Site Loader

Как определить выводы транзистора, цоколевка

Как определить выводы транзистора мультиметром

Как определить выводы транзистора мультиметром

Иногда бывают ситуации, когда необходимо определить выводы транзистора, где  находится база, коллектор и эмиттер, а справочной информации об этом под рукой нет. Но здесь нет ничего  сложного если под рукой есть мультиметр или тестер.

Итак, как определить выводы у транзистора, базу, коллектор и эмиттер мультиметром?

В первую очередь, нужно определить вывод базы. Для этого плюсовым (красным) щупом мультиметра касаемся, одного из выводов транзистора, например левого, а минусовым (черным)  касаемся остальных выводов.  При этом смотрим, какую величину сопротивления показывает мультиметр. Затем касаемся плюсовым среднего вывода, а минусовым левого и правого. Продолжаем менять местами щупы до тех пор пока не найдем такое положение щупов, при котором касаясь щупом одного из выводов, а другим двух остальных, мультиметр будет показывать некоторое сопротивление.

Определение вывода базы транзистора


Например на фотографии видно, что касаясь плюсовым щупом среднего вывода, а минусовым левого и правого, мультиметр показывает сопротивление переходов.

Отсюда делаем вывод, от то базой данного транзистора является средний вывод.

Теперь анализируя значение сопротивлений переходов нетрудно определить где у транзистора находится эмиттер. Дело в том, что значения сопротивлений база — эмиттер и база — коллектор неодинаковое. У перехода база — эмиттер это значение будет больше. На фотографии видно, что между базой (средний вывод) и правым выводом сопротивление перехода больше, значит это и есть эмиттер.

У транзисторов имеющих теплоотвод для установки на радиатор, вывод коллектора напрямую связан с корпусом и находится в середине между базой и эмиттером. Зная расположение коллектора, базу и эмиттер определить будет и вовсе легко.

Отсюда можно определить, что это за транзистор (его структуру), p-n-p (прямой) или n-p-n (обратный). База определилась плюсовым выводом

n-p-n обратный транзистор

n-p-n обратный транзистор

(красным), это соответствует n-p-n обратному транзистору.

p-n-p прямой транзистор

p-n-p прямой транзистор

Если база определилась минусовым щупом, то это p-n-p транзистор. Рис. выше.

Цоколевки Отечественных Транзисторов


При подборе аналогов деталей по схемам, всегда возникает вопрос правильного их монтажа на печатной плате. Цоколевка (распиновка) транзисторов. Вот сейчас хочу описать и выложить на одной странице цоколевки (распиновки) всех отечественных  транзисторов, чтобы Вас вопрос расположения ножек транзисторов не вводило в заблуждение

.

2Т709А2, 2Т709Б2, 2Т709В2, 2Т716А1, 2Т716Б1, 2Т716В1, КТ812А, КТ818А, КТ818Б, КТ818В, КТ818Г, КТ819А, КТ819Б, КТ819В, КТ819Г, КТ805АМ, КТ805БМ, КТ805ВМ, КТ805ИМ, КТ819А, КТ819Б, КТ819В, КТ819Г, КТ835А, КТ835Б, КТ837А, КТ837Б, КТ837В, КТ837Г, КТ837Д, КТ837Е, КТ837Ж, КТ837И, КТ837К, КТ837Л, КТ837М, КТ837Н, КТ837П, КТ837Р, КТ837С, КТ837Т, КТ837У, КТ837Ф



КТ858А, КТ859А, КТ812А, КТ829А, КТ829Б, КТ829В, КТ829Г, КТ850А, КТ850Б, КТ850В, КТ851А, КТ851Б, КТ851В, КТ852А, КТ852Б, КТ852В, КТ852Г, КТ853А, КТ853Б, КТ853В, КТ853Г, КТ854А, КТ854Б, КТ855А, КТ855Б, КТ855В, КТ857А, КТ863А, КТ899А, КТ8108А, КТ8108Б, КТ8109А, КТ8109Б, КТ8110А, КТ8110Б, КТ8110В, КТ8140А, КТ8116А, КТ8116Б, КТ8116В, КТ8118А, КТ8120А, КТ8121А, КТ8121Б, КТ8123А, КТ8124А, КТ8124Б, КТ8124В



КТ117А, КТ117Б, КТ117В, КТ117Г



КТ201А, КТ201Б, КТ201В, КТ201Г, КТ201Д, КТ203А, КТ203Б, КТ203В, КТ3102А, КТ3102Б, КТ3102В, КТ3102Г, КТ3102Д, КТ3102Е, КТ3102Ж, КТ3102И, КТ3102К, КТ3108А, КТ3108Б, КТ3108В, КТ3117А, КТ3117Б, КТ3127А, КТ3128А, КТ313А, КТ313Б, КТ316А, КТ316Б, КТ316В, КТ316Г, КТ316Д, КТ342А, КТ342Б, КТ342В, КТ347А, КТ347Б, КТ347В, КТ349А(исполнение1), КТ349Б(исполнение1), КТ349В(исполнение1), КТ363А, КТ363Б



КТ208А, КТ208Б , КТ208В , КТ208Г , КТ208Д , КТ208Е , КТ208Ж , КТ208И , КТ208К , КТ208Л , КТ208М , КТ339А , КТ339Б , КТ339В , КТ339Г , КТ339Д , КТ501А , КТ501Б , КТ501В , КТ501Г , КТ501Д , КТ501Е , КТ501Ж , КТ501И , КТ501К , КТ501Л , КТ501М



КТ201АМ, КТ201БМ, КТ201ВМ, КТ201ГМ, КТ201ДМ, КТ203АМ, КТ203БМ, КТ203ВМ, КТ208А1, КТ208Б1, КТ208В1, КТ208Г1, КТ208Д1, КТ208Е1, КТ208Ж1, КТ208И1, КТ208К1, КТ208Л1, КТ208М1, КТ209А, КТ209Б, КТ209Б1, КТ209В, КТ209В1, КТ209В2, КТ209Г, КТ209Д, КТ209Е, КТ209Ж, КТ209И, КТ209К, КТ209Л, КТ209М, КТ502А, КТ502Б, КТ502В, КТ502Г, КТ502Д, КТ502Е, КТ503А, КТ503Б, КТ503В, КТ503Г, КТ503Д, КТ503Е, КТ306АМ, КТ306БМ, КТ306ВМ, КТ306ГМ, КТ306ДМ, КТ3102АМ, КТ3102БМ, КТ3102ВМ, КТ3102ГМ, КТ3102ДМ, КТ3102ЕМ, КТ3102ЖМ, КТ3102ИМ, КТ3102КМ, КТ3107А, КТ3107Б, КТ3107В, КТ3107Г, КТ3107Д, КТ3107Е, КТ3107Ж, КТ3107И, КТ3107К, КТ3107Л, КТ3117А1, КТ3126А, КТ3126Б, КТ3128А1, КТ313АМ, КТ313БМ, КТ316АМ, КТ316БМ, КТ316ВМ, КТ316ГМ, КТ316ДМ, КТ349А(исполнение2), КТ349Б(исполнение2), КТ349В(исполнение2), КТ342АМ, КТ342БМ, КТ342ВМ, КТ342ГМ, КТ342ДМ, КТ345А, КТ345Б, КТ345В, КТ350А, КТ351А, КТ351Б, КТ352А, КТ352Б, КТ355АМ, КТ363АМ, КТ363БМ, КТ368АМ, КТ368БМ



КТ306А, КТ306Б, КТ306В, КТ306Г, КТ306Д



КТ601АМ, КТ601АМ, КТ602АМ, КТ602БМ, КТ814А, КТ814Б, КТ814В, КТ814Г, КТ815А, КТ815Б, КТ815В, КТ815Г, КТ816А, КТ816А2, КТ816Б, КТ816В, КТ816Г, КТ817А, КТ817Б, КТ817Б2, КТ817В, КТ817Г, КТ817Г2, КТ818А, КТ818Б, КТ818В, КТ818Г, КТ8130А, КТ8130Б, КТ8130В, КТ8131А, КТ8131Б, КТ8131В, КТ940А, КТ940Б, КТ940В, КТ961А, КТ961Б, КТ961В, КТ969А, КТ972А, КТ972Б, КТ973А, КТ973Б, КТ997А, КТ997Б, КТ9115А



КТ3101А-2, КТ3115А-2, КТ3115В-2, КТ3115Г-2, КТ3123А-2, КТ3123Б-2, КТ3123В-2, КТ372А, КТ372Б, КТ372В, КТ391А-2, КТ391Б-2, КТ391В-2



КТ3109А, КТ3109Б, КТ3109В



КТ312А, КТ312Б, КТ312В, КТ325А, КТ325Б, КТ325В



КТ3120А, КТ371А, КТ382А, КТ382АМ, КТ382Б, КТ382БМ



КТ3129А-9, КТ3129Б-9, КТ3129В-9, КТ3129Г-9, КТ3129Д-9, КТ3130А-9, КТ3130Б-9, КТ3130В-9, КТ3130Г-9, КТ3130Д-9, КТ3130Е-9, КТ3130Ж-9, КТ3168А-9



КТ315А, КТ315Б, КТ315В, КТ315Г, КТ315Г1, КТ315Д, КТ315Е, КТ315Ж, КТ315И, КТ315Н, КТ315Р, КТ361А, КТ361Б, КТ361В, КТ361Г, КТ361Г1, КТ361Д, КТ361Е, КТ361Ж, КТ361И, КТ361К



КТ3157А, КТ325АМ, КТ325БМ, КТ325ВМ, КТ339АМ



КТ368А, КТ368Б, КТ399А, КТ399АМ



КТ504А, КТ504Б, КТ504В, КТ505А, КТ505Б, КТ506А, КТ506Б



КТ601А



КТ602А, КТ602Б, КТ602В, КТ602Г, КТ801А, КТ801Б



КТ807А, КТ807Б



КТ872А, КТ872Б, КТ872В, КТ8111А, КТ8111Б, КТ8111В, КТ8114А, КТ8114Б, КТ8114В



КТ879А, КТ879Б



КТ886А1, КТ886Б1, КТ8127А1, КТ8127Б1, КТ8127В1



КТ890А, КТ890Б, КТ890В, КТ896А, КТ896Б, КТ896В, КТ898А, КТ898Б, КТ8101А, КТ8101Б, КТ8102А, КТ8102Б, КТ8106А, КТ8106Б, КТ8117А



КТ898А1, КТ898Б1



КТ999А



ГТ313А, ГТ313Б, ГТ313В



ГТ328А, ГТ328Б, ГТ328В, ГТ346А, ГТ346Б, ГТ346В



ГТ906А



ГТ905А, ГТ905Б, ГТ906АМ



2Т713А, КТ812Б, КТ812В, 2Т812А, 2Т812Б, КТ818АМ, КТ818БМ, КТ818ВМ, КТ818ГМ, 2Т818А, 2Т818Б, 2Т818В, КТ819АМ, КТ819БМ, КТ819ВМ, КТ819ГМ, 2Т819А, 2Т819Б, 2Т819В, 2Т825А, 2Т825Б, 2Т825В, КТ825Г, КТ825Д, КТ825Е, КТ710А, КТ808АМ, КТ808БМ, КТ808ВМ, КТ808ГМ, КТ812Б, КТ812В, 2Т812А, 2Т812Б, КТ819АМ, КТ819БМ, КТ819ВМ, КТ819ГМ, 2Т819А, 2Т819Б, 2Т819В, 2Т825А, 2Т825Б, 2Т825В, КТ825Г, КТ825Д, КТ825Е, КТ826А, КТ826Б, КТ826В, КТ827А, КТ827Б, КТ827В, КТ828А, КТ828Б, КТ834А, КТ834Б, КТ834В, КТ838А, КТ839А, КТ840А, КТ840Б, КТ841А, КТ841Б, КТ841В, КТ846А, КТ846Б, КТ846В, КТ847А, КТ848А, КТ8127А, КТ8127Б, КТ8127В, КТ878А, КТ878Б, КТ878В, КТ892А, КТ892Б, КТ892В, КТ897А, КТ897Б, КТ8104А, КТ8105А, КТ8107А, КТ8107Б, КТ8107В, КТ8129А, КТ945А

Если все же у меня получился не полный список цоколевки (распиновки) транзисторов, то прошу это указать в комментариях к данному посту, или если вы заметите какие-либо ошибки, отклонения описания цоколевки (распиновки) транзисторов.

Определение Цоколевки Транзистора

 


Вашему вниманию предоставляется легкий способ определения выводов транзисторов, т.е. как можно самостоятельно определить цоколевку (распиновку) транзистора независимо p-n-p или n-p-n проводимости. Все действия по определению цоколевки (распиновки) транзистора следует выполнять строго по пунктам

:

1) Взять тестер, установить на нем режим для определения направления движения тока в диодах -|>|— или -|<|- (для устаревших моделей (стрелочных) тестеров, необходимо использовать режим измерения сопротивления резисторов со шкалой в 1000 Ом).


2) Первоначально определяем БАЗУ транзистора. БАЗА (Б) n-p-n транзистора при подключении к ней «+» положительного щупа «прозванивается» отрицательным «-» щупом на ЭМИТЕРЕ (Э) и КОЛЛЕКРОРЕ (К). Т.е. на предполагаемую БАЗУ крепим положительный щуп и поочередно касаемся отрицательным щупом остальных ножек транзистора (если предполагаемая БАЗА оказалась настоящей БАЗОЙ, то на тестере должны появиться минимальные значения сопротивления при касании отрицательным щупом и ЭМИТЕРА, и КОЛЛЕКТОРА). Для определения БАЗЫ на p-n-p транзисторах проделываем туже операцию, только к БАЗЕ крепим отрицательный щуп, а позваниваем – положительным. Этим способом и определяется p-n-p или n-p-n проводимость транзистора.


3) Для окончательного определения цоколевки (распиновки) транзистора осталось найти ЭМИТЕР и КОЛЛЕКТОР. Для этого тестер переключаем в режим измерения максимального сопротивления и крепим щупы на предполагаемом ЭМИТЕРЕ и КОЛЛЕКТОРЕ. Уменьшение сопротивления (n-p-n типа транзистора) тестер покажет при подключении положительного «+» щупа КОЛЛЕКТОРУ и замыкании его с БАЗОЙ. Уменьшение сопротивления должно произойти до нескольких кОм, по сравнению с замыканием ЭМИТЕРА с БАЗОЙ. Аналогичная процедура проделывается для определения цоколевки (распиновки) транзистора p-n-p типа, только вместо положительного, используют отрицательный щуп.

 

Страницы:

Определитель цоколёвки и типа биполярных транзисторов — Микроконтроллеры — Схемы на МК и микросхемах

 

автор Б. СТАНАЙТИС, г. Каунас, Литва.

Предлагаемое устройство определит цоколёвку и структуру биполярного транзистора. Информация об этом выводится на индикатор, собранный из восьми светодиодов.

В журнале «Радио» № 8 за 2005 год на с. 30, 31 было опубликовано описание аналогичного устройства —»Микроконтроллерный определитель выводов транзисторов» (автор В. Краснов). Этому устройству присущи некоторые недостатки — относительная сложность схемы и неудобство пользования, поскольку для определения цоколёвки транзистора приходится пользоваться специальной таблицей, а не прямой индикацией. Поэтому было разработано устройство, свободное от указанных недостатков, схема которого показана на рис. 1. Оно гораздо проще и снабжено прямой индикацией выводов проверяемого транзистора и его структуры.

Основа устройства — микроконтроллер DD1, он сконфигурирован для работы с RC-генератором, частота которого задана цепью R1C2. В определённой последовательности, заданной программой, на линиях порта RB2, RB4, RB6 формируются импульсы с амплитудой, близкой к напряжению питания. Через интегрирующие цепи R2C5, R3C4 и R4C3 к этим линиям подключают проверяемый транзистор. Напряжения с конденсаторов СЗ, С4, С5 поступают на линии порта RB7, RB5, RB3, где осуществляется их измерение. Информация о цоколёвке и структуре транзистора выводится с линий порта RAO—RA3, RBO, RB1 с помощью светодиодов HL1— HL8,  которые  расположены  на

плате в соответствии с контактами гнезда XS1. Светодиоды HL2—HL4 (красного цвета свечения) указывают вывод базы, HL6—HL8 (синего цвета) — вывод эмиттера, а светодиоды HL1 и HL5 — структуру транзистора. Для управления светодиодами использован принцип динамической индикации.

Принцип работы устройства поясняет рис. 2, а осциллограммы напряжений показаны на рис. 3. Сначала проводится проверка в предположении, что вывод базы подключён ко входу (рис. 2). На базу транзистора поступает плавно нарастающее от нуля напряжение (иВых2) с интегрирующей цепи R2C1 (рис. 2). За счёт этого ток коллектора
появляется с задержкой и напряжение на нём (UBbixi) уменьшается также плавно.

Пороговое напряжение (рис. 3) низкого уровня (Unopor) будет достигнуто через временной интервал At, который измеряет микроконтроллер. Далее транзистор подвергается проверке в другой комбинации выводов, где предположительные эмиттер и коллектор меняются местами, а предыдущие процедуры повторяются. Микроконтроллер сравнивает измеренные интервалы времени At в первом и втором случаях. Поскольку транзистор в инверсном включении имеет меньший статический коэффициент передачи тока базы, скорость изменения напряжения на коллекторе будет меньше, a At больше, что и
используется для определения вывода коллектора. После успешного определения цоколёвки программа включает соответствующие светодиоды для индикации выводов и структуры транзистора, а затем переходит в начало и весь цикл повторяется. Продолжительность цикла проверки и индикации составляет несколько миллисекунд, поэтому кажется, что светодиоды горят постоянно.

Если в процессе измерения пороговое напряжение не будет достигнуто за некоторый заданный временной интервал — около 1 мс, можно сделать вывод, что положение базы транзистора в проверяемой конфигурации выводов неправильно и программа переходит к проверке другой конфигурации. Таких конфигураций существует по три для транзисторов разной структуры. После безуспешной проверки всех шести вариантов принимается решение о том, что транзистор неисправен или он не подключён к прибору. В этом случае устройство переходит к индикации включённого состояния, при этом мигает один из светодиодов (HL1) и весь цикл проверки транзистора повторяется.

Все элементы смонтированы на плате из фольгированного с одной стороны стеклотекстолита, чертёж которой показан на рис. 4. Применены резисторы МЛТ мощностью 0,125 или 0,25 Вт, конденсатор С2 — К10-17, остальные — для поверхностного монтажа типоразмера 1206. Микроконтроллер установлен в панель. Все светодиоды повышенной яркости свечения с диаметром корпуса 5 мм, HL1—HL4 — красного цвета, a HL5—HL8 — синего цвета Но следует учесть, что при напряжении питания 3,6 В яркость светодиодов синего цвета может быть недостаточной.

В этом случае можно применить светодиоды зелёного цвета свечения или повысить напряжение. Выключатель SA1 —любой малогабаритный. Моделирование работы прибора проведено в программе Proteus Release 7.5 SP3.

Внешний вид смонтированной платы показан на рис. 5, а всего устройства — на рис. 6. Взамен проволочных перемычек между конденсаторами СЗ—С5 и выводами 9, 11 и 13 микроконтроллера установлены резисторы сопротивлением не более 10 Ом. Для повышения надёжности определения цоколёвки желательно увеличить тактовую частоту. Для этого конденсатор С2 можно исключить, генератор микроконтроллера будет работать на паразитной ёмкости микросхемы и монтажа, а его частота составит около 3 МГц. Испытания с тремя экземплярами микросхем показали надежную работу устройства в таком режиме.

Напряжение питания может быть в интервале 3,6…6 В, поэтому питать устройство можно от стабилизированного зарядного устройства (5 В), аккумулятора сотового телефона или батареи из трёх-четырёх гальванических элементов типоразмеров АА, AAA. В режиме ожидания потребляемый ток — около 2,5 мА, в режиме измерения и индикации выводов — 8 мА.

Для проверки прибора было проведено тестирование транзисторов различных серий: КТ801—КТ803, КТ805, КТ807—КТ809, КТ812—КТ819, КТ903, 1Т904, 1Т907, КТ908, КТ920, КТ972, КТ973, П401, П411, П416, П420, П601, П701, П702, МП101—МП106, МП9, МП 16, МП36—МП42. Во всех случаях цоколёвка исправных транзисторов определялась верно.

Ниже в прикреплённом архиве, прилагается прошивка контроллера, исходный код и печатная плата в формате Sprint Layout 5.

Архив для статьи.


[1] Журнал «Радио» №11, 2011 год, стр. 25 — 26.
 

💣распиновка транзистора ✔️

распиновка транзистора .

РАСПИНОВКА ТРАНЗИСТОРОВ
Нажми для просмотра
В этом видео я вам покажу как определить выводы транзистор а с помощью обычного мультиметр а.
 
 
 
Тэги:
 
КАК РАБОТАЕТ ТРАНЗИСТОР
Нажми для просмотра
Наш Telegram канал Дешёвые радиодетал и и электронны е компоненты :  …
 
 
 
Тэги:
 
Транзистор в ключевом режиме. Схема с общим коллектором (Эмиттерный повторитель)
Нажми для просмотра
Рассматрив аем включение транзистор а с общим коллекторо м — особенност и, плюсы, минусы. Считаем входное…
 
 
 
Тэги:
 
Биполярный транзистор. Основные параметры, схемы включения и мн.др.
Нажми для просмотра
В данном видео уроке рассмотрен ы основные параметры, схемы включения, технологич еские особенност и транзис…
 
 
 
Тэги:
 
Ч.2 Транзисторы
Нажми для просмотра
Группа Техномания в ВК В этом видео — транзистор ы. Как они выглядят — обозначают ся на …
 
 
 
Тэги:
 
Как определить распиновку транзистора Дарлингтона
Нажми для просмотра
Помочь проекту: Вступай в нашу группу ВКонтакте: Музыка: Letter Box — Hey …
 
 
 
Тэги:
 
📕#12.2 Биполярные транзисторы. Схемы включения, режимы работы + параметры.
Нажми для просмотра
Logisim скачивать тут: Собираем элементы И, ИЛИ, НЕ на полевых транзистор ах.
 
 
 
Тэги:
 
Цифровая техника - И, ИЛИ, НЕ на транзисторах
Нажми для просмотра
ТДКС-транс орматор диодно-кас адный строчный.В его можете найти на платах кинескопны х телевизоро в и мони…
 
 
 
Тэги:
 
Трансформатор ТДКС.Что за деталь?Как его элементарно проверить
Нажми для просмотра
Неизвестны е функции транзистор ов КТ361 и КТ315 позволяют делать самые удивительн ые устройства . Чувствител ьн…
 
 
 
Тэги:
 
РАСКРЫВАЕМ ТАЙНУ транзистора  КТ 315
Нажми для просмотра
Как проверить полевой транзистор с помощью тестера. Немного о структуре полевых транзистор ов. Набор в…
 
 
 
Тэги:
 
Как проверить полевой транзистор с помощью тестера.
Нажми для просмотра
Описание проверки на исправност ь биполярных транзистор ов.А также,как определить цоколевку неизвестно го…
 
 
 
Тэги:
 
Как проверить мощный биполярный транзистор и его цоколевку!!!
Нажми для просмотра
Метод проверки транзистор ов по их функционал у. Метод работает наверно с любыми транзистор ами — биполярным …
 
 
 
Тэги:
 
Сложно о простом: как проверить транзистор
Нажми для просмотра
Как определить структуру транзистор а,находим транзистор n-pn и p-n-p.
 
 
 
Тэги:
 
Как узнать и проверить неизвестный Транзистор.
Нажми для просмотра
Как проверить транзистор тестером? Для этого понадобитс я всего лишь несколько секунд и вы сможете определи…
 
 
 
Тэги:
 
Как проверить транзистор тестером
Нажми для просмотра
Как проверить биполярный транзистор с помощью тестера. Немного о структуре биполярных транзистор ов
 
 
 
Тэги:
 
ЗАЧЕМ НУЖЕН ФОТОРЕЗИСТОР [РадиолюбительTV 87]
Нажми для просмотра
Дешевые транзистор тестеры Другие тестеры Оч крутой транзистор тестер …
 
 
 
Тэги:
 
Как проверить любой транзистор без тестера ?
Нажми для просмотра
Как проверить исправност ь транзистор а без приборов ? Вспоминаю своё детство, когда я о транзистор ах знал…
 
 
 
Тэги:
 
🌑 Как проверить транзистор с помощью лампочки и батарейки.
Нажми для просмотра
Как сделать светодиодн ую мигалку Проще простого?П едлагаю схему настолько простую, что проще некуда -…
 
 
 
Тэги:
 
😂  МИГАЛКА ИЗ СВЕТОДИОДОВ  Самая простая схема!
Нажми для просмотра
Как работает радиолампа . Подробное объяснение . Программа для эмуляции схем: …
 
 
 
Тэги:
 
Урок №48. Радиолампа
Нажми для просмотра
Товары из Китая Радиолюбит елю: . Прибор для проверки транзистор ов: …
 
 
 
Тэги:
 
КАК ПРОВЕРИТЬ ТРАНЗИСТОР НА РАБОТОСПОСОБНОСТЬ МУЛЬТИМЕТРОМ
Нажми для просмотра
На ток в Амперах.(110 ).Начинающ й радиолюбит ель может не разобратьс я в основных характерис тиках транзис…
 
 
 
Тэги:
 
Как читать даташиты на полевые транзисторы.Как читать характеристики на отечественные транзисторы.
Нажми для просмотра
Сделать усилитель на одном транзистор е довольно просто. Для этого понадобитс я всего лишь один транзистор ,…
 
 
 
Тэги:
 
ПРАВИЛЬНЫЙ УСИЛИТЕЛЬ НА ОДНОМ ТРАНЗИСТОРЕ!!!
Нажми для просмотра
В этом ролике я расскажу о стабилизат оре напряжения на 5 вольт. Покажу, как его подключить . #Стабилиза орНа…
 
 
 
Тэги:
 
Линейный стабилизатор 7805 на 5 вольт. Как подключить.
Нажми для просмотра
Способ как запомнить распиновку биполярног о p-n-p транзистор а. Про ESR тестер — чудесное устройство …
 
 
 
Тэги:
 
npn транзистор как запомнить распиновку и про чудо ESR тестер
Нажми для просмотра
Схема которую я подобрал оказалась реально Золотой. Кроме того , что в ней множество мощных исправных транз…
 
 
 
Тэги:
 

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *