Site Loader

Токоограничивающий резистор в базе транзистора

Для чего нужен токоограничивающий резистор в базе транзистора? Читали предыдущую статью? Если да, то это очень хорошо, если нет, срочно читайте, иначе не поймёте о чем речь в этой статье.

Для чего ставят резистор в базу

Итак, у некоторых возникли непонятки с резистором, который цепляется к базе транзистора. Вроде бы понятно, что он ограничивает силу тока, но непонятно зачем. Давайте вспомним нашу картинку с предыдущей статьи:

Видите резистор на 500 Ом? Что он там делает и для чего нужен, мы с вами разберем в этой статье.

Итак, у нас есть всеми нами любимый и знакомый транзистор КТ815Б – классика Советского Союза 😉

Вспоминаем его цоколевку (расположение выводов):

цоколевка кт815б

Включение транзистора в схему с ОЭ (Общим Эмиттером) будет выглядеть приблизительно вот так:

Как вы видите, в этой схеме мы подключали также лампочку и источник тока к коллектору-эмиттеру.

Откинем пока что лампу и источник Bat2 и просто цепляемся крокодилами от Блока питания на выводы базы и эмиттера:

Плюс от блока питания на базу, а минус на эмиттер.

Теперь давайте будем увеличивать напряжение от нуля и до какого-то значения. Итак, кручу крутилку до 0,6 В и только тогда амперметр на блоке питания показал 10 мА:

Кручу дальше и получаю следующие результаты (слева-направо):

Дальше добавлять напряжение страшновато, так как транзистор становится горячим. Кстати, первый подопытный транзистор скончался, испустив белый дым, под напряжением в 1,5 В. Слишком резко крутанул крутилку).

Давайте построим график по нашим точкам, или как говорится в народе, Вольт амперную характеристику (ВАХ):

Токоограничивающий резистор в базе транзистора

Чуток коряво конечно, но смысл уловить можно.

Среди профи-электронщиков этот график называется входной характеристикой биполярного транзистора, при нулевом напряжении на коллектор-эмиттере.

Как вы помните, транзистор можно схематически представить, как два диода, соединенные или анодами, или катодами (кто не помнит, читаем эту статью). В нашем случае транзистор КТ815Б является транзистором NPN, следовательно, его можно представить  вот так:

Так что это получается? Мы  подавали напряжение на диод? Ну да, все верно)

 Так вот, для диода ВАХ будет выглядеть как-то вот так:

Токоограничивающий резистор в базе транзистора

Что тут можно увидеть? Подавая напряжение на диод в прямом включении (на анод плюс, на катод – минус), мы видим, что через диод ток начинает течь только тогда, когда напряжение становится больше, чем 0,5 В. Далее подавая напряжение на диод чуточку больше, сила тока через диод возрастает

непропорционально. Напряжения добавили чуть-чуть, а сила тока стала в разы больше.

Так как переход база-эмиттер – это что ни на есть самый простой диод, то следовательно, малое изменение напряжения в плюс вызовет большое изменение силы тока. Настолько большое, что транзистор можно сгореть! Для нашего подопечного максимально допустимый постоянный ток базы составляет 0,5 А. Я же выжал 0,7 А, но транзистор за эти пару секунд чуть не вскипел.

Что же это получается? Если напряжение изменится в плюс даже на каких-то десятки Вольт, то транзистор сгорит? Да, все именно так. Но как нам теперь быть? Неужели придется использовать высокостабильный блок питания?

Но выход есть проще некуда, и называется он  токоограничивающий резистор.

Давайте проведем два небольших опыта. Для этого к базе цепляем резистор на 10 Ом:

Смотрим теперь на показания блока питания (слево-направо):

Строим график по полученным точкам:

Токоограничивающий резистор в базе транзистора

Сравниваем с графиком без резистора:

Токоограничивающий резистор в базе транзистора

Обратите внимание на вертикальную шкалу силы тока базы (I

базы). При одном вольте на графике без резистора базовый ток был уже почти 0,7 А!  А с резистором на 10 Ом базовый при 1 В уже был каких-то 0,02 А. Чувствуете разницу?

Почему же так все получилось? Дело в том, что на резисторе “осело” лишнее напряжение. Досконально это схема будет выглядеть вот таким образом:

По цепи, которую я отметил красными проводками, течёт электрический ток. Нагрузкой для электрического тока является резистор и диод транзистора. А так как они соединены последовательно, то вспоминая статью Делитель напряжения можно сказать, что и на диоде транзистора и на резисторе R падает напряжение. А сумма этих напряжений равняется напряжению батареи Bat. В данном случае вместо батареи я использовал блок питания.  То есть можно записать, что

UBat = UR + Uбаза-эмиттер

Проверяем, так ли оно на самом деле?

В нашем случае используем тот же самый резистор на 10 Ом. Выставляем на блоке питания напряжение 1 В.

Видим, что сила тока, протекающая по цепи равна 20 мА. 

Итак, замеряем падение напряжения на резисторе:

А теперь падение напряжения на базе-эмиттере:

Итого: 0,32 + 0,74 = 1,06 В

0,06 В спишем на погрешность вольтметра блока питания).

Ну как, теперь понятно, почему всё так происходит?

Небольшое лирическое отступление. Так как резистор рассчитан на определенную мощность, нужно таким образом подбирать резистор, чтобы он не колыхнул ярким пламенем. Какая же мощность сейчас в данный момент рассеивается на резисторе? Так как в нашем случае нагрузки подцеплены последовательно (резистор и диод транзистора), сила тока, проходящая через каждую нагрузку везде будет одинаковой. Значит, резистор в данный момент рассеивает мощность, равную

P = IU = 0,02х0,32 = 0,0064 Вт.

Мой резистор рассчитан максимум на 0,25 Вт, значит все гуд.  Если на резисторе будет рассеиваться мощность больше, чем 0,25 Вт, то резистор сгорит. Имейте это ввиду, когда будете проектировать свои электронные поделки.  

А что будет, если взять резистор еще больше по номиналу? Давайте попробуем. Возьмем резистор на 100 Ом:

И проводим аналогичный опыт. Вот наши показания (слева-направо):

Строим по ним график:

Токоограничивающий резистор в базе транзистора

Заключение

Из всего выше сказанного, показанного и написанного делаем простые и не очень выводы:

1) Резистор в базе используется для того, чтобы плавно регулировать силу тока в базе, а также для ограничения силы тока, которая может спалить транзистор. Для чего нам плавно регулировать ток базы, мы с вами еще обсудим.

2) Чем больше номинал резистора, тем больше станет диапазон напряжения для регулировки силы тока в базе, тем самым можно плавнее регулировать этот самый ток.

На рисунке (художник из меня так себе) мы видим резистор, который качается на качелях, прикрепленных к графику входной характеристики транзистора  ну и следовательно, чем больше его номинал, тем больше он прогибает график))).

Токоограничивающий резистор в базе транзистора

Продолжение——->

<——-Предыдущая статья

отличить диод от резистора. как их отличить, поясните пжл

Отличить можно либо по цвету,либо по маркеровке,расшифровав оную. Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода. <table><tr><td><img src=»//otvet.imgsmail.ru/download/2626993988961f44f33d7737f2dec9d8_i-136.jpg» width=350 height=266></td></tr></table> Рези&#769;стор (англ. resistor, от лат. resisto — сопротивляюсь) — пассивный элемент электрической цепи, в идеале характеризуемый только сопротивлением электрическому току… <table><tr><td><img src=»//otvet.imgsmail.ru/download/6220d992c66f681b058019fd458731e1_i-137.jpg» width=259 height=267></td></tr></table>

в составе почти всех резисторов есть керамика , у диодов нет резисторы меньше или круглые диоды не маркируют R и диодов в схемах намного меньше , за исключением некоторых резисторы бывают выводные и для поверхностного , и те и те на диоды не похожи потому как диоды полностью пластмассовые или стеклянные диоды все или большинство имеют полоску на корпусе у катода резисторы цифры или полоски и полос 4-5 мультиметром диоды прозваниваются на пределе диод и только в одну сторону резисторы прозваниваются в обе если есть сомнения что это — то лучче в схему посмотреть или спросить у кого , потому как между резисторами есть подразделения и между диодами есть сотня разновидностей http://ru.wikipedia.org/wiki/Резистор http://ru.wikipedia.org/wiki/Диод

У диода 2 вывода, у транзистора 3.

Да по внешнему виду!

В чем отличие работы тиристора и транзистора? — Радиомастер инфо

Заставка 1280vТранзисторы – распространенные полупроводниковые радиоэлементы. На их основе делают большинство электронных схем, а также микросхем. Главное их свойство – способность усиливать электрические сигналы. Изменяя слабый сигнал на управляющем электроде транзистора, можно управлять усиленным выходным сигналом. Есть еще довольно распространенный вид полупроводниковых радиоэлементов — тиристоры. Они тоже имеют управляющий электрод, но управление выходным сигналом в принципе отличается от транзисторов. В этой небольшой статье путем сравнения рассмотрены эти различия.

За основу возьмем простую схему с лампочкой. Коммутируя малый ток в цепи управляющего электрода будем управлять в разы большим током лампочки.

Вот как выглядит эта схема на транзисторе и на тиристоре:

VT и КУ ку т v

Рассмотрим, как можно управлять свечением лампочки в схеме на транзисторе. При наличии питания и замыкании выключателя S1 на управляющий электрод транзистора (базу) будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в базе) транзистор откроется, лампочка загорится.

Схема Тнv

Изменяя величину тока в базе с помощью переменного сопротивления, мы можем открывать транзистор больше или меньше, меняя таким образом яркость свечения лампочки. Последовательно с переменным сопротивлением стоит постоянное для того, чтобы при нулевом сопротивлении переменного сопротивления ток базы не превысил допустимое значение и транзистор не вышел из строя. Выключить лампочку мы можем, разомкнув выключатель S1.

Теперь рассмотрим, как можно управлять свечением лампочки в схеме, выполненной на тиристоре.

Схема КУнv

При наличии питания и замыкании выключателя S2 на управляющий электрод тиристора будет подано отпирающее напряжение и при условии достаточной величины тока (определяется величиной сопротивления в цепи управляющего электрода) тиристор откроется, лампочка загорится. А вот теперь главное отличие. Мы не можем изменять яркость лампочки изменяя сопротивление в цепи управляющего электрода. Более того, мы можем вообще разомкнуть выключатель S2 и лампочка будет светиться, но только в том случае, если ток лампочки протекающий через открытый тиристор будет больше определенного значения, называемого током удержания. Он у каждого типа тиристора свой. Чем мощнее тиристор, тем большее значение тока удержания. Погасить лампочку мы можем, только уменьшив ток через анод-катод тиристора до значения меньше тока удержания или разомкнув выключатель S3 (что равносильно току удержания равном 0).

Это главная особенность применения тиристоров и главное их отличие от транзисторов.

Другими словами, тиристор может быть или полностью открыт, или полностью закрыт. Это и достоинство, и недостаток. Достоинство в том, что падение напряжения небольшое и потери ниже, чем, например, у наполовину открытого транзистора. Недостаток в том, что схема управления усложняется.

Тиристоры проще использовать в цепях переменного тока. Мы должны открывать тиристор каждую полуволну при ее нарастании. Когда полуволна спадает, тиристор сам закроется. Задерживая время открывания при приходе полуволны, мы меняем время открытого состояния тиристора и, следовательно, значение тока в нагрузке.

Как пример, рассмотрим питание схемы на тиристоре от источника переменного напряжения.

КУ перv

Теперь, при замыкании выключателя лампочка будет гореть, а при размыкании, гаснуть. Как видно из осциллограммы, каждую полуволну, в ее конце ток приближается к 0. Если выключатель S2 разомкнут, то с приходом новой полуволны тиристор не откроется.

Осц 2н

Отсюда вывод.

Тиристоры целесообразно использовать в цепях переменного или импульсного напряжения (тока). При этом на управляющий электрод достаточно подать короткий отпирающий импульс. Закроется тиристор сам, после окончания импульса в нагрузке. При приходе следующего импульса в нагрузке на управляющий электрод снова нужно подавать отпирающий импульс и так далее.

Материал статьи продублирован на видео:

 

 

 

 

 

 

 

 

есть ли разница(полярность) как паять резисторы?!

Для резисторов нет никакой разницы при распайке. Полярность соблюдайте при пайке всех активных элементов : транзисторов, диодов-их разновидностей: тиристоров, динисторов и т. д. При пайке активных элементов существует опасность их пробоя от статики: это для полевых транзисторов-паяльник-заземляйте. Не перегревайте их при пайке.

Резисторы неполярны, как впрочем и некоторые конденсаторы. правила при пайке элементов — не перегревать детали и плату, не заливать припоем и флюсом «как из ведра»

Нет у резисторов «полярности». Общее правило одно — паять не как попало, а в соответствии со схемой. По схеме у транзистора три вывода разного назначения — значит точно так и паяешь. У резистров выводы симметричны — значит паяешь любой стороной. Ну и следить чтоб припой не капал на плату, замыкая дорожки 🙂

есть ли полярность у провода?

Краткий ответ: нет!

Нет у резисторов «полярности» !!!

Любой стороной можно припаять

Резистор в цепи затвора или как делать правильно / Habr

Всем доброго времени суток!

Эта небольшая статья возможно станет шпаргалкой для начинающих разработчиков, которые хотят проектировать надежные и эффективные схемы управления силовыми полупроводниковыми ключами, обновит и освежит старые знания опытных специалистов или может хотя бы где-то поцарапает закрома памяти читателей.

Любому из этих случаев я буду очень рад.

В этой заметке я попробую описать наиболее распространенные вопросы выбора затворных резисторов для силовых электронных устройств. Она базируется на знаниях, почерпнутых мной из разной литературы, апноутов от TOSHIBA, Infineon, Texas Instruments а также из скромной практики. Стоит заметить, что эта информация не дает прямо универсальных рекомендаций для каждого силового ключа. Тем не менее, можно проанализировать какие предположения могут быть важны и какое влияние они могут оказать на выбор резисторов затвора для дискретных силовых транзисторов, а также для силовых модулей.

Основы


Затворный резистор расположен в цепи между драйвером силового транзистора и затвором самого транзистора, как показано на изображении в шапке статьи.

Открыт или закрыт полевой ключ (IGBT/MOSFET) зависит от приложенного к затвору напряжения. Изменение этого напряжения заряжает или разряжает затворные емкости силового устройства, которые состоят из емкостей затвора-коллектора и затвора-эмиттера и небольшой емкости самого затвора. Заряд входных емкостей ключа включит его (ток ), а разряд выключит (ток ).

Резистор в данной цепи ограничивает ток заряда/разряда входных емкостей, помимо этого, правильно подобранный резистор не даст ключу самопроизвольно открываться, что иногда может случиться, из-за быстрого изменения напряжения на силовых выводах ключа например, такое может случиться, когда в полумостовой топологии соседний ключ открывается. В таком случае емкость перезаряжается и ток, протекающий через затворный резистор вызывает на нем падение напряжения, которое и может открыть ключ. К тому же порог открывания ключа часто сильно опускается при росте температуры кристалла полупроводника.

Что нужно знать и как выбрать “правильный” резистор


1. Максимальный ток заряда/разряда выхода драйвера

Любая микросхема драйвера имеет такой параметр, как максимальный выходной ток. Если ток затвора при открытии/закрытии ключа превысит значение максимального выходного тока, то драйвер может выйти из строя, поэтому, в данном случае, затворный резистор ограничит выходной ток драйвера.

Можно составить эквивалентную модель цепи, по которой и рассчитать необходимое значение резистора:

Следуя несложным умозаключениям, можем получить формулы для расчета тока драйвера, и подобрать резистор затвора таким, чтобы не превысить максимально допустимые параметры драйвера:


2. Рассеиваемая мощность

Также одна из важных функций затворного резистора — рассеивать мощность выходного каскада микросхемы драйвера. В соответствии с моделью выше, рассеиваемую мощность можно посчитать с помощью следующих формул:


Тут — заряд затвора ключа, а — частота коммутации.
После расчета и подбора резистора важно соблюдать следующее условие:

где — собственное потребление драйвера.

Тут еще есть небольшое примечание, в большинстве даташитов на ключи указывают заряд затвора при определенных условиях, например при напряжении управления затвором +15В…-15В, если же в Вашей схеме другое напряжение управления, например +15В…0В, или же +15…-8В, то достаточно точно определить заряд затвора помогут следующие соотношения:


3. Скорость включения и электромагнитная совместимость

Давайте рассмотрим потери на переключение, как функцию от сопротивления затворного резистора. Я возьму ключ, который я недавно использовал в своем небольшом проекте — IKW40N120 от любимых Infineon:

Как можно заметить, при увеличении сопротивления затвора, скорость переключения уменьшается и потери на переключения растут. Соответственно это повлияет на эффективность системы в целом. Напротив, если применять меньшее сопротивление затвора, переключение станет более быстрым и потери уменьшаться, но при этом шум, вызванный быстрым нарастанием тока и напряжения, будет увеличиваться, что может быть критично, когда нужно отвечать требованиям электромагнитной совместимости поэтому значение сопротивления затвора нужно выбирать очень аккуратно.

4. То самое “паразитное” включение

В начале, когда я писал о функциях затворного резистора, я упоминал о возможности ключа самопроизвольно включиться. Чтобы такого не случилось, можно рассчитать напряжение, которое может появиться на затворе транзистора, посмотрим на изображение ниже и запишем две небольшие формулы:

И не стоит забывать, что напряжение открытия ключа сильно зависит от температуры кристалла, и это тоже нужно учитывать.

Заключение


Теперь у нас есть формулы для оптимального (в какой-то степени) подбора с первого взгляда такого простого элемента силовой схемы, как затворный резистор.

Вполне возможно вы не нашли тут ничего нового, но я надеюсь, что хоть кому-то эта заметка окажется полезной.

Также для расширения кругозора в том числе в области управлении силовыми ключами очень советую выделять часик-два в неделю на прочтение всяких статей и апноутов от именитых производителей силовой электроники, в особенности о применении микросхем драйверов. Уверен, найдёте там очень много интересностей. Для старта, и чтобы углубится в рассмотренную тему предлагаю вот эту.

Спасибо за прочтение!

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован.