, сильная зависимость параметров от температуры, тока нагрузки, коэффициента передачи тока базы транзистора (h21э). Обычно резистор подбирают экспериментально.

Несколько иная схема, приведенная на рисунке 26.5. В такой схеме цепь базы транзистора запитывается от отдельного источника с напряжением, больше входного. Схема обладает меньшими пульсациями.

 

Рис.26.5 — Еще одна схема транзисторного СФ

Поскольку база питается от отдельного источника, сопротивление резистора можно увеличить и, следовательно, уменьшить пульсации выходного напряжения. Мощность, выделяемая на резисторе R мала, так как ток базы мал. Тем не менее, этой схеме присущи те же недостатки, что и предыдущей. Кроме того, в таком фильтре транзистор может войти в насыщение и все пульсации со входа фильтра без ограничений будут передаваться на выход. В этот режим транзистор войдет, когда напряжение на базе превысит напряжение на коллекторе.

Ниже приведена схеме транзисторного СФ, лишенная вышеуказанных недостатков.

Рис. 26.6 — Фильтр с делителем напряжения

Ток через делитель R1R2 выбирается большим в 5-10 раз, по сравнению с током, ответвляющимся в базу. Поэтому выходное напряжение фильтра определяется распределением входного напряжения на делителе. Недостатки фильтра — меньший КПД по сравнению с предыдущими схемами. К тому же, необходимо увеличивать емкость конденсатора С1 для получения приемлемых пульсаций.

В завершении практическая схема транзисторного сглаживающего фильтра, по КПД и пульсациям близкого к LC-фильтрам, но превосходящего их по массогабаритным показателям. Схема приведена на рисунке 26.7.

 

Рис. 26.7 — Транзисторный сглаживающий фильтр

На коллектор транзистора VT1 поступает входное напряжение с большими пульсациями, на базу через резистор R1 напряжение от отдельного источника, по значению больше входного. Конденсатор С1 заряжается до тех пор, пока напряжение на нем не станет больше входного на величину прямого напряжения на диоде VD1, т. е. Uпр.VD1.Кондер С1 начинает разряжаться через отпертый диод VD1, транзистор VT1 и нагрузку. Разряжаться конденсатор будет, пока входное напряжение вновь не станет увеличиваться. Диоды VD2, VD3 смещают уровень постоянной составляющей. Кроме того, диод VD2 выполняет функции ключа в пиковом детекторе VD2C2. Поскольку ток базы довольно мал и конденсатор разряжается только через цепь базы, то пульсации на нем будут меньше, чем на С1. Значит и на выходе пульсации будут незначительны. В качестве транзистора используется КТ827А. Можно заменить его на составной из КТ815 и КТ819. При входном напряжении 14-15 В с уровнем пульсаций 2,5-3 В и напряжении на базе 18-20 В при токе нагрузки 2 А выходное напряжение 12,5 В с уровнем пульсаций 40 мВ.

Стабилизатором напряжения (СТН) называют устройство, поддерживающее с определенной точностью неизменным напряжение на нагрузке. Другими словами, стабилизатор напряжения — это устройство, на выходе которого напряжение остается неизменным при воздействии дестабилизирующих факторов.

Стабилизаторы бывают параметрические (ПСН) и компенсационные (КСН). Параметрический стабилизатор наиболее простой. Его работа основана на свойствахполупроводникового диода, а точнее на одной из его разновидностей — стабилитрона. Типичная простейшая схема параметрического стабилизатора приведена на рисунке 26.8.

Рис. 26.8. — Параметрический стабилизатор напряжения

В стабилитронах используется явление электрического лавинного пробоя. При этом в широком диапазоне изменения тока через диод напряжение изменяется на нем очень незначительно. Входное напряжение через ограничительный резик Rбал подводится к параллельно включенным стабилитрону и сопротивлению нагрузки. Поскольку напряжение на стабилитроне меняется незначительно, то и на нагрузке оно будет иметь тот же характер. При увеличении входного напряжения практически все изменение Uвх передается на Rбал, что приводит к увеличению тока в нем. Увеличение этого тока происходит за счет увеличения тока стабилизации при почти неизменном токе нагрузки. Другими словами, все изменение входного напряжения поглощается в ограничительном (балластном) резисторе.

Часто стабилитрон работает в таком режиме, когда напряжение источника гуляет (т. е. нестабильно), а сопротивление нагрузки постоянно. Для нормального режима стабилизации сопротивление резистора Rогр должно иметь определенное значение. Если напряжение Uвх гуляет от Umin до Umax, то для расчета Rогр можно воспользоваться формулой:

Rогр = (Uвх.ср — Uст)/(Iср + Iн),

где Uвх.ср = 0.5(Uвх.min + Uвх.max) — среднее значение напряжения источника, Iср. = 0.5(Imin + Imax) — средний ток стабилитрона, Iн = Uн/Rн — ток нагрузки. При изменении входного напряжения в ту или иную сторону будет изменяться ток стабилитрона, на напряжение на нем, следовательно и на нагрузке будет оставаться постоянным.

Когда все изменения напряжения источника гасятся в Rогр, то наибольшее изменение напряжения (Uвх. max — Uвх.min = ΔUвх) должно соответствовать наибольшему возможному изменению тока, при котором еще сохраняется стабилизация (Imax — Imin = ΔIст). Отсюда следует, что стабилизация будет осуществляться только при соблюдении условия:

ΔUвх ≦ ΔIстRогр

Бывает режим стабилизации, когда входное напряжение постоянно, а сопротивление нагрузки изменяется, т. е. гуляет от Rн.min до Rн.max. Для такого режима Rогр определяется по формуле:

Rогр = (Uвх — Uст)/(Iср + Iн.ср),

где Iн.ср = 0.5(Iн.min + Iн.max), причем Iн.min = Uст/Rн.max, а Iн.max = Uст/Rн.min.

Иногда необходимо получить такое напряжение, на которое стабилитрон не рассчитан. В этом случае применяют последовательное соединение стабилитронов. Тогда напряжение стабилизации будет соответствовать сумме напряжений стабилизаций последовательно включенных стабилитронов.

Помимо рассмотренной схемы применяют каскадное включение стабилитронов. Говоря проще, берут несколько вышерассмотренных схем и включают одну за другой. При этом напряжение стабилизации предыдущего стабилитрона должно быть больше, чем следующего. Такие схемы применяют для увеличения коэффициента стабилизации. Бывает еще и мостовая схема, называемая мостовой параметрический стабилизатор. Теоретически у такой схемы коэффициент стабилизации стремится к бесконечности (хотя в это верится с трудом).

К сожалению большой мощности с вышерассмотренной схемы не снять. Поэтому придумали ниже приведенную схемку, которая проще.

 

Рис. 26.9. — Параметрический стабилизатор напряжения с усилителем мощности

Как видим, ничего сложного. Просто нагрузку подключили через транзистор, включенный по схеме ОК, выполняющего роль усилителя мощности.

Такая схема при малых и средних токах нагрузки работает как стабилизатор, а при больших токах нагрузки — как транзисторный фильтр (если параллельно стабилитрону впаять конденсатор). Если параллельно стабилитрону впаять переменный (подстроечный) резистор, то выходное напряжение становиться регулируемым. Можно также впаять параллельно нагрузке конденсатор. Конденсаторов вообще можно впаять несколько штук, не повредит. Для уменьшения высокочастотной (ВЧ) составляющей выходного напряжения параллельно нагрузке подключают конденсатор емкостью 0,01…1 мкФ.

Тип транзистора в схеме на рисунке выбирается из учета мощности нагрузки. Например, для питания усилителя (особенно большой мощности), когда ток нагрузки велик, впаивают составной транзистор. Составной транзистор — это когда берут два (или больше) транзистора и коллектор или эмиттер одного подключают к базе другого, а оставшийся вывод первого транзистора соединяют с оставшимся выводом следующего. На рисунке ниже это намного понятнее:

 


Это составной транзистор

И это составной транзистор

У составного транзистора коэффициент передачи равен произведению коэффициентов передачи каждого транзистора. То есть берем два немощных транзистора с коэффициентом усиления, скажем, 100, делаем составной и получаем транзистор с коэффициентом передачи 10 000.

Итак, для больших токов используют составные транзисторы, ну а для питания парочки микросхем подойдет транзистор средней и малой мощности. Даже 315-е работают вполне удовлетворительно.




Транзисторный фильтр, ака «электронный дроссель» — Страница 5 — Источники питания

imho

Классический дроссель (т.е. железка с проводом) не очень то заменишь электронным,

если в БП используется Г (или L, кому как нравится) фильтр после выпрямителя.

Ну и еще одно маленькое преимущество перед электронным

это дурако-юзеро устойчивость гы-гы.

Мосфет спалить плевое дело, а вот обычный дроссель — надо очень постараться:shock: .

 

Подтверждаю неонки еще та гадость :(

 

Однажды наступил почти на те же грабли что и Alex Torres :

Это когда я решил сделать красивый «показометр» (на выход УМЗЧ)

на линейном газоразрядном индикаторе ИН-9.

Если кто помнит, такие стояли в некоторых советских автотрансформаторах для TV.

 

Кстати на те же грабли можно наступить и с осветительными люминесцентными лампами.

 

Любые приборы тлеющего разряда в газе

иной раз гадят вполть да очень высоких радиочастот

(я просто помимо всего прочего еще и радиолюбитель иногда работающий в эфире).

И неонки и ЛДС еще как доводилось «слышать» на частотах диапазона 1215мГц.

 

Хотя надо сказать, что однажды использовал широкоспектральный шум тлеющего разряда в качестве «рандоминизатора» или аналогового дизеренига :D

http://audioportal.su/forums/showthread.php?t=10171

Не хайэнд конечно, но играет достаточно интересно :ku) .

 

P.S.

Кстати некоторые СВЧ генераторы шума представляют собой специальной конструкции «неонку» находящуюся внутри волновода.

 

P.P.S.

© А.&Б. Стругацкие «а унутре у неё неонка» :smile:

Сглаживающие фильтры в цепях питания радиоэлектронных схем

Напряжение на выходе выпрямителя не является строго постоянным, оно пульсирует, т. е. изменяется с частотой 50 или 100 гц в каких-то пределах, сохраняя свой знак. Такое пульсирующее напряжение можно представить, как сумму двух напряжений: постоянного и переменного. Отношение амплитуды переменной составляющей к постоянной составляющей называется коэффициентом пульсации р (выражается в процентах).

 

При питании пульсирующим напряжением приемника или усилителя НЧ в громкоговорителе или телефоне на выходе устройства будет прослушиваться гудение низкого тона — фон переменного тока. Чтобы фон был мало заметен, коэффициент пульсации питающего напряжения для различных каскадов приемников и усилителей не должен превышать значений, указанных в процентах ниже:

  • Выходной каскад высокочувствителього УНЧ — 0,001-0,002
  • Предварительный каскад УНЧ, детектор — 0,01-0,05
  • УВЧ, УПЧ, преобразователь частоты — 0,02-0,1
  • Выходной каскад УНЧ однотактный — 0,1-0,5
  • Выходной каскад УНЧ двухтактный — 0,5-2,0

Так как коэффициент пульсации напряжения, снимаемого с конденсатора выпрямителя, имеет значительно большую величину, между выпрямителем и питаемым устройством включают сглаживающий фильтр, включающий реактивные элементы, сопротивление которых постоянному и переменному току различно. В качестве таких элементов могут использоваться дроссели НЧ, конденсаторы большой емкости, а также лампы и транзисторы, включенные по специальной схеме.

Сглаживающие свойства фильтра характеризуются коэффициентом сглаживания Kс, показывающим, во сколько раз коэффициент пульсаций на выходе фильтра меньше, чем на его входе: Kc=Po/P

Коэффициент пульсации на входе фильтра Po определяется при расчете выпрямителя.

I. Г-образный реостатно-емкостный фильтр (рис. 1) Фильтр состоит из резистора R1 и конденсатора Сф. Конденсатор C1, показанный на схеме штрихами, относится к выпрямителю.

Для переменной составляющей выпрямленного тока фильтр является делителем напряжения, уменьшающим переменное напряжение тем в большей степени, чем больше сопротивление резистора R1 и емкость конденсатора Сф. Для постоянного тока сопротивление конденсатора велико, поэтому для постоянной составляющей фильтр является сопротивлением,включенным последовательно с нагрузкой.

Фильтр этого типа наиболее прост и дешев, но для увеличения коэффициента сглаживания Кс приходится увеличивать сопротивление резистора R1, при этом возрастают потери постоянного напряжения и мощности на резисторе R1 и уменьшается к.п.д. фильтра. Поэтому RC-фильтр применяют в простых конструкциях, где к.п.д. может быть невелик, при малых выпрямленных токах (до 20 мА) и в случаях, когда допустимо большое падение напряжения в фильтре.

Произведение RC для однополупериодного выпрямителя определяют по формуле: R1 (Ом) — Cф (мкф) = 3000 Кс.

Для двухполупериодного по формуле: R1 (Ом) x Сф (мкФ)= 1500 Кс.

Сопротивление резистора R1 определяют по наибольшему допустимому падению напряжения на нем. Мощность, выделяющаяся на резисторе, равна: P (Вт)=R1(Ом)Io2(mA)/106

Если коэффициент сглаживания фильтра недостаточен, применяют двухзвенный фильтр (рис. 2), Так как при последовательном включении звеньев общий коэффициент сглаживания равен произведению коэффициентов сглаживания отдельных звеньев, формулы примут вид: для однополупериодного выпрямителя: R1 (Ом) x Сф (мкФ) = 3000 √ Кс

для двухполупериодного выпрямителя: R1 (Ом) x Сф (мкФ) = 1500 √ Кс при R1=R2 и Сф1=Сф2=Сф.

II. Г-образный индуктивно-емкостный фильтр (рис. 3)

Так как сопротивление дросселя НЧ постоянному току мало, падение напряжения на нем незначительно и к.п.д. фильтра составляет 80—90%.

Для повышения коэффициента сглаживания может применяться последовательное включение двух звеньев (рис. 4), например, для питания микрофонных усилителей.

Индуктивность дросселя и емкость конденсатора фильтра определяется по формулам: при однополупериодном выпрямителе и одном звене:

L (гн) x Сф (мкФ)=10 Кс

при двух звеньях:

L (гн) x С ф (мкф) = 10 √ Кс

при двухполупериодном выпрямлении и одном звене:

L (гн) x С ф (мкф) = 2.5 Кс

с двумя звеньями:

L (гн) x С ф (мкф) = 2.5 √ Кс

где L — индуктивность дросселей Др 1 и Др2.

lll. Фильтр с фильтр-пробкой (рис. 5)

Сглаживающее действие фильтра можно повысить, если параллельно дросселю включить бумажный конденсатор С2, образующий с дросселем параллельный контур, настроенный на частоту пульсации 50 или 100 гц. Емкость конденсатора подбирается опытным путем по наименьшему уровню фона.

IV. Фильтр с транзистором

При протекании пульсирующего тока через резистор R2 (рис. 6) напряжение на резисторе также пульсирует. Переменная составляющая этого напряжения через конденсатор С2 оказывается приложенной между эмиттером и базой транзистора T1. В моменты повышения напряжения на входе фильтра на базу транзистора подается положительное напряжение, внутреннее сопротивление его увеличивается, в моменты уменьшения напряжения сопротивление транзистора уменьшается. Благодаря этому напряжение на нагрузке пульсирует в значительно меньшей степени, чем до фильтра.

Сопротивление резистора R1 должно быть таким, чтобы рабочая точка транзистора находилась в середине прямолинейного участка характеристики. Его можно подобрать экспериментально при налаживании фильтра. Сопротивление резистора R2 во избежании большого падения напряжения на нем берется порядка 80—100 ом.

На рис. 7 показана другая схема включения транзистора. Хотя коэффициент сглаживания фильтра, собранного по этой схеме, ниже, но к.п.д. его выше, чем у фильтра, собранного по схеме рис. 6. Резистор R1 подбирается при налаживании фильтра.

Если вместо конденсатора С2 включить кремниевый стабилитрон типа Д808 — Д811, напряжение на выходе фильтра будет не только сглажено, но и стабилизировано.

 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *