Site Loader

Транзисторная схемотехника | paseka24.ru

Транзисторная схемотехника. Вниманию телезрителей предлагаю весьма полезный материал, по применению полупроводниковых транзисторов в электронных схемах. Это азбука транзисторной схемотехники. Более подробно аналогичные сведения можно глянуть в белорусском журнале Радиолюбитель, №№4..12 за 1994 год.

Транзистор это основной элемент, своего рода кирпичик электронной схемотехники. Однако транзистор существенно нелинейный элемент, поэтому к схемотехнике транзисторных устройств, следует относиться максимально внимательно, иначе очень легко вывести проектируемое изделие из строя. Для модификации схем с одиночными транзисторами может понадобиться внести в схему изменения. Поэтому далее рассмотрены различные модификации, обозначенные цифрами в сквозной нумерации. Рядом со схемой приведено описание назначения и краткие характеристики внесённых изменений. Схема 1. Увеличение мощности транзистора. Резисторы в цепях эмиттеров нужны для равномерного распределения нагрузки; В схеме 2 уровень шумов уменьшается пропорционально квадратному корню из количества параллельно включенных транзисторов. Схема 2. Защита от перегрузки по току. Недостаток-снижение КПД из-за наличия датчика тока R.

Другой вариант показан на схеме 3. Благодаря введению германиевого диода или диода Шоттки можно в несколько раз уменьшить номинал резистора R, и на нём будет рассеиваться меньшая мощность. Схема 4. Составной транзистор с высоким выходным сопротивлением. Из-за каскодного включения транзисторов значительно уменьшен эффект Миллера. Другое аналогичное звено показано на схеме 5. За счёт полной развязки второго транзистора от входа и питанию стока первого транзистора напряжением, пропорциональным входному, составной транзистор имеет ещё более высокие динамические характеристики (единственное условие — второй транзистор должен иметь более высокое напряжение отсечки). Входной транзистор можно заменить на биполярный. Схема 6 предназначена для защиты транзистора от глубокого насыщения. Предотвращение прямого смещения перехода база-коллектор достигнуто с помощью диода Шоттки. Более сложный вариант — Бейкера, показан на схеме 7. При достижении напряжением на коллекторе транзистора напряжения базы «лишний» базовый ток сбрасывается через коллекторный переход, предотвращая насыщение.

Делее показан ограничитель насыщения транзисторов в относительно низковольтных ключах. Вначале показано звено с датчиком тока базы — это схема 8. Далее показана схема 9 с датчиком тока коллектора. В качестве датчика использован безреактивный элемент, — резистор небольшого номинала. Для уменьшения времени включения/выключения транзистора в ключевом режиме, применяют форсирующую RC-цепочку, в соответствии с техническим решением, показанным на схеме 10.

Далее идут иллюстрации к очень полезной схеме составного транзистора, широко распространённой в звуковых усилителях. Поскольку транзисторы бывают с двумя типами проводимости, количество скелетных моделей несколько расширяется. Схема 11 это составной транзистор по техническому решению Дарлингтона, вначале на биполярных транзисторах обратной проводимости, а затем улучшенный вариант на полевом транзисторе по входу – схема 12. Следом показаны ещё две схемы составного транзистора, но уже на элементах разной проводимости (это техническое решение Шиклаи), схема 13, а затем с полевым транзистором на входе, схема 14. Далее показаны усиленные варианты составных транзисторов по схемам Дарлингтона (15) и Шиклаи (16) с дополнительными транзисторами, которые нужны для увеличения входного сопротивления второго каскада по переменному току, и соответственно коэффициента передачи. А следом то же самое для схем Дарлингтона (17) и Шиклаи (18) с полевыми транзисторами на входе.

Ниже на схеме 19 показан вариант широкополосного составного транзистора с высоким быстродействием. Повышение быстроходности обеспечено за счёт уменьшения эффекта Миллера. Техническое решение, называемое «Алмазный транзистор», показано на схеме 20. Символом G1 обозначен источник тока. Особенность этой модели транзистора — отсутствие инверсии на коллекторе. Возможные варианты его включения показаны на схеме 21 и 22. А для увеличенной нагрузочной способности вдвое придумали схемотехническое решение, показанное на схеме 23.

Ниже, на схеме 24, показано решение для получения мощного составного транзистора из дискретных элементов разной проводимости. Практическое использование биполярного транзистора в качестве регулирующего элемента или в ключевом режиме показано на схемах далее. Включение нагрузки в цепь коллектора приведено на схемах 25, 26, 27. Следует обратить внимание, что на схеме 27 резистор топологически включен в эмиттер, однако для составного транзистора это коллектор. Включение нагрузки в цепь эмиттера показано на рисунках 28, 29, 30. (показать формулы).

Автором цикла статей обозначен А.Петров. Продолжение следует. По материалам сети публикацию подготовил

               Евгений Бортник, Красноярск, Россия, март 2018

Азбука транзисторной схемотехники А. Петров, г. Могилёв (РЛ,1994. 12)

Азбука транзисторной схемотехники
А.Петров, г.Могилёв (РЛ,1994,4..12)

http://zpostbox.narod.ru/az0.htm


2.Источник опорного напряжения
(генератор напряжения)


1.Простейший стабилизатор.

Диапазон нагрузки такого источника ограничен максимально допустимым током стабилизации стабилитрона. Токоограничительный резистор выбирают из расчёта: Rmin=Eп / Icт max .
При этом максимальный ток нагрузки Iн max=Iст max-Iст min .

2.Использование маломощных высокочастотных транзисторов в качестве стабилитронов (4..9В) .

Напряжение стабилизации зависит от типа и буквы транзистора.

3.Стабилизатор последовательного типа — используется для увеличения нагрузочной способности генератора напряжения.

4.Улучшенные стабилизаторы параллельного типа (аналоги мощного стабилитрона).

Прецезионные источники опорного напряжения.

5.Суперэкономичный источник опорного напряжения с применением ГСТ на полевом транзисторе в микротоковом режиме.

6.Прецизионный кольцевой стабилизатор.

Имеет исключительно высокий коэффициент стабилизации за счёт встречного включения ГСТ (т.е. за счёт взаимостабилизации). При применении прецизионных стабилитронов Д818Е и токе через них 10ма и более коэффициент стабилизации достигает 100 тыс. и более.

7.Простейший аналог стабилитрона.

Вариант с повышенной нагрузочной способностью. Напряжение стабилизации Uст=0.5(1+R1/R2).

8.Низковольтные аналоги стабилитронов.


3.Источник тока и токовое зеркало.

1.Простейший генератор тока.

Ток нагрузки равен: Iн=(Uст-Uбэ)/R2 . Выходное сопротивление такого источника равно выходному сопротивлению каскада с общим эмиттером. Недостаток — относительно низкое выходное сопротивление и наличие эффекта модуляции h31э под действием Uк из-за изменения нагрузки.

2.Усовершенствованные генераторы тока.

С каскодным включением.

С усовершенствованным составным транзистором.

3.Простые двуполюсные генераторы тока на ПТ.

4.ГСТ без стабилитрона.

Выходной ток равен: Iн=0.66/R2 ;При токах нагрузки более 3 ма в качестве VT2 нужно применять составной транзистор. Недостаток — низкая температурная стабильность.

5.Двуполюсный ГСТ.

6.Простейший отражатель тока.

Выходное сопротивление Rвых=Rкэ, выходной ток Iн=Iоп х h31э/(h31э+2) при условии равенства параметров транзисторов. Введение в эмиттеры транзисторов резисторов 1..2 к практически подавляет эффект Эрли (изменение коллекторного тока — 25% в зависимости от изменения напряжения на коллекторе).

7.Токовое зеркало Уилсона.

Опорный ток Iоп=const , т.к. Iб2 вычитается, а Iб1 вновь добавляется. Динамическое выходное сопротивление такого отражателя тока значительно выше: Rвых=h31э х Rкэ, отклонения тока значительно меньше и имеют величину 1/h31э^2. Меньше и критичность к разбросу параметров радиоэлементов.

8.Каскодный отражатель тока.

Динамическое внутреннее сопротивление такого отражателя тока превышает несколько МОм, эффект Эрли значительно ослаблен.

9.Прецизионный отражатель тока.

Имеет повышенную точность за счёт добавления базового тока транзистора VT3 (равного базовому току VT2) к выходному току транзистора VT4.

10.Отражатель тока на несколько нагрузок.

Эта схема требует высокой идентичности VT1, VT3, VT4…VTn. Недостаток — такого отражателя тока — сравнительно малое выходное сопротивление источников тока.

11.Преобразователь напряжение — ток.

http://zpostbox.narod.ru/az3.htm


4. Повторитель напряжения.

Персональный сайт — Экономичный УМЗЧ с «пентодным» звуком. Часть 2

 

Технические характеристики усилителя:
Выходная мощность
на нагрузке 8 Ом, Вт    100
Диапазон воспроизводимых
частот, Гц    5.-.254000
Коэффициент гармоник
на частоте 1 кГц, %    0,006
Номинальное входное
напряжение, В    1,0
Ток покоя выходных
транзисторов, мА    135
Входное сопротивление, кОм    4,7

 


В дополнение к описанной схеме УМЗЧ с выходным каскадом на комплементарных полевых транзисторах, хочу предложить читателям еще две схемы экономичных УМЗЧ такого же типа. Первая схема УМЗЧ приведена на рис.1.
Работа этого усилителя промоделирована с помощью программы Ми1т.|5|т-2001. В целом УМЗЧ — инвертирующий. Основное усиление по напряжению обеспечивает широкополосный симметричный усилитель, заимствованный из [1]. Поскольку питание предварительного каскада ±18 В, отпадает необходимость в защите переходов затвор-исток полевых транзисторов (их предельно допустимое напряжение ±20 В). Основная особенность усилителя в том, что в нем максимально используются изолированные источники напряжения питания выходного каскада, что повышает его КПД почти до теоретически возможного.
Кроме указанных на схеме, можно использовать транзисторы типов КТ3102 и КТ3107, а в качестве выходных — полевые транзисторы Минского производственного объединения «Интеграл», а также любые комплементарные зарубежные, приведенные в таблице. Индуктивность 1,1 выполнена проводом 00,69 мм на резисторе МЛТ-2 (С2-23-2). Намотка производится виток к витку по всей длине резистора.

 


Налаживание правильно собранного из исправных деталей усилителя заключается в том, что с помо-    усилителя — низкое входное сопро-
щью резистора К14 выставляют ми-    тивление.
нимальное смещение на выходе    Схема УМЗЧ с входным сопротив-
усилитепя, а резистором К20 — ток    лением 47 кОм показана на рис.2.
покоя на уровне 135 мА.    В качестве буферного каскада
Недостаток приведенного на рис.1    здесь применен эмиттерный повто-ритель УТ4, нагрузкой которого является генератор тока на УТ5 [2]. Благодаря каскаду на транзисторе УТ2, поддерживается примерно постоянный ток коллектора транзистора \/Т4 и тем самым — постоянное напряжение базо-эмиттерного перехода, что обеспечивает минимизацию вносимых каскадом искажений — менее 0,001%.
Интегратор на ИМС ОА1, автоматически поддерживающий нулевое смещение на выходе усилителя, заимствован из [1]. Входная интегрирующая КС-цепь К1-С2 ограничивает полосу пропускания усилителя на частоте около 150 кГц. Коэффициент гармоник усилителя — около 0,02%.

 


Литература
1. АПетров. Два усилителя мощности 34. —Радио, 2000, N10, С.14.
2. А.Петров. Азбука транзисторной схемотехники. — Радиолюбитель, 1994, N5, С.23.

дата и история изобретения, принцип работы, назначение и применение

Кто создал первый транзистор? Этот вопрос волнует очень многих. Первый патент для полевого транзисторного принципа был оформлен в Канаде австро-венгерским физиком Юлием Эдгаром Лилиенфельдом 22 октября 1925 года, но Лилиенфельд не опубликовал никаких научных статей о своих устройствах, и его работа была проигнорирована промышленностью. Таким образом первый в мире транзистор канул в историю. В 1934 году немецкий физик доктор Оскар Хайль запатентовал другой полевой транзистор. Нет прямых доказательств того, что эти устройства были построены, но позже работа в 1990-х годах показала, что один из проектов Лилиенфельда работал так, как описано, и давал существенный результат. Ныне известным и общепринятым фактом считается то, что Уильям Шокли и его помощник Джеральд Пирсон создали рабочие версии аппаратов из патентов Лилиенфельда, о чем, разумеется, никогда не упоминали ни в одной из своих более поздних научных работ или исторических статей. Первые компьютеры на транзисторах, разумеется, были построены значительно позже.

Старый транзистор.

Лаборатория Белла

Лаборатория Белла работала на транзисторе, построенном для производства чрезвычайно чистых германиевых «кристальных» миксеров-диодов, используемых в радиолокационных установках в качестве элемента частотного микшера. Параллельно этому проекту существовало множество других, в их числе — транзистор на германиевых диодах. Ранние схемы на основе трубки не обладали функцией быстрого переключения, и вместо них команда Bell использовала твердотельные диоды. Первые компьютеры на транзисторах работали по похожему принципу.

Дальнейшие изыскания Шокли

После войны Шокли решил попытаться построить триодоподобное полупроводниковое устройство. Он обеспечил финансирование и лабораторное пространство, и затем стал разбираться с возникшей проблемой совместно с Бардином и Браттеном. Джон Бардин в конечном итоге разработал новую ветвь квантовой механики, известную как физика поверхности, чтобы объяснить свои первые неудачи, и этим ученым в конечном итоге удалось создать рабочее устройство.

Ключом к развитию транзистора стало дальнейшее понимание процесса подвижности электронов в полупроводнике. Было доказано, что если бы был какой-то способ контролировать поток электронов от эмиттера до коллектора этого вновь обнаруженного диода (обнаруженный 1874 г., запатентованный 1906 г.), можно было бы построить усилитель. Например, если поместить контакты по обе стороны от одного типа кристалла, ток не пройдет через него.

Модель первого транзистора.

На самом деле делать это оказалось очень сложно. Размер кристалла должен был бы быть более усредненным, а число предполагаемых электронов (или отверстий), которые необходимо было «впрыскивать», было очень большим, что сделало бы его менее полезным, чем усилитель, потому что для этого потребовался бы большой ток впрыска. Тем не менее вся идея кристаллического диода заключалась в том, что сам кристалл мог удерживать электроны на очень небольшом расстоянии, находясь при этом практически на грани истощения. По-видимому, ключ заключался в том, чтобы контакты ввода и вывода были очень близки друг к другу на поверхности кристалла.

Труды Браттена

Браттен начал работать над созданием такого устройства, и намеки на успех все также продолжали появляться, когда команда работала над проблемой. Изобретательство — сложная работа. Иногда система работает, но затем происходит очередной сбой. Порой результаты работы Браттена начинали неожиданно работать в воде, по-видимому, из-за ее высокой проводимости. Электроны в любой части кристалла мигрируют из-за близких зарядов. Электроны в эмиттерах или «дыры» в коллекторах аккумулировались непосредственно сверху кристалла, где и получают противоположный заряд, «плавающий» в воздухе (или воде). Однако их можно было оттолкнуть с поверхности с применением небольшого количества заряда из любого другого места на кристалле. Вместо того, чтобы потребовать большой запас инжектированных электронов, очень небольшое число в нужном месте на кристалле выполнит одно и то же.

Первый транзистор.

Новый опыт исследователей в какой-то степени помог решить ранее возникшую проблему небольшой контрольной области. Вместо необходимости использования двух отдельных полупроводников, соединенных общей, но крошечной областью, будет использоваться одна большая поверхность. Выходы эмиттера и коллектора были бы расположены сверху, а контрольный провод размещен на основании кристалла. Когда ток был применен к «базовому» выводу, электроны выталкивались бы через блок полупроводника и собирались на дальней поверхности. Пока излучатель и коллектор были очень близко расположены, это должно было бы обеспечивать достаточное количество электронов или дырок между ними, чтобы начать проведение.

Присоединение Брея

Ранним свидетелем этого явления был Ральф Брей, молодой аспирант. Он присоединился к разработке германиевого транзистора в Университете Пердью в ноябре 1943 года и получил сложную задачу измерения сопротивления рассеяния на контакте металл-полупроводник. Брей обнаружил множество аномалий, таких как внутренние барьеры высокого сопротивления в некоторых образцах германия. Наиболее любопытным явлением было исключительно низкое сопротивление, наблюдаемое при применении импульсов напряжения. Первые советские транзисторы разрабатывались на основе этих американских наработок.

Транзисторное радио.

Прорыв

16 декабря 1947 года, используя двухточечный контакт, был сделан контакт с поверхностью германия, анодированной до девяносто вольт, электролит смылся в H2O, а затем на нем выпало несколько золотых пятен. Золотые контакты были прижаты к голым поверхностям. Разделение между точками было около 4 × 10-3 см. Одна точка использовалась как сетка, а другая точка — как пластинка. Уклонение (DC) на сетке должно было быть положительным, чтобы получить усиление мощности напряжения на смещении пластины около пятнадцати вольт.

Изобретение первого транзистора

С историей сего чудомеханизма связано множество вопросов. Часть из них знакома читателю. К примеру: почему первые транзисторы СССР были PNP-типа? Ответ на этот вопрос кроется в продолжении всей этой истории. Браттен и Х. Р. Мур продемонстрировали нескольким коллегам и менеджерам в Bell Labs во второй половине дня 23 декабря 1947 года результат, которых они добились, потому этот день часто упоминается в качестве даты рождения транзистора. PNP-контактный германиевый транзистор работал в качестве речевого усилителя с коэффициентом усиления мощности 18. Это ответ на вопрос, почему первые транзисторы СССР были PNP-типа, ведь их закупили именно у американцев. В 1956 году Джон Бардин, Уолтер Хаузер Браттен и Уильям Брэдфорд Шокли были удостоены Нобелевской премии по физике за исследования полупроводников и открытие эффекта транзистора.

Музей транзисторов.

Двенадцать человек упоминаются как непосредственное участие в изобретении транзистора в лаборатории Bell.

Самые первые транзисторы в Европе

В то же время некоторые европейские ученые загорелись идеей твердотельных усилителей. В августе 1948 года немецкие физики Герберт Ф. Матаре и Генрих Велькер, работавшие в институте Compagnie des Freins et Signaux Westinghouse в Ольне-су-Буа, Франция, подали заявку на патент на усилитель, основанный на меньшинстве которые они назвали «транзистором». Поскольку Bell Labs не публиковал транзистор до июня 1948 года, транзистор считался независимо разработанным. Впервые Mataré наблюдала эффекты крутизны при производстве кремниевых диодов для немецкого радиолокационного оборудования во время Второй мировой войны. Транзисторы были коммерчески изготовлены для французской телефонной компании и военных, а в 1953 году на радиостанции в Дюссельдорфе была продемонстрирована твердотельная радиоприемник с четырьмя транзисторами.

Bell Telephone Laboratories нуждалось в названии для нового изобретения: Semiconductor Triode, Tried States Triode, Crystal Triode, Solid Triode и Iotatron были рассмотрены, но «транзистор», придуманный Джоном Р. Пирсом, был явным победителем внутреннего голосования (частично благодаря близости, которую инженеры Белла разработали для суффикса «-истор»).

Первая коммерческая линия по производству транзисторов в мире была на заводе Western Electric на Union Boulevard в Аллентауне, штат Пенсильвания. Производство началось 1 октября 1951 г. с точечного контактного германиевого транзистора.

Дальнейшее применение

Вплоть до начала 1950-х этот транзистор использовался во всех видах производства, но все еще существовали значительные проблемы, препятствующие его более широкому применению такие, как чувствительность к влаге и хрупкость проводов, прикрепленных к кристаллам германия.

Первый контактный транзистор.

Шокли часто обвиняли в плагиате из-за того, что его работы были очень приближены к трудам великого, но непризнанного венгерского инженера. Но адвокаты Bell Labs быстро уладили эту проблему.

Тем не менее Шокли был возмущен нападками со стороны критиков и решил продемонстрировать, кто был настоящим мозгом всей великой эпопеи по изобретению транзистора. Всего несколько месяцев спустя он изобрел совершенно новый тип транзистора, обладающего очень своеобразной «бутербродной структурой». Эта новая форма была значительно более надежной, чем хрупкая система точечного контакта, и в итоге именно она начала использоваться во всех транзисторах 60-х годов ХХ столетия. Вскоре она развилась в аппарат биполярного перехода, ставший основой для первого биполярного транзистора.

Статический индукционный прибор, первая концепция высокочастотного транзистора, был изобретен японскими инженерами Jun-ichi Nishizawa и Y. Watanabe в 1950 году и, наконец, смог создать экспериментальные прототипы в 1975 году. Это был самый быстрый транзистор в 80-е годы ХХ столетия.

Дальнейшие разработки включали в себя приборы с расширенным соединением, поверхностно-барьерный транзистор, диффузионный, тетродный и пентодный. Диффузионный кремниевый «меза-транзистор» был разработан в 1955 году в Bell и коммерчески доступен Fairchild Semiconductor в 1958 году. Пространство было типом транзистора, разработанного в 1950-х годах как улучшение по сравнению с точечным контактным транзистором и более поздним транзистором из сплава.

В 1953 году Филко разработал первый в мире высокочастотный поверхностно-барьерный прибор, который также был первым транзистором, подходящим для высокоскоростных компьютеров. Первое в мире транзисторное автомобильное радио, изготовленное Philco в 1955 году, использовало поверхностно-барьерные транзисторы в своей схеме.

Решение проблем и доработка

С решением проблем хрупкости осталась проблема чистоты. Создание германия требуемой чистоты оказалось серьезной проблемой и ограничило количество транзисторов, которые фактически работали из данной партии материала. Чувствительность германия к температуре также ограничивала его полезность.

Старый радио-транзистор.

Ученые предположили, что кремний будет легче изготовить, но мало кто изучил эту возможность. Morris Tanenbaum в Bell Laboratories были первыми, кто разработал рабочий кремниевый транзистор 26 января 1954 г. Несколько месяцев спустя, Гордон Тил, работающий самостоятельно в Texas Instruments, разработал аналогичное устройство. Оба эти устройства были сделаны путем контроля легирования кристаллов одного кремния, когда они выращивались из расплавленного кремния. Более высокий метод был разработан Моррисом Таненбаумом и Кальвином С. Фуллером в Bell Laboratories в начале 1955 года путем газовой диффузии донорных и акцепторных примесей в монокристаллические кремниевые кристаллы.

Полевые транзисторы

Полевой транзистор был впервые запатентован Юлисом Эдгаром Лилиенфельдом в 1926 году и Оскаром Хейлом в 1934 году, но практические полупроводниковые устройства (транзисторы с полевым эффектом перехода [JFET]) были разработаны позднее, после того как эффект транзистора наблюдался и объяснялся командой Уильяма Шокли в Bell Labs в 1947 году, сразу же после истечения двадцатилетнего патентного периода.

Первым типом JFET был статический индукционный транзистор (SIT), изобретенный японскими инженерами Jun-ichi Nishizawa и Y. Watanabe в 1950 году. SIT — это тип JFET с короткой длиной канала. Полупроводниковый полевой транзистор (МОП-транзистор) из металла-оксида-полупроводника, который в значительной степени вытеснил JFET и оказал глубокое влияние на развитие электронной электронной техники, был изобретен Дауном Кахнгом и Мартином Аталлой в 1959 году.

Полевые транзисторы могут быть устройствами с мажоритарным зарядом, в которых ток переносится преимущественно мажоритарными носителями или устройствами с носителями меньших зарядов, в которых ток в основном обусловлен потоком неосновных носителей. Прибор состоит из активного канала, через который носители заряда, электроны или отверстия поступают из источника в канализацию. Концевые выводы источника и стока подключаются к полупроводнику через омические контакты. Проводимость канала является функцией потенциала, применяемого через клеммы затвора и источника. Этот принцип работы дал начало первым всеволновым транзисторам.

Все полевые транзисторы имеют клеммы источника, стока и затвора, которые примерно соответствуют эмиттеру, коллектору и базе BJT. Большинство полевых транзисторов имеют четвертый терминал, называемый корпусом, базой, массой или субстратом. Этот четвертый терминал служит для смещения транзистора в эксплуатацию. Редко приходится делать нетривиальное использование терминалов корпуса в схемах, но его присутствие важно при настройке физической компоновки интегральной схемы. Размер ворот, длина L на диаграмме, — это расстояние между источником и стоком. Ширина — это расширение транзистора в направлении, перпендикулярном поперечному сечению на диаграмме (т. е. в/из экрана). Обычно ширина намного больше, чем длина ворот. Длина затвора 1 мкм ограничивает верхнюю частоту примерно до 5 ГГц, от 0,2 до 30 ГГц.

Курс начинающего электронщика часть 3

Перевёл alexlevchenko для mozgochiny.ru

Вот и подходит к концу цикл статей введения «начинающего электронщика» в мир современной электроники… Перед вами последняя часть данного курса.

Шаг 10: Светодиоды

Индикаторами, обычно называют светодиоды, которые являются настоящими незамеченными героями в мире электроники. Они формируют числа на электронных часах, передают информацию от дистанционных устройств, освещают приборные панели и оповещают пользователей о том, что используемые ими приборы включены. Если их собрать вместе, они смогут сформировать изображения на гигантском телевизионном экране или осветить светофор.

В основном светодиоды — простые крошечные лампочки, которые легко «монтируются» в электрическую схему. Но в отличие от обычных ламп накаливания, у них нет нити, которая может перегореть, а так же они не так греются, как лампы. Они излучают свет исключительно за счёт движения электронов в полупроводнике. Продолжительность жизни светодиода превосходит жизнь ламп накаливания на тысячи часов.

Светодиоды используются  для освещения или для индикации.

Обычные светодиоды хороши в качестве индикаторов, поскольку они светят мягким и однородным светом, который хорошо видно под любым углом. У ярких светодиодов свет прямой и мощный, но вы не сможете увидеть их свечение под углом, потому что свет направлен только вперёд.

Светодиод — диод, на который оказывает влияние ток, а не напряжение. Он «питается» током в прямом направлении (плюс к минус, или анод к катоду) и начинает излучать свет при минимальном токе. Типичный красный светодиод потребляет от 10mA до 20mA. Если подать значение больше допустимого, светодиод просто сгорит.

Так как работа светодиода зависит от тока, и не зависит от напряжения, он не может быть подключён непосредственно к аккумулятору или источнику питания. Самый простой способ защитить светодиод от «убийственного» значения тока – это подключить его через резистор. Резистор снизит ток и приведёт его значение до приемлемого уровня.

Рассчитаем значение LED резистора по следующей формуле:

Значение Резистора LED, R = (напряжение питания — напряжение LED) / ток LED.

В нашем примере:

Возьмём, 9-вольтовую батарею (напряжение питания = 9 В). Напряжение для красного светодиода 2 В, ток – 20 мА.

Если у вас нет резистора с определенным значением, то выберите самое близкое стандартное сопротивление, которое немного больше рассчитанного. Если хотите увеличить время свечения, то можете выбрать более высокое значение резистора, чтобы уменьшить ток. Для 15mA , R = (9 — 2.0) / 15 мА = 466 Ом (используем более высокое стандартное значение = 470 Ом).

Шаг 11: Транзистор

Транзисторы можно рассматривать, как один из видов электронного переключателя.

(Для справки: транзисторный переключатель гораздо быстрее, чем механический)

Есть два основных типа транзисторов: биполярный и МОП-транзистор (металл-оксид-полупроводник). Биполярные транзисторы в свою очередь делиться на: N-P-N и P-N-P структуры. Большинство схем использует N-P-N структуру. Транзисторы изготавливаются в различных формах, но все они имеют три вывода. База — является ведущей и отвечает за активацию транзистора. Коллектор – положительный вывод. Эмиттер – отрицательный вывод. (У каждого элемента выводы располагаются в определенном порядке).

Транзистор — миниатюрный электронный компонент, который может выполнять две функции. Он может быть усилителем или переключателем.

Когда он работает усилителем, то берёт небольшой ток (входной ток) и увеличивает его значение (выходной ток). Другими словами, это — токоусилитель (используется в слуховых аппаратах).

Кроме того, транзисторы могут выполнять роль переключателей. Небольшой электрический ток, протекающий через одну часть транзистора, может активировать другую его сторону. Так работают все микросхемы. Например, микросхема памяти содержит сотни миллионов или даже миллиардов транзисторов, каждый из которых может быть включен или выключен индивидуально. Так как каждый транзистор может быть в двух отличных режимах, то он может сохранить два различных числа, ноль и один. С миллиардами транзисторов чип может сохранить миллиарды нолей, и почти столько же обычных знаков.

Режимы функционирования

В отличие от резисторов работа которых основывается на линейном соотношении между напряжением и током, транзисторы — нелинейные устройства. У них есть четыре отличающихся режима работы.

(Когда говорят об электрическом токе, что идёт через транзистор), мы, обычно, имеем в виду ток, протекающий из коллектора к эмиттеру, транзистора с N-P-N структурой.

Насыщенность – транзистор действует, как перемычка. Ток свободно протекает от коллектора к эмиттеру.

Отсечение – транзистор действует, как прерыватель цепи. Токи от коллектора к эмиттеру не идут.

Активный – ток от коллектора к эмиттеру пропорционален току, протекающему к базе.

Обратно-активный – как и в активном, ток пропорционален току базы, но протекает в обратном направлении.

Введя транзистор в режим отсечки или насыщения, можно создать двойной эффект включения — выключения. Транзисторы-переключатели используются, чтобы включают микроконтроллеры, микропроцессоры и другие интегральные схемы.

Транзисторный выключатель (ТВ)

Давайте рассмотрим фундаментальную схему «ТВ» N-P-N структуры. Воспользуемся им, чтобы управлять мощным светодиодом.

В то время как обычный переключатель «врезался бы в линию», ТВ управляется напряжением, которое поступает на базу. Контакт ввода-вывода микроконтроллера, может быть запрограммирован, так чтобы пропускать высокий или низкий ток, тем самым включать или выключать цепь.

Когда напряжение базы больше, чем 0.6 В, транзистор начинает насыщаться, что похоже на короткое замыкание между коллектором и эмиттером. Когда напряжение меньше чем 0.6 В, транзистор находится в режиме отсечки –  ток не проходит, это похоже на разомкнутую цепь между коллектором и эмиттером.

Такую схему подключения называют переключателем «низкой стороны». В качестве альтернативы, можем использовать транзистор PNP структуры для создания переключателя «высокой стороны».

Базовые резисторы

Вы заметили, что каждая из описанных схем использует последовательный резистор между вводом управления и базой транзистора. Не забывайте добавлять этот резистор! Транзистор без резистора на базе похож на светодиод без токоограничивающего резистора.

Вспомните, что, в некотором смысле, транзистор — просто пара соединенных диодов. Некоторые транзисторы могут быть рассчитаны только на максимум 10-100mA, что проходит через них. Если вы пропустите ток превышающий максимально допустимый, транзистор может взорваться.

ИмятипVceIcВтft
2N2222NPN40V800mA625mW300MHz
BC548NPN30V100mA500mW300MHz
2N3904NPN40V200mA625mW270MHz
2N3906PNP-40V-200mA625mW250MHz
BC557PNP-45V-100mA500mW150MHz
TIP120 (power)NPN60V5A65W

 

МОП — транзистор

МОП является другим типом транзистора, используемого для усиления или переключения электронных сигналов.

Основное преимущество МОП перед обычными транзисторами заключается в том, что он требует, малый ток для включения (меньше, чем 1mA) при выходе более высокого тока нагрузки (10 — 50А и больше).

У МОП чрезвычайно высокое входное сопротивление затвора с током, протекающим через канал между истоком и стоком под контролем напряжения на затворе. Из-за этого высокого входного сопротивления, МОП могут быть легко повреждены статическим электричеством.

МОП-ТРАНЗИСТОР идеален для использования в качестве электронных переключателей или в качестве усилителей с общим истоком, поскольку их потребляемая мощность очень небольшая.

Шаг 12: Стабилизаторы напряжения

Стабилизатор напряжения генерирует фиксированное выходное напряжение предварительно установленной величины, которое остаётся постоянным независимо от изменений величин входного напряжения и нагрузки. Есть два типа стабилизаторов напряжения:

  • Линейный;
  • Переменного напряжения.

Рассеиваемая мощность линейного регулятора прямо пропорциональна выходному току для напряжения ввода и вывода, таким образом, типичный КПД составляет 50% или ещё ниже. Используя оптимальные компоненты, стабилизатор переменного напряжения может достигнуть КПД  90%. Однако мощность помех на выходе от линейного регулятора намного ниже, чем у переменного с теми же выходными напряжениями и аналогичными характеристиками. Как правило, переменный может управлять более высокими текущими нагрузками, чем линейный стабилизатор.

Линейный стабилизатор есть не что иное, как делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах.

Существует два типа линейного стабилизатора:

Фиксированные

«Фиксированные» линейные стабилизаторы с тремя терминалами стабилизируют постоянные напряжения 3 В, 5 В, 6 В, 9 В, 12 В или 15 В, когда нагрузка составляет меньше чем 1.5 А. Ряд «78xx» (7805, 7812, и т.д.) регулирует положительные напряжения, в то время как «79xx» (7905, 7912, и т.д.) регулируют отрицательные напряжения. Часто, последние две цифры — выходное напряжение (например, 7805 — +5вольтовый стабилизатор, в то время как 7915 — −15 В стабилизатор).

Переменные

Такой тип генерирует фиксированное низкое номинальное напряжение между выходом и корректировочным терминалом (эквивалентный клемме заземления в фиксированном). Семейство устройств включает  такие как LM723 (низкой мощности) и LM317 и L200 (средней мощности). Некоторые переменные доступны в сборках больше чем с тремя контактами, включая корпуса с двухрядным расположением выводов. Они предоставляют возможность скорректировать выходное напряжение при помощи внешних резисторов с известными значениями.

Серия (+1.25V) LM317 регулирует положительные напряжения, в то время как серия LM337 (−1.25V) регулирует отрицательные напряжения.

Применение линейных стабилизаторов

L7805 (Стабилизатор напряжения — 5 В): Это — основной стабилизатор напряжения, положительный регулятор с тремя терминалами с 5 В фиксированным выходным напряжением. Максимальный выходной ток до 1.5 А.

L7812 (Стабилизатор напряжения — 12 В): Это — основной стабилизатор напряжения, положительный регулятор с тремя терминалами с 12 В фиксированным выходным напряжением. Максимальный выходной ток до 1.5 А.

LM317 («Подстроечный»1.25 В к 37 В): — регулятор положительного напряжения с тремя терминалами, способный выдавать больше чем 1.5А, по диапазону выходного напряжения 1.25 В к 37 В. Он требует, наличия двух внешних резисторов, установленных на выходном напряжении.

Стабилизаторы переменного напряжения это устройства, предназначенные для поддержания постоянного значения напряжения, независимо от его колебания во входной цепи.

Повышающий стабилизатор

Это преобразователь постоянного тока с выходным напряжением, больше, чем его входное напряжение.

Типичный пример преобразователя повышения  LM27313. Эта микросхема разработана для использования в системах низкой мощности, таких как камеры, мобильные телефоны и устройства GPS. Другой общий корректируемый преобразователь — LM2577.

Шаг 13: Интегральные схемы

Интегральная схема (ИC) (иногда называется микросхемой или микрочипом) – является полупроводниковой пластиной, на которой выполнены тысячи или миллионы крошечных резисторов, конденсаторов и транзисторов. ИC может функционировать как усилитель, осциллятор, таймер, счетчик, память компьютера или микропроцессор.

У линейных ИС есть вывод с плавной регулировкой (теоретически способный достичь бесконечного числа состояний), который зависит от уровня входного сигнала. Линейные ИС используются в качестве усилителей звуковой частоты (AF) и радиочастоты (RF). Операционный усилитель (операционный усилитель) является общим устройством в этих приложениях.

Цифровые ИС работают только на нескольких определённых уровнях или состояниях, а не по непрерывному диапазону амплитуд сигнала. Эти устройства используются в компьютерах, компьютерных сетях, модемах и частотомерах. Фундаментальные стандартные блоки цифровых ИС — логические элементы, которые работают с двоичными данными, т.е. сигналы, у которых есть только два различных состояния низкое (логика 0) и высокое (логика 1).

В зависимости от способа производства, интегральные схемы могут быть разделены на две группы: гибрид и монолитный.

Нумерация контактов (цоколёвка)

Каждая «ножка» микросхемы имеет свой определенный номер и ряд функций, которые она выполняет. На рисунке показана метка, благодаря которой можно определить  первый контакт чипа.

Монтаж

Одна из основных характеристик корпуса — способ, которым он монтируются на печатную плату. Либо это выводные контакты либо поверхностный монтаж.

 

Спасибо за внимание!

(A-z Source)


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ!

About alexlevchenko
Ценю в людях честность и открытость. Люблю мастерить разные самоделки. Нравится переводить статьи, ведь кроме того, что узнаешь что-то новое — ещё и даришь другим возможность окунуться в мир самоделок.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *