МОЩНЫЙ БЛОК ПИТАНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ
Используя в схеме стабилизатора мощный полевой транзистор, можно собрать простой стабилизатор, тем не менее имеющий очень хорошие параметры. В предлагаемом стабилизаторе БП стоит полевой транзистор IRLR2905. Он имеет в открытом состоянии сопротивление канала всего 0,02 Ома, а так-же обеспечивает ток до 30 А. Мощность, рассеиваемая транзистором, может превышать 100 Вт. Принципиальная схема одного из вариантов такого стабилизатора приведена на рисунке, клик — для увеличения.
Работа БП на ПТ
Переменное напряжение поступает на выпрямитель и сглаживающий фильтр, и далее на сток полевого транзистора и через резистор R1 на затвор, открывая транзистор. Часть выходного напряжения через резисторный делитель подается на вход микросхемы, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе, таким образом, устройство входит в режим стабилизации. Чтобы получить плавную регулировку выходного напряжения (например для лабораторного блока питания) резистор R2 нужно заменить переменным.
Налаживание схемы
Установить нужное выходное напряжение резистором. Проверить стабилизатор на отсутствие самовозбуждения с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам CI, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ.
Детали стабилизатора
Микросхема КР142ЕН19 заменима на более современную TL431. Конденсаторы любые малогабаритные. Параметры трансформатора, выпрямителя — диодного моста и электролитического конденсатора фильтра выбирают исходя из необходимого напряжения и тока. Транзистор обязательно посадить на эффективный теплоотвод. Возможно потребуется использование кулера.
Поделитесь полезными схемами
СХЕМА ВАТТМЕТРА Принципиальная схема простого ваттметра для приблизительного контроля потребляемой мощности. |
ПОДСТАВКА ДЛЯ НОУТБУКА СВОИМИ РУКАМИ Владельцам нотубуков и нетбуков посвящается эта статья. Хронический перегрев процессора — основной недостаток ноутбуков, из-за этого резко снижается производительность компьютера, а иногда это приводит к отказу работ некоторых программ или же ноутбука в целом. |
ДВОИЧНО-ДЕСЯТИЧНЫЙ ДЕШИФРАТОР Двоично-десятичный дешифратор. Данное устройство иллюстрирует перевод чисел из двоичной системы в десятичную, что необходимо при получении конечного результата вычислений. В дешифраторе применены 4 тумблера, символизирующие разряды двоичных чисел, индикаторная лампа высвечивает числа от 1 до 10 десятичной системы счисления. |
СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ
Несложная схема для регулирования, а также стабилизации напряжения представлена на картинке выше, её сможет собрать даже новичок в электронике. К примеру, на вход подано 50 вольт, а на выходе получаем 15,7 вольт или другое значение до 27V.
Схема регулируемого стабилизатора
Основной радиодеталью данного устройства является полевой (MOSFET) транзистор, в качестве которого можно использовать IRLZ24/32/44 и другие подобные. Наиболее часто они производятся компаниями IRF и Vishay в корпусах TO-220 и D2Pak. Стоит около 0.58$ грн в розницу, на ebay 10psc можно приобрести за 3$ (0,3 доллара за штуку). Такой мощный транзистор имеет три вывода: сток (drain), исток (source) и затвор (gate), он имеет такую структуру: металл-диэлектрик(диоксид кремния SiO2)-полупроводник. Микросхема-стабилизатор TL431 в корпусе TO-92 обеспечивает возможность настраивать значение выходного электрического напряжения. Сам транзистор я оставил на радиаторе и припаял его к плате с помощью проводков.
Входное напряжение для этой схемы может быть от 6 и до 50 вольт. На выходе же получаем 3-27V с возможностью регулирования подстрочным резистором 33k. Выходной ток довольно большой, до 10 Ампер, в зависимости от радиатора.
Сглаживающие конденсаторы C1,C2 могут иметь ёмкость 10-22 мкФ, C3 4,7 мкФ. Без них схема и так будет работать, но не так хорошо, как нужно. Не забываем про вольтаж электролитических конденсаторов на входе и выходе, мною были взяты все рассчитаны на 50 Вольт.
Мощность, которую сможет рассеять такой стабилизатор напряжения не может быть более 50 Ватт. Полевой транзистор обязательно устанавливается на радиатор, рекомендуемая площадь поверхности которого не менее 200 квадратных сантиметров (0,02 м2). Не забываем про термопасту или подложку-резинку, чтобы тепло лучше отдавалось.
Возможно использование подстрочного резистора 33k типа WH06-1, WH06-2 они имеют достаточно точную регулировку сопротивления, вот так они выглядят, импортный и советский.
Для удобства на плату лучше припаять две колодки, а не провода, которые легко отрываются.
Печатная плата для дискретных элементов и переменного резистора типа СП5-2 (3296).
Стабильность неплоха и напряжение изменяется только на доли вольта на протяжении длительного времени. Готовая платка получилась компактна и удобна. Так как я планирую длительное время использовать это устройство для защиты дорожек окрасил всё дно платы зеленым цапонлаком. Автор материала —
Форум по БП
Обсудить статью СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ
Источники питания
Стабилизатор напряжения на мощном полевом транзисторе
И. НЕЧАЕВ, г. Курск
В статье описан аналоговый стабилизатор напряжения для блока питания повышенной мощности. Автору удалось значительно улучшить параметры стабилизатора, применив в качестве силового элемента мощный переключательный полевой транзистор.
При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор.
Схема одного из вариантов такого стабилизатора приведена на рис.1. В нем в качестве силового применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечиваетток до 30 А при температуре корпуса до 100 °С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5…3 В [1]. Мощность, рассеиваемая транзистором, может достигать 110 Вт.
Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (TL431). Ее назначение, устройство и параметры подробно описаны в статье [2]. Работает стабилизатор (рис. 1) следующим образом. При подключении сетевого трансформатора Т1 к сети на его вторичной обмотке появляется переменное напряжение около 13 В (эффективное значение). Оно выпрямляется диодным мостом VD1, и на сглаживающем конденсаторе большой емкости (обычно несколько десятков тысяч микрофарад) выделяется постоянное напряжение около 16 В.
Схемотехника блоков питания персональных компьютеров. Часть 2.
Высокочастотный преобразователь (инвертор)
В первой части нашего рассказа о схемотехнике блоков питания персональных компьютеров мы познакомились со схемой входного сетевого выпрямителя и фильтра. Давайте продолжим изучение компьютерного блока питания. Здесь мы разберёмся в том, как работает высокочастотный преобразователь – инвертор.
Постоянное напряжение 310 вольт, снимаемое с сетевого выпрямителя, подаётся на высокочастотный преобразователь. Высокочастотный преобразователь — это двухтактный инвертор, выполненный по схеме полумоста. Преобразователь работает на частоте в десятки килогерц и нагружен на высокочастотный силовой трансформатор.
Частота преобразования выбирается порядка 18 – 50 КГц, что подразумевает маленькие размеры силового трансформатора и небольшие величины ёмкостей конденсаторов фильтров. Один из плюсов импульсного блока питания является высокий КПД, достигающий 80% и экономичность, поскольку блок потребляет энергию только в то время, когда один из транзисторов преобразователя открыт. Когда он закрыт, энергию на нагрузку отдаёт конденсатор фильтра вторичной цепи.
Управление полумостовым инвертором осуществляется ШИМ-контроллером (Узел управления). Об узле управления блоком питания будет рассказано в следующей части.
Итак, высокочастотный преобразователь работает следующим образом: на него приходит постоянное напряжение 310 вольт с сетевого выпрямителя и конденсаторов фильтра. Одновременно в базовые цепи мощных транзисторов подаются прямоугольные импульсы положительной полярности и с частотой следования допустим 20 кГц. С этой частотой транзисторы как ключевые элементы открываются и закрываются.
На первичной обмотке трансформатора Т2 присутствует импульсное высокое напряжение с той же частотой 20 кГц. Трансформатор, естественно, понижающий и на его вторичных обмотках, которых несколько, формируются все необходимые для работы компьютера питающие напряжения, после этого все напряжения выпрямляются, фильтруются и подаются на системную плату.
Мощные ключевые транзисторы инвертора являются своеобразными «мускулами» блока питания. Именно через ключевые транзисторы инвертора «прокачивается» вся мощность, которая потребляется компьютером. Ключевые транзисторы устанавливаются на радиатор для принудительного охлаждения во время работы, а сам радиатор обдувается вентилятором.
В качестве ключевых транзисторов инвертора могут применяться как биполярные, так и полевые MOSFET транзисторы. Обычно же используются биполярные транзисторы.
Взглянем на схему. На ней изображена часть схемы ИБП марки GT-150W.
Биполярные транзисторы VT1 и VT2 поочерёдно открываются с частотой в десятки килогерц. Трансформатор T2 — импульсный силовой трансформатор. Он же обеспечивает гальваническую развязку от электросети. Импульсный силовой трансформатор заметно выделяется на фоне других трансформаторов, установленных на печатной плате. Найти его не сложно.
Со вторичных обмоток трансформатора T2 снимается пониженное переменное напряжение. На схеме показаны элементы одного из выходных выпрямителей +12 вольт (VD6, VD7, L1, C5). Электролитические конденсаторы C6, C7 — это конденсаторы сетевого фильтра и выпрямителя, речь о котором шла в первой части.
Трансформатор T1 — согласующий. Он является промежуточным звеном между микросхемой ШИМ-контроллера и мощными ключевыми транзисторами VT1, VT2. Габариты его заметно меньше, чем у трансформатора T2. Диоды VD4 и VD5 предохраняют мощные транзисторы от напряжения обратной полярности. У мощных полевых транзисторов эти диоды, как правило, уже встроены, поэтому на печатной плате диоды VD4, VD5 можно и не обнаружить. Так же защитные диоды встраивают в некоторые мощные биполярные транзисторы. Всё зависит от марки транзистора.
Схема запуска.
Узел управления инвертора питается выходным напряжением блока, но в момент включения все напряжения отсутствуют. Начальный запуск может осуществляться разными способами. Рассмотрим более подробно схему запуска инвертора, которая «заводит» мощный каскад инвертора.
После включения блока питания на базы транзисторов VT1, VT2 подаётся напряжение через делитель, выполненный на резисторах R3 — R6. При этом транзисторы «приоткрываются». При этом ещё начинается заряд конденсатора C4. Ток заряда конденсатора C4 проходя через часть вторичной обмотки (II) трансформатора T1 наводит в ней (обмотке II) и обмотке III напряжение. Это напряжение открывает один из транзисторов (VT1 или VT2). Какой именно из транзисторов откроется зависит от характеристик элементов каскада.
В результате открытия одного из ключевых транзисторов во вторичной обмотке трансформатора T2 появляется импульс тока, который проходит через один из диодов (VD6 или VD7) и заряжает конденсатор C3. Напряжения на C3 достаточно для питания узла управления в момент пуска инвертора. Далее в работу включается узел управления, который и начинает управлять транзисторами VT1 и VT2 в штатном режиме.
Вот так хитроумно реализована схема запуска инвертора.
В мощном каскаде наиболее частой неисправностью является выход из строя транзисторов, поскольку они работают в достаточно тяжёлом тепловом режиме. Ну, и, конечно, слабое звено это электролитические конденсаторы, которые со временем «высыхают» и теряют ёмкость. Также элктролиты выходят из строя из-за превышения рабочего напряжения.
НазадДалее
Главная » Мастерская » Текущая страница
Стабилизатор напряжения на полевом транзисторе
Простая схема для регулировки и стабилизации напряжения показана на рисунке. Такую схему можно выполнить даже неопытному в электронике любителю. На вход подается 50 вольт, при этом на выходе получается 15,7 В.
Схема стабилизатора.
Главной деталью этого прибора стал полевой транзистор. В его качестве можно применять IRLZ 24 / 32 / 44 и аналогичные ему полупроводники. Чаще всего их изготавливают в корпусе ТО – 220 и D2 Pak. Его стоимость составляет менее одного доллара. Этот мощный полевик имеет 3 вывода. Он имеет внутреннее строение металл–изолятор–полупроводник.
Стабилизатор на микросхеме ТL 431 в корпусе ТО – 92 обеспечивает настраивание величины выходного напряжения. Мощный полевой транзистор мы оставили на охлаждающем радиаторе и проводами припаяли к монтажной плате.
Напряжение на входе для такой схемы 6-50 В. На выходе получаем от 3 до 27 В, с возможностью регулировки переменным сопротивлением на 33 кОм. Ток выхода большой, и составляет величину до 10 А, зависит от радиатора.
Выравнивающие конденсаторы С1, С2 емкостью от 10 до 22 мкФ, С2 – 4,7 мкФ. Без таких деталей схема будет функционировать, однако не с таким качеством, как необходимо. Нельзя забывать про допустимое напряжение электролитических конденсаторов, которые должны быть установлены на выходе и входе. Мы взяли емкости, которые выдерживают 50 В.
Такой стабилизатор способен рассеивать мощность не выше 50 Вт. Полевик необходимо монтировать на радиатор охлаждения. Его площадь целесообразно выполнять не меньше 200 см2. При установке полевика на радиатор нужно промазать место касания термопастой, для лучшего теплоотвода.
Можно применять переменный резистор на 33 кОм типа WH 06-1. Такие резисторы имеют возможность точной настройки сопротивления. Они бывают импортного и отечественного производства.
Для удобства монтажа на плату припаивают 2 колодки, вместо проводов. Так как провода быстро отрываются.
Вид платы дискретных компонентов и переменного сопротивления вида СП 5-2.
Стабильность напряжения в результате получается неплохой, а напряжение выхода колеблется на несколько долей вольта долгое время. Монтажная плата получается компактных размеров и удобна в работе. Дорожки платы окрашены зеленым цапонлаком.
Мощный стабилизатор на полевике
Рассмотрим сборку схемы стабилизатора, предназначенного для блока питания большой мощности. Здесь улучшены свойства прибора с помощью мощного электронного ключа в виде полевого транзистора.
При разработке мощных силовых стабилизаторов любители чаще всего применяют специальные серии микросхем 142, и ей подобные, которые усилены несколькими транзисторами, подключенными по параллельной схеме. Поэтому получается силовой стабилизатор.
Схема такой модели прибора изображена на рисунке. В нем использован мощный полевик IRLR 2905. Он служит для переключения, однако в этой схеме он применен в линейном режиме. Полупроводник имеет незначительное сопротивление и обеспечивает ток до 30 ампер при нагревании до 100 градусов. Он нуждается в напряжении на затворе до 3 вольт. Его мощность достигает 110 ватт.
Полевиком управляет микросхема TL 431. Стабилизатор имеет следующий принцип действия. При подсоединении трансформатора на вторичной обмотке возникает переменное напряжение 13 вольт, которое выпрямляется выпрямительным мостом. На выравнивающем конденсаторе значительной емкости появляется постоянное напряжение 16 вольт.
Это напряжение проходит на сток полевого транзистора и по сопротивлению R1 идет на затвор, при этом открывая транзистор. Часть напряжения на выходе через делитель попадает на микросхему, при этом замыкая цепь ООС. Напряжение прибора повышается до тех пор, пока входное напряжение микросхемы не дойдет границы 2,5 вольт. В это время микросхема открывается, уменьшая напряжение затвора полевика, то есть, немного закрывая его, и прибор работает в режиме стабилизации. Емкость С3 делает быстрее выход стабилизатора на номинальный режим.
Величина напряжения выхода устанавливается 2,5-30 вольт, путем выбора переменным сопротивлением R2, его величина может меняться в больших пределах. Емкости С1, С2, С4 дают возможность стабильному действию стабилизатора.
Для такого прибора наименьшее падение напряжения на транзисторе составляет до 3 вольт, хотя он способен работать при напряжении около нуля. Такой недостаток возникает поступлением напряжения на затвор. При малом падении напряжения полупроводник не будет открываться, так как на затворе должно быть плюсовое напряжение по отношению к истоку.
Для снижения падения напряжения цепь затвора рекомендуется подключать от отдельного выпрямителя на 5 вольт выше, чем напряжение выхода прибора.
Хорошие результаты можно получить при подключении диода VD 2 к мосту выпрямления. При этом напряжение на конденсаторе С5 повысится, так как падение напряжения на VD 2 станет ниже, чем на диодах выпрямителя. Для плавного регулирования напряжения выхода постоянное сопротивление R2 нужно заменить переменным резистором.
Величину выходного напряжения определяют по формуле: U вых = 2,5 (1+R2 / R3). Если применить транзистор IRF 840, то наименьшее значение напряжения управления на затворе станет 5 вольт. Емкости выбирают танталовые малогабаритные, сопротивления – МЛТ, С2, Р1. Выпрямительный диод с небольшим падением напряжения. Свойства трансформатора, моста выпрямления и емкости С1 подбирают по нужному напряжению выхода и тока.
Полевик рассчитан на значительные токи и мощность, для этого необходим хороший теплоотвод. Транзистор служит для монтажа на радиатор путем пайки с промежуточной пластиной из меди. К ней припаивают транзистор с остальными деталями. После монтажа пластину размещают на радиаторе. Для этого пайка не нужна, так как пластина имеет значительную площадь контакта с радиатором.
Если использовать для наружной установки микросхему П_431 С, сопротивления Р1, и чип-конденсаторы, то их располагают на печатной плате из текстолита. Плату паяют к транзистору. Настройка прибора сводится к монтажу нужного значения напряжения. Необходимо проконтролировать прибор и проверить его, имеется ли самовозбуждение на всех режимах.
Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками
Мощный лабораторный блок питания с MOSFET транзистором на выходе своими руками
В предыдущей статье мы рассматривали схемы ЗУ с использованием в качестве силового ключа мощные p-n-p или n-p-n транзисторы. Они позволяли получить достаточно большой ток при небольшом количестве радиодеталей, но у используемых биполярных транзисторов имеется существенный недостаток…
— это большое падение напряжения коллектор-эмиттер в режиме насыщения, достигающее 2 … 2,5 В у составных транзисторов, что приводит к их повышенному нагреву и необходимости установки транзисторов на большой радиатор.
Гораздо экономичней вместо биполярных транзисторов устанавливать силовые МОП (MOSFET) транзисторы, которые при тех же токах имеют гораздо меньшее (в 5 -10 раз) падение напряжения на открытом переходе сток-исток. Проще всего вместо силового p-n-p транзистора установить мощный p-канальный полевой транзистор, ограничив с помощью дополнительного стабилитрона напряжение между истоком и затвором на уровне 15В. Параллельно стабилитрону подключается резистор сопротивлением около 1 кОм для быстрой разрядки ёмкости затвор-исток.
Гораздо более распространены и доступней силовые n- канальные МОП транзисторы, но принципиальная схема устройства с такими транзисторами несколько усложняется, т.к. для полного открытия канала сток-исток на затвор необходимо подать напряжение на 15 В выше напряжения силовой части. Ниже рассмотрена схема такого устройства.
Мощный лабораторный блок питания 1,5 -30В, 0-5А на MOSFET транзисторе
Основа конструкции мало отличается от ранее рассмотренных устройств на биполярных силовых транзисторах. С помощью конденсаторов С1-С3 и диодов VD1-VD5 в схеме формируется повышенное на 15 В напряжение, которое с помощью транзисторов VT2, VT3 подаётся на затвор полевого транзистора VT1.
В схеме желательно использовать MOSFET с наиболее низким сопротивлением открытого канала, но максимальное допустимое напряжение этих транзисторов должно быть в 1,5 — 2 раза выше напряжения силовой цепи. В качестве диода VD8 желательно использовать диоды с барьером Шоттки с рабочим напряжением выше максимального в силовой цепи, в крайнем случае можно использовать КД213А или КД2997, КД2799, но их придётся установить на небольшой радиатор. Требования к изготовлению накопительного дросселя DR1 такие же как и в зарядных устройствах с биполярными ключевыми транзисторами.
При отсутствии подходящего проволочного резистора, используемого в качестве токового шунта R17 схему можно доработать, используя небольшой отрезок манганинового провода диаметром 2 мм или мощные проволочные резисторы сопротивлением 0,01 …0,05 Ом.
Следующая схема имеет нормализацию напряжения на токовом шунте и усилителя на ОУ.
Лабораторный блок питания с усилителем-нормализатором напряжения шунта
Предлагаемая схема отличается от описанной, выше наличием операционного усилителя DA2, что позволяет можно использовать как любой проволочный резистор сопротивлением 0,01 … 0,05 Ом и мощностью 1 — 2 Вт, так и кусок подходящего нихромового или манганинового провода диаметром 1,5 … 2 мм.
Операционный усилитель усиливает напряжение шунта до уровня, необходимого для нормальной работы компаратора микросхемы DA1. Коэффициент усиления ОУ DA2 определяется соотношением сопротивлений резисторов R15 и R18 и определяется из условия получения на выходе ОУ напряжения 0,5 … 3 В при выбранном максимальном выходном токе устройства.
Выходной ток регулируется переменным резистором R4, максимальное напряжение на движке которого должно быть равно напряжению на выходе ОУ DA2 при максимальном рабочем токе. Сопротивление переменного резистора R4 может быть любым в пределах 1 … 100 К, а максимальное напряжение на его движке определяется сопротивлением резистора R6.
Схема позволяет получить гораздо больший выходной ток, чем выбранный автором — максимальная величина тока определяется мощностью силового трансформатора, элементами силовой цепи и настройкой узла ограничения выходного тока. В качестве DA2 может быть использован практически любой доступный операционный усилитель, например КР140УД1408, КР140УД608, КР140УД708, mA741 и т.д.
Конденсатор частотной коррекции C9 может отсутствовать при использовании ОУ, не требующих его использования. В случае использования ОУ типа КР140УД1408 (LM308) его припаивают между выводами 1 и 8, у других ОУ выводы могут быть иными.
Лабораторный блок питания отличается от ранее описанного зарядного устройства гораздо большим максимальным выходным напряжением. Автором выбрано напряжение 30В, но если использовать трансформатор с большим выходным напряжением и применить более высоковольтные силовые элементы, можно получить гораздо более высокие значения.
Регулировка выходного напряжения осуществляется переменным резистором R16, сопротивление которого может быть в пределах 3,3 … 100кОм. Верхний предел выходного напряжения определяется сопротивлением резистора R17 из расчёта получения напряжения 1,5 В на движке переменного резистора R16 в его нижнем, по схеме, положении.
Схему можно упростить, исключив регуляторы тока и напряжения, а также измерительную головку, если устройство будет использоваться только для зарядки одного типа аккумуляторов. Вместо переменного резистора — регулятора выходного напряжения на печатной плате установлен многооборотный подстроечный резистор R15, а ограничение выходного тока задаётся делителем на резисторах R4, R5.
Для исключения выхода из строя диода VD11 при случайной переполюсовке аккумулятора установлен предохранитель FU2. В качестве транзисторов VT2, VT3 можно использовать любые маломощные транзисторы соответствующей структуры на напряжение 60В и ток коллектора 100мА, например КТ209Е, КТ3102Б и т.д.
В авторском варианте схема настраивалась на выходной ток 3,0 А, но его легко повысить до 6А и более, уменьшив номинал резистора R13 до 5,0 кОм.
Внешний вид платы и расположение элементов:
Предложенная схема лабораторного блока питания можно дополнить узлом защиты нагрузки от неконтролируемого повышения выходного напряжения, например, при пробое выходного транзистора или неисправности в схеме. Смотрите следующую схему:
ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ
Предлагаемый лабораторный блок питания отличается от схемы, выше наличием узла защиты нагрузки от повышенного напряжения. При включении блока питания напряжение на его выходе отсутствует, что исключает случайный выход из строя подключенной нагрузки из-за начального несоответствия установленного напряжения и требуемого. Узел ручного включения / отключения нагрузки собран на транзисторах VT5, VT7 и реле K1.
Узел работает следующим образом: в исходном состоянии транзисторы VT5, VT7 заперты и реле К1 обесточено. При кратковременном нажатии на кнопку SB1 высокий потенциал на коллекторе VT7 через резистор R30 и конденсатор С11 открывает VT7 — реле К1 срабатывает, а протекающий через резистор R33 ток катушки реле открывает транзистор VT5, который через резистор R26 удерживает транзистор VT7 в открытом состоянии длительное время. На лицевой панели блока питания зажигается светодиод HL3 «НАГРУЗКА», а контакты реле К1 коммутируют выходное напряжение на выходные клеммы.
В этом состоянии на коллекторе транзистора VT7 низкий потенциал, а на коллекторе VT5 высокий. Конденсатор C10 через резистор R19 заряжается до напряжения 35В, плюсом к нижней, по схеме, обкладке и минусом к базе транзистора VT7. При повторном нажатии кнопки SB1 через резистор R30 и конденсатор С10 к базе VT7 прикладывается отрицательное напряжение — транзистор запирается, отключается реле К1, снимая напряжение с нагрузки, запирается транзистор VT5 и схема приходит в исходное состояние до следующего нажатия кнопки SB1.
Защита от нештатного повышения выходного напряжения работает следующим образом: при нормальном режиме работы напряжение на движке переменного резистора R20 всегда будет равно 1,5 В, независимо от его положения, так как схема управления на микросхеме DA1 сравнивает его с опорным на выводе 15, которое определяется параметрами делителя напряжения на резисторах R13 и R8. При неисправности в схеме это напряжение может превысить уровень 1,5 В, транзистор VT4 через резисторный делитель R15, R16 откроется, а транзистор VT7 закроется, отключив выходное реле К1. При длительной аварийной ситуации будет гореть светодиод HL2 «АВАРИЯ», а реле К1 кнопкой SB1 включаться не будет.
Защита также сработает при быстром вращении оси переменного резистора R20 в сторону уменьшения выходного напряжения, что позволяет быстро отключить нагрузку, если случайно было установлено его недопустимо высокое значение.
Схема также защищает элементы устройства от протекания большого тока при переполюсовке заряжаемого аккумулятора. Если аккумулятор ошибочно подключен минусовым выводом к плюсовой клемме блока питания, то через диод VD15 и резистор R31 откроется транзистор VT6, загорится светодиод HL2 «АВАРИЯ», а реле К1 не будет включаться кнопкой SB1, что предотвращает выход из строя контактов реле К1, конденсатора С9, катушки дросселя DR1 и диода DV10.
Очень важно вначале подключить заряжаемый аккумулятор, а затем нажать кнопку «ПУСК» для начала зарядки, в противном случае, при переполюсовке аккумулятора, перегорит предохранитель FU2.
Перед нажатием кнопки «ПУСК» движком переменного резистора R20 следует установить выходное напряжение блока питания равным его значению при полностью заряженном аккумуляторе, например, для свинцового 12В аккумулятора следует установить 14,8В. Если напряжение на выходе блока питания установить ниже, чем напряжение заряжаемого аккумулятора, то, сразу после пуска, реле К1 обесточится, отключив нагрузку, а светодиод HL2 «АВАРИЯ» кратковременно загорится.
Настройка схемы управления описана на предыдущей странице, а конструктивное исполнение накопительного дросселя приведено в предыдущих публикациях раздела зарядных устройств. Транзистор VT1 и диоды VD7, VD10 следует установить на небольшие радиаторы, площадь которых зависит от выбранного максимального рабочего тока.
Параметры силового трансформатора полностью определяются максимальными значениями выходного тока и напряжения — его мощность должна быть не менее, чем на 20% выше максимальной выходной мощности блока питания на нагрузке.
Почти все элементы схемы размещены на печатной плате, внешний вид которой изображен на рисунке. Отдельно установлен силовой трансформатор, измерительный прибор, выключатель питания, регуляторы тока и напряжения, кнопка пуска, предохранители, выходные клеммы и светодиодные индикаторы. На плате предусмотрена установка различных типов диодов в качестве VD10, даже двойных.
Все предложенные схемы можно использовать также и в качестве зарядных устройств.
Источник:kravitnik.narod.ru
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
П О П У Л Я Р Н О Е:
Популярность: 9 286 просм.
Блок питания на стабилитроне и транзисторе своими руками
Рассмотренный далее стабилизированный блок питания является одним из первых устройств, которые собираются начинающими радиолюбителями. Это очень простой, но весьма полезный прибор. Для его сборки не нужны дорогостоящие компоненты, которые достаточно легко подобрать новичку в зависимости от требуемых характеристик блока питания.Материал будет также полезен тем, кто желает более детально разобраться в назначении и расчете простейших радиодеталей. В том числе, вы подробно узнаете о таких компонентах блока питания, как:
- силовой трансформатор;
- диодный мост;
- сглаживающий конденсатор;
- стабилитрон;
- резистор для стабилитрона;
- транзистор;
- нагрузочный резистор;
- светодиод и резистор для него.
Также в статье детально рассказано, как подобрать радиодетали для своего блока питания и что делать, если нет нужного номинала. Наглядно будет показана разработка печатной платы и раскрыты нюансы этой операции. Несколько слов сказано конкретно о проверке радиодеталей перед пайкой, а также о сборке устройства и его тестировании.
Типовая схема стабилизированного блока питания
Всевозможных схем блоков питания со стабилизацией напряжения существует сегодня очень много. Но одна из самых простых конфигураций, с которой и стоит начинать новичку, построена всего на двух ключевых компонентах – стабилитроне и мощном транзисторе. Естественно, в схеме присутствуют и другие детали, но они вспомогательные.
Схемы в радиоэлектронике принято разбирать в том направлении, в котором по ним протекает ток. В блоке питания со стабилизацией напряжения все начинается с трансформатора (TR1). Он выполняет сразу несколько функций. Во-первых, трансформатор понижает сетевое напряжение. Во-вторых, обеспечивает работу схемы. В-третьих, питает то устройство, которое подключено к блоку.
Диодный мост (BR1) – предназначен для выпрямления пониженного сетевого напряжения. Если говорить другими словами, то в него заходит переменное напряжение, а на выходе получается уже постоянное. Без диодного моста не будет работать ни сам блок питания, ни устройства, которые будут к нему подключаться.
Сглаживающий электролитический конденсатор (C1) нужен для того, чтобы убирать пульсации, присутствующие в бытовой сети. На практике они создают помехи, которые отрицательно сказываются на работе электроприборов. Если для примера взять усилитель звука, запитанный от блока питания без сглаживающего конденсатора, то эти самые пульсации будут отчетливо слышны в колонках в виде постороннего шума. В других приборах помехи могут привести к некорректной работе, сбоям и прочим проблемам.
Стабилитрон (D1) – это компонент блока питания, который стабилизирует уровень напряжения. Дело в том, что трансформатор будет выдавать желаемые 12 В (например) только тогда, когда в сетевой розетке будет ровно 230 В. Однако на практике таких условий не бывает. Напряжение может как просаживаться, так и повышаться. То же самое трансформатор будет давать и на выходе. Благодаря своим свойствам стабилитрон выравнивает пониженное напряжение независимо от скачков в сети. Для корректной работы этого компонента нужен токоограничивающий резистор (R1). О нем более детально сказано ниже.
Транзистор (Q1) – нужен для усиления тока. Дело в том, что стабилитрон не способен пропускать через себя весь потребляемый прибором ток. Более того, корректно он будет работать только в определенном диапазоне, например, от 5 до 20 мА. Для питания каких-либо приборов этого откровенно мало. С данной проблемой и справляется мощный транзистор, открывание и закрывание которого управляется стабилитроном.
Сглаживающий конденсатор (C2) – предназначен для того же, что и вышеописанный C1. В типовых схемах стабилизированных блоков питания присутствует также нагрузочный резистор (R2). Он нужен для того, чтобы схема сохраняла работоспособность тогда, когда к выходным клеммам ничего не подключено.
В подобных схемах могут присутствовать и другие компоненты. Это и предохранитель, который ставится перед трансформатором, и светодиод, сигнализирующий о включении блока, и дополнительные сглаживающие конденсаторы, и еще один усиливающий транзистор, и выключатель. Все они усложняют схему, однако, повышают функциональность устройства.
Расчет и подбор радиокомпонентов для простейшего блока питания
Трансформатор подбирается по двум основным критериям – напряжению вторичной обмотки и по мощности. Есть и другие параметры, но в рамках материала они не особо важны. Если вам нужен блок питания, скажем, на 12 В, то трансформатор нужно подбирать такой, чтобы с его вторичной обмотки можно было снять чуть больше. С мощностью все то же самое – берем с небольшим запасом.
Основной параметр диодного моста – это максимальный ток, который он способен пропускать. На эту характеристику и стоит ориентироваться в первую очередь. Рассмотрим примеры. Блок будет использоваться для питания прибора, потребляющего ток 1 А. Это значит, что диодный мост нужно брать примерно на 1,5 А. Допустим, вы планируете питать какой-либо 12-вольтовый прибор мощностью 30 Вт. Это значит, что потребляемый ток будет около 2,5 А. Соответственно, диодный мост должен быть, как минимум, на 3 А. Другими его характеристиками (максимальное напряжение и прочее) в рамках такой простой схемы можно пренебрегать.
Дополнительно стоит сказать, что диодный мост можно не брать уже готовый, а собрать его из четырех диодов. В таком случае каждый из них должен быть рассчитан на ток, проходящий по схеме.
Для расчета емкости сглаживающего конденсатора применяются достаточно сложные формулы, которые в данном случае ни к чему. Обычно берется емкость 1000-2200 мкФ, и этого для простого блока питания будет вполне достаточно. Можно взять конденсатор и побольше, но это существенно удорожит изделие. Другой важный параметр – максимальное напряжение. По нему конденсатор подбирается в зависимости от того, какое напряжение будет присутствовать в схеме.
Здесь стоит учитывать, что на отрезке между диодным мостом и стабилитроном после включения сглаживающего конденсатора напряжение будет примерно на 30% выше, чем на выводах трансформатора. То есть, если вы делаете блок питания на 12 В, а трансформатор выдает с запасом 15 В, то на данном участке из-за работы сглаживающего конденсатора будет примерно 19,5 В. Соответственно, он должен быть рассчитан на это напряжение (ближайший стандартный номинал 25 В).
Второй сглаживающий конденсатор в схеме (C2) обычно берется небольшой емкости – от 100 до 470 мкФ. Напряжение на этом участке схемы будет уже стабилизированным, например, до уровня 12 В. Соответственно, конденсатор должен быть рассчитан на это (ближайший стандартный номинал 16 В).
А что делать, если конденсаторов нужных номиналов нет в наличии, и в магазин идти неохота (или банально нет желания их покупать)? В таком случае вполне возможно воспользоваться параллельным подключением нескольких конденсаторов меньшей емкости. При этом стоит учесть, что максимальное рабочее напряжение при таком подсоединении суммироваться не будет!
Стабилитрон подбирается в зависимости от того, какое напряжение нам нужно получить на выходе блока питания. Если подходящего номинала нет, то можно соединить несколько штук последовательно. Стабилизируемое напряжение, при этом, будет суммироваться. Для примера возьмем ситуацию, когда нам надо получить 12 В, а в наличии есть только два стабилитрона на 6 В. Соединив их последовательно мы и получим желаемое напряжение. Стоит отметить, что для получения усредненного номинала параллельное подключение двух стабилитронов не сработает.
Максимально точно подобрать токоограничивающий резистор для стабилитрона можно только экспериментально. Для этого в уже рабочую схему (например, на макетной плате) включается резистор номиналом примерно 1 кОм, а между ним и стабилитроном в разрыв цепи ставится амперметр и переменный резистор. После включения схемы нужно вращать ручку переменного резистора до тех пор, пока через участок цепи не потечет требуемый номинальный ток стабилизации (указывается в характеристиках стабилитрона).
Усиливающий транзистор подбирается по двум основным критериям. Во-первых, для рассматриваемой схемы он обязательно должен быть n-p-n структуры. Во-вторых, в характеристиках имеющегося транзистора нужно посмотреть на максимальный ток коллектора. Он должен быть немного больше, чем максимальный ток, на который будет рассчитан собираемый блок питания.
Нагрузочный резистор в типовых схемах берется номиналом от 1 кОм до 10 кОм. Меньшее сопротивление брать не стоит, так как в случае, когда блок питания не будет нагружен, через этот резистор потечет слишком большой ток, и он сгорит.
Разработка и изготовление печатной платы
Теперь вкратце рассмотрим наглядный пример разработки и сборки стабилизированного блока питания своими руками. В первую очередь, необходимо найти все присутствующие в схеме компоненты. Если нет конденсаторов, резисторов или стабилитронов нужных номиналов – выходим из ситуации вышеописанными путями.
Далее нужно будет спроектировать и изготовить печатную плату для нашего прибора. Начинающим лучше всего использовать для этого простое и, самое главное, бесплатное программное обеспечение, например, Sprint Layout.
Размещаем на виртуальной плате все компоненты согласно выбранной схемы. Оптимизируем их расположение, корректируем в зависимости от того, какие конкретно детали есть в наличии. На этом этапе рекомендуется перепроверять реальные размеры компонентов и сравнивать их с добавляемыми в разрабатываемую схему. Особое внимание обратите на полярность электролитических конденсаторов, расположение выводов транзистора, стабилитрона и диодного моста.
Если вы заходите добавить в блок питания сигнальный светодиод, то его можно будет включить в схему как до стабилитрона, так и после (предпочтительнее). Чтобы подобрать для него токоограничивающий резистор, необходимо выполнить следующий расчет. Из напряжения участка цепи вычитаем падение напряжения на светодиоде и делим результат на номинальный ток его питания. Пример. На участке, к которому мы планируем подключать сигнальный светодиод, имеется стабилизированные 12 В. Падение напряжения у стандартных светодиодов около 3 В, а номинальный ток питания 20 мА (0,02 А). Получаем, что сопротивление токоограничивающего резистора R=450 Ом.
Проверка компонентов и сборка блока питания
После разработки платы в программе переносим ее на стеклотекстолит, травим, лудим дорожки и удаляем излишки флюса.
После этого выполняем установку радиокомпонентов. Здесь стоит сказать, что не лишним будет сразу же перепроверить их работоспособность, особенно, если они не новые. Как и что проверять?
Обмотки трансформатора проверяются омметром. Где сопротивление больше – там первичная обмотка. Далее его нужно включить в сеть и убедиться, что он выдает требуемое пониженное напряжение. При его измерении соблюдайте предельную осторожность. Также учтите, что напряжение на выходе переменное, потому на вольтметре включается соответствующий режим.
Резисторы проверяются омметром. Стабилитрон должен «звониться» только в одном направлении. Диодный мост проверяем по схеме. Встроенные в него диоды должны проводить ток только в одном направлении. Для проверки конденсаторов потребуется специальный прибор для измерения электрической емкости. В транзисторе n-p-n структуры ток должен протекать от базы к эмиттеру и к коллектору. В остальных направлениях он протекать не должен.
Начинать сборку лучше всего с мелких деталей – резисторов, стабилитрона, светодиода. Затем впаиваются конденсаторы, диодный мост.
Особое внимание обращайте на процесс установки мощного транзистора. Если перепутать его выводы – схема не заработает. Кроме того, этот компонент будет достаточно сильно греется под нагрузкой, потому его необходимо устанавливать на радиатор.
Последним устанавливается самая большая деталь – трансформатор. Далее к выводам его первичной обмотки припаивается сетевая вилка с проводом. На выходе блока питания тоже предусматриваются провода.
Осталось только хорошенько перепроверить правильность установки всех компонентов, смыть остатки флюса и включить блок питания в сеть. Если все сделано правильно, то светодиод будет светиться, а на выходе мультиметр покажет желаемое напряжение.